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. Relevant photon modes in cavity

In this work we consider a 2D material on a dielectric substrate in a nanocavity. We impose

reflecting mirror boundary conditions with ~n · ~B = 0 and ~n× ~E = 0 for the magnetic ~B and

electric ~E components of the photonic field, and ~n = ẑ the surface normal. The size of the

cavity in z direction is Lz. If the dielectric substrate has a very high dielectric constant, such

as for SrTiO3 at low temperature, it can be considered almost metallic and Lz is reduced

accordingly in our effective description.

Assuming periodic boundary conditions in the x − y plane, we obtain for example for the

vacuum electric field, obeying the wave equation ∇2E − 1
c2
∂2E
∂t2

= 0 with c the speed of

light

Ex(x, y, z, t) = E1 exp(ikxx) exp(ikyy) sin(kzz) exp(−iωphot(~k)t) (S1)

Ey(x, y, z, t) = E2 exp(ikxx) exp(ikyy) sin(kzz) exp(−iωphot(~k)t) (S2)

Ez(x, y, z, t) = E3 exp(ikxx) exp(ikyy) cos(kzz) exp(−iωphot(~k)t) (S3)

with ωphot(~k) = c|~k|, and

kx =
2πl

Lx
, l ∈ N0 (S4)

ky =
2πm

Ly
, m ∈ N0 (S5)

kz =
πn

Lz
n ∈ N0 (S6)

We assume Lx and Ly to be large to obtain a fine momentum grid in the x − y plane. By

contrast Lz is assumed to be small (Lz � Lx, Ly), implying that for n = 1 the photon

energy is at least c π
Lz

well above typical phonon energy scales and thus irrelevant to the

problem of our interest. We retain only the n = 0, kz = 0 component that has constant

mode amplitude along the z direction. Thus we will use only one mode for each in-plane

momentum ~q = (qx, qy) with

Ex(x, y, z, t) = 0 (S7)

Ey(x, y, z, t) = 0 (S8)

Ez(x, y, z, t) = E3 exp(iqxx) exp(iqyy) exp(−iωphot(~k)t) (S9)

Section S1



Phonon-photon Hamiltonian

We consider the generic Hamiltonian for phonon-photon coupling (41 )

Hphon-phot = H0 +H ′ (S10)

H0 = Ω
∑
~q

b†~qb~q +
∑
~q

ωphot(~q)a
†
~qaq~ (S11)

H ′ = − e

Mc

∑
j

~Pj · ~A(~Rj) +
e2

2Mc2

∑
j

~A(~Rj) · ~A(~Rj) (S12)

Throughout we approximate the phonon dispersion relevant for FeSe/SrTiO3 with a disper-

sionless Ω = 92 meV (29 ). Here ~q summations are over the first Brillouin zone [−π, π)2 in

the 2D square lattice with lattice constant a = 1, implying a high-frequency cutoff to the

photons, which is irrelevant to the electron-boson physics happening at much lower energy.

For the photon, we take only the mode polarized along the ẑ direction parallel to the phonon

dipoles, and restrict it to the lowest branch qz = 0 due to cavity confinement as discussed

above, implying ωphot(~q) = c|~q| = c
√
q2
x + q2

y .

We write the phononic dipole current operator via bosonic operators

~Jj ≡
e

M
~Pj = ie

∑
~q

(
Ω

2NM

)1/2

ξ̂~q

(
b†~q − b−~q

)
e−i~q

~Rj ≡
∑
~q

1√
N
~J(~q)e−i~q

~Rj (S13)

with polarization vector ξ̂~q = ẑ, and similarly for the relevant z component of the photonic

vector potential

Az(~Rj) ≡
∑
~q

(
2πc2

ωphot(~q)ν0

)1/2 (
a†~q + a−~q

)
e−i~q

~Rj ≡
∑
~q

c
√
ν0

Aµ(~q)e−i~q
~Rj (S14)

assuming periodic boundary conditions inside the 2D plane. Here b†~q (b~q) creates (annihilates)

a phonon with wavevector ~q; a†~q (a~q) creates (annihilates) a cavity photon with wavevector

~q. N is the number of unit cells, V the system volume, ν0 ≡ V/N the unit cell volume, and

e and M the ionic charge and reduced mass, respectively, related to the relative motion of

positively and negatively charged ions in the optical phonon mode. In momentum space we

have

Jz(~q) ≡ ie

(
Ω

2M

)1/2 (
b†~q − b−~q

)
(S15)

Az(~q) ≡
(

2π

ωphot(~q)

)1/2 (
a†~q + a−~q

)
(S16)
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Now we first diagonalize the bare photon plus A2 terms of the Hamiltonian

H0,phot =
∑
~q

ωphot(~q)a
†
~qa~q (S17)

=
1

2

∑
~q

(
PA,~qPA,−~q + ωphot(~q)

2XA,~qXA,−~q
)

(S18)

HA2 =
1

2

∑
~q

ω2
PXA,~qXA,−~q (S19)

Here we introduced canonical position and momentum operators for photon degrees of

freedom

XA,~q ≡

√
1

2ωphot(~q)

(
a~q + a†−~q

)
(S20)

PA,~q ≡ −i
√
ωphot(~q)

2

(
a−~q − a

†
~q

)
(S21)

We also defined the phononic plasma frequency

ωP ≡

√
4πe2

Mν0

=

√
4πe2

Mν0,2DLz
(S22)

which for the 2D system in the cavity is governed by the length of the vacuum inside the

cavity in z direction, Lz, and the 2D unit cell area ν0,2D. The expressions above are given

in cgs units. In the SI system, ωSI
P =

√
e2

Mε0ν0,2DLz
with the vacuum permittivity ε0.

The bilinear J · A coupling term is written as

HJ ·A = − 1
√
ν0

∑
~q

~J(~q) · ~A(−~q) (S23)

= −
∑
~q

ωPXA,~qPB,~q (S24)

where it is convenient to introduce canonical position and momentum operators for the

phonons

XB,~q ≡
√

1

2Ω

(
b~q + b†−~q

)
(S25)

PB,~q ≡ −i
√

Ω

2

(
b−~q − b

†
~q

)
(S26)

Written in these operators, the bare phonon term H0,phon ≡ Ω
∑

~q b
†
~qb~q takes the form

H0,phon =
1

2

∑
~q

(
PB,~qPB,−~q + Ω2XB,~qXB,−~q

)
(S27)



The total phonon-photon Hamiltonian is now written as pairs of coupled harmonic

oscillators

Hphon-phot = H0,phot +H0,phon +HA2 +HJ ·A (S28)

=
1

2

∑
~q

(
PA,~qPA,−~q + PB,~qPB,−~q + (ωphot(~q)

2 + ω2
P)XA,~qXA,−~q +

+ Ω2XB,~qXB,−~q − 2ωPXA,~qPB,~q

)
(S29)

In order to diagonalize this Hamiltonian, we introduce a transformation

P̃B,~q ≡ ΩXB,~q, (S30)

X̃B,~q ≡ −Ω−1PB,~q (S31)

which leaves the canonical commutator unchanged but interchanges position and momentum

operators. The phonon-photon Hamiltonian is then compactly represented as

Hphon-phot =
1

2

∑
~q

 PA,~q
P̃B,~q

T  1 0

0 1

 PA,−~q
P̃B,−~q

+

+
1

2

∑
~q

 XA,~q

X̃B,~q

T  ωphot(~q)
2 + ω2

P ΩωP

ΩωP Ω2

 XA,−~q

X̃B,−~q

 (S32)

Diagonalization is now achieved with the following unitary transformation to polariton

canonical position and momentum operators X+,~q

X−,~q

 =

 cos(θ~q) sin(θ~q)

− sin(θ~q) cos(θ~q)

 XA,~q

X̃B,~q

 (S33)

 P+,~q

P−,~q

 =

 cos(θ~q) sin(θ~q)

− sin(θ~q) cos(θ~q)

 PA,~q
P̃B,~q

 (S34)

which leaves canonical commutation relations intact. The resulting phonon-photon Hamil-

tonian expressed in polaritonic operators is

Hphon-phot =
1

2

∑
~q

 P+,~q

P−,~q

T  1 0

0 1

 P+,−~q

P−,−~q

+

+
1

2

∑
~q

 X+,~q

X−,~q

T  ω+(~q)2 0

0 ω−(~q)2

 X+,−~q

X−,−~q

 (S35)



with polaritonic dispersions ω±(~q) fulfilling

ω±(~q)2 =
1

2

(
ωphot(~q)

2 + ω2
P + Ω2 ±

√
(ωphot(~q)2 + ω2

P + Ω2)2 − 4ωphot(~q)2Ω2

)
(S36)

In particular, in the long-wavelength limit one obtains

ω+(~q → 0)→
√

Ω2 + ω2
P (S37)

ω−(~q → 0)→ 0 (S38)

as shown for the semiclassical polariton dispersions in (41 ). The diagonalization condition

is given by

arctan(θ~q) =
ωphot(~q)

2 + ω2
P − Ω2 +

√
(ωphot(~q)2 + ω2

P + Ω2)2 − 4ωphot(~q)2Ω2

2ΩωP

(S39)

Defining bosonic operators for the upper (λ = +) and lower (λ = −) polariton branches

Xλ,~q ≡

√
1

2ωλ(~q)

(
α~q,λ + α†−~q,λ

)
(S40)

Pλ,~q ≡ −i
√
ωλ(~q)

2

(
α−~q,λ − α

†
~q,λ

)
(S41)

we rewrite the phonon-photon Hamiltonian in a very compact polaritonic form

Hphon-phot =
∑
~q,λ=±

ωλ(~q)α
†
~q,λ αq~,λ (S42)

The transformation from the initial phononic degrees of freedom to the final polaritonic ones

is then given by

XB,~q =
1

Ω
(sin(θ~q)P+,~q + cos(θ~q)P−,~q) (S43)

For the bosonic operators, this implies

b~q + b†−~q = −i sin(θ~q)

√
ω+(~q)

Ω
(α−~q,+ − α

†
~q,+)− i cos(θ~q)

√
ω−(~q)

Ω
(α−~q,− − α

†
~q,−)) (S44)

which will give the transformation from electron-phonon to electron-polariton coupling in

the following.



Electron-polariton Hamiltonian

The electron-polariton model Hamiltonian for FeSe/SrTiO3 inside the cavity reads

H = He−phon +Hphon-phot (S45)

He−phon =
∑
~k,σ

ε~kc
†
~k,σ
c~k,σ +

1√
N

∑
~k,~q,σ

g(~k, ~q)c†~k+~q,σ
c~k,σ(b~q + b†−~q) (S46)

Here, c†~k,σ (c~k,σ) creates (annihilates) an electron with wavevector ~k and spin σ; ε~k is the

electronic band dispersion measured relative to the chemical potential µ; g(~k, ~q) is the mo-

mentum dependent electron-phonon coupling. The direct electron-photon coupling of elec-

trons in the FeSe plane to the photon branch of interest is neglected, which amounts to

the assumption that the paramagnetic electronic current density ~j inside the FeSe layer is

perfectly two-dimensional, thus not coupling to the photonic vector potential ~A which points

perpendicular to the plane, implying ~j · ~A ≈ 0.

Adopting the FeSe/SrTiO3 single-band model from Rademaker et al. (28 ), we take an

electronic band dispersion ε~k = −2t[cos(kxa) + cos(kya)]− µ, where a is the in-plane lattice

constant. We set t = 0.075 eV and use as an initial guess µ = −0.235 eV, which is adjusted

during the self-consistent calculations (see below) to a fixed band filling n↑ = n↓ = 0.07 for

each spin. We neglect the fermion momentum dependence in the electron-phonon coupling

g(~k, ~q) = g(~q), where ~q is the momentum transfer, and use g(~q) = g0 exp(−|~q|/q0). Here, g0

is adjusted to fix the total dimensionless coupling strength λ ≈ 0.18 of the electron-phonon

interaction in absence of the cavity coupling, and q0 sets the range of the interaction in

momentum space.

The electron-polariton expressed in polaritonic bosonic operators is obtained via Eq. (S44)

as

H =
∑
~k,σ

ε~kc
†
~k,σ
c~k,σ +

1√
N

∑
~k,~q,σ,λ=±

c†~k+~q,σ
c~k,σ(g∗λ(~q)α

†
−~q,λ + gλ(~q)α~q,λ) +

∑
~q,λ=±

ωλ(~q)α
†
~q,λα~q,λ

(S47)

where

g+(~q) = i sin(θ~q)

√
ω+(~q)

Ω
g0 exp(−|~q|/q0) (S48)

g−(~q) = i cos(θ~q)

√
ω−(~q)

Ω
g0 exp(−|~q|/q0) (S49)
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The couplings are thus fully determined through Eqs. (S48, S49) in connection with

Eqs. (S36) and (S39). The polariton branches and couplings to the electrons are shown

in Fig. 1 in the main text.

Migdal-Eliashberg simulations

The electronic self-energy in Migdal-Eliashberg theory on the Matsubara frequency axis

employing Nambu notation reads (28 )

Σ̂(~k, iωn) = iωn[1− Z(~k, iωn)]τ̂0 + χ(~k, iωn)τ̂3 + φ(~k, iωn)τ̂1 (S50)

where τ̂i are the Pauli matrices, Z(~k, iωn) and χ(~k, iωn) renormalize the electronic single-

particle mass and band dispersion, respectively, and φ(~k, iωn) is the anomalous self-energy,

which vanishes in the normal state. In Migdal-Eliashberg theory, the self-energy correspond-

ing to the Hamiltonian (S46) is computed by self-consistently evaluating

Σ̂(~k, iωn) =
−1

Nβ

∑
~q,m

|g(~q)|2D(0)(~q, iωn − iωm)τ̂3Ĝ(~k + ~q, iωm)τ̂3 (S51)

where D(0)(~q, iων) = − 2Ω
Ω2+ω2

ν
is the bare phonon propagator, Ĝ−1(~k, iωn) = iωnτ̂0 − ε~kτ̂3 −

Σ̂(~k, iωn) is the dressed electron propagator, N is number of momentum grid points, and

β = 1/(kBT ) is the inverse temperature.

Inside the cavity with ωP > 0, these well-known equations are modified to account for the

Hamiltonian (S47) by using polariton branches λ = ± instead of the phonon

Σ̂(~k, iωn) =
−1

Nβ

∑
~q,m,λ=±

|gλ(~q)|2D(0)
λ (~q, iωn − iωm)τ̂3Ĝ(~k + ~q, iωm)τ̂3 (S52)

where D
(0)
λ (~q, iων) = − 2ωλ(~q)

ωλ(~q)2+ω2
ν

is the bare polariton propagator.

In practice, we use an initial guess of 0.007 eV for the anomalous self-energy and run the

self-consistency until a convergence to better than 10−6 eV is achieved. The 2D momentum

grid to sample the Brillouin zone is chosen as 2000 × 2000 and convergence checked by

comparing against 4000× 4000 grids in selected cases. For the patch around q = 0 we avoid

the point q = 0 where the lower polariton branch becomes soft since the corresponding

propagator diverges in the static ων = 0 case. Under the q integral this divergence is cured.

We therefore apply a q coarse graining by averaging 1
Nsmall

∑̃
q|g(~q)|2D(0)(~q, iων) over Nsmall
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small patches (
∑̃

q is the sum inside the momentum patch around q = 0), and using this

averaged function in lieu of |g(0)|2D(0)(0, iων), again checking convergence in the momentum

grid. The momentum convolution in Equations (S51) and (S52) is performed by fast Fourier

transforms to a real-space grid and products on the real-space grid. The Matsubara cutoff

is 0.4 eV for the frequency summations, and convergence in this cutoff also checked.
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