English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity

MPS-Authors
/persons/resource/persons182604

Sentef,  M. A.
Center for Free Electron Laser Science;
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons30964

Ruggenthaler,  M.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1802.09437.pdf
(Preprint), 534KB

eaau6969.full.pdf
(Publisher version), 375KB

Supplementary Material (public)

aau6969_SM.pdf
(Supplementary material), 327KB

Citation

Sentef, M. A., Ruggenthaler, M., & Rubio, A. (2018). Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Science Advances, 4(11): eaau6969. doi:10.1126/sciadv.aau6969.


Cite as: https://hdl.handle.net/21.11116/0000-0001-B282-2
Abstract
So far, laser control of solids has been mainly discussed in the context of strong classical nonlinear light-matter coupling in a pump-probe framework. Here, we propose a quantum-electrodynamical setting to address the coupling of a low-dimensional quantum material to quantized electromagnetic fields in quantum cavities. Using a protoypical model system describing FeSe/SrTiO3 with electron-phonon long-range forward scattering, we study how the formation of phonon polaritons at the two-dimensional interface of the material modifies effective couplings and superconducting properties in a Migdal-Eliashberg simulation. We find that through highly polarizable dipolar phonons, large cavity-enhanced electron-phonon couplings are possible, but superconductivity is not enhanced for the forward-scattering pairing mechanism due to the interplay between coupling enhancement and mode softening. Our results demonstrate that quantum cavities enable the engineering of fundamental couplings in solids, paving the way for unprecedented control of material properties.