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Deutsche Zusammenfassung Das Thema dieser Arbeit ist die Elektronendynamik ato-
marer Systeme zu untersuchen, die mit starken und kurzen Laserfeldern wechselwirken.
Hierzu wird die sogenannte Methode der Starkfeld-Spektroskopie verwendet, für die in
dieser Arbeit eine neue Technik der simultanen Aufnahme von Absorptions- und Refe-
renzsignal entwickelt wird. Diese gleichzeitig gemessene Referenz erhöht die Sensitivität
signifikant und ermöglicht so die Beobachtungen kleinster zeitabhängiger Absorptionsän-
derungen. Zusätzlich wird eine Methode zur Rekonstruktion der komplexen zeitabhängi-
gen Dipolantwort aus einem einzigen Absorptionsspektrum eingeführt. Diese erlaubt die
explizit zeitabhängige Dynamik angeregter Zustände zu untersuchen, die nichtlinear von
einem starken Laserpuls beeinflusst werden. Beide Techniken werden in der Starkfeld-
Spektroskopie kombiniert, um die nichtlineare Dynamik in starken Laserfeldern von ato-
maren und molekularen Systemen zu beobachten. Als erste Anwendung wird die Dyna-
mik in stark korrelierten doppelt angeregten Zuständen in Helium untersucht. Weiterhin
wird eine Messmethode im Rahmen der Starkfeld-Spektroskopie präsentiert, welche die
Wechselwirkung mit Laserpulsen hoher Intensität nutzt, um der kohärenten Antwort ei-
nes Quantensystems ein künstliches Zeitfenster aufzuerlegen. Diese Methode kann dazu
genutzt werden den zeitabhängigen Aufbau von Resonanzphänomenen in physikalischen
Systemen zu studieren und wird erfolgreich auf die Messung des zeitabhängigen Ausbil-
dung einer Fano-Resonanz und einer Rydberg-Serie hoch angeregter Zustände angewen-
det.

English Abstract The goal of this work is to study and understand dynamics of atomic
systems interacting with strong fields. To this end, a method referred to as strong-field
spectroscopy is used, which measures the absorption spectrum of atoms interacting with
such fields. In the scope of this work, a technique which allows the simultaneous measure-
ment of absorption spectra of attosecond pulses and their reference signal is developed,
which significantly increases the sensitivity to absorption changes. Additionally, a recon-
struction method is introduced which retrieves the time-dependent evolution of the dipole
response of an atomic system directly from a single absorption spectrum. Strong-field
spectroscopy combines these techniques to examine the nonlinear strong-field dynamics
in atomic and molecular systems and is applied to study the strongly correlated doubly
excited states in helium. Furthermore, a measurement approach is introduced which uses
the interaction with a high-intensity laser pulse to impose a time gate on the evolution
of the coherent response of a system, which has previously been excited by an ultrashort
laser pulse. With this approach the buildup of resonance phenomena in a wide range of
physical systems can be studied. As a first application, the time-dependent buildup of a
Fano resonance as well as the buildup of a whole Rydberg series are investigated.
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1. Introduction

Time and the dynamical changes of matter depending on it are fundamental aspects of
nature. While many dynamic (time-dependent) events, like the trajectory of a thrown
ball, cooking food, the growth of plants or the passing of the celestial objects like the
sun can be easily observed by humans, already the course of the fast motion of the legs
of a galloping horse was unclear until the 1870s, when a recording method was invented
which could take images in fast enough succession to sample the motion accurately and
conclusively [1]. For all these processes, not only the beginning or the end is significant,
but especially the dynamic evolution is of importance if they are to be understood or even
controlled. However, the observation of any time-dependent process which takes place on
time scales outside the human perception, which can be assumed between milliseconds
up to a few years requires additional tools. This becomes clear when moving away from
human scales toward macroscopic or cosmic scales where processes like galaxy and star
formation or the evolution of life take place, or when going to the microscopic quantum
world governed by processes like chemical and nuclear reactions which are elementary
for matter on larger scales and life as we know it. This work is concerned with the study
of dynamic processes in atoms and molecules on their associated natural time scale of few
femtoseconds (10−15 s) down to attoseconds (10−18 s). On this scale, electronic motion in
atoms, molecules and solids as well as nuclear motion in molecules and solids determine
the fundamental dynamic processes. They include breaking and formation of chemical
bonds, formation of complex molecules out of simpler building blocks as well as their
final alignment (folding of DNA double helix), charge migration and lattice dynamics in
crystals or in general solid compounds (e.g. organic semi conductors) and signal process-
ing on ultrafast time scales.

As it was the case with the motion of the galloping horse, these unimaginably fast dy-
namics can only be studied if it is possible to sample the motion multiple times during
its evolution. Thus events shorter than the observed dynamics are needed. For processes
depending on electronic motion, the interaction with ultrashort pulses of electromagnetic
radiation is a widespread method used to fulfill this requirement. Recent years have seen
great development in sources capable of producing such pulses. Depending on their dura-
tion, energy and generation method, they can have very different properties. Progress in
laser technology lead to the technique of Kerr-lens modelocking [2], which was pushed to
provide laser pulses in the infrared and visible spectral range of durations down to a few
femtoseconds [3–5]. These pulses are already short enough to study nuclear motion in
molecules [6]. Furthermore, as they can reach intensities of ∼ 1016 W/cm2, they are also
frequently used to drive strongly non-linear dynamics in quantum systems. Even shorter
time scales became accessible through the discovery of high-order harmonic generation
(HHG) [7–10] a non-linear frequency-conversion process, typically driven by the above
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mentioned femtosecond pulses. Using the interaction of the resulting attosecond pulses
in the extreme ultraviolet spectral range with microscopic quantum systems, the measure-
ment of the fast motion of valence electrons in atoms and molecules came within reach
for the first time.

The dynamics of such microscopic systems and their interaction with electromagnetic
fields (of moderate intensities as stated above) are described by non-relativistic quantum
mechanics and governed by the time-dependent Schrödinger equation

ih̄
∂

∂ t
|Ψ(t)〉= Ĥ |Ψ(t)〉 , (1.1)

which is the general equation of motion for a system represented by the quantum state
|Ψ(t)〉, where the Hamilton operator Ĥ describes the energy of the system. Furthermore,
following this equation, the time evolution can be described by the operator with the
same name Û(t) = exp[−iĤt]. The form of Û(t) immediately shows that the dynam-
ics of the general state |Ψ(t)〉 are encoded in complex phases and that these phases are
directly related to the energy and the time dependence in the system. This means that
by measuring the phase evolution of a system at different energies, access to its time
evolution can be attained. Unfortunately, the direct measurement of (absolute) phases is
not possible, because detectors with high enough resolution and sensitivity do not exist
yet. The solution to this problem is the powerful concept of interferometry which can
determine phase changes with very high sensitivity. Usually, changes of an observable,
which is related to the phase evolution of the system, are detected with high precision.
The most prominent example for this technique in recent time is the detection of gravita-
tional waves [11]. Here, the changes in space itself caused by the gravitational waves are
observed by very precisely measuring distances using laser interferometry. A very well
accessible experimental observable for quantum systems, which is directly related to their
phase evolution, is the energy of particles or photons interacting with or emitted by the
system. While techniques based on time-of-flight measurements are used to determine
the energies of particles like electrons and ions leaving the system, dispersive spectrom-
eters measure the response to interactions with photons. Using photons as a probe of a
system’s time-evolution is especially useful for several reasons. First, the emission of
photons is determined by the motion of the charge distribution in the atom, which in turn
is characterized by the involved quantum states and their relative phases. Thus, measuring
them gives direct access to bound state dynamics. Second, any interferometric technique
requires a reference which has very well defined phase properties itself, or in other words
possesses a high level of coherence. The ultrashort laser pulses acting as probes of the
quantum mechanical system meet this requirement. Third, the Fourier-relation between
time and energy [12] directly shows that in any process, temporal duration and frequency
bandwidth are directly related. Thus, laser pulses capable of probing ultrafast dynamics
display a very broad spectral bandwidth which can in turn be used for interferometric
measurements on a wide range of energies simultaneously. Finally, the coherence proper-
ties of the laser pulses can also provide control over the phases of the quantum systems by
coupling quantum states of different energies, shifting their energies or trigger ionization
processes.
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Making use of these advantages, many experimental techniques employing ultrashort
laser pulses as probes of electronic and nuclear dynamics in atoms, molecules and solids
have been developed. In general, two or more pulses interact with the system of interest in
a pump–probe configuration, where one pulse initiates dynamics and the other pulses de-
tect the dynamical changes in the system depending on the temporal separation between
the pulses. One technique measuring the response of the system to these pulses based
on photon detection is called transient absorption spectroscopy (TAS). While it was first
used to study nuclear dynamics in molecules using femtosecond pulses, it was extended
to the domain of electron dynamics with the advent of attosecond pulse production based
on HHG. In attosecond transient absorption spectroscopy, femtosecond and attosecond
pulses are used in a pump–probe measurement scheme, where the response of the sys-
tem to the attosecond pulse in the extreme ultraviolet spectral range is measured. The
spectrally extremely broad attosecond probe pulses propagate together with the radiation
resulting from the electronic response of the quantum system to the spectrometer. The
dispersive element then separates the spectral components according to their energy mak-
ing each component infinitely long. The spectral contributions of the probing field and the
system’s response interfere on the detector, which creates absorption features following
the phase information imprinted on each spectral component by the dynamic response of
the system. This information can be modified by the additional (femtosecond) pulse(s).
Usually, time-dependent information about the dynamic processes is gained by varying
the time delay between the interaction events and examining the changes in the observ-
able spectrum.

This work introduces new measurement concepts to the well established ATAS technique.
These concepts utilize the nonlinear interaction with a strong femtosecond pulse in a
method referred to as Strong-Field Spectroscopy (SFS). This approach tries to understand
the dynamics induced in excited atoms and molecules by very strong and short electric
fields. To this end, a method for reconstructing the full time-dependent dipole response
of a system in a non-equilibrium state from a single absorption spectrum is presented
first. It is based on linear response theory and a time-domain picture of absorption, which
will be presented in the course of this work. The idea is, that a precisely determined
spectral line shape of a resonance already carries the full information of the dynamic
response of the underlying quantum state even if it is additionally modified by strong in-
teractions. Furthermore, a new method of measuring a spectral reference signal for the
ultrashort attosecond pulses is presented, which significantly increases the sensitivity to
time-dependent changes in the absorption spectrum. Combined with the SFS method,
this is used to study the strong field dynamics of different excited state configurations in
helium, including access to the correlated motion and dynamics of its two electrons. Sec-
ond, a timing gate technique using the strong femtosecond pulse within the SFS approach
is introduced and applied to the measurement of the buildup of the spectral line of an
autoionizing Fano resonance in helium. Building on this, the timing gate method is used
to study the formation of the very closely spaced and highly excited states of a Rydberg
series.

This thesis is structured in the following chapters: in chapter 2, the basic concepts of light-
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matter interaction and its time-dependent mathematical treatment are introduced, together
with response theory and a time-domain picture of absorption as a precursor to the pre-
sented reconstruction method. In chapter 3, the main numerical methods and models used
to describe the dynamics of multi-electron dynamics in atoms are presented. This in-
cludes few-level and ab-initio simulations. In chapter 4, an overview of the experimental
techniques and the setup that was used for the time-resolved SFS measurements is given.
Furthermore, the data acquisition and evaluation as well as a newly developed technique
for measuring an in-situ reference in the extreme ultraviolet spectral range is discussed.
In chapter 5, the first main result, the reconstruction of the full time-dependent dipole
response from absorption measurements using attosecond trigger pulses is presented. Af-
terwards, in chapter 6, the results of different applications of SFS in helium are discussed.
Finally, chapter 7 gives a short summary and an outlook on possible applications and
future developments of the presented concepts and results.



2. Theoretical Background

The general goal of this work is to investigate the nature of light-matter interaction on the
natural time scale of electronic motion using absorption spectroscopy. As an interaction
itself implies time dependence, it is necessary to introduce concepts that allow the de-
scription of light, matter and their dynamic interaction in a time-dependent manner. This
chapter presents these fundamental theoretical concepts of the physics of ultrafast and
strong light fields, as well as atomic systems and their time evolution. In the first section
the basics of the generation of ultrashort pulses and their mathematical description are
discussed. In the second part the treatment of the quantum n-level system together with
the concepts of time-dependent perturbation theory are described. The main quantity re-
lating matter and light is the time-dependent dipole response. It is introduced in the third
section together with a time-domain picture of absorption. Finally the physics of dif-
ferent strong-field ionization mechanisms relevant to the investigation of multi-electron
dynamics in strong laser fields are reviewed. Unless stated otherwise, the equations in
this chapter are given in atomic units.

2.1. Description and Generation of Strong and
Ultrashort Laser Pulses

For the resolution of dynamics on very short time scales the tools used for their obser-
vation need to possess controllable properties on the same or even shorter time scale. A
prominent example being the shutter of a camera which has to be faster than the motion
it records in order to sample different distinct points during the motion. In the realm of
atoms and molecules the typical time scale of motion ranges from picoseconds for rota-
tions down to attoseconds for electronic dynamics. The shutter needed to observe these
dynamics is nowadays realized by ultrashort laser pulses. The uncertainty principle link-
ing time and energy [13], reading

∆E∆t ≥ h̄
2
, (2.1)

shows that for such pulses to be realized, a very broad spectrum and knowledge of the
behavior of the relative phase between the spectral components during generation and
propagation is necessary. This relation can also be understood in the framework of Fourier
analysis [12], which provides a link between time-domain and energy/frequency-domain
descriptions of physical phenomena. In this section, a general formalism for the treatment
of these pulses and the techniques used to generate them are presented. More detailed
information can be found in review articles [14–16] and the following textbooks [17–19].
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2.1.1. Mathematical Description

As a measurable quantity, the electric field of an ultrashort linearly polarized light pulse
at a given point in space can be described by a one-dimensional real-valued function of
time E(t). This function can be decomposed into the slowly varying pulse envelope E(t)
and a more rapidly oscillating term describing the carrier wave:

E(t) = E(t)cos[φ(t)]. (2.2)

For mathematical convenience E(t) can be written in complex form, where the real part
still represents the measurable physical quantity:

E(t) = E(t)exp[iφ(t)]. (2.3)

The shape of E(t) gives the overall temporal structure and duration of the pulse which is
commonly defined as the full width at half maximum (FWHM) of the intensity profile I(t)
where I(t) ∝ E(t)2. In general, E(t) is non-trivial but is often approximated by analytical
functions (Gaussian, cos2, sech2) in theory. For the Gaussian case, the envelope and
duration are given by

EG(t) = E0 exp

[
−
(

t
tG

)2
]

and tG =
tFWHM√

2ln2
≈ 0.849 · tFWHM, (2.4)

respectively. Using a Taylor expansion the temporal phase φ(t) can be written as

φ(t) =
∞

∑
k=0

φ(t − t0)(k)

k!
(t − t0)k|t0=0 = φCEP +ωct +φ(2)t

2 +φ(3)t
3 + .... (2.5)

In this expansion φCEP stands for the constant phase shift between the pulse envelope
and the carrier wave which in the literature is called ’carrier-envelope phase’ (CEP). This
phase becomes important once the pulse duration is on the order of one cycle of the carrier
wave. In this case φCEP significantly determines the wave form as well as the intensity
distribution and maximum intensity (as shown in figure 2.1). The frequency ωc gives
the central frequency of the carrier wave and φ(k) (k ≥ 2) are constants of higher order
phase variations which lead to a modulation of the frequency across the pulse. This can
be further understood by calculating the instantaneous frequency (rate of phase change)
defined as:

ωinst =
dφ(t)

dt
= ωc +

dΦ(t)
dt

,with Φ(t) = φ(2)t
2 +φ(3)t

3 + ..., (2.6)

where ωc is the carrier frequency of the pulse. The instantaneous frequency ωinst only
changes if the non-linear phase Φ(t) 6= 0 which is the case if any of the constants φ(k)
(k ≥ 2) are non-zero. In this case, the pulse is considered chirped because its frequency
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changes over its duration. The first non-constant term of the instantaneous frequency
ωinst,2 = 2φ(2)t, it shows that for φ(2) > 0 the frequency linearly increases (’up-chirped’)
and if φ(2) < 0 the frequency decreases linearly (’down-chirped’). Higher order terms in
Φ(t) contribute non-linear chirps to the frequency behavior of the pulse. An equivalent
mathematical description can be given in the frequency domain. It is connected to the
time domain field E(t) via its Fourier transform:

Ẽ(ω) = F [E(t)] =
1√
2π

−∞∫
+∞

E(t)exp[−iωt]dt, (2.7)

E(t) = F−1[Ẽ(ω)] =
1√
2π

−∞∫
+∞

Ẽ(ω)exp[iωt]dt. (2.8)

The spectrum Ẽ(ω) is complex valued and symmetric around ω = 0, because E(t) is a
real valued function. As for the time-domain field, the frequency domain representation
can be expressed with an envelope Ẽ(ω) and a phase function φ̃(ω):

Ẽ(ω) = Ẽ(ω)exp[−iφ̃(ω)]. (2.9)

The spectral phase can also be analyzed using a Taylor expansion similar to equation 2.5:

φ̃(ω) =
∞

∑
k=0

φ(ωc)
(k)

k!
(ω −ωc)

k (2.10)

= φ̃0 + τGD(ω −ωc)+χGDD(ω −ωc)
2 +χTOD(ω −ωc)

3 + .... (2.11)

Analogous to the instantaneous frequency a relation giving the derivative of the spectral
phase can be introduced, which yields the temporal shift of the spectral components with
respect to each other:

τ(ω) =
dφ̃(ω)

dω
= τGD +

dΦ̃(ω)

dω
,with Φ̃(ω) = χGDD(ω −ωc)

2 +χTOD(ω −ωc)
3 + ....

(2.12)

Again the first two terms of equation 2.11 do not affect the shape or duration of the pulse,
the second term, linear in ω describes a temporal shift of the pulse by the retardation time
τGD which is the mean delay of all spectral components and also known as the group de-
lay of the pulse. The third term again represents a chirp where the frequency components
are linearly shifted and thus arrive at different times, while the fourth term introduces
non-linear chirp. χGDD and χTOD are related to the group delay dispersion (GDD) and
third order dispersion (TOD). A chirped pulse no longer minimizes the time-bandwidth
product which means that it is no longer as short as the spectral bandwidth would allow
(it no longer saturates 2.1) as can be seen in figure 2.1. The frequency dependent delay
characterized by equation 2.12 shows that for chirped pulses different spectral compo-
nents arrive at times different from the group delay τGD. For linear chirps this leads to an
increase in pulse duration while for higher order chirps. For higher order chirps higher
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a) b) c)

f)

i)h)g)

d) e)

Figure 2.1.: Pulse Characteristics for different parameters φ(k). Panels a)-c) show
unchirped few-cycle pulses with varied carrier envelope phase (CEP). In this
regime the CEP is already important for the maximum field strength of the
pulse. Plots d)-f) illustrate the effect of second order phase terms φ(2) 6= 0
which chirp the pulse linearly, meaning the frequency changes linearly across
the duration of the pulse. In panels g)-i) pulses with φ(3) 6= 0 are shown. Dif-
ferent frequency components interfere on the same side of the pulse, which
creates pre/post pulses to the pulse shape. Only pulses without additional
phase terms are transform limited and display the shortest possible pulse du-
ration.

and lower frequency components can be shifted to a single side of the pulse leading to
interference (beating) and the formation of pre- or post pulses.

Such dispersion effects occur when a pulse travels through and interacts with a (linear)
dielectric medium during propagation. In the simplest case, the equation of motion for
the propagation of electromagnetic fields through a dielectric medium in one dimension
is given in the frequency domain by the Helmholtz equation[

∂ 2

∂ z2 + k2
]

Ẽ(ω,z) = 0. (2.13)

Because of the superposition principle, any laser pulse can be decomposed into a coherent
sum over a range of monochromatic waves. Considering plane waves, the solution of the
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homogeneous equation 2.13 is given by

Ẽ(ω,z) = Ẽ(ω,0)exp [+ik(ω)z], (2.14)

where Ẽ(ω,0) is the spectral amplitude according to equation 2.9 and k(ω) is the wave
vector which is proportional to the frequency-dependent refractive index n(ω):

k(ω) =
ω

c
·n(ω) (2.15)

The impact of n(ω) on the phase can be approximately obtained by expanding k(ω) in a
Taylor series around the central frequency ωc:

k(ω) =
ωc

c
n(ωc)+

[
n(ωc)+n′(ωc)ωc

c

]
(ωc −ω)+

1
2

[
2n′(ωc)+n′′(ωc)ωc

c

]
(ωc −ω)2 + ...,

(2.16)

where c is the speed of light. Here, the first-order coefficient dk(ωc)/dω can be identified
as the inverse group velocity (GV) vg and the second-order coefficient gives the group
velocity dispersion (GVD) in terms of n(ω). Comparing this to equation 2.11 expres-
sions for group delay τGD and group delay dispersion χGDD depending on the material
properties can be derived:

τGD =
n(ωc)+n′(ωc)ωc

c
z , χGDD =

1
2

2n′(ωc)+n′′(ωc)ωc

c
z. (2.17)

The pulse will only propagate without distortion if the condition n(ω) = nconst holds,
which for frequencies in the optical spectral range can only be achieved in vacuum. The
frequency-dependent delay imprinted on a pulse propagating along the z-direction by a
dielectric material is given by applying equation 2.12 to the phase of the wave in 2.14:

τprop(ω,z) =−t + τGD z+χGDD(ωc −ω)z (2.18)

up to second order. The influence of propagation in media with frequency dependent
dispersion is illustrated in figure 2.2. The material properties n(ω), dn/dω and d2n/dω2

are positive in the most common materials (e.g. air, glass) which will cause a propagating
pulse to become both delayed and more positively chirped for increasing travel distance z
by optical elements in its path.

For example 1 mm of fused silica introduces +35fs2 at a wavelength of 800 nm, meaning
adjacent spectral components will be delayed by 35fs per Petahertz with respect to this
wavelength. Thus, this is especially problematic for optics used with pulses which pos-
sess very broad bandwidth, because as stated above these dispersion effects will increase
pulse duration and distort the pulse shape. These effects can be compensated by optical
elements which exhibit negative GVD and in turn introduce negative chirp. Examples
for such devices are setups with angular dispersive elements which separate the spectral
components such that the low frequency components can travel longer optical paths than
the high frequency parts. Another possibility are multilayer mirrors [20] which achieve
the same effect by reflecting lower frequency components deeper inside the mirror than
higher frequencies. By precisely designing the thickness of the layers as a function of
depth an almost arbitrary phase change can be introduced to compensate propagation
effects. The concepts described in this section are important for building experiments
which utilize pulse shaping [21, 22] and realizing light sources which generate pulses in
the femtosecond regime. The latter one will be discussed in the next sections.
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Figure 2.2.: Second and third order dispersion effects on pulse propagation: a) Effect
of non-zero GDD on the pulse shape depending on propagated distance z in
a medium. b) Propagation effect for a medium with non-zero TOD. This
shows, that in both cases there is an optimum material thickness to achieve
the shortest possible pulse. If this thickness is varied in an experiment it can
be used to optimize the pulse duration.

2.1.2. Generation of Optical Femtosecond Laser Pulses

Most modern state-of-the-art experiments using strong fields and ultrafast laser pulses rely
on titanium sapphire laser technology for the production of strong femtosecond pulses. In
this section the working principles of these laser systems will be introduced while the
actual laser system used in this work will be discussed later on. Generally, the first stage
of common laser systems for ultrafast pulse production is the broadband femtosecond os-
cillator which provides pulses used to seed a subsequent amplification stage [23,24]. The
main principle for pulsed operation of the oscillator cavity is known as modelocking [25].
It refers to a method of forcing a large number of longitudinal resonator modes which
have to fulfill νk = k ·c0/2L (c0 speed of light, L resonator length, k integer) to oscillate in
phase while staying in a single transverse mode of the resonator [26] (preferably TEM00).
The superposition of these modes, defined by the cavity, also called frequency comb [27]
results in a train of pulses separated by the repetition rate which is related to the mode
spacing:

νrep =
1

τRT
=

c0

2L
=

(k+1)c0

2L
− kc0

2L
= νk+1 −νk = δν , (2.19)

with τRT being the cavity round trip time. Typical repetition rates range from ∼ 10 MHz
up to few GHz. The stable operation of a modelocked cavity requires a mechanism which
favors pulsed over continuous operation. Self-amplitude modulation (SAM) in the form
of the nonlinear Kerr-lens effect [28] meets this requirement. The nonlinear Kerr effect is
a modification of the refractive index of a dielectric medium depending on the intensity
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of the field propagating through it according to

n(r, t) = n0 +∆n · I(r, t), (2.20)

where ∆n describes the change in refractive index caused by the non-linear susceptibility
which couples to the intensity I(r, t). According to Kerr-lens modelocking (KLM) [2],
the self-focusing due to the Kerr-lens effect shown in figure 2.3 increases the gain per
round trip for the high-peak powers during pulsed operation compared to the low-power
beam in continuous operation. This is due to better overlap of the self-focused beam with
the pump-laser focal volume. SAM additionally keeps the propagating pulses short by
suppressing weak leading or trailing edges of the pulse profile, since these weak power
parts experience less self-focusing and thus less gain than the high-power central part of
the pulse.
The pulse duration is fundamentally limited by spectral bandwidth supported by the gain
medium. Because of their broad laser transition titanium sapphire (Ti:Sa) crystals are
very suitable for the generation of short pulses. The fluorescence spectrum of Ti:Sa ranges
from 650 nm to 1050 nm with a maximum at 780 nm (1.59 eV) [29]. In spite of this broad
gain bandwidth, pulse durations in the femtosecond regime can only be achieved with ad-
ditional spectral broadening. Again the Kerr effect inside the gain medium is utilized.
In addition to self focusing the beam experiences a process called self-phase modulation
(SPM) [30]. This introduces an additional phase term φKerr(t) = ωcn(t)L/c, with L being
the propagation distance in the medium, that is added to the temporal phase φ(t) (see sec-
tion 2.1.1). As a consequence the instantaneous frequency ωinst(t) is modulated according
to

∆ω(t) =
∂φKerr

∂ t
=

ωc

c
∆n

∂ I(t)
∂ t

L . (2.21)

Thus, the leading pulse edge generates higher and the trailing edge generates lower fre-
quencies. Since the process accumulates positive GDD, the cavity must contain optical
elements which compensate for this with negative GDD. This is usually achieved with
specially designed chirped mirrors. If set up correctly, the combination of SPM, SAM
and negative GDD leads to the stable production of sub-5-fs pulses [31, 32].
If the pulses generated in this way are to be used to drive highly nonlinear processes the
pulse energy of a few nJ typically delivered by standard oscillators is not sufficient. With
some exceptions [33,34], the oscillator pulses generally have to be amplified in a separate
stage in order to reach the typically necessary intensities of ∼ 1014W/cm2. Since direct
amplification of the femtosecond pulses would damage the gain medium and optics in the
amplifier, a method called chirped pulse amplification (CPA) [35] is used. In this scheme
the oscillator pulses are stretched to pico- or nanosecond durations prior to the ampli-
fication step and re-compressed afterward. The pulses are stretched by passing blocks
of glass, where they accumulate GDD as well as higher-order dispersion. While the re-
compression is typically realized with prism or grating compressors, the TOD acquired
in the stretcher is compensated by special mirrors which leave the GDD unaffected. Dur-
ing the amplification itself the stretched pulses pass again a Ti:Sa crystal pumped by a
pulsed pumplaser (Q-switched, nanosecond durations, kHz repetition rates with several
10 W power). In practice there are two common designs of the amplification stage. The
first one, called multi-pass amplifier, uses a predetermined beam path that passes the gain



12 THEORETICAL BACKGROUND

medium a fixed number of times to achieve the desired output power. The second one,
called the regenerative amplifier employs a cavity similar to the oscillator from which the
pulses are released after a given number of round trips. The factor limiting the output
power is the thermal load on the gain medium which in practice limits the achievable
power to ∼ 10− 20 W. If pulse energies of few mJ have to be reached, the repetition
rate has to be dropped from MHz down to the kHz regime. This is done by selecting
single pulses from the oscillator pulse train synchronized to the output of the amplifier
pumplaser using the Pockels effect and a polarizer while the rest is dumped. A Pockels
cell switches the polarization of a single pulse, which then propagates through the ampli-
fier and depletes the gain in the pumped medium.

Kerr effect: n = n  + Dn 0 I(r,t)

Medium: Ti:Sa

I(r)

n(r)

Medium: Noble gas

Self-focusing optical focusing self-phase modulation (SPM)

Spatial gradient n(r) Temporal gradient n(t)

Init. spectrum spectrum after SPM

n(t)

I(t)

Dw(t)

a) b)

Figure 2.3.: Illustration of the spatial and temporal Kerr effect: The non-linear Kerr
effect introduces an intensity dependence to the refractive index. This leads to
self-focusing due to a Kerr-lens being formed because of the spatial intensity
distribution I(r) of a beam propagating through a medium shown in a). The
spatial dependence of the refractive index n(r) has a similar effect to the
focusing caused by an ordinary lens. b) Illustration of self phase modulation
caused by the temporal intensity profile of a pulse. The temporal change
in phase ∆φ(t) creates additional spectral components which increases the
bandwidth of the pulse. As these components are added on the leading and
trailing edge, the broadened pulse exhibits an almost linear chirp around the
center frequency.

As the amplification is influenced by a process called gain-narrowing, uniform amplifi-
cation of the whole spectral bandwidth is not possible and the duration of the amplified
pulses is generally longer compared to the output of the oscillator. Typical output param-
eters of modern amplifiers are several mJ pulse energy with a duration of ∼ 20 fs. How-
ever, the desired duration for most experimental applications is in the few-cycle regime
and therefore the spectrum after the amplifier has to be broadened. For this purpose SPM
in a noble gas can be used in two ways. The beam can be guided through a gas-filled
hollow-core fiber, where only confined high-power modes propagate and make SPM ef-
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ficient [36, 37]. Another option is using a plasma filament, where Kerr-lens self focusing
and plasma defocusing act together to create an extended, unguided high-intensity zone
in the gaseous medium enabling SPM [38, 39]. The achieved broadening depends on
many parameters such as gas species (neon, argon, helium, ...), gas pressure, length of
the medium and available intensity (laser power, beam mode, fiber diameter). The ac-
quired GDD during SPM is afterward compensated with chirped mirrors and a pair of
glass wedges to fine tune the dispersion [20]. TOD contributions can be compensated by
special birefringent crystals (e.g. ADP) which introduce negative TOD along one optical
axis [40]. Typical pulse durations achieved with such setups range from 4− 10 fs [4, 5]
and are in principle limited by the supported bandwidth of the chirped-mirror compressor.
It is however possible to reach even shorter durations by using a method called light-wave
synthesis, which separates the components of a very broad spectrum, compresses each
part separately and recombines them in order to achieve pulse durations of ∼ 1 fs [4, 5].
For very high pulse energies ionization and defocusing effects become more significant
which makes filamentation unstable and can have detrimental effects on fiber incoupling
and beam stability after passing the medium. To counteract these effects, differentially
pumped fiber setups are used which generate a pressure gradient suppressing ionization
effects at the beginning of the medium [41,42]. An alternative to SPM, which suffers rel-
atively high losses and problems for high pulse energies, is optical parametric amplifica-
tion (OPA). Here, nonlinear properties of crystals are used for close to loss-less frequency
conversion processes [43, 44]. Also with this technology different parts of the spectrum
can be separately amplified and compressed to achieve sub-cycle pulse durations [45].
Regardless of the production method, the few-cycle pulses can be further applied either
directly in experiments to study interactions with strong laser fields or to drive the gen-
eration of even shorter pulses making use of a process called high-harmonic generation
(HHG), which will be described in the next sections.

2.2. Interaction with Strong Fields

With the techniques described in the previous section, laser pulses of a few mJ and dura-
tions in the femtosecond regime and peak intensities on the order of 1014 −1015 W/cm2

can be achieved with corresponding electric field strengths of 108−109 V/cm. This is on
the order of the atomic unit field strength Ea.u. = 5.14 ·109 V/cm which equals the electric
field experienced by an electron in the ground state of the hydrogen atom. The interaction
with such pulses cannot be treated perturbatively anymore and is the origin of nonlinear
strong-field effects like non-sequential double ionization [46], tunnel-ionization, above-
threshold ionization (ATI) or high-harmonic generation (HHG). While these effects are
described in much detail in literature [14, 15], the focus of this section will be mainly on
HHG as a means of attosecond pulse production and strong-field ionization as a prerequi-
site for HHG as well as a theoretical foundation for many effects observed in the course
of this work.

For the interaction of atoms with strong fields, perturbative treatment is no longer viable.
For strong enough fields, where effects of the atomic potential become less important,
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the classical equations of motion of an electron in a linearly polarized electric field can
be used to obtain an understanding of the electron’s motion. However this is only ac-
curate for non-relativistic field strengths, where the electron moves significantly slower
than the speed of light and effects of the magnetic field component can be neglected.
Following Newton’s law, the equation of motion is given by a(t) = −eE(t)/me, where
e is the electron charge and me is the electron mass. The velocity v(t) and position x(t)
can be obtained simply by integrating and inserting initial conditions (v0, x0) for the in-
tegration constants. The mean kinetic energy of an electron initially at rest, moving in a
monochromatic electric field E(t) = E0 cos(ωt) is then given by

Up =
1
2

me〈v(t)2〉cyc =
e2E2

0
4meω2 . (2.22)

Here, Up is called the ponderomotive energy which gives the energy of the electron’s
quiver motion in the field. The amplitude of this motion is known as the ponderomotive
radius given by

xp =
eE0

meω2 . (2.23)

In general the interaction of an atom with a strong electric field is described with a semi-
classical approach, where the atomic system is treated quantum mechanically while the
field is treated classically. It is often the case that only one electron in an atom significantly
contributes to the dynamics, in which case the so-called single active electron approxima-
tion (SAE) can be employed. This simplifies the problem by describing only one electron
moving in a mean-field potential of the nucleus shielded by the remaining electrons. If
the electric field and its coupling is expressed in the length gauge, the equation of motion
is given by the Schrödinger equation in the form

i
∂

∂ t
|Ψ(~x, t)〉=

(
~̂p
2
+V (~̂x)+ d̂ ·~E(t)

)
|Ψ(~x, t)〉. (2.24)

Another commonly used gauge is the velocity gauge which expresses the interaction with
the electric field via the vector potential~A(t) according to~A(t)=

∫
~E(t)dt and the coupling

via a kinetic momentum ~π = ~p +~A(t) (see also [14]). If the atom is included in the
description the ionization potential Ip represents an important parameter of the system
interacting with the field. This quantity gives the energy needed to remove one electron
from its bound state in the system. Values of Ip for the noble gas atoms are given in table
2.1.

Table 2.1.: Values of Ip for all of the noble gases
He Ne Ar Kr Xe Ra

Ip (eV) 24.59 21.56 15.76 14.00 12.13 10.70
Ip (a.u.) 0.9036 0.7925 0.5792 0.5145 0.4458 03932

Once the electric field can provide this energy an electron can be removed from the atom.
The next section will describe prominent mechanisms describing the ionization of quan-
tum systems in strong fields.
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2.2.1. Strong-field Ionization

The study of strong-field ionization effects goes back to the 1960s. It is in most cases very
different from the photoeffect [47] as the absorption of a single photon of a system in the
ground state is very often not enough to overcome the ionization potential. In general,
there are two pictures to treat ionization due to the interaction with a strong electric field:
Multiphoton ionization (MPI) and tunneling ionization. Multiphoton ionization is the
nonlinear absorption of several photons to overcome the ionization potential. In the case
of tunneling ionization, the Coulomb potential is bent by the electric field such that the
bound electron can tunnel through the formed barrier. A special case of this process is over
barrier ionization (OBI) which occurs at very high field strengths, where the potential is
distorted to the point where the ground state of the system is no longer bound. The critical
field strength Ecrit needed for OBI gives another reference parameter for the electric field
[48] and is defined by:

Ecrit =
I2
p

4Z
, (2.25)

with Z being the charge of the nucleus of the atomic system. The work of Keldysh [49]
shows that both processes, MPI and tunneling ionization, can be described within a unified
theory. He introduced the parameter γ , thereafter named after Keldysh, which provides
a measure for the dominant mechanism of ionization [50, 51]. It is the ratio between the
laser frequency ω and the tunneling frequency ωT defined as the inverse of the time the
barrier remains formed in the field and the electron can tunnel out. The Keldysh parameter
describes the adiabaticity of the atomic response to the field and is given by

γ =
ω

ωT
= ω

√
2Ip

I
=

√
Ip

2Up
, (2.26)

where Up is the ponderomotive potential according to equation 2.22 and I is the field
intensity. For γ � 1 the electric field changes much faster than the response of the elec-
trons. In this limit the multiphoton description can be applied where multiple photons are
absorbed to overcome the ionization potential. If γ � 1 holds, the field oscillates slowly
compared to the electronic response. In this case, the field can be considered as static
which allows the description of the ionization with the tunneling process. An overview of
the Keldysh theory of strong field ionization can be found in more current reviews [52].
In the multiphoton regime (γ � 1) simultaneous absorption of n photons, meeting the
condition nh̄ω ≥ Ip, leads to the ionization of the system. The corresponding ionization
rate is given by [51, 53]:

Γn = σnIn, (2.27)

where σn denotes the generalized cross section including non-linear terms usually calcu-
lated by high-order perturbation theory. If n is bigger than the minium number of photons



16 THEORETICAL BACKGROUND

V(x)

x

V(x)

x

V(x)

x

-Ip -Ip -Ip

mћω

nћω

a) b) c)

Figure 2.4.: Strong-field-ionization mechanisms: a) Multiphoton ionization for γ � 1.
n photons are simultaneously absorbed to overcome the ionization potential
Ip. Absorption of additional photons leads to above-threshold ionization. b)
Tunnel ionization for γ � 1. The Coulomb potential (blue) is modified by the
electric field and forms a barrier. The electron can tunnel through this barrier
into the continuum. c) Over barrier ionization. The electric field is so strong
that the barrier is completely suppressed and the electron can leave the atom.

required for ionization a special case of MPI occurs, called above-threshold ionization
(ATI) [53, 54]. Here the electrons carry excess energy at intervals of the photon energy.

In the limit of tunneling ionization (γ � 1) the deformation of the potential due to the elec-
tric field can be treated with a quasi-stationary approximation. By expanding Keldysh’s
theory the so-called ADK formula [50, 52, 55–57] (named after the authors) was devel-
oped. It gives the ionization rate from a bound quantum state, characterized by the prin-
cipal, the angular momentum and the magnetic quantum numbers (n, l, m), in a system
interacting with a linearly polarized electric field. According to [55] it is given by:

ΓADK(t) =

√(
2e
n∗

)
1

2πn∗
(2l +1)(l + |m|)!

2|m|(|m|)!(l −|m|)!

(
3E(t)

π(2Ip)3/2

)1/2

Ip×(
2(2Ip)

3/2

E(t)

)2n∗−|m|−1

exp

[
−

2(2Ip)
3/2

3E(t)

]
(2.28)

Here, n∗ is the effective principle quantum number in the single active electron approxi-
mation, where the active electron can be thought of as moving in a modified Bohr orbit
characterized by n∗ = Z/

√
2Ip, e is Euler’s number and E(t) is the electric field enve-

lope. For linearly polarized light, ionization from the m = 0 orbitals is preferred. The
time-dependent field yields a time dependent ionization rate, averaged over one cycle
of the electric field. If the instantaneous ionization rate is to be considered, the factor
3E(t)/π(2Ip)

3/2)1/2 resulting from the cycle average has to be omitted and the field enve-
lope has to be replaced by the electric field itself [48]. While equation 2.28 is derived for
γ � 1 it also gives good results for γ ' 1. More recent work even resulted in an expres-
sion of the ionization rate for arbitrary values of γ [58]. Thus, tunneling ionization, can be
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used to describe the first step of many strong-field processes mentioned in the beginning.
Aside from the ongoing discussion on ’tunneling-time’ [59], it represents a well-defined
starting point for dynamics after the electron leaves the atom and explains the sub-cycle
nature of non-linear strong-field processes like high-harmonic generation.

2.2.2. Creation of Attosecond Pulses with High-Harmonic
Generation

As stated in the previous section, the observation of dynamics on the attosecond time
scale, the natural time scale of electronic motion, is only possible if these dynamics can
be excited, and if the laser pulses used for this purpose are themselves short enough to
resolve the dynamics. The typical photon energies required for this purpose are on the
order of 10 eV or higher, meaning in the XUV and soft X-ray spectral range. With these
energies not only single excitation of bound states is possible, but also multiple electrons
as well as strongly bound inner-valence or core electrons can be excited. The process
of high-harmonic generation (HHG) is able to meet these conditions [15, 16]. Since its
discovery it was possible to achieve photon energies of higher than 1 keV [60] as well as
pulse durations of well below 100 as (current record: 43 as) [5,61,62]. While this section
will give a short overview over the main aspects of HHG many detailed descriptions of
this process exist in literature [3, 4, 15, 16, 63, 64].

Initial state Tunneling
Ionization

Propagation Acceleration Recombination/
Interference

Figure 2.5.: Illustration of the three-step model: The main steps of ionization, accel-
eration and recombination are shown in sequence. After the initial tunneling
ionization through the potential barrier (blue curves) the electron wave packet
(green) propagates (black arrows) in the field (red), gets accelerated and re-
turns with a certain probability to the parent ion. During the recombination a
high-energy photon is emitted.

Involving both quantum-mechanical tunneling and highly non-linear light-matter inter-
action the process of HHG can still be quite accurately described by a quasi-classical
model. The 3-step-model [9, 65], introduced in 1993 and illustrated in figure 2.5 sepa-
rates the interaction with the field in three parts. The ionization step is described in the
tunneling-ionization framework introduced in section 2.2.1 and equation 2.28. Here, typi-
cally a target consisting of noble-gas atoms interacts with a strong light pulse of intensities
of more than 1014 W/cm2 leading to an electron being ionized from the atom. Once in
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the continuum, the electron trajectories can be described by classical equations of motion
in the second step. The electron is driven away from its parent ion after ionization and
can re-encounter it with additional kinetic energy E(r)

kin gained in the field. If the electron
interacts again with its parent ion it may recombine into the initial bound state during the
third step. In this case, the difference in energy in addition to the excess kinetic energy is
converted into a single high energy photon:

h̄ωHHG = E(r)
kin + Ip. (2.29)

Each kinetic energy at the moment of recombination E(r)
kin corresponds to two classical

trajectories within one laser cycle, the so-called short and long trajectories. This 3-step
process can occur within each half-cycle of the pulse and interfere with events from dif-
ferent cycles. This half-cycle periodicity and interference gives rise to harmonic photon
energies which are spaced by 2h̄ωc, where ωc is the central frequency of the driving laser
field.
While the 3-step model gives already good agreement with experimental observations,
the HHG process can also be understood in a full quantum-mechanical treatment of the
electron motion, where the strong field is described classically [66]. This theory employs
the strong field approximation which neglects the influence of the ion core once ioniza-
tion has taken place [51, 67]. In this picture part of the ground state wave function gets
ionized, propagates in the continuum and finally interferes with the remaining part of the
wave function around the parent ion. This interference constitutes a rapidly oscillating
dipole moment which in turn is the source for the emission of the high-energy harmonic
radiation.

More detailed analysis of the trajectories shows that the energy gained by the electron
critically depends on the time of ionization within the driver pulse. The maximum energy
E(r)

kin,max is gained close to a maximum of the electric field. Calculating the classical trajec-
tories depending on the point of ionization within the pulse, the maximum recombination
energy is found to be

E(r)
kin,max = 3.17Up, (2.30)

where Up is the ponderomotive potential defined in equation 2.22. Hence, long wave-
lengths λ and high intensities are needed for higher XUV photon energies. However,
due to the longer propagation times in the continuum and the associated wave function
spread, re-collision becomes increasingly unlikely. This in turn leads to lower conversion
efficiency (which scales with ∼ λ−7 [68]). The spectrum of high harmonic generation
displays a universal behavior. The intensity of the low order harmonics drops quickly,
then extends at constant values over a broad spectral range called the plateau region and
finally shows a rather sharp cut-off at the maximum achievable photon energy given by

h̄ωHHG = Ip +3.17Up. (2.31)

If the driving pulse consists of multiple half cycles a train of attosecond pulses [69] is
generated which leads to a rather discrete comb structure in the spectrum. Because of the
periodicity of the process this structure represents odd harmonic orders of the fundamental
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frequency ωc spaced by 2ωc. Only if single attosecond pulses are produced using gating
mechanisms based on intensity [70] or polarization gating of the driver pulse [71–74], the
spectrum becomes continuous over a broad spectral range corresponding to the duration
of the attosecond pulse [75]. One of the major downsides of high-harmonic generation
in a gaseous conversion medium as a light source is the relatively low overall conversion
efficiency of 10−4 to 10−6. It is thus currently not easily possible to apply the generated
pulses to study nonlinear processes. Current research explores HHG in targets with higher
density like liquid droplets [76] or even solids [77] in order to improve the XUV photon
flux. However, the attosecond pulses represent excellent tools to probe or coherently
excited systems at very well defined times, which is utilized in this work. A description
of the technical aspects of the HHG source realized in the experiment is given in the next
chapter.

2.3. Quantum Dynamics

Apart from strong nonlinear effects like ionization, the interaction of a quantum system
with external sources (electric fields, etc.) causes dynamic transitions between different
states of the system. In general, the state and the dynamics of a quantum-mechanical sys-
tem are fully characterized by the wave function ψ and its time evolution. In quantum me-
chanics the time evolution of a system is described by the unitary time translation operator
Û(t, t0) characterized by the generating function Ĥ. The function Ĥ is generally known
as the Hamilton operator, describing the energy of the system. In the non-relativistic case
the equation of motion is given by the time-dependent Schrödinger equation

i
∂

∂ t
|ψ(t)〉S = Ĥ|ψ(t)〉S. (2.32)

Its derivation from first principles as well as the following derivations can be found in
many textbooks [78–80]. In this instance the state vector given by the wave function
|ψ(t)〉S carries the time dependence, which is commonly named the Schrödinger-picture
representation. Another possible representation is the so-called Heisenberg picture, where
the operators are time dependent and the state vector is independent of time. The Hamilton
operator can be generally divided into two parts

Ĥ = Ĥ0 + Ĥint (2.33)

where Ĥ0 is the Hamiltonian of the unperturbed system and Ĥint describes a perturbation,
which can include all interactions with external sources (electric, magnetic fields, etc.).
If Ĥ is constant in time, the time-evolution operator takes the form Û(t, t0) = exp[−iĤ ·
(t − t0)]. If Ĥ = Ĥ(t) is time dependent, one can find an expression for the time-evolution
operator by plugging |ψ(t)〉S = Û(t, t0)|ψ(t0)〉S into 2.32 and rewriting the equation as an
integral equation. This yields a self-consistent equation for Û(t, t0) which can be used to



20 THEORETICAL BACKGROUND

derive the expression as a Dyson-Series, time-ordered in H(t), at times tn, reading

Û(t, t0) = I+
∞

∑
n=1

(−i)n
∫ t

t0
dt1
∫ t1

t0
dt2...

∫ tn−1

t0
dtn Ĥ(tn)...Ĥ(t1). (2.34)

Because H(t) appears as a time-ordered sequence with t0 ≤ t1 ≤ ... ≤ tn ≤ t, the above
equation can also be formally written as

Û(t, t0) = T̂ e−i
∫ t

t0
dt ′H(t ′)

, (2.35)

with T̂ being the time-ordering operator. For arbitrary (time-dependent) interactions and
interaction strengths it can be impossible to find analytical expressions for the time-
evolution of the system. A very common method to treat this problem is the application
of perturbation theory, which is described in the following.

2.3.1. Time-Dependent Perturbation Theory

Given a well known system described by Ĥ0 with exact eigenstates |n〉 and eigenvalues En,
the goal of perturbation theory is to get approximate eigenstates and eigenvalues fulfilling
equation 2.32 for the case of Ĥint 6= 0. If the perturbation is weak (small compared to the
energies and energy separations in the system) the Hamiltonian can be expressed as

Ĥ = Ĥ0 +λV̂ (t), (2.36)

with λ being a small scaling parameter of the perturbation. For the stationary case
dĤ/dt = 0 an expansion of En and |n〉 in powers of λ will yield correction terms to
the eigenstates and energies caused by the perturbation (for details see [79]).
In the case of dĤ/dt 6= 0 however, a time-dependent version of perturbation theory has to
be used. It is convenient to turn to a different representation which only considers the dy-
namic changes to the wave function due to the time-dependent perturbation Hint = V̂ (t).
This is known as the interaction picture, a ’mixture’ of both Schrödinger and Heisenberg
pictures, where the evolution due to H0 is shunted to the operators. The transformation
into this picture is given by

|ψ(t)〉I = eiĤ0t |ψ(t)〉S , |ψ(0)〉I = |ψ(0)〉S. (2.37)

In this picture the wave function |ψ(t)〉I and the perturbation V (t) obey the equations

i
∂

∂ t
|ψ(t)〉I = V̂I(t)|ψ(t)〉I , withV̂I(t) = eiĤ0tV (t)e−iĤ0t . (2.38)
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The wave function can always be written as an expansion in a complete set of basis states,
the eigenstates of the unperturbed system |ψ(t)〉I = ∑n cn(t)|n〉. Inserting this into equa-
tion 2.38 and contracting over a general basis state |m〉 yields the relation for the coupled
time dependent state coefficients cn(t)

i
∂

∂ t
cm(t) = ∑

n
〈m|V (t) |n〉ei(Em−En)tcn(t). (2.39)

To obtain a relation for these time dependent coefficients of a general state |ψ(t)〉I =

∑n cn(t)|n〉, they are written as a perturbative expansion in powers of the interaction

cn(t) = c(0)n + c(1)n (t)+ c(2)n (t)+ ... , (2.40)

where c(i)n ∝ O(λ i) and c(0)n represents the initial state without the perturbation V (t). As
it is the case for the Schrödinger picture, the time evolution within the interaction picture
starting at time t0 can be described by a time-evolution operator

|ψ(t)〉I = ÛI(t, t0)|ψ(t0)〉I. (2.41)

Similar to the procedure to acquire equation 2.34 an expression for ÛI(t, t0) can be derived

ÛI(t, t0) = I+
∞

∑
n=1

(−i)n
∫ t

t0
dt1
∫ t1

t0
dt2...

∫ tn−1

t0
dtn V̂I(tn)...V̂I(t1). (2.42)

Considering now a system in a general initial state |i〉 and inserting the identity I =
∑n |n〉〈n| into equation 2.41 a relation for the coefficients can be identified

ÛI(t, t0) |i〉= ∑
n

|n〉〈n|ÛI(t, t0)|i〉 , cn(t) = 〈n|ÛI(t, t0)|i〉. (2.43)

Combining equations 2.43 and 2.42 and comparing it to 2.40 expressions for the correc-
tion terms to the state coefficients can be derived as

c(1)n (t) =−i
∫ t

t0
dt ′ 〈n|V (t ′) |i〉ei(Em−En)t ′ (2.44)

c(2)n (t) =−∑
m

∫ t

t0
dt ′
∫ t ′

t0
dt ′′ 〈n|V (t ′) |m〉〈m|V (t ′′) |i〉ei(En−Em)t ′+i(Em−Ei)t ′′ . (2.45)

It has to be noted that since the orders emerge iteratively from the previous one, it is
possible to compute k-th order c(k)n directly from the (k− 1)-th order numerically with a
single integration.
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2.3.2. Field Driven n-Level Systems

The description of complex systems requires a moderate to big number of states n, which
can only be treated numerically. However this changes for simple systems of very few
states. The simplest system exhibiting nontrivial dynamics while interacting with an elec-
tromagnetic field is the two-level system consisting of two discrete states |i〉 and | j〉 with
respective energies Ei and E j that are coupled by an oscillating electric field. This model
can be applied to describe the physics of many interesting applications, like for exam-
ple Q-bits [81], atomic clocks [82] and spinor dynamics [83]. For weak field strengths
the interaction can be analytically treated with perturbation theory using the formalism
in section 2.3.1. However, if the intensity is increased the dynamics enter the regime of
strong coupling. Here, perturbation theory no longer applies since considerable popu-
lation is transferred between the coupled states and changes in the energy of states take
place. It can even happen that the populations are transferred back and forth between the
states during the interaction. This is commonly known as Rabi oscillations [83]. For the
two-level system it is possible to derive approximate analytical solutions describing these
effects.

The Hamiltonian of a two-level system interacting with a linearly polarized electric field
E(t) in dipole approximation is given by

Ĥ = Ĥ0 + Ĥint = Ĥ0 + d̂ ·E(t) . (2.46)

with Ĥ0 the Hamiltonian of the non-interacting states and d̂ = −e · x̂ the dipole operator.
The general state of this system can be expanded into the two basis states

|ψ〉= ci |i〉+ c j | j〉 . (2.47)

With this expansion, equation 2.32 becomes a set of two coupled linear differential equa-
tions, which is given in matrix representation as:

i
d
dt

(
ci
c j

)
=

(
Ei di j ·E(t)

d ji ·E(t) E j

)
·
(

ci
c j

)
. (2.48)

Here, the Hamiltonian appears also in matrix representation in the basis of |i〉 and | j〉 with
di j = 〈i| d̂ | j〉. To find a solution, equation 2.48 is transformed into the rotating frame of
the coupling laser field by a phase rotation

(
c̃i
c̃ j

)
(t) = T̂ ·

(
ci
c j

)
(t) with T̂ = ei

ω j+ωi
2 t

(
e−i ωL

2 t 0
0 e+i ωL

2 t

)
(2.49)

with a laser frequency ωL = ωi j −∆ close to resonance with the atomic transition fre-
quency ωi j = ω j −ωi between the two states, where ∆ is the detuning of the laser. Insert-
ing the electric field E(t) = E0 cos(ωLt) = E0

2 (eiωLt + e−iωLt), this transformation applied
to equation 2.48 yields
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ih̄
∂

∂ t

(
c̃i
c̃ j

)
=

1
2

(
∆ di j ·E0 · (e−i∆t + ei(ωL+ωi j)t)

di j ·E0 · (e−i∆t + ei(ωL+ωi j)t) −∆

)
·
(

c̃i
c̃ j

)
.

(2.50)

As it was assumed that the laser couples the states near or exactly on resonance, the
rotating-wave approximation (RWA) can be used. Its effect shows if equation 2.50 is
integrated. On the one hand, the contribution of the rapidly oscillating factors ei(ωL+ωi j)t

vanishes considering the mean value after the integration over time. On the other hand the
factors ei(ωL−ωi j)t = e−i∆t ≈ 1, so that in the end only the component of the monochromatic
wave that rotates opposite to the phase evolution of the system is relevant for the coupling.
Applying this approximation, the differential equations can be separated and one gets for
the Hamiltonian of the interaction in the rotating frame

ĤI =
1
2

(
∆ ΩR

ΩR −∆

)
. (2.51)

Here, ΩR = E0 ·d is the Rabi frequency. The eigenvalues of this Hamiltonian are

λ1,2 =±1
2

√
∆2 +Ω2

R =±1
2

Ω̃R , (2.52)

with Ω̃R =
√

∆2 +Ω2
R being the generalized Rabi frequency. In the rotating frame these

are the time-independent energies of the so-called laser-dressed states of the system and
they appear centered around the energy levels defined in the rotating-frame transforma-
tion 2.49. After transformation back to the Schrödinger picture the state energies of the
interacting system can be written in terms of the unperturbed state energies Ei, j, the Rabi
frequency ΩR and the laser detuning ∆ as

E±
j = E j −

∆

2
± 1

2
Ω̃R , (2.53)

E±
i = Ei +

∆

2
± 1

2
Ω̃R . (2.54)

These equations show the repulsion of energy levels that arises from coupling with an
oscillating electric field also known as the linear AC Stark effect [84] which is the ana-
logue to the magnetic Zeeman effect. In figure 2.6 the shifted energy levels depending
on the field strength of the coupling electric field are shown. In the weak coupling limit
(ΩR � ∆) both field-free states appear in each dressed system. For the case of strong
coupling (ΩR � ∆), high field strength or resonant coupling ∆ can be neglected and the
states appear separated by the Rabi frequency ΩR and centered around the mean value of
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Figure 2.6.: Stark-effect for a two-level system with level energies Ei, E j and detuning
∆: In the laser field, new states are formed which mutually repel each other
with increasing field strength. For sufficiently large field strengths, ∆ can be
neglected and the level splitting is given by the Rabi frequency ΩR.

the energy of each dressed-state pair in the low field limit. If these states are probed by a
weak laser field from a third level, the corresponding pairs of observed spectral lines are
known as Autler–Townes doublets [84].

After diagonalizing the Hamiltonian in equation 2.51 the new eigenstates in the dressed-
state picture corresponding to the energies in equation 2.53 and equation 2.54 can be
expressed in terms of the unperturbed state |i〉 and | j〉 as

|+〉= sin(θ) |i〉+ cos(θ) | j〉 , (2.55)
|−〉= cos(θ) |i〉− sin(θ) | j〉 . (2.56)

Here, the state |+〉 has the higher energy and the so-called mixing angle θ is defined as

tan(2θ) =−Ω

∆

(
0 ≤ θ <

π

2

)
, (2.57)

where Ω and ∆ are the Rabi frequency and detuning as given above. This picture is con-
venient to examine the mixing of states with different symmetries in an electromagnetic
field which alters the excitation and dynamic behavior of the system under investigation.
These dressed states are the new eigenstates of the interacting system with constant pop-
ulations in time. To understand the effects of Rabi oscillations, the solutions for the time-
dependent coefficients of the bare states |i〉 and | j〉 have to be considered. For the initial
conditions of a system in the lower energy (ground state) at time zero with c̃i(0) = 1 and
c̃ j(0) = 0 the solutions for the coefficients can be found from the coupled equations 2.50
in the rotating frame. They can be decoupled by differentiation in time and substituting the
original equations. With the ansatz for the general solution c(t)=A ·cos(ωt)+B ·sin(ωt),
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this leads to the solutions for the coefficients given by

c̃ j(t) =−i
ΩR

Ω̃R
sin
(

Ω̃R

2
t
)

(2.58)

c̃i(t) = cos
(

Ω̃R

2
t
)
+ i

∆

Ω̃R
sin
(

Ω̃R

2
t
)
. (2.59)

These equations show that the state populations |c(t)i, j|2 are transferred back and forth
between the two levels of the system by the interaction with the coupling field. The
detuning ∆ together with the field strength E0 determine the oscillation frequency as well
as the maximum amount of population that is transferred in one Rabi cycle.
While the derivation is based on a continuous wave, it is in principle possible to define
a time-dependent Rabi frequency ΩR(t) = di j ·E0(t) for a varying envelope function of
a laser pulse for example. However if the duration of the pulse becomes comparable
to the duration of one Rabi cycle Tcyc = 2π/Ω̃R, the RWA starts to break down and the
interpretation of ΩR(t) in this framework becomes difficult.

2.4. Multi-Electron Systems

As it is the case in classical physics, the two-body problem is analytically solvable in
quantum mechanics. However, for few- to many-body systems like multi-electron atoms
and molecules this is no longer possible. Because electrons are indistinguishable particles
correlations due to exchange symmetries as well as Coulomb interactions have to be taken
into account [85, 86]. As electrons are fermions the overall symmetry of the electronic
wave function for the exchange of two particles has to be antisymmetric. The Hamiltonian
of an atom with n electrons in the rest frame of the nucleus and nuclear charge Z = n ·e is
given by

Ĥ =
n

∑
i=1

p̂2
i

2me
−

n

∑
i=1

1
4πε0

ne2

r̂i
+∑

i6= j

1
4πε0

e2

|r̂i − r̂ j|
. (2.60)

Because of the interaction between the electrons mediated by the Coulomb force FC =
1/4πε0 · e2/|ri − r j| the spatial wave function of such a system can not be decomposed
into products of single-electron wave functions

Ψ
(n)(r1, ...,rn) 6=

n

∏
i=1

Ψ
(1)(ri) . (2.61)

This is due to a correlation induced by the Coulomb repulsion between the electrons.
It is not only important for the theoretical description of multi-electron states in atoms
where various approximations have been developed to describe these correlations [85]
but also in covalent bonds between different atoms of molecules. The dynamics of a
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single excited valence electron in such a system can be treated similarly to the two-body
problem, using mean field corrections of the remaining electrons to the overall potential
experienced by the ’active’ electron (see SAE in section 2.2). Apart from this, multi-
electron systems allow for configurations with two or even more simultaneously excited
electrons from the valence shell or for bigger atoms from inner valence or core states
[87]. These configurations can be excited using high energy photons and exhibit highly
nontrivial and correlated dynamics, leading to many interesting processes like single-
photon double excitation, autoionization or (cascading) Auger ionization [88]. States
involving multiple excited electrons carry energy above the single-ionization threshold
and are thus degenerate with the continuous states of a free electron after ionization. The
theory behind these particular states was worked out by Fano [89, 90] and is discussed in
the following.

2.4.1. Autoionization and Fano Theory

The process of autoionization, leading to a change in line shape can occur in systems
with two or more electrons. In such systems simultaneous excitation of two electrons
at once may form quasi-stationary quantum states also known as doubly excited states
(DES) with lifetimes much shorter compared to single-electron excitations. These states
can decay by the ejection and the following rearrangement of the remaining electrons
in the created ion which is commonly referred to as autoionization. The cause of the
ionization process in DES is strong correlation between the excited electrons, which is
caused by their Coulomb interaction. The resulting asymmetric resonance line shape was
first observed by Hans Beutler [91] and theoretically described by Ugo Fano [90], who
delivered a general expression for the resonance line shape based on interference between
quantum transition amplitudes. This theory is in principle applicable to any case where
interference can occur between different possible quantum pathways especially if there
are contributions from discrete as well as continuous states.
The discussion of Fano’s theory is kept close to the original notation. In the original
work the problem is treated time-independently in the energy domain. First, a bound
state |α〉 and a set of continuum states |βE〉 are considered. The bound-state energy
Eα is degenerate with the energy spectrum E of the continuum. The eigenvalues of the
Hamiltonian of this system are as follows:

〈α| Ĥ |α〉= Ei , (2.62)

〈βE | Ĥ |α〉=VE , (2.63)

〈βE | Ĥ
∣∣β ′

E
〉
= Eδ (E ′−E) . (2.64)

Ei and E,E ′ are the energies of the states and the off-diagonal elements VE describe the
interaction. The ground state is neglected because it can be assumed far away from the
relevant energies. In order to get the system’s eigenstates this Hamiltonian has to be
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diagonalized. These new states can be expanded as a superposition of the original basis
and are, according to [90], given by

|ΨE〉= aE |α〉+
∫

dE ′bEE ′ |βE〉 . (2.65)
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Figure 2.7.: Asymmetric Fano resonance lines for different values of the parameter
q: The cross section of a resonance embedded in a continuum is plotted in
arbitrary units depending on the normalized energy ε . For higher values of
q the absorption minimum lies at smaller energy values. The cross section
changes to a Lorentz line shape for q →±∞.

This reduces the problem to the determination of the coefficients aE and bEE ′ . These
expansion coefficients are energy dependent and can be found by evaluation 〈ΨE | Ĥ |ΨE〉
using equations 2.62 to 2.64. The full calculation can be found in [90]. In the end the
recovered new eigenstates are found to be

|ΨE〉=
sin∆E

πVE
|φE〉− cos∆E |βE〉 , (2.66)

with a modified bound state

|φE〉= |α〉+P
∫

dE ′ VE ′

E −E ′ |βE ′〉 , (2.67)

where the configuration interaction VE mixes continuum states with the original discrete
bound state. The parameter ∆E is given by
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∆E =−arctan
π|VE |2

E −Eα −F(E)
with F(E) = P

∫
dE ′ |VE ′|2

E −E ′ (2.68)

Here, F(E) gives an energy dependent energy shift caused by the variation of VE across
the spectrum of the continuum and P denotes the principal value integrals around the
poles at E = E ′. In principle, the transition T̂ from a ground state |g〉 to |ΨE〉 has two
contributions, namely transition into |φE〉 and directly into the continuum |βE〉. These
contributions interfere with opposite phase on each side of the resonance which generates
the asymmetric resonance profile. The asymmetry can be parametrized by comparing this
transition probability to the transition into the unperturbed continuum:

| 〈ΨE | T̂ |g〉 |2

| 〈βE | T̂ |g〉 |2
=

|q+ ε|2

1+ ε2 , (2.69)

with the parameters

ε =
E − (Eα +F(E))

Γ/2
=

E −Eφ

Γ/2
, and Γ = 2πV 2

E , (2.70)

q =
〈φE |T |g〉

πVE 〈βE |T |g〉
. (2.71)

Here, ε is the reduced energy with the resonance position Eφ and the width Γ. The
parameter q gives the ratio between the transitions from the ground to the modified bound
state |φ〉E and the transitions from the ground state directly to a continuum state |βE〉.
Equation 2.69 describes the Fano profile observable in a measurement and is plotted in
figure 2.7 for different values of the parameter q.
The Fano theory is a general description of atomic excitation dynamics. For excited states
without continuum channels 〈βE | T̂ |g〉 → 0, VE → 0 or q → ±∞ the Fano line shape
changes into the standard Lorentzian line shape. In special cases the q-parameter can also
approach 0, which causes an inversion of the spectral line because the direct transition
into |φ〉E is suppressed. This case is usually referred to as window resonance. As stated
above, any given resonance can be uniquely described by three parameters in the energy
domain: the position E, the linewidth Γ and the line-shape parameter q. Because the line
shape arises from the interference of quantum pathways it is very sensitive to the exact
phase of the different state contributions. Just like their optical counterparts (Michelson
interferometer) these microscopic quantum interferometers can be used to study dynamics
with high sensitivity if one or both of the pathways can be influenced and controlled. This
is for example possible if the system in such a configuration interacts with strong and
short electric fields.
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2.4.2. Interaction with Strong Fields

While Fano’s theory is time independent and assumes only weak excitations, more re-
cent work has generalized it to the time dependent case of interaction with (additional)
strong electric fields. In this regime non-perturbative effects like Rabi oscillations are
expected to be modified compared to usual bound states by the additional interactions
with the degenerate continuum states. A first analytical treatment of autoionizing states
interacting with strong laser fields was developed by Lambropoulos and Zoller [92] and
Eberly [93, 94]. Their approach makes use of the eigenstates |ΨE〉 of a system consisting
of interacting discrete and continuous states given in equation 2.66 and describes their
coupling to a discrete state |g〉 or other autoionizing states

∣∣Ψi
E
〉

in a non-perturbative
fashion. For the first case the time-dependent system is described by the state |Ψ(t)〉 and
the Hamiltonian Ĥ in dipole approximation:

|Ψ(t)〉= cg(t) |g〉+
∫

dE ′cE ′(t)
∣∣Ψ′

E
〉

, Ĥ = Ĥ0 + d̂ ·E(t). (2.72)

In the Hamiltonian d̂ denotes the dipole operator and E(t) gives the time-dependent elec-
tric field. The solution for the time-dependent coefficients cg(t) and cE ′(t) can be de-
termined as outlined in section 2.3.2 with the additional complication of the continuous
properties of the autoionizing state which requires an energy integration in the cE ′(t) co-
efficient.

According to [92] this yields an effective Rabi frequency which includes the interference
effects due to the mixing with the continuum |β 〉E encoded in |φ〉E

Ω
E
R = 〈φE | d̂ |g〉 · E0/h̄ (2.73)

Additionally, a modification of the Rabi frequency by a factor of (1− i/q) is present in
the given solution. Furthermore, a radiation-induced shift in energy Sg and width γg of
the bound state |g〉 caused by the strong coupling to the continuum |β 〉E is also described.
The full results can be found in [92] and subsequent publications [95–99]. It is empha-
sized that the described effects are only present because of the strong interaction and
interference effects with the continuum.

Finally, the case of multiple autoionizing states coupled by a strong field is briefly de-
scribed. In this case, the expansion for the general state includes more autoionizing state
contributions

|Ψ(t)〉= cg(t) |g〉+∑

∫
dE ′c(i)E ′ (t)

∣∣∣Ψ′(i)
E

〉
. (2.74)

Also, the dynamics are described by modified Rabi frequencies and radiation induced
shifts of the state energies and widths. Additionally, the coupling of different autoion-
ization continua

∣∣∣β (i)
E

〉
,
∣∣∣β ( j)

E

〉
or autoionizing states

∣∣∣φ (i)
E

〉
with other continua

∣∣∣β ( j)
E

〉
is
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Figure 2.8.: Level scheme of autoionizing state dynamics in strong fields: The states
embedded in the continua C1 and C2 experience configuration interaction
(blue arrows) but can also be coupled to other states and to continua with
different symmetries (red arrows). The coupling between continua (red
dashed arrow) is expected to play a role only for very high intensities
I > 1014 W/cm2. The autoionizing states can also undergo direct field ioniza-
tion (purple arrow) into C3 (see section 2.2.1).

possible. For intensities below 1014 W/cm2 however the coupling between continua can
be neglected [92]. An illustration of the possible couplings in such systems is given in
figure 2.8. As the intensities discussed in the experiments of this work range between
1012 W/cm2 and 1013 W/cm2 these effects have to be taken under consideration.

2.4.3. The Helium Atom

The investigation of the dynamics of correlated electrons in atoms and molecules is the
goal of this work. To this end, the most simple system with correlated electrons, the
helium atom is chosen as the main spectroscopy target. As it has two electrons, the wave
function of the helium atom can be written as

Ψ = ψ
(2)(~r1,~r1) ·χ(s1,s2), (2.75)

where ψ describes the spatial degrees of freedom and χ accounts for the spin of the elec-
trons. The spin degrees of freedom live on a separate Hilbert space and are for the pur-
poses of this work decoupled from the investigated dynamics. The multi-electron states
discussed below follow the notation 2S+1Lλ , where S is quantum number of the total spin,
L is the quantum number of the total angular momentum and λ indicates the parity of the
state (even or odd). All states that are spectroscopically accessed in this work are singlet
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states (S = 0), implying an antisymmetric spin wave function χ . Consequently the spatial
wave function has to be symmetric to satisfy fermionic exchange symmetry. Considering
interactions in dipole approximation, only transitions between states of different parity
are allowed. This means that from the ground state 1s2 of 1Se symmetry only states of
1Po symmetry are accessible via 1-photon transitions.
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Figure 2.9.: Level scheme of the helium atom: The corresponding line shapes for singly
and doubly excited states are shown in the insets. The energy positions are
taken from [100].

Due to the wide range of photon energies accessible through high-harmonic generation,
multiple configurations of excited electronic states in helium can be accessed. The man-
ifold of singly excited states (SES) with only one electron excited from the ground state,
denoted by N = 1 as the remaining electron is in the ground state with n = 1 ranges
from 21.22 eV, the position of the first excited state up to the threshold of single ioniza-
tion at 24.59 eV. The absorption lines visible in the experiment without any additional
perturbations are the dipole-allowed transitions into the angular momentum states with
P-symmetry. This series is denoted as 1snp with n = 2,3,4, ... for the corresponding sub
shells and converges towards the N = 1 ionization threshold as shown in figure 2.8. The
1sns and 1snd series of 1Se and 1De symmetry are not accessible from the ground state.

For energies above this threshold the system can either ionize directly or both electrons are
excited simultaneously. For these doubly excited states (DES) with N = 2 there are three
possible configuration series, the 2snp, 2pns and the 2pnd series [101] which converge to
the threshold of the N=2 ionization at 65.40 eV. As the states of the first two series are not
distinguishable, they appear in linear combinations of the orbital configurations
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configuration Energy (eV) Γ (meV) q
1s2p 21.2180 0.0074 −∞

1s3p 23.0870 0.0023 −∞

1s4p 23.7421 0.0010 −∞

1s5p 24.0458 0.0005 −∞

1s6p 24.2110 0.0003 −∞

1s7p 24.3107 0.0002 −∞

1s8p 24.3755 0.0001 −∞

Table 2.2.: Tabulated spectroscopic values for the first levels of the 1snp singly excited
series of helium. The data is taken from [100]

1√
2
(2snp±2pns) , denoted sp2,n±, (2.76)

for historic reasons [102, 103]. The ’+’-series appears the strongest, while the ’-’-series
is less pronounced in absorption spectra and the third series appears much weaker still.
It was only detected by using high-resolution measurements at a synchrotron [104, 105].
As these states are degenerate with the continuum of single ionization, they may undergo
autoionization and thus possess much shorter life times of ∼ 17fs for the 2s2p state and
∼ 100fs for higher excited states, compared to the SES with (radiative) life times on the
order of few nanoseconds. Additionally, the interaction of the degenerate configurations
of the DES and the continuum states causes a change in the spectral line shape described in
the previous section by the asymmetry parameter q. The unperturbed energies, linewidths
and Fano-q parameters taken from [100, 104–106] are given in table 2.3 for both the SES
and the DES manifolds.

configuration Energy (eV) Γ (meV) q
2s2 57.7900 123.6 −

2s2p 60.1503 37.6 −2.74
2p2 62.0600 6 −

sp2,3− 62.7580 0.5 −3.5
sp2,3+ 63.6575 8.3 −2.53
sp2,4− 64.1350 0.3 −3.2
sp2,4+ 64.4655 3.4 −2.58
sp2,5− 64.6570 <0.1 −3.2
sp2,5+ 64.8200 1.8 −2.54
sp2,6+ 65.0000 1.0 −
sp2,7+ 65.1100 0.7 −

Table 2.3.: Tabulated spectroscopic values for the first levels of the 2snp doubly excited
series of helium, classified in the ’±’-series. The data is taken from [100,104–
106].

With increasing values for the quantum number N, classifying the highly excited DES
on the basis of single-electron orbitals becomes more and more challenging because the
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number of overlapping Rydberg series increases as well as the number of continua which
contribute to the autoionization channel. However, group-theoretical approaches along
hyperspherical coordinates are able to give a rigorous classification of DES even for large
values of N [107–110]. This classification is based on a new set of correlation quantum
numbers, which order correlations between the electrons in the radial and angular coor-
dinates. An overview of the current development of the theory of two-electron atoms can
be found in [111]. As this work is mostly concerned with states fulfilling N ≤ 2 this is
not discussed in more detail and the older notations are utilized to distinguish states with
different correlation properties.

2.5. Absorption Spectroscopy in the Time Domain

Shining light through matter and determining the change in the spectral intensity distri-
bution is a key technique in many branches of physics. Observing the changes introduced
by the interaction with a sample, details about its internal structure and dynamics can be
determined. This chapter will introduce basic principles of the description of signals in-
teracting with a medium, how this leads to absorption and how this can be understood in
a time domain and frequency domain picture.

2.5.1. Linear Response Theory

The general relation between input or driving force f (t) and output y(t) of a system (e.g.,
a force and the systems response to it) can in general be described by a so called Volterra
expansion [112] in orders of the input signal f (t)

y(t) = f0 +∑
n

∫ t

−∞

...
∫ t

−∞

χ
(n)(t ′1, ..., t

′
n)

n

∏
i=1

f (t − t ′i)dt ′i . (2.77)

Here, f0 is a constant offset that can usually be set to zero if only dynamical changes
are considered and χ(n)(t ′1, ..., t

′
n) is an n-th order tensor describing the systems response

properties to the input. The integrals describe convolutions of the input signal with the
response function χ(n)(t ′1, ..., t

′
n) which means that the response of the system at a certain

time t depends on all its history, meaning its states at all times t ′ < t. In practice how-
ever, even though it is in reality not exactly the case, the approximation of instantaneous
response is made which replaces the time dependence in χ(n)(t ′1, ..., t

′
n) with a product of

delta functions δ (t − t ′i). With this, the integrations can be performed and the χ(n) be-
comes constant with components depending on the material. An example for this is the
description of the polarization ~P(t) (output) of a dielectric material within a strong elec-
tric field (input) which can have non-linear components depending on the susceptibility χ

(response function). With the above approximation the expansion reads

~P(t) = ε0(χ
(1)~E(t)+χ

(2)~E(t)2 + ...). (2.78)
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The exact form of χ is highly dependent on the material properties (polarizability, crystal
symmetries etc.).
In the case of only linear responses for example during the interaction with weak electro-
magnetic fields, the expansion in equation 2.77 can be truncated after the first term. This
yields an expression for the linear response of a system for a general external input f (t)
(or driving force) without the use of the approximation for instantaneous responses given
by

y(t) =
∫ t

−∞

χ(t − t ′) f (t ′). (2.79)

As this depends linearly on the input f (t), it becomes just a product if a Fourier transform
to the frequency domain is applied according to the convolution theorem

ỹ(ω) = χ̃(ω) f̃ (ω)→ χ̃(ω) =
ỹ(ω)

f̃ (ω)
(2.80)

If the signal is known and the response is measured it is possible to get access to the
response function χ. Especially, if the input signal describes an impulsive interaction
(exactly at one point in time) f (t) ∝ δ (t − t0). In this case, f̃ (ω) becomes constant and
χ̃(ω) in equation 2.80 becomes directly proportional to the measured response signal
ỹ(ω). Furthermore, for the more general case of a causal response y(t), meaning y(t) = 0
for all t < t0, there exist analytical relations between the real and imaginary parts of
the complex response function χ̃(ω) = χ̃Re(ω) + iχ̃Im(ω), called the Kramers–Kronig
relations

χ̃Re(ω) =
1
π
P
∫ +∞

−∞

χ̃Im(ω
′)

ω ′−ω
dω

′ and χ̃Im(ω) =− 1
π
P
∫ +∞

−∞

χ̃Re(ω
′)

ω ′−ω
dω

′, (2.81)

where P denotes the principal value integral. A derivation of these relations can be found
in many textbooks and the original publications [113, 114].
A full formalism of a system’s linear response to a (weak) external force can be found
in [115]. The derivation is done for the more general case of a statistical ensemble in
quantum and classical mechanics and arrives at equation 2.80 with expressions for the
response function (’after-effect function’) χ(t) given as

χcl(t) =−
∫

dΓ{A,ρ}Q(t) (classical), (2.82)

χqu(t) =
1
ih̄

Tr[Â, ρ̂]Q̂(t) (quantum−mechanical). (2.83)

Here, Q(t) is a physical quantity influenced by the interaction with f (t), ρ is the phase
space distribution of the ensemble and A is the degree of freedom f (t) couples to. {,}
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denote the Poisson brackets, [, ] is the commutator and
∫

dΓ is the integral over phase
space [115]. Thus the presented formalism can also be applied to systems governed by
quantum mechanics if the appropriate treatment of the response function is used. A con-
crete example for the application of this formalism is given by the interaction of a gaseous
spectroscopy target to a weak and short laser field. In this case, the ensemble is given by
a cloud of atoms, the measurable dynamical quantity is the electric field radiated from
the atoms, f (t) represents the driving electric field and A is given by the electric dipole
moment of a single atom which couples to the electric field. This special case is discussed
in more detail in the next section.

2.5.2. The Time-Dependent Dipole Response

The origin of a resonance line appearing in spectroscopy of radiation from microscopic
systems is the target’s temporal dipole response meaning the time-dependent dipole mo-
ment d(t) of the excited system which is determined by its internal structure. These
resonances can be probed using the interaction with electric fields which can be treated in
the time domain using response theory. Starting from a single atom, the interaction with
an electromagnetic field causing absorption of a photon will transfer population from the
ground state into one or more (depending on the available photon energy range) excited
states. The overall wave function Ψ(t) of this coherent superposition of states, called
wave packet, evolves in time and represents a time-dependent electron distribution where
the expectation values 〈x̂〉Ψ for the electron position differs on average from the position
of the nucleus. This constitutes a dipole moment d(t) that changes in time where

d(t) = 〈Ψ(t)| x̂ |Ψ(t)〉 . (2.84)

After some time the excited system will spontaneously emit exactly one photon. It is not
possible to predict the exact time of emission. As it is a statistical process, it is however
possible to measure the probability distribution of the time dependent process of emission
if a large number of events are observed. Knowing this distribution a life time τ can
be assigned to the excitation in the system which also gives the spectral width Γ of the
emitted photons as Γ = 1/τ .
For this to be visible in the spectrum, either a single atom has to be measured for a long
time interacting with many photons, or an ensemble of a large number of atoms has to
be used as a target. In both cases one can use the correspondence principle to describe
the large number of photons in terms of classical fields and atomic systems in terms of
driven responses (also in the single-atom case) using classical electrodynamics. In terms
of response theory, the input signal f (t) corresponds to the incoming electric field, χ is the
complex electric susceptibility, given by the properties (internal structure) of the system
and y(t) corresponds to the electric field generated by the dipole response.
In terms of classical electrodynamics, the most simple case of a transition between a
ground state |g〉 and one excited state |e〉 with energies Eg and Ee, as described above,
results in a time-dependent dipole moment. This dipole oscillation decays exponentially
due to the emission of radiation. The amplitude evolution starting after the excitation
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at time t0 = 0, if the excitation is treated in the framework of perturbation theory (see
section 2.3.1), is given by the state |Ψ(t)〉 = |g〉− iexp(−iωet)exp(−Γ/2)ce(t0) |e〉 with
cg(t0)∼ 1 and Eg = 0

d(t) = 〈Ψ(t)| x̂ |Ψ(t)〉 ∝ | 〈e| x̂ |g〉 |exp(−Γ/2)sin(ωet)θ(t). (2.85)

Here, ωe is the transition energy, Γ = 1/τ is the natural decay rate of the excited state
and ce(t0) is its initial population at t0, which is given by ce(t0) = cg(t0) · µg,eE , where
µg,e is the dipole matrix element and E is the excitation field strength. The Heaviside
theta function θ(t) results from the assumption of an instantaneous excitation in the sys-
tem. The spectrum of the radiation emitted by this dipole is given by the Fourier trans-
form of d(t). It is easy to show that d(t) fits the imaginary part of the complex function
r(t) = Aexp(−Γ/2− iωrt) with some amplitude A. This function can be easily Fourier
transformed into:

r̃(ω) ∝
iA

Γ

2 − i(ω −ωe)
∝ A

[
− ω −ωe

Γ2

4 +(ω −ωe)2
+ i

Γ/2
Γ2

4 +(ω −ωe)2

]
. (2.86)

The imaginary part of the expression represents the frequency domain response of the de-
caying dipole oscillation of the transition at energy Ee and width Γ. It describes the well
known Breit-Wigner line shape of resonances measured in absorption. The real part gives
the dispersion across the resonance experienced by the external field interacting with the
system. Both contributions to the response are illustrated in figure 2.9.
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Figure 2.10.: Complex response profile: Real and imaginary part of the response func-
tion for a decaying dipole response given by equation 2.86.

This description was derived for discrete bound states and becomes more complex to
describe the response if transitions to configurations with multiple excited electrons are
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involved. In this case the states and dynamics have to be treated according to section 2.4.1.
While this theory was mainly given in the frequency domain, it was recently shown, that
not only the position E and the linewidth Γ but also the q-parameter can be mapped from
the energy domain to the time-domain and vice versa (via a Fourier transformation) [116].
The main result presented in [116] is that the time-domain representation of q is a phase
offset of the time-dependent dipole response of the observed system. The most general
form of a dipole response involving states |i〉 with configuration interaction to continua
is:

d(t) ∝ cqδ (t)+ cie−
Γ

2 t+i[−ωit+φ(q)] . (2.87)

The Dirac delta function corresponds to a continuum of excited states oscillating at all
possible frequencies of the system scaled with a parameter cq describing ionization prop-
erties while the decaying function describes dipole emission which results in a symmetric
Lorentzian line shape. The phase offset term φ(q) describes how much the response is
out of phase compared to the moment of excitation. The analytically obtained mapping
between this phase shift and the q-parameter yields the relations:

φ(q) = 2arg(q− i) q(φ) =−cot
(

φ

2

)
. (2.88)

The consequence of this is that if the phase offset can be manipulated, the line shape of a
resonance can be tuned at will as shown in [116]
A manipulation of the phase offset has been achieved experimentally on highly excited
states in atomic systems where loosely bound electrons receive additional energy in a
short laser pulse due to their quivering motion in the laser field, which is known as the
ponderomotive energy (see equation 2.22). During the interaction with the laser pulse of
duration T the excited electron acquires an additional phase according to

∆φ =
∫ T

0
Updt . (2.89)

This gives the field strength or the intensity, respectively, as an obvious control param-
eter for the manipulation of the line shape of observed resonances as reported in [116].
Here, the excitation and manipulation of the dipole radiation was achieved in a transient-
absorption spectroscopy experiment where an ultra-short XUV pulse excites the system
and a strong infrared pulse can be used to manipulate the target system’s dipole response.
It is noteworthy that in this scheme destructive interference of emitted radiation from the
sample and transmitted radiation can be turned into constructive interference by means
of the phase manipulation of the dipole response or in other words, absorption can be
changed into emission.
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2.5.3. Linear Absorption & Lambert–Beer’s Law

Absorption experiments are rarely carried out on single atoms but on gaseous or even
liquid and solid targets. Therefore, a connection from the microscopic time domain de-
scription of absorption to macroscopic ensembles of atoms each contributing to the overall
absorption process has to be drawn. For a dilute gas the description of the response in the
time domain has to be extended to describe the combined emitted field of a plane A full
of N oscillating dipoles at a point P far from this plane (e.g. the spectrometer) which is
carried out in [117] and illustrated in figure 2.11. The radiated electric field of a single
dipole oscillating with frequency ωd at position Q is proportional to the acceleration of
its charge and retarded in time. At P in a large distance r from Q it is given by

Ed,single(r, t) ∝
ω2

d d0(t)eiωd(t−r/c)

r
(2.90)

Here, d0(t) gives the time evolution of the amplitude of the dipole oscillation. The total
field is then calculated by integrating over contributions from each point on the plane A
and thus all N dipoles, which yields

Ed,total ∝ −iNωdd0(t)eiωd(t−z/c)
∝ −Nωdd0(t)eiωd(t−z/c)+iπ/2

∝ −iηEd,single(t). (2.91)

Here, η � 1 depends on the given number of emitters/atoms in the system, the central
frequency ωd and the constant distance to the sources r. This total response far away from
the plane A shows a phase shift of π/2 also described in [118, 119] and is proportional
to the single dipole response. Additionally if the excitation field is driving the dipole
resonantly, its phase is shifted by π/2 against the phase of the driving field if the system
is measured in the far-field of the dipole [120]. Overall the total phase shift with respect
to the driving field is π , which means that if both (driving and dipole) fields are observed
in a spectrometer, destructive interference will occur. The observed spectrum S(ω) will
show the spectral intensity of the driving field with an absorption line at the position
of the central dipole emission frequency ωd . If photons are measured, one of the main
experimental quantities describing the interaction which are accessible in the lab are the
transmission T (ω) or absorption A(ω) = 1−T (ω) given by

T (ω) =
Iout(ω)

Iin(ω)
. (2.92)

Inserting the complex fields derived above, the transmission T (ω) and consequently the
absorption A(ω) reads

T (ω) =
|F{Ein(t)}+F{Ed,total(t)}|2

|F{Ein(t)}|2
=

|F{Ein(t)}− iηF{Ed,single(t)}|2

|F{Ein(t)}|2
(2.93)
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T (ω)≈ 1−2ηIm
[
F{Ed,single(t)}

F{Ein(t)
}
]

, A(ω)≈ 2ηIm
[
F{Ed,single(t)}
F{Ein(t)}

]
. (2.94)

Here, equation 2.91 with η � 1 for a dilute gas target (relatively small number of emitters
N) was used to arrive at the final form. The Fourier transform which represents the action
of the spectrometer is denoted by F . The crucial result being that the absorption mea-
sured in the experiment is directly related to the dipole response that is generated in the
medium during the interaction with the external field. This connection is most important
for one of the main results of this work and will be used later on.
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Figure 2.11.: a) Illustration of the calculation for the response of a plane of oscillating
dipoles as expressed in equation 2.91. b) Attenuation of a propagating wave
due to the complex refractive index n(ω) =

√
1+χ(ω).

A different approach on describing the absorption process for an electromagnetic wave
propagating through a medium is to look at the macroscopic polarization. Following
Maxwell’s theory on electrodynamics, the polarization ~P given in the frequency domain
basically describes the collective response of a medium to an external electric field of
frequency ω . It is expressed in the frequency domain in terms of the electric field E(ω)
and the dielectric susceptibility χ(ω) as

P(ω) = ε0χ(ω)E(ω) , (2.95)

where ε0 is the dielectric permittivity in vacuum. In general, the polarization can be ex-
panded in a power series (see equation 2.78) and as stated above χ(ω) is the system’s
response function. Because only dilute targets are considered no propagation effects due
to multiple absorption and reemission have to be considered and for weak field the in-
teraction can be treated in linear order. An extension of the description including higher
orders can be found in [121, 122]. In order to conveniently account for the phases of the
electric field and the atomic responses in the field with respect to each other, the quantities
P(ω) and E(ω) and consequently χ(ω) are usually described with complex values:

χ(ω) = χ
′(ω)+ iχ ′′(ω) . (2.96)
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An electromagnetic field propagating along the z-direction through a medium, depicted
in figure 2.11, experiences phase changes according to the values of the complex wave
number k(ω) = ωn(ω)/c

E(ω,z) = E(ω,0) · eik(ω)·z (2.97)

The refractive index is related to χ(ω) by n(ω) =
√

1+χ(ω). For dilute media, a Taylor
expansion to first order can be applied and the complex wave number k(ω) becomes:

k(ω) =
ω

c
·n(ω)' ω

c
·
(

1+
χ ′

2
+ i

χ ′′

2

)
. (2.98)

Inserting this into the general expression of the electromagnetic field, it becomes clear
that the real part of k(ω) represents dispersion whereas the imaginary part represents the
absorption of waves propagating in a given medium:

E(ω,z) = E(ω,0) · exp
(

i
ω

c
·
(

1+
χ ′

2

)
· z
)

exp
(
−ω

c
·χ

′′(ω) · z
)
. (2.99)

The approximations above are only valid for small values of χ which is the case for a
dilute gas targets. The general expression for Lambert–Beer’s law is

Isig(ω,z) = Iin(ω,0)e−ρNσ(ω)z, (2.100)

where ρN gives the atomic number density and σabs(ω) is the absorption cross section.
Comparing this to equation 2.99 and noting that the overall polarization is composed of
single dipole responses according to P(ω) = ρN ·dsingle(ω) yields a relation between the
cross section and the imaginary part of the dipole polarization response χ of a single atom

σabs(ω) =
2ω

cρN
Im
[

P(ω)

Ein(ω)

]
=

2ω

c
Im
[

dsingle(ω)

Ein(ω)

]
. (2.101)

Again the overall absorption for dilute targets can be written as A(ω) = N ·σabs(ω). This
is in agreement with the results for the time-domain picture of absorption derived in equa-
tion 2.94. The intensities Iin(ω,0) and Isig(ω,z) appearing in equation 2.100 represent the
signals commonly observed in absorption experiments. Typically, the data is evaluated
and interpreted as the so-called optical density (OD) in a sample of thickness l:

OD(ω) = log10

(
Isig(ω)

Iin(ω)

)
=

σ(ω)

ln10
·ρN · l . (2.102)



3. Numerical Methods

The wave function carries all the information about the system, including interaction with
external fields and correlation effects in multi-particle systems. While for the system
of hydrogen, one electron bound to a proton, analytical solutions for the wave function
can be found (shown in many textbooks [85, 123, 124]), up until now this is not possible
for more complex systems. In this case it is necessary to numerically approximate solu-
tions of the (time-dependent) Schrödinger equation (TDSE). One common method is the
Hartree-Fock (HF) approach [85], which involves the antisymmetric linear combination
of all involved single-electron orbitals including their spin, the so-called Slater determi-
nant. Electron exchange correlation enters due to the mixing of different single-electron
orbital product wave functions. The weight of these orbitals making up the real wave
function are then determined from initial values via an iterative optimization algorithm
that minimizes the energy of the overall state in the given potential. There exist many
extensions to this technique, like solutions for the time-dependent case (TDHF) and in-
troducing further mixing of multi-configuration states (MCTDH, MCTDHF) to include
electron-electron interactions approximately. An overview of these methods can be found
in [125]. Another approach is given by density functional theories (DFT) and their time-
dependent variant (TDDFT). Here, the wave function is described as a functional of the
electron density. DFT is used to calculate collective many-electron effects and is dis-
cussed in more detail in [126]. If the participating states and their couplings are known it
is however possible to use the discrete basis approach for solving the TDSE.

3.1. Discrete Basis TDSE

If an ab-initio approach, which treats the whole wave function on a discrete grid in posi-
tion and momentum space is used, numerical calculations quickly become very expensive
because the n-particle Schrödinger equation including all interaction potentials has to be
solved. An alternative method is the expansion of the wave function into a set of dis-
crete (or continuous) basis states depending on the features of the system that have to be
captured. For a set of n discrete and m continuum states |i〉 and |α〉 the expansion reads:

ψ =
n

∑
i=1

ci|i〉+
m

∑
k=1

∫
dE ck(E)|αk(E)〉, (3.1)

where ci = 〈i|ψ〉. In the basis of n discrete states (continua are omitted for simplicity)
the description of the system can be cast into n-dimensional vector and a Hermitian n×n
matrix representation:
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Ĥi j = 〈i|Ĥ| j〉 , ψi = 〈i|ψ〉= ci (3.2)

While the elements Hii represent the energies Ei of the basis states, the entries Hi j with
i 6= j are coupling terms between different states. In the case of interaction with an elec-
tromagnetic field E(t) these elements introduce a time dependence and can be written
within the dipole approximation and in length gauge [85] as:

Hi j(t) = e〈i|x̂| j〉E(t) = di jE(t). (3.3)

Here, e is the electron charge, x̂ is the position operator and di j are the dipole transition
matrix elements. Within this framework a multitude of effects during the interaction with
external fields can be described if energies and transition matrix elements gained from
spectroscopy or ab-initio calculations are available. In the matrix representation the time-
dependent Schrödinger equation turns into a set of coupled differential equations of the
state coefficients ci(t) which can be solved numerically with significantly less computa-
tional effort than a full ab-initio treatment would require.

3.1.1. Hamilton Operator and Interactions for Doubly Excited
Helium

As the principal method of investigation of this work is time-resolved absorption spec-
troscopy using XUV and NIR light pulses, the main target helium is modeled as a few-
level system interacting with these fields. For this a previously used model [127] is further
generalized in order to properly account for multi-photon ionization and strong coupling
to other additional states in the presence of intense NIR pulses (see also [92,99,128,129]
and sections 2.2.1, 2.4.2). The states used to describe the system include the ground
state |g〉 ≡ 1s2 1Se, of energy Eg = 0, and the four doubly excited autoionizing states
|a〉 ≡ 2s2 1Se, |b〉 ≡ 2s2p 1Po, |c〉 ≡ 2p2 1Se and |d〉 ≡ sp2,3+

1Po, with their respective
energies Ea, Eb, Ec and Ed given in table 2.3. The coupling of the doubly excited states
with the degenerate N = 1 continuum states |ε p〉 ≡ 1sε p 1Po and |εs〉 ≡ 1sεs 1Se is de-
scribed by the configuration interaction VCI . The continuum states are approximated by
a set of non-interacting momentum states, which is described in more detail below. The
parameter values of this interaction are adjusted to reproduce the line shape known from
experiment and theory given by the values in table 2.3. Using the states listed above,
and considering that autoionization is the main process resulting in the experimentally
observed line shape and resonance width, the state-vector of the system is expanded into

|ψ(t)〉= cg(t)|g〉+ ca(t)|a〉+ cb(t)|b〉+ cc(t)|c〉+ cd(t)|d〉+ cε p(t)|ε p〉+ cεs(t)|εs〉,
(3.4)

with the complex expansion coefficients cn(t). Its time evolution is given by the solution
of the Schrödinger equation in matrix representation:
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i∂t~c(t) = Ĥ~c(t) (3.5)

with ~c = (cg,ca,cb,cc,cd,cε p,cεs)
T and Ĥ being the Hamilton operator with entries fol-

lowing equation 3.2. Since the system is in principle time-reversal symmetric (the con-
tinuum is approximated by a finite set of states), the basis states can be chosen to be real.
Thus all dipole-moment and configuration-interaction matrix elements are real. The full
coupled differential equations of motion for all coefficients can be found in appendix B.
The dynamics introduced by the interaction with the electric fields are described by
electric-dipole-(E1-)allowed transitions given in equation 3.3. They are characterized by
the non-vanishing dipole-moment matrix elements µgb, µgd , µab, µbc, µcd and µg,ε p. The
symmetry-allowed states |b〉 and |d〉 are excited perturbatively from the ground state by
the XUV pulse EXUV (t). The direct transition into the continuum states |ε p〉 is described
by an energy-independent dipole-moment matrix element µg,ε p. For the low XUV intensi-
ties achievable in the experiment, the action of the XUV pulse can be treated in first-order
perturbation theory, according to section 2.3.1 and assuming that ∂tcg = 0 (Eg = 0), i.e.,
cg = 1. The rotating-wave approximation (RWA) is applied for the XUV field. This al-
lows the coupling to be written in terms of the complex positive- and negative-frequency
components of the electric field, E+

XUV (t) and E−
XUV (t) = [E+

XUV (t)]
∗, respectively, with

EXUV (t) = E+
XUV (t)+E−

XUV (t). This way, only the counter-rotating term E+
XUV (t) is taken

into account in the perturbative excitation.
The interaction with the NIR pulse ENIR(t) couples the four autoionizing states via symmetry-
allowed transitions 〈a| T̂ |b〉, 〈b| T̂ |c〉 and 〈c| T̂ |d〉. Here, the real time-dependent repre-
sentation of ENIR(t) is used in order to account for effects beyond the RWA and T̂ denotes
the dipole operator. The 2s2 state is included in order to better model the strong-field
driven population transfer dynamics in the 2s2p state. However, the coupling between
this state and |d〉 = sp2,3+

1Po is not included, as the NIR pulse frequency is signifi-
cantly detuned from the corresponding transition energy. The 2s2 1Se characterized by the
energy Ea = 57.79eV and autoionization decay width Γa = 123.6meV. The 2s2p 1Po

state features energy Eb = 60.15eV, autoionization decay width Γb = 37.6meV, and
Fano q parameter qb = −2.74. The 2p2 1Se state is given by Ec = 62.06eV and Γc =
6meV. Analogous parametrization is used for the sp2,3+

1Po state, with Ed = 63.65eV,
Γd = 8.3meV, and qd = −2.58. Dipole-moment matrix elements between autoionizing
states were obtained through full ab-initio calculations and are given by µab =−1.56a.u.,
µbc = 2.17a.u. and µcd =−0.81a.u..
The NIR-induced ionization of doubly excited states to the N = 1 continuum was ne-
glected for the utilized intensities INIR < 1013W/cm2 [99,128]. Furthermore, the coupling
between states in continua with different symmetry induced by the NIR field is negligible
for the intensities available in the experiment [92]. Other contributions of excited states
in the N = 2 Rydberg series are not accounted for because they are either far off-resonant
or possess significantly lower coupling strengths to the states included in this model, at
least for moderate field strengths.
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3.1.2. Autoionization and Strong-Field Ionization

The numerical model treats the interaction of a bound state degenerate with a continuum
using a quasi-discrete approximation for the actual physical continuum above the first
ionization threshold. The N = 1 continuum states called |ε p〉 and |εs〉 for their respec-
tive symmetries, are given as a set of non-interacting states, with canonical momentum
p, energy p2/2, and momentum separation ∆p. Here, we have neglected the contribution
coming from the vector potential ANIR(t) =−

∫
∞

−∞
ENIR(t ′) dt ′ to the energy of the contin-

uum states [51,130]. Constant, energy-independent decay rates Γε p and Γεs are employed
in order to broaden these quasi-discrete states and reach mutual overlap in order to ap-
proximate the continuum.
The bound states interact with each of the n states of the quasi-discrete continuum sequen-
tially. In this way, only the interaction described by a 2×2 Hamiltonian has to be solved
n times, instead of the computationally more expensive solution of an (n+ 1)× (n+ 1)
system for each time step.
The energies of the quasi-discrete states used to model N = 1 continuum states |ε p〉
and |εs〉 range from pmin = ±1.35 a.u., i.e., Emin = 24.8eV, to pmax = ±2.80 a.u., i.e.,
Emax = 106.7eV, with 100 steps ∆p =±0.0145a.u. and decay rates Γε p = Γεs = 0.1a.u..
The parameters Va,εs,Vb,ε p,Vc,εs,Vd,ε p,µgb,µgd, and µg,ε p are assumed to be independent
of the energy of the continuum states, in accordance with [90, 92, 99] and were adjusted
in order to reproduce known experimental and theoretical line shapes [127].

We explicitly include NIR-induced multi-photon ionization of the doubly excited states
|b〉, |c〉 and |d〉. This is modeled in terms of ionization rates Γ4 =α4I4

NIR(t), Γ3 =α3I3
NIR(t)

for the four and three-photon ionization of the |c〉 = 2s2p and |c〉 = 2p2 states, and
Γ2 = α2I2

NIR(t) for the two-photon ionization of the |d〉 = sp2,3+ state, with INIR(t) be-
ing the time-dependent NIR pulse intensity, and α2, α3 and α4 are free parameters deter-
mined through comparison with experimental data for a variety of NIR intensities. The
α-parameters are calibrated for the highest intensity and then kept constant for the other
calculations (they do not constitute fit-parameters in each individual simulation).

3.1.3. Numerical Solution

With the assumption that cg = 1, the time-dependent XUV dipole response of the system
is given by d(t) = µgbcb(t)+µgdcd(t)+µg,ε pcε p(t)+ c.c.. The corresponding transient-
absorption spectrum A(ω) is proportional to the cross section σ(ω) and can be modeled
according to section 2.5.3 as σ(ω) ∝ ω Im

{
F [d(t)]

F [EXUV (t)]

}
. The following definitions for the

Fourier transform of a function f (t) are used throughout the calculations:

f̃ (ω) = F [ f (t)] =
∫

∞

−∞

f (t)eiωt dt, (3.6)

f (t) = F−1[ f̃ (ω)] =
1

2π

∫
∞

−∞

f̃ (ω)e−iωt dω. (3.7)
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In order to obtain d(t) the time dependent coefficients ci(t) have to be calculated. This
is achieved from an initial state via a so-called split step time evolution algorithm [131].
This algorithm works on a grid of discrete time steps ti separated by ∆t and solves the
equation of motion iteratively for each time step. First, the changes to the state vector
coefficients ci(t) due to perturbative interaction with the XUV is calculated. The result is
then propagated in time with the split step method to second order accuracy in the time
step ∆t [132], which changes between the two diagonal bases of H0 and Hint . The time
steps were set to ∆t = 0.5 a.u., in order to sample one cycle of the XUV field (duration
69 as at 60 eV). The operations performed during one step ti → ti+1 = ti +∆t of the time
evolution are:

1. Stationary evolution of the bound states for half a time step with the unperturbed
energy-eigenvalues using the unitary operator Û0 = e−

1
2 iĤ0∆t

2. Transformation to the basis in which the matrix of the interaction Hamiltonian is
diagonal with the unitary operator Ûtrans gained from diagonalizing Ĥint

3. Time evolution of the bound states in the new diagonal basis with the operator
Ûint = e−iĤint(ti)∆t

4. Transformation to the basis in which the matrix of the unperturbed atomic system
is diagonal using Û−1

trans

5. Stationary evolution of the bound states for half a time step with the unperturbed
energy-eigenvalues using the operator Û0 = e−

1
2 iĤ0∆t

3.2. Ab-initio 1D TDSE for Two Electrons

In the special case of linear polarized and non-relativistic electric fields the description
of the helium atom can be carried out in one dimension for each electron making the
wave function effectively two dimensional (instead of six dimensions for the full prob-
lem). This is still manageable by modern computers if the grid used for the wave function
representation is not chosen too large. A detailed overview of the ansatz discussed in the
following can be found in [133–136]. The first assumption in this approach to describe
the helium atom is that the system is made up of a point-like nucleus carrying a double
positive charge and two point-like negatively charged electrons which are not distinguish-
able. The dynamics are considered in the rest-frame of the nucleus, which means that the
nuclear motion is not taken into account at all. Furthermore, as stated above, the motion
of each electron is restricted to only one dimension x represented by a discrete grid.

3.2.1. Hamilton Operator and Interactions

With these approximations the potentials acting in the model atom between both elec-
trons and the nucleus are approximated by a Coulomb potential, which is modified by a
’soft-core’-parameter a. This form of the potential avoids the singularity (numerical di-
vergence) at x = 0 and is known as the Rochester one dimensional potential [137, 138].
The Hamiltonian of the non-interacting (free) system is given by
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H0(x1,x2, p1, p2) =
1
2

2

∑
i=1

p2
i −

2

∑
i=1

2√
x2

i +a2
+

1√
(x1 − x2)2 +b2

(3.8)

where the middle term represents the potentials for the interaction of the electrons with the
nucleus and the last term describes the mutual Coulomb repulsion of the electrons. The
parameters a and b adjust the soft-core potential and may be used to change the energies
of the bound states in order to be close to the real 3D system. An example for the full
potential in two dimensions is shown in figure 3.1.
External fields act simultaneously on both electrons in the plane of polarization. As the
motion of the particles is limited to one dimension no effects of the magnetic field are
taken into account (valid for non-relativistic field strength and motion). The electric field
E(x, t) changes the systems potential which is expressed in length gauge

Vint = (x1 + x2)E(t)|x=0 with E(t) = E(t)cos(ωt +φ). (3.9)

In the dipole approximation the field E(x = 0, t) = E(t) can be assumed constant across
the extension of the atomic system. The electric field is given by a pulse of frequency
ω , CEP φ and a Gaussian envelope function E(t) = E0 exp[(t − t0)2/τ2

G]. With this the
complete Hamiltonian for helium interacting with an external electric field reads

H(x1,x2, p1, p2) =
1
2

2

∑
i=1

p2
i −

2

∑
i=1

2√
x2

i +a2
+

1√
(x1 − x2)2 +b2

+(x1 + x2)E(t), (3.10)

and the time dependent Schrödinger equation of the system takes the form

i∂t |Ψ(x1,x2; t)〉= H(x1,x2, p1, p2) |Ψ(x1,x2; t)〉 . (3.11)

3.2.2. Wave Function Interpretation

The overall wave function in equation 3.11 is represented on a two-dimensional discrete
grid of n× n points, where the maximum number of grid points is usually n = 4096 to
ensure low enough duration of the calculations. Each of the discrete grid points represents
a position space eigenstate |x1,x2〉 and the wave function is represented in position space
by projecting the full wave function on these states (x1,x2) = 〈x1,x2| |Ψ(x1,x2; t)〉. The
calculations use periodic boundary conditions. To avoid the propagation of the wave
function over the edge, causing interference on the other side and in order to simulate
ionization effects, a cylindrically symmetric imaginary potential B(r) is introduced on the
grid, which acts as an absorbing boundary for the wave function. This boundary is defined
as
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B(r,Rmin,Rmax) =


cos2

(
π

2
r

Rmax−Rmin

)
for Rmin < r < Rmax

0 for r < Rmin

1 for r > Rmax

(3.12)

Figure 3.1 b) shows the grid and the absorbing boundary as a shadowed area. In order to
interpret the physics described by the wave function, the grid is partitioned into several
different sections as it is discussed in several studies of ionization in small atoms and
molecules using a simulation similar to the one described here [139–142]. Changes in the
amplitude of the wave function in each segment can be interpreted as a different dynamical
effect. Section V in the center of the grid defines the size of the atom with less than 1%
of the wave function of the unperturbed ground state wave functions, shown in 3.1 c)
and d) for the singly and doubly excited states, is not inside this segment. Starting from
this, an increase of the amplitude in sections II, IV, VI and VIII indicates the process of
single ionization (SI) where one electron is near its coordinate origin and the other one
is far away from the nucleus. If the amplitude in sections I, III, VII and IX increases,
the second electron is also far away from the core indicating double ionization (DI). The
green areas indicate the case of electrons leaving the atom back to back in DI, whereas the
purple ares show the process of electrons leaving side by side. DI can occur as a sequential
and a non-sequential process. In the first case, the second electron is ionized after the first
electron left the atom, indicated by a flow of the wave function perpendicular to the closest
SI region. In the other case, the electrons leave simultaneously which manifests itself in
diagonal structures in the flow of the wave function.

3.2.3. Numerical Solution

With the total wave function in the discrete spatial representation, the solution of equation
3.11 uses a slightly different approach than described in section 3.1. For this model of
the wave function, the split step algorithm separates the Hamiltonian into spatial and mo-
mentum dependent parts H(x1,x2, p1, p2; t) =Hx(t)+Hp(t) . With this, the time evolution
operator to second order in ∆t [132] is given by

U(t, t +∆t) = exp[−i(Hx(t)+Hp(t))∆t] (3.13)

= exp
(
− i

2
Hx(t)∆t

)
exp(−iHp(t)∆t)exp

(
− i

2
Hx(t)∆t

)
+O(∆t3), (3.14)

similar to the previous section. In order to make use of the fact, that the operators x̂, p̂ and
consequently Hx(t), Hp(t) are diagonal in position and momentum space respectively,
the Fourier transform F is used to change between the position and momentum space
representation of the wave function |Ψ(p1, p2; t)〉= F{|Ψ(x1,x2; t)〉}. With this one step
in the time evolution is given by applying the following operations to the state vector
|Ψ(x1,x2; t)〉 from right to left
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b)

c) d)

a)

Figure 3.1.: a) Illustration of the full two dimensional potential V (x1,x2) given by equa-
tion 3.8. b) Partition scheme for the interpretation of the dynamic processes
described by the wave function c) SES Wave function d) DES Wave function

|Ψ(t +∆t)〉= e
i
2 Hx(t)∆tF−1e−iHp(t)∆tFe−

i
2 Hx(t)∆t |Ψ(t)〉 (3.15)

3.3. Ab-initio 3D TDSE for Helium

It is nowadays possible to solve the complete three dimensional Schrödinger equation for
helium. This was done in collaboration with the group of Joachim Burgdörfer at the Tech-
nical University of Vienna. In the approach utilized in this work (see [143] for a detailed
description), the two-electron time-dependent Schrödinger equation is solved using the
time-dependent close coupling method [144–146]. In this way, the full time evolution of
the wavefunction can be obtained. The radial discretization of the wavefunction is imple-
mented with a finite-element discrete variable representation [147–149], where 11 basis
functions are used for each radial element of 4 a.u. in size. The close-coupling scheme
uses an angular momentum expansion with Lmax = 10, l1 = 10 and l2 = 7. The temporal
propagation utilizes the short iterative Lanczos method [150, 151] with automatic time-
stepping and error control. As it is the case for the discrete few-level approach and the
two dimensional TDSE calculation, the linearly polarized laser fields are treated in dipole
approximation. Furthermore, it was verified that length and velocity gauge give equiva-
lent results.
The XUV pulses are given by a central energy of 60.15 eV, a Gaussian envelope for the in-
tensity profile with a pulse duration of 250 as FWHM, and a peak intensity of 1012 W/cm2.
For the NIR pulse, the wavelength of 740 nm with a Gaussian envelope for the intensity
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profile (7 fs FWHM) and varying peak intensity was used. The time-dependent dipole
moment d(t) is calculated according to equation 2.84 by taking the wave function within
a relatively small radial box of 128 a.u. around the nucleus, where an absorbing boundary
starts at 102 a.u..





4. Experimental Setup

Time-dependent processes in physics are in general described by an initial state, dynam-
ically changing intermediate states and a specific final state, a paramount example being
chemical reactions between atoms and molecules. It is imperative to precisely charac-
terize the quantum states of these systems in order to gain insight into the processes at
work. To this end, various techniques detecting photo-electrons, scattered electrons, ions
or photons have been devised. While an overview of these methods can be found in many
physics textbooks [86, 121, 124, 152], the following discussion is only concerned with
techniques measuring photons, as they are particularly well suited for the experimental
study of the internal structure of atoms and molecules. They do not interact with each
other or stray electromagnetic fields and are not affected by space charge effects. Fur-
thermore, the measurement of photons is possible within a broad spectral range and with
high sensitivity using modern solid state detectors [153, 154]. Combined with high res-
olution spectrometers photon absorption has been used very successfully to study bound
quantum states and transitions from the very first observation of electronic levels in atoms
in 1814 [155] to state of the art techniques like doppler-free absorption spectroscopy [86]
used to measure quantum-electrodynamic effects like the Lamb shift [156]. In general,
the setup for absorption spectroscopy consists of the following parts illustrated in figure
4.1: a photon source, e.g. (pulsed) laser, synchrotron source or free electron laser; a
spectroscopy target e.g. gases of atoms and molecules, liquids or solid material; a spec-
trometer consisting of a dispersive element (prism, grating) and a detector (fluorescent
materials, charge coupled devices).
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Element
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Scattering

Fluorescence

Spectrum

A

w

Figure 4.1.: Absorption spectroscopy: The radiation from the light source interacts with
a sample, where it is scattered, absorbed or converted into fluoresence. The
outgoing photons can be spectrally resolved and detected to study the inter-
action.
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For the investigation of time-dependent quantum processes the introduction of a relative
timing is necessary in order to reference separate points in time. A very successful scheme
of time-resolved spectroscopy is based on using two or more laser pulses with durations
shorter than the characteristic time-scale of the dynamic processes under investigation. In
general, the first pulse initiates dynamics and the subsequent pulse(s) are used to probe
the response of the system after a certain time delay by projecting the system onto a fi-
nal state that is detected. Typically, a strong and short laser pulse in the near infrared
to visible spectral range starts dynamic processes by ionization or excitation. A subse-
quent weaker pulse then probes the system by an additional ionization step out of the
excited state. The delay between both events is varied and either the electrons, ions and
molecular fragments or the photon signals of the pulses are measured depending on this
delay. This approach is used in various techniques to extract information about atomic and
molecular dynamics. Reaction microscopes (REMI) or cold target recoil ion momentum
spectroscopy (COLTRIMS) [157–162] detect electrons and ions with time-of-flight mea-
surements and coincident detection for full reconstruction of the initial momenta in the
ionization and dissociation dynamics. However, as stated above, for bound state dynam-
ics the measurement of photons provides complementary access and is thus interesting
from an experimental point of view. The method of transient-absorption spectroscopy
(TAS) [163–165] measures the absorption of the pulses in the medium depending on the
time-delay parameter and other control parameters such as the pump pulse intensity, as
illustrated in figure 4.2.
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Figure 4.2.: Pump-probe absorption spectroscopy: Two laser pulses interact with the
sample, where one typically starts some dynamic process (ionization) and the
other is used as a probe of the system after the variable time delay τ . The first
pulse can also be used to excite a coherent response in the system which is
afterwards modified by the second pulse (as shown in the illustration). The
response can be probed by measuring the absorption signal of the first pulse.

This general concept of time-resolved spectroscopy has been realized in many spectral
regimes and on a wide range of time scales in order to access different properties of mat-
ter. For example, depending on the energy scale rotational (µeV), vibrational (meV) or
electronic (eV) degrees of freedom can be probed. Especially the study of electron dy-
namics is challenging because it requires high photon energy in the extreme ultra-violet
(XUV) and soft x-ray regime [128,166] together with very short time durations due to the
characteristic time scales on the order of attoseconds. The advent of attosecond science
with the construction of soft X-ray free electron lasers (FEL) [167] and the discovery of
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high-harmonic generation (HHG) [7,8,69,75,168] provided for the first time laser pulses
which meet these requirements. While pulses from FELs possess statistic pulse shapes
but very high pulse energy making them candidates for non-linear XUV interactions,
HHG represents a table-top source of attosecond pulses, albeit only at low pulse energies.
These pulses where utilized in many pump-probe spectroscopy schemes to study elec-
tron dynamics. Aside from REMI and related techniques, time-of-flight measurements
for photo-electron spectroscopy are applied in high harmonic spectroscopy [169–171]
and the attosecond streak camera [172–176]. Photon detection, can be used as a com-
plement to these methods. Attosecond pulses provided by HHG were applied in TAS to
observe bound state electron dynamics [177–180], like electronic wave packets in krypton
ions [181]. Here, the attosecond pulse was used as a probe to detect the ionic states after
ionization. However, the attosecond transient-absorption spectroscopy (ATAS) technique
can also be interpreted in another picture. In this alternative scheme, the XUV pulse is
considered as the pump and initially excites the system. This coherent excitation starts
the dipole response described in section 2.5.2 which is then perturbed by the time-delayed
interaction with the near-infrared (NIR) pulse of variable intensity. The dynamics caused
by the NIR pulse leave a characteristic imprint on the response which can be measured
in absorption. Thus, the dynamics induced by the NIR can be studied by measuring the
so-called perturbed polarization decay initiated by the XUV pulse. As the NIR field can
have very high intensity, this approach can also be used to study strong-field processes in
atoms and molecules as it is presented in this work.

This chapter describes the technical details of the experimental setup and techniques
used to realize time-resolved strong-field spectroscopy down to the attosecond time scale,
based on the principles discussed in the previous chapter. It will also present the major
changes introduced to the previously existing experimental setup described in [182–184].
First, the methods for ultrashort pulse generation and characterization are presented. Sec-
ond, the experimental setup and all its elements are discussed. The final part of this
chapter includes a description of the data acquisition and evaluation methods.

4.1. Laser System & Optical Pulse Characterization

4.1.1. Femtosecond Laser System

The laser setup used in this work is the commercial Ti:Sapphire multi-pass amplifier laser
system FEMTOPOWERT M HE/HR CEP4, including a hollow-core fiber with a subse-
quent chirped-mirror compression stage, which was installed in the scope of this work
as an upgrade for the previous laser system (Femtolasers Compact Pro). After compres-
sion, this system generates CEP stabilized, NIR laser pulses of 4-5 fs duration, central
wavelength of 760 nm, ∼1 mJ pulse energy and 3 kHz repetition rate compared to the
old system with 6-7 fs duration, 750 nm central wavelength, ∼300 µJ pulse energy and
4 kHz repetition rate. In the following only the current system is described, while infor-
mation about the components of the previous system and its performance can be found
in [182–184].
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Figure 4.3.: Schematic diagram of the femtosecond laser system: The seed pulses are
produced in a Ti:Sa oscillator and subsequently CEP stabilized using and
f-2f-interferometer together with diffraction from an AOFS. The pulses are
amplified in a multi-pass CPA scheme using a cryogenically cooled Ti:Sa
crystal. After amplification the pulses pass a grating compressor and a sec-
ond f-2f-interferometer for additional CEP stabilization against slow drifts.
Output: Pulse energy 3 mJ, pulse duration ∼20 fs, repetition rate 3 kHz

A schematic view of the components of the new laser system is shown in figure 4.3. The
first stage consists of the oscillator system and a CEP-stabilization module. The oscillator
itself uses a titanium-doped sapphire (Ti:Al2O3, short Ti:Sa) crystal as gain medium and
achieves mode-locking using Kerr-lens self-focusing (see section 2.1.2). The medium is
pumped by a Spectra Physics Millenia pump laser at ∼3.5 W. The cavity delivers pulses of
∼6 nJ pulse energy at a repetition rate of 75 MHz. These pulses are then CEP stabilized in
the CEP4 module. This stage uses an f-2f-interferometer to determine the carrier envelope
offset frequency fCEO and stabilizes the CEP by diffracting the pulses off an acoustic wave
in an acousto-optic frequency shifter (AOFS). This so-called feed forward scheme [185]
can shift the frequency of the light pulses by tens of MHz and thus set the usually fluc-
tuating and previously measured fCEO to a stabilized set value. A detail description of
this technique can be found in [186]. The subsequent amplification scheme uses chirped
pulse amplification (CPA) in order to achieve high pulse energies without damaging the
gain medium. The seed pulses are first stretched to several tens of picoseconds by prop-
agating through fused-silica which introduces positive group delay dispersion (GDD).
Afterwards, the pulses propagate ten times through another cryogenically cooled Ti:Sa
crystal acting as gain medium, pumped by a high power Q-switched pump laser (DM-50,
Photonics Industries at 40 W). The cryogenic cooling compensates for heat losses during
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pumping and has to take place under high vacuum conditions (10−7 mbar). After 4 passes
through the crystal, one pulse of the pulse train is selected by a Pockel’s cell, triggered
by the pump pulse timing and effectively changing the repetition rate of the output pulses
to 3 kHz. This only changes the polarization of the selected pulse which completes the
remaining six passes while the other pulses of the seed pulse train are dumped. After
the Pockel’s cell the pulses pass the Dazzler module, a second acousto-optic modulator
(AOM) crystal which works similar to the AOFS but is used to imprint phase corrections
to the pulse shape of the amplified pulses by changing the wave form of the acoustic wave
interacting with the light pulse during the diffraction in the crystal. Once the selected
pulses have completed the ten passes, they are re-compressed using a grating compres-
sor which introduces negative GDD. The final output pulses have a center wavelength of
780-790 nm and are slightly longer than the seed pulses with a duration of ∼20 fs due
to gain narrowing in the amplification process. The pulses are delivered at 3 mJ pulse
energy with a repetition rate of 3 kHz. A second f-2f-interferometer after the compressor
together with fast control over the propagation length in the stretcher stabilizes the CEP
after the amplification step against slow drifts of fCEO caused by pressure and tempera-
ture fluctuations on the order of tens of seconds. With this a single shot CEP stability of
300 mrad after the amplifier can be achieved.
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Figure 4.4.: Schematic of the HCF compressor system for few-cycle pulse genera-
tion: The NIR pulses from the laser system are focused into a differentially
pumped hollow-core fiber filled with helium. During propagation self-phase
modulation (section 2.1.2) broadens the spectrum. A set of chirped mirrors
overcompensates the GDD accumulated in the fiber. The subsequent pair of
glass wedges is used to tune the dispersion for optimal pulse duration in the
HHG focus. After the compressor the pulses can be characterized using the
D-Scan method.

In order to support and generate few-cycle pulses needed to drive high harmonic gen-
eration (HHG) with single attosecond pulses, the spectrum of the output pulses has to
be broadened further and subsequently re-compressed. This is done in the KALEIDO-
SCOPE hollow fiber system including a modified chirped mirror compressor shown in
figure 4.4. The beam is focused into a 1 m long hollow-core fiber with a core diameter
of ∼310 µm mounted in a vacuum tube with two compartments. This setup is then filled
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with helium and differentially pumped at the entrance side down to ∼10 mbar, while the
exit remains at 2.5-3.0 bar. The pressure gradient inside the fiber reduces ionization and
thus plasma effects in the high-intensity focus at the entrance of the fiber. It is furthermore
important to use pure helium gas as non-linear medium in order to avoid ion sputtering
damage to the inside of the hollow core fiber, especially in the high-pressure region at
the exit. In the non-linear medium self-phase modulation (see section 2.1.2) generates
additional frequency components and introduces positive GDD. During the propagation
in the fiber higher-order spatial modes are exponentially suppressed and ideally a TEM00
mode remains at the exit. To avoid distortions of this mode which would be detrimental
to the HHG process, the input power is reduced to 66% of the amplifier maximum output
in order to reduce plasma focusing effects in the high pressure reservoir. After the fiber
the broadened and long pulses are guided through a chirped mirror compressor consist-
ing of seven double angle chirped mirror pairs (PC70, Ultrafast innovations) [187]. The
introduced negative GDD overcompensates the dispersion accumulated in the fiber and
during the propagation in air (GDD +35 fs2 per 1m propagation). The compressor is fol-
lowed by a pair of movable glass wedges, made of fused silica with anti-reflective coating
(450-950 nm) and 4◦ apex angle (by Lens optics). These wedges are used to adjust for op-
timal GDD compensation at the point of HHG in the experimental apparatus. In addition,
a 1 mm thick ADP birefringent crystal is used to compensate the third order dispersion
accumulated during the non-linear interaction in the fiber [40]. This suppresses any satel-
lite pulses and decreases pulse durations close to the Fourier limit. The pulse durations
achievable with this setup range between 4-5 fs at a repetition rate of 3 kHz and a pulse
energy of 1 mJ after the fiber. The method used to characterize these pulses is described
in the next section.

4.1.2. Characterization of Optical Pulses

In order to be able to control the HHG process properly and to understand the physics of
the interaction with the few-cycle pulses, their pulse shape has to be characterized. For
such short pulses with durations of only a few femtoseconds this poses quite a challenge.
However, a lot of techniques have been developed to solve this problem. Measuring a
short event in time always requires a shorter event to refer to. As the pulses themselves
are usually the shortest events available a lot of techniques use copies of the pulse and
non-linear effects involving both copies to measure the pulse properties. The most sim-
ple method using this principle is the autocorrelation setup, where one of the pulses is
delayed and scanned over the other pulse by varying the time delay. Both pulses are fo-
cused into a birefringent crystal for second harmonic generation (SHG) and the intensity
of the resulting light is measured which contains information about the pulse duration.
However, the electric field or the temporal intensity cannot be recovered like this. Meth-
ods capable of this are for example frequency resolved optical gating (FROG) [188] and
spectral-phase interferometry for direct electric field reconstruction (SPIDER) [189] and
their extensions. FROG is based on autocorrelation with the addition that instead of the in-
tensity the spectral response of a nonlinear process (e.g. SHG) is measured which creates
a two-dimensional FROG trace (frequency over time-delay) from which the shape of the
electric field can be extracted. SPIDER, on the other hand, measures spectral amplitude
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and phase separately. The phase is determined by stretching one pulse and creating two
copies of the short pulse. In the time domain the two copies will interact in the SHG crys-
tal with different frequency components of the stretched pulse. The SHG spectrum then
allows for the extraction of the phase difference between the two frequency components
probed by the short pulse replicas. A scan over the whole frequency range then gives
the overall spectral phase of the original pulse. Another method of pulse characterization
is the so called streak camera, which gives access to the temporal shape of the electric
field. An attosecond pulse is scanned in time delay over the measured pulse and ionizes
a typically gaseous sample. The vector potential of the measured pulse at the moment of
ionization is imprinted on the ionized electrons momentum which is then measured in a
time of flight spectrometer. The time of flight varies depending on the vector potential
and thus by scanning over the pulse its temporal electric field is measured. A detailed
discussion of this method and its many applications can be found in [190, 191].

BBO SHG crystalReference

Fibers to
spectrometer

fused silica
wedges

a) b)

Figure 4.5.: Schematic of the D-Scan setup: a) After passing the chirped mirror com-
pressor and the wedge pair the laser pulse can be coupled into the D-Scan
setup. This setup records the fundamental spectrum and the SHG spec-
trum generated in a BBO crystal in non-collinear geometry depending on the
wedge position (amount of glass inserted in the beam path). b) Both exper-
imental D-Scan trace and the trace retrieved by the evaluation algorithm are
shown on the top. In the lower panels, the spectral amplitude together with
the spectral phase are plotted. The time domain pulse shape shows a FWHM
of 4.3 fs.

In this work, the method called dispersion-scan (D-Scan) [192,193] is used to characterize
the pulses generated from the laser system including the fiber compressor. It is based on
measuring the spectrum of SHG light as well, but does not employ time-delayed copies
of the pulse. Instead the glass wedges for optimizing the pulse dispersion are used to scan
the dispersion added to the pulse by glass of thickness z. This results in the measured
D-Scan trace S(ω,z) which can be expressed analytically as:
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The procedure records the fundamental spectrum as input for the spectral amplitude and
then fits and optimizes the spectral phase of the pulse in order to match the recorded
D-Scan trace according to equation 4.1 using an iterative algorithm described in [187].
Figure 4.5 shows the schematic of the D-Scan setup as part of [187], together with a typi-
cal measurement of a sub-5 femtosecond pulse achievable with the laser system described
above.

4.2. Experimental Setup for Time Resolved
Absorption Spectroscopy

The complete experimental setup for high-harmonic generation and time-resolved ab-
sorption spectroscopy is shown in figure 4.6. As the experiment aims to perform photon
spectroscopy in the vacuum- to extreme ultraviolet (XUV) spectral range the complete
setup has to be placed under vacuum conditions. The typical photon energies achieved
with HHG (20 eV up to 150 eV) are way beyond the ionization potentials of all molecules
and rare gases in air (from ∼13 eV for Xenon to ∼24 eV for Helium) [194]. Thus the
photons can ionize valence electrons from any atom in air and be absorbed in the process.
The consequence is that the absorption length of XUV radiation at atmospheric pressure
is just 1 mm [195]. However, for a pressure of 10−1 mbar it already extends above 1 me-
ter. For a beamline of roughly 3 m length it is thus sufficient to operate at pressures of
10−3 mbar or below. In these rather loose pressure conditions the absorption of XUV pho-
tons can be neglected. In the following the features of the existing setup [182–184] and
the modifications and improvements added to it are described in detail according to the
schematic drawing of the beam path, optics and key elements of the beamline presented
in figure 4.7.

4.2.1. High-Harmonic Generation

In the first step of the experimental procedure, the 1 mJ, sub 5 fs NIR pulses are focused
into a rare gas acting as conversion medium. Rare gases are used for their high ionization
potential which suppresses depletion in the leading edge of the NIR pulse and allows for
HHG in the high-field strength parts of the pulse. The focusing geometry uses a silver-
coated spherical mirror with f = 500 mm, which is hit under close-to-normal incidence
to avoid astigmatism in the focus. This setup can achieve a focal size of about 50 µm,
yielding peak intensities in the range of 1014-1016 W/cm2.
The rare gas conversion medium is contained in a cell of 2 mm inner and 3 mm outer
diameter made of MACOR [196]. This glass ceramic part represents an upgrade to the
previously used stainless steel tube and is able to withstand ablation by the high intensity
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Figure 4.6.: Construction drawing of the complete experimental setup. The whole
setup is placed under vacuum conditions to avoid re-absorption of the XUV
radiation. All key parts, the HHG and target cell as well as the iris and time-
delay mirror can precisely be controlled and aligned from the outside under
vacuum operation. The filters in the mirror chamber as well as the HHG
cell, the target cell and beam diagonstics have been upgraded compared to
the previous setup [182–184].

NIR focus. This is important, as sublimated steel from the cell was found deposited on the
highly sensitive optics down the beam path, which can now be avoided. The gas can effuse
from this cell through two micro holes of 200 µm diameter on each end which allow the
beam to pass the medium, while still limiting the background pressures in the generation
chamber to acceptable values below 10−3 mbar. A schematic of the focus geometry inside
the HHG cell can be found in figure 4.8. For efficient HHG the backing pressures of the
rare gases range from ∼30 mbar up to ∼100 mbar depending on gas species. In order
to achieve optimal phase-matching conditions for the HHG process the generation cell
can be positioned using the self-built high precision XYZ-stage under vacuum and the
backing pressure is adjusted by a control unit outside the vacuum.

4.2.2. Pulse Control & Interferometric Setup

In the time-resolved spectroscopy setup following the HHG target, the main experimental
parameters are the intensity of the NIR pulses, which are further used after HHG and the
time delay between femtosecond NIR and attosecond XUV pulses. The control over these
parameters with high stability and reproducibility is achieved with the central part of the
beamline, the interferometric mirror setup contained in the middle chamber and shown
in figure 4.9. The control segment consists of a motorized iris aperture, two grazing-
incidence mirror assemblies, one for temporal pulse separation, one for refocusing the
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Figure 4.7.: Schematic of the complete experimental setup: After HHG the co-
propagating beams are temporally and spatially separated by the split mirror
and filter assemblies. Furthermore the iris aperture allows for variable NIR
intensity.The pulses then interact with the spectroscopic sample in the target
cell and pass another set of filters to remove the NIR radiation. Afterward the
spectrum is measured using the flat-field spectrometer consisting of a VLS-
grating and a CCD camera.

beam into the spectroscopy target, and a newly added variable filter array for spatial pulse
separation. A detailed overview of the construction and alignment of the mirror setup can
be found in [182].
The main experimental advantage of the monolithic beam path combined with grazing-
incidence optics is achieving high reflectivity on a broad spectral bandwidth (compared
to the limited bandwidth of multilayer mirrors in normal incidence [197]) together with
a very high degree of interferometric stability between the XUV and NIR beams which
propagate along the same path. Due to their difference in wavelength the spectral com-
ponents of the beam after HHG do not have the same divergence. The XUV beam with
∼1 mrad is much less divergent along the beam path compared to the NIR beam which has
a divergence of ∼15 mrad in the given focusing geometry. This property is first utilized in
the intensity control using the closed-loop zero aperture iris in front of the interferometric
mirror setup. Because of the difference in divergence the NIR beam has a larger diameter
at the position of the iris. Thus, the iris can concentrically cut off part of the NIR beam to
adjust the intensity reaching the rest of the setup without influencing the XUV beam. The
intensity, depending on the iris aperture opening, can be calibrated in situ from measured
data, which will be discussed in the next chapter.
The subsequent grazing-incidence optics are hit under an incident angle of θ = 15◦, where
the angle is chosen as a trade off between possible reflectivity and tolerances for align-
ment errors. First, the beam passes the split mirror assembly which also makes use of the
difference in beam divergence of the two spectral components. It consists of a fixed silver
coated outer mirror which reflects the NIR beam and a moveable high quality gold coated
inner mirror. The coating is optimized for high reflectivity of the respective beam com-
ponents with the reflectivity of the XUV radiation between 20 and 130 eV being above
40% [195]. The inner mirror is used to introduce the time-delay between the pulses by
varying the optical path length of the beam hitting the inner mirror compared to the path
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Figure 4.8.: Construction drawing and schematic view of the focal region in the HHG
cell: The magnified view shows the coherent buildup of the XUV radiation
(purple) in the focus of the NIR beam (red). The target cell is a slightly
modified version of this model and shown in figure 4.12.

length over the outer mirror. If the inner mirror is moved a distance ∆d from the overlap
an additional path length of

∆s = 2∆d sin(θ) (4.2)

is introduced. With the given incidence angle the relation between mirror displacement
and introduced time delay is 1 µm ∼= 1.705 fs. The interferometric stability is measured
by analyzing the intensity modulation of a HeNe laser reflected from the setup. The sta-
bility value was determined to be 17 as for a stability of the piezo-driven translation stage
of ∼10 nm. After passing the time-delay mirror assembly the beam is reflected off a
toroidal mirror to refocus it into the spectroscopic target. The gold coated toroidal mirror
with focal length of f = 350 mm is used in a 1:1 imaging geometry in order to avoid
unnecessary (coma) aberrations in the focus as studied in detail in [198–200].

While this combined interferometric and toroidal mirror geometry exhibits high stability,
a good focus and support of a broad spectral range, it also has a minor disadvantage.
Because the time delay is introduced by displacing one of the mirrors, there is a resulting
parallel displacement of the XUV beam and thus, considering the image created by the
toroidal mirror, a displacement of the focal point of the XUV with respect to the NIR like
it is illustrated in the figure 4.9 inset. The relation between parallel displacement ∆b of
the beam and the movement of the mirror ∆d is

∆b = ∆d
sin(2θ)

sin(θ)
. (4.3)

For a change in time-delay by ∆τ = 1 fs, this gives a parallel beam displacement of
∆b = 1.13 µm and an accompanying wave-front tilt of the XUV beam compared to the
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Figure 4.9.: Illustration of the grazing-incidence interferometric-mirror pulse con-
trol setup: The utilized grazing angle is θ = 15◦. The setup, as well as the
movement of the inner mirror of the time-delay mirror assembly introduce a
parallel beam displacement. This leads to a walk-off of the focus of the XUV
beam compared to the NIR beam in the interaction region of the target, which
is illustrated in the imaging inset.

NIR beam of φ = 3.22 µrad. The temporal averaging over a time interval of 2.15 ·10−4 as
for the achievable XUV focal spot size of 20 µm which is a consequence of the tilt is neg-
ligible. However, the geometrical overlap of the foci of both NIR and XUV beams is lost
with increasing ∆d and thus the accessible time-delay range where the same atoms are
affected by both pulses is limited to about 50 fs. Furthermore, this walk-off can cause
geometrical effects in the absorption spectra, if the displacement causes the beam to hit
the inner walls of the target cell. This issue is addressed in the next section.

In order to get full spatial and temporal separation of the XUV and NIR beams a two-
component band-pass filter in annular geometry is used. Compared to the older version
the new filter setup introduced in this work supports multiple spectral regions with differ-
ent metallic filters and a higher throughput by improving the basic and relative mounting
of the filter components. A detailed drawing of the newly installed components is shown
in figure 4.10. The concentric filter geometry itself consists of a thin membrane on the
outer part which allows visible and infrared light to pass while blocking all XUV radiation
on the outer mirror and a central metal filter which removes all NIR radiation reflected
from the inner time-delay mirror. This overall assembly is realized in two ways. The first
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Figure 4.10.: Illustration and pictures of the multi-band spatial filter setup: The filter
array can carry filters in the 4 slots on the front and back side. The filters are
mounted on metal rings and either bought from LEBOW (inset a)) or held
by home-built wire mounts (inset b)). They can be positioned via a 150 mm
mechanical feedthrough (vertically) and a picomotor driven stage (horizon-
tally). Each filter slot has to carry a metal filter (blocks NIR) for the central
part and a Kapton or nitrocellulose (blocks XUV) membrane for the outer
part of the beam. Using this array to carry a set of indium, aluminum and
zirconium filters, a broad spectral range is accessible for XUV spectroscopy.
The transmission curves of the used filters are plotted in inset c).

version, shown in figure 4.10 inset a), is directly bought from the company LEBOW [201]
and fabricated with an 0.2 µm aluminum filter in the center which is applied to a 7 µm
Kapton film with a hole in the center. The second version, shown in figure 4.10 inset
b), consists of a 2 µm nitrocellulose membrane (by National Photo Color) with a hole
at the position of the metal filter and a 0.2 µm aluminum filter (produced by LEBOW)
which is held on a home-built wire mount. While the second setup is difficult to fab-
ricate, it is considerably cheaper, introduces less dispersion due to the lower membrane
thickness and is more flexible because different metal filters can be applied to the mount.
The metal filters used for the experiment need to display significant transmission in the
spectral range of interest while completely blocking NIR and visible light. Figure 4.10 c)
shows the transmission curves of 200 nm thick aluminum (Al), indium (In) and zirco-
nium (Zr) filters [202]. For the low energy region between 10 eV and 20 eV indium
besides tin is the only viable filter option even though it has still just above 20% trans-
mission. This makes measurements on molecules with electronic excitation energies in
this energy region very challenging. Between 20 eV and 70 eV, with transmission above
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60%, aluminum is well suited to study bound states in many rare gases especially helium
with resonances around 20 eV (singly excited states) and 60 eV (doubly excited states).
For the highest energies starting from 70 eV up to 130 eV, which are mainly interesting
for streaking experiments, zirconium represents a suitable choice. It has to be noted that
during filter manufacturing few little micro holes in the foils remain [201], which leave a
weak remaining NIR pulse co-propagating with the XUV pulses. The present setup can si-
multaneously support all these filter types and makes it possible to exchange them during
vacuum operation with the 150 mm mechanical feed through. The horizontal positioning
is controlled with a picomotor-driven translation stage. Compared to the previous setup
which used a short steel tube to mount the metal filters [183], the new geometry increased
the overall throughput of the XUV flux by a factor of two with much less restrictions on
the precise rotational alignment of the filter setup. Once the pulses have passed this part
of the setup they reach the interaction region with the sample described in the next section.

4.2.3. Experimental Target & High-Resolution XUV
Spectrometer

In the experimental chamber both beams are focused into the target medium contained
in a second gas cell similar in design to the HHG cell. However, it was upgraded with a
new design in the course of a master thesis supervised during this work [203] and is an
adaptation of the design used in similar experiments of the research group [200,204,205].
The new setup is shown in figure 4.11 on the right and is able to position the target
cell with high precision and speed. This allows for efficient scans of the focus along
the propagation direction, or an operation mode which moves the cell in and out of the
beam in quick succession in order to record sequential reference spectra to determine the
absorption cross section of the medium according to equation 2.102. Furthermore, the
motion-control measures and reads out the cell position which guarantees reproducibility
and allows for the tracking of the XUV focus displacement resulting from the movement
of the time-delay mirror. This effectively enhances the time-delay range which was pre-
viously limited by the geometry of the cell opening. However, the range is still limited by
the size of the NIR focus because for large enough time-delay values the overlap between
the two foci will decrease. In this case, it can happen that there is no target region which
interacts with both pulses which in turn destroys the correct pump-probe spectroscopy
signal.

A further modification of the setup, carried out during a Bachelor thesis [206], is an ad-
ditional motorized iris aperture like the one used for intensity control, after the target
cell. This aperture is used to block the biggest part of the NIR beam, which protects the
thin metal filters used to hinder the NIR light from entering the XUV spectrometer. Fur-
thermore, the scattered NIR light is collected with an optical fiber and measured with an
Ocean Optics spectrometer. The recorded spectra can be used to monitor the spectrum of
the NIR beam after the interaction with the HHG and target medium and to determine the
plasma blue shift of the NIR light during the HHG process.
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Figure 4.11.: Drawing of the target and spectrometer setup: The target can be moved
fast and with high reproducibility for subsequent absorption and reference
measurements. After the target a motorized iris aperture scatters the NIR-
radiation which can be picked up by an optical fiber and measured for spec-
tral monitoring of the NIR beam. The remaining NIR light is filtered out by
additional metal filters before the spectrometer grating is reached. The grat-
ing itself can be exchanged to switch between better resolution for high or
low energy radiation. The spectra are finally recorded with a CCD camera
held in position in the flat field focusing plane of the concave VLS spec-
trometer grating. The beam geometry of this grating is shown below the
setup. With the home-built mechanical bearing the camera can be moved
along the spectrum and optimized for the optimal distance in the focal plane
of the grating.

The target cell itself can contain gaseous media like rare gases and simple molecules like
hydrogen, nitrogen, oxygen or carbon dioxide. The transmitted XUV radiation which
contains information about the dipole response of the quantum systems in the sample is
recorded by a high-resolution XUV spectrometer [207]. The first part of the spectrometer
shown in figure 4.11 is an aberration-corrected concave grating which is designed with a
variable spacing between grooves (variable line-spacing VLS) [208] and used in grazing
incidence for the operation with XUV-radiation. The variable spacing between grooves
is designed such that the separated spectral components are imaged onto a plane surface,
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where it is easy to detect a signal with high spectral resolution over a broad spectral range
with a CCD chip without imaging errors or the need to scan the grating rotation or detector
position. This geometry resulting in a focus plane differs from common concave imaging
gratings with equidistant grooves. Normally, the focus points of a concave grating are
located on the so called Rowland-circle [209, 210]. Following the curved focus plane of
such a geometry is mechanically very complex which is why the setup with a VLS-grating
was chosen for this beam line.
The grating equation approximately describing the dispersion for this setup is given by

mλ = d(sin(α)+ sin(β )), (4.4)

where m is the diffraction order, λ is the wavelength of the incoming beam and d is the
effective grating constant. The other parameters are shown in the schematic of the grat-
ing geometry in figure 4.11. The grating holder was upgraded in order to accommodate
two commercially available gratings by Hitachi with a groove density of 1200 mm−1 and
600 mm−1. In order to switch the gratings under vacuum conditions the mount can be
moved vertically by a Newport stepper motor. The gratings in use disperse the incom-
ing spectrum between 11 nm and 62 nm (∼20 eV to ∼120 eV) and 22 nm and 124 nm
(∼10 eV to ∼56 eV) onto an image plane of approximately 110 mm width where the
second one was added to access lower energies to observe the dynamics in valence exci-
tations of atoms and molecules and increase resolution in this part of the spectrum. From
equation 4.4 it is clear that at one point of the imaging plane apart from the first order
diffraction signal of wavelength λ also second and higher orders of diffraction n of wave-
lengths λ/n appear. While this can complicate the measured absorption spectra, it can
also be utilized to observe signatures that are greatly separated in energy simultaneously.
The entrance slit of the spectrometer is defined by the focal spot size of the XUV beam in
the experimental chamber and is on the order of few tens of micrometers in diameter.
The overall accessible energy range of the dispersion of the used VLS grating is between
∼20 eV and 110 eV and is detected by a commercially available back-illuminated CCD-
camera (Princeton Instruments, PIXIS series) [211] which is cooled thermo-electrically
and is placed in the focusing plane of the grating. The CCD-chip built into the camera
consists of 1340 x 400 pixels with a size of 20 x 20 µm2 each. The size of the chip is not
able to cover the whole dispersed spectrum delivered by the grating, therefore a home-
built mechanical camera mount including a linear stage for the camera is used in order
to move the chip along the focus plane. The energy scale as well as the resolution are
calibrated in situ using information from the recorded absorption spectra.

4.3. Data Acquisition & Evaluation

In the configuration described above, the experiment can be carried out in multiple data
recording modes. The simplest mode is for the target cell to remain fixed. Here, the time
delay τ and intensity INIR are scanned and spectra are recorded over a fixed integration
time (usually few hundreds of milliseconds) for each combination (τ, INIR). The cam-
era records pictures as a two-dimensional data set which shows periodical peaks of the
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XUV-radiation spectrum on a horizontal line. The absorption lines of the target gas are
imprinted on the XUV spectrum. By integrating over a certain region of the chip which is
selected form the LabVIEW software and then directly evaluated with hardware binning,
the information along the integration axis is lost in favor of higher signal to noise ratio and
faster read-out times during the measurement. This reduces drift and fluctuation effects
of the laser during a prolonged period of data acquisition. The single recorded spectra
Isig(ω) at different time delays between XUV- and IR-pulse are then put together to form
the two-dimensional data set of a time delay scan. As each spectrum Isig(ω) displays a
slow modulation across the whole recorded bandwidth, characteristic to the HHG pro-
cess, a reference spectrum is needed in addition to the absorption signal in order to study
the absorption effects. Using a Fourier low-pass filter to reconstruct a reference spectrum
directly form the absortion signal Isig(ω), like it is done in [116], an approximation of the
optical density resulting from the resonant interaction with the sample can be attained.
While it produces clean spectra and scan data, this method eliminates the contribution of
non-resonant and very broad absorption features, which is a major drawback, especially if
non-resonant continuum absorption or continuum edges need to be studied. As equation
2.94, 2.101, and 2.102 need the spectral intensity of the ingoing signal Iin(ω), the actual
cross section can never be obtained with this method.
A more advanced mode of operation is the recording of subsequent absorption and ref-
erence spectra for each pair (τ, INIR). In this mode the fast positioning of the target cell
moves it in and out of the beam in quick succession. The absorption Isig(ω) and refer-
ence Iin(ω) pairs measured like this yield the optical density or cross section of the target
material. As HHG is a highly non-linear process and also very sensitive to CEP of the
driving pulse which can not be stabilized perfectly, the spectral intensity of the gener-
ated pulses greatly fluctuates. For subsequent recordings of signal and reference this is a
problem, because the input for both measurements will always show deviations. This can
be mediated by either setting very long integration times (several seconds) or by record-
ing multiple spectra for each combination (τ, INIR). Both options significantly increase
overall measurement times, which can pose a problem for lab condition and laser stabil-
ity. Depending on experimental conditions, the resulting optical densities may still show
rather big fluctuations both in the spectrum itself and within the 2D data set which makes
it difficult to discern actual physical changes in absorption. Furthermore, moving the tar-
get cell in and out of the XUV focus can lead to geometrical absorption effects, meaning
that the XUV beam is clipped by the edges of the opening of the target cell.
Optimally, the reference and the absorption spectrum are recorded simultaneously in order
to guarantee the correct result from equations 2.101 and 2.102. The next section describes
in detail the newly developed setup which made this in-situ measurement of the reference
spectrum possible for the first time.

4.4. In-Situ Reference Spectrometer for High
Sensitivity Transient Absorption Measurements

As stated above, the non-linearity of HHG and slight instability of the laser parameters
(the fiber compressor is also driven by non-linear processes) cause the spectrum of the
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input XUV pulses to be different for each recorded absorption spectrum. This repre-
sents a significant difficulty for the measurement of the optical density, as it can only be
determined if both the absorption and reference spectrum are known. Considering the
fluctuations of the XUV spectrum over time, they have to be recorded ideally at the same
time. However, up to this point, the reference spectrum could only be recorded separate
to the absorption signal. In previous measurements the reference was recorded by mov-
ing the target in and out of the beam, or by removing the target gas from the target cell.
Thus spectra and references were always recorded sequentially which caused differences
between input and reference spectrum.
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Figure 4.12.: Illustration of the in-situ reference measurement method: After passing
the concentric filter assembly for spatial beam separation the XUV beam hits
a TEM transmission grating which acts as a beam splitter. These gratings
are mounted on Kapton wire shown in inset a) and placed behind the metal
filters on the filter holder. The installed overall assembly is shown in inset b).
The diffraction pattern of such a TEM grid is shown on the lower left. The
0th diffraction order is used for the absorption measurement while the +1st

order does not pass the sample and gives the reference spectrum. For this
a target cell with a very small separation between the gas reservoir holes
and a slit that allows the diffracted part to pass above without going through
the sample is necessary. The design is shown in inset c). On the right,
a typical full chip image of the CCD camera is shown which contains all
information about the absorption (area between orange dashed lines) and
reference spectrum (area between red dashed lines).

One of the main technical achievements of this work is the implementation of the simul-
taneous measurement of signal and reference. To achieve this, it is first of all necessary to
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create a copy of the input signal I0(ω). In the visible spectral range this is easily possible
using a beamsplitter (most simply a thin fused silica plate). However, in the XUV region
this is not possible. The developed setup illustrated in figure 4.12 uses a standard copper
micro grid for transmission electron microscopy (TEM) as a dispersive element for the
XUV-radiation. This element is a square grid of 5 µm wires on a 3 mm ring with a wire
separation of several µm depending on the spectral range of the measurement. The idea is
to use the 0th order transmission as the input for the absorption measurement Isig(ω) and
the +1st order diffraction as the reference signal Iin(ω). The filters are mounted on the
other side of the filter holder described in section 4.2.2 using the self-built Kapton wire
mount in figure 4.12 a). To keep the spatial pulse separation they are installed together
with the concentric Kapton-metal filters by LEBOW shown in figure 4.12 b). With the
setup at hand, the two beams can only be separated by a maximum of ∼5 mm after the
full travel distance a = 1219 mm from the TEM grid to the CCD chip. Otherwise, the two
beams cannot pass all filters unhindered, fit on the spectrometer grating and be measured
simultaneously. Furthermore, a minimum separation of ∼1.5 mm of the beams is given
by the requirement that they have to be distinguishable along the chip height (see data
presented in figure 4.12). Using the grating equation

mλ = d · (sin(arctan(dx/a))), (4.5)

with m the diffraction order, d the grating groove distance, dx the position of the first max-
imum with respect to the zeroth order and a the distance to the grating, the TEM grids
with d = 16.5µm for the spectral bandwidth between 25 nm (50 eV) to 60 nm (20 eV,
lower Al edge) and d = 12.5µm for the spectral bandwidth between 17 nm (70 eV, upper
Al edge) to 35 nm (35 eV) were selected. Like this, a reference can be recorded over the
whole range accessible with Al-filters.
A further restriction of the setup is the beam separation at the target focus and how only
one of the foci can be exposed to the gaseous spectroscopy sample. In the current geom-
etry the separation at the target position will roughly be a third of the final separation on
the CCD chip. Therefore a new design for the target cell illustrated in figure 4.12 inset c)
was worked out and very precisely manufactured in the mechanical workshop at MPIK.
With this new setup reference spectra can be recorded simultaneously with the absorption
spectra like it is shown on the full chip image in figure 4.12. The lower region shows the
0th order with the absorption signal imprinted. The upper region gives +1st order of the
diffraction pattern as the reference spectrum. It is tilted upwards toward lower energies,
because they represent higher wavelengths which are diffracted more. This diffraction is
overlaid with the spectrometer diffraction along the horizontal axis and gives the tilted
image of the reference spectrum. In order to get the correct reference, the rotation of the
TEM grid has to be adjusted before installing it. The reason for this is that both beams
have to enter the spectrometer exactly in the same horizontal position. In other words,
they have to hit the spectrometer grating in the same position vertically. Otherwise the
different path lengths in the spectrometer lead to different dependencies on the wave-
length in the lower and upper sections of the CCD image. This would further complicate
the correct analysis and make separate calibration of the regions of interest necessary.
Careful pre-alignment of the TEM-gratings is thus done outside the vacuum with a HeNe
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laser. The aim is to adjust the rotation of the diffraction pattern parallel to the optical table
as precisely as possible at a great distance from the TEM grid.

Figure 4.13.: Comparison of the sequential and in-situ reference method: a) 300 op-
tical density (OD) spectra recorded at different time delays for zero NIR
intensities. The references have been recorded after the absorption spectra
and afterward matched to achieve the best fit to the shape of the harmon-
ics. The lower panels show the mean value and the standard deviation us-
ing all spectra in the time delay scan. b) Analogous measurement showing
ODs measured with the in-situ reference method. The lower panels again
show the mean value and standard deviation of these spectra. Comparing
the standard deviations of the different methods taking a difference of 3σ

for detectable changes in the signal it can be seen, that the in-situ reference
increases the sensitivity for changes in the OD down to ∼ 10 mOD. This
represents an improvement of one order of magnitude.

The capabilities of this reference measurement technique are illustrated in figure 4.13,
which compares the in-situ reference with the method of recording the reference sequen-
tially (target in/out, gas on/off). Figure 4.13 a) shows the optical densities (OD) of a
measurement of a time-delay scan over 300 values for zero NIR intensity. The ODs have
been evaluated using a reference scan measured after the absorption spectra were recorded
without the medium in the target cell. The references were matched to the absorption
spectra by comparing the structure of the harmonics and choosing the best fit. The lower
panels show the statistics from these 300 spectra. The mean value still exhibits slight
modulations in the OD resulting from slight mismatches between sequentially recorded
absorption signals and references. The standard deviation showing the magnitude of fluc-
tuations in the measurements which ultimately limits the sensitivity to changes in the OD
caused by physical effects. Here, the fluctuations are rather high across the whole spec-
trum. Compared to this method, figure 4.13 b) shows the same measurement performed
with the in-situ reference method. Already the scan data is much more smooth without
easily visible fluctuations between single OD spectra. Looking at the statistics of this data
set, the mean value of the OD spectrum shows no slow modulations anymore. Further-
more, the overall standard deviation is much lower, with high values only at the positions
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of the resonances which naturally fluctuate more. If a difference in OD of 3σ is consid-
ered as necessary for a detectable change in OD the in-situ method is sensitive to changes
down to ∼ 10 mOD, while the sequentially recorded reference only manages to detect
changes of ∼ 100 mOD on average. This is an improvement of one order of magnitude
in sensitivity, which enables detailed studies of time-delay dependent absorption changes
even in the continuum and precise determination of spectral line shapes as well as their
modifications due to interactions.





5. Strong-field Spectroscopy

The experimental method of strong-field spectroscopy (SFS) is a versatile tool to study
dynamic processes in quantum systems using absorption measurements. It relies on an
ultrashort attosecond pulse which coherently excites atomic or molecular targets over a
broad spectral range combined with a few-cycle strong near-infrared laser pulse which
can drive the system in a nonlinear way. With this method, strong coupling, ionization
and polarization effects for very high field strengths can be studied on the natural time
scale of electronic motion. In this chapter possible applications of SFS are discussed.

5.1. Reconstruction of Strong-Field-Driven
Temporal Responses

In the following, a novel application and extension of this technique, which was developed
during this work and is published in [212], is presented. It amounts to the result, that a
single absorption spectrum of an ultrashort probe signal transmitted through a medium
contains time-resolved information about the full response (amplitude and non-trivial
phase evolution). This holds even for coherently excited systems undergoing complex
time-dependent processes, like the interaction with a strong and short laser field. The
discussion of the results closely follows the publication in ref. [212].
As discussed in chapter 2, measuring very fast time-dependent processes in nature re-
quires the observation of the (nonlinear) response of a system to precisely timed interac-
tions which act as external probes and sample the dynamics at different times [121, 213].
Typically, two (or more) such events are needed (pump–probe spectroscopy), where the
method of choice for the detection of electron dynamics are ultrashort pulses of light.
The measured quantity in SFS is the absorption spectrum of one of the pulses. The prin-
ciple of causality implies that an absorption spectrum of such an ultrashort signal can be
used to retrieve the full complex response function [113–115] of the linear interaction
with the ultrashort trigger pulse. This is supported by recent experiments and theoretical
work [116, 214–217], which also suggest a strong relation between the precise spectral
line shape and the amplitude and phase changes of the response function of a system un-
derlying it. It is even possible to observe this link in the presence of strong, nonlinear
interactions [83, 90, 92], which make the response explicitly time dependent. Up to this
point, however, only the case of sudden (impulsive) modifications of the response was
understood analytically, while the general case of the full response including complex
time dependence caused by arbitrary interactions which evolves during the interaction
with a strong and ultrashort laser pulse still has to be explored [218]. The presented re-
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sults show that it is possible to reconstruct the full temporal response of a strongly driven
time-dependent system from a single measured absorption spectrum, only requiring a suf-
ficiently short pulse as input signal to initiate the coherent excitation of the system. The
developed approach unlocks single-shot real-time-resolved signal reconstruction across
time scales down to attoseconds for non-equilibrium states of matter. In the following,
a system is considered to be in equilibrium if it does not exhibit explicit time depen-
dence. This means at each point in time, it will respond the same way to a given probing
event (e.g., the interaction with a photon). In other words, a system considered in equi-
librium, interacting with a weak probe field of finite duration will always have the same
response (in amplitude and phase) no matter when the interaction takes place. An ex-
plicit time dependence can be introduced by further external interactions which move the
system out of the unperturbed time-translation-invariant state (out of equilibrium). In
atomic physics such out-of-equilibrium processes include, e.g., the strong coupling be-
tween excited quantum states [83], the coupling of different multi-electron configuration
channels [90], the polarization of the system in a strong field, or strong-field-modification
of autoionization [92, 177]. Studying the nonlinear response of such processes is key
to understanding, controlling and steering quantum dynamics on their natural attosecond
time scale [21, 219–221].

Starting from systems initially in a stationary state (in equilibrium), the absorption spec-
trum A(ω) and thus the cross section σ(ω) is, according to equations 2.94 and 2.101,
proportional to the imaginary part of the Fourier transform of the time-dependent dipole
response d(t) in the sample which is caused by a probing field Ein(t) (see also [222]):

σ(ω) ∝ A(ω) ∝ Im
[
F{d(t)}
F{Ein(t)}

]
, (5.1)

where F{d(t)} is linearly proportional to F{Ein(t)}. For systems in equilibrium without
any explicit time-dependence, equation 5.1 serves as the starting point of probing physical
systems by their linear response. In the limit of weak and short probing events (interac-
tions that can be described via first-order perturbation theory) the causality properties of
the generally complex response [113–115] draw a link between the imaginary part (ab-
sorption) and the real part (dispersion) of the response (see equation 2.86). The Fourier
transform of the complete linear absorption spectrum then corresponds to the response
of the system to a (virtual) broad-band excitation event. Consequently, the spectrum car-
ries information about the internal structure of the probed system (e.g., through resonant
excitations) including the natural exponential relaxation dynamics like spontaneous de-
cay, autoionization or Auger decay, on the characteristic time scales Td . For example, if
the frequency of a cw-laser is tuned across the spectral line, its width can be measured.
From the obtained spectrum, the natural decay times can be extracted even though prob-
ing fields Ein(t) with durations Tin much larger than the time scale of the dynamics in the
system (Tin � Td) are used. It is even possible to use an incoherent probe field Ein(t).
In this case the system interacts with photons of various frequencies at random points in
time and the obtained spectrum again yields the decay times. This is possible because
in a time-translation-invariant system, the relative phases between frequency components
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and consequently the arrival time of the probing photons are irrelevant. However for the
case of a non-equilibrium state of matter, the time evolution cannot be accessed by long
or incoherent fields as the system can exhibit an explicit time dependence, which makes
the time of interaction with each frequency component crucial. The key question follow-
ing this consideration is: How can an explicitly time-dependent response be temporally
resolved?
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Figure 5.1.: Illustration of the principles behind the Fourier reconstruction of the
time-dependent response: The non-equilibrium state of matter induced by
a time-dependent perturbation V (t) is probed using ultra-short laser pulses
(blue) to trigger a response (purple), which is then modified for example by
a strong external time-dependent electric field (red). From the measured ab-
sorption spectrum given by equation 5.1 the strongly driven response can
be fully reconstructed if the initial excitation pulse is much shorter than the
system’s dynamics (equation 5.2), i.e., both the natural dynamics and those
driven by the external perturber. In this case the initial excitation at t = 0
produces a causal response, and the response can be reconstructed using the
Fourier transform of the measured spectrum.

The answer is provided by ultrashort laser pulses in the extreme ultraviolet (XUV) spectral
range, which can nowadays be produced in the laboratory by means of HHG. In contrast
to scanning the frequency or using incoherent sources, they represent a real broadband
(effectively Dirac delta-like) event where all frequencies are effectively probed simulta-
neously. This makes the reconstruction of the non-equilibrium response from a single ab-
sorption spectrum possible. In the general case of a system subject to a time-dependent in-
teraction V (t), the response function becomes interaction- and time-dependent d(V (t), t)
which is illustrated by the temporal beating pattern imprinted on the purple dipole re-
sponse function in figure 5.1. Following the arguments presented above, the response in-
cluding an explicit time dependence can no longer be measured with incoherent light, i.e.,
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photons arriving at random times. This problem is circumvented by considering the re-
sponse to a coherent ultrashort probing pulse Ein = EXUV(t), which precedes a generalized
external perturbation V (t). If the duration TXUV of the pulse EXUV is much shorter than
the time scale TV of V (t) and the natural decay time Td of the system (TXUV � TV ,Td) the
interaction with the XUV pulse can be approximately treated in the impulsive limit. This
limit is formally given by EXUV(t) = EXUV ·δ (t), with δ (t) being the Dirac delta function.
Using this approximation, the absorption spectrum from equation 5.1 transforms into

σ(ω) ∝ A(ω) ∝ Im [F{d(V (t), t)}] . (5.2)

Furthermore, it is immediately clear that d(V (t), t) fulfills a sharp causality condition with
d(V (t), t) = 0 for all t < 0, meaning there can be no response generated temporally before
the excitation at t = 0. This implies that the real part Re[F{d(V (t), t)}], and consequently
the entire information of the coherent dipole d(V (t), t) excited by the short pulse EXUV(t)
is encoded in the absorption spectrum [113–115], and can be reconstructed from 5.2. The
reconstruction simply applies the inverse Fourier transform to the spectrum and discards
the results at negative times t < 0 due to causality. As no assumptions have been made
about the nature of the interaction, this relation holds for arbitrary interactions V (t), al-
lowing the reconstruction even for strongly non-linearly driven dynamics. Because the
full information is contained in the spectrum, no additional (probe) pulses are necessary
to sample dynamical information. Furthermore, there is no need for scanning a time-
delay in order to access the time-dependent information. Following this basic idea, the
next section provides a mathematical description of the reconstruction method.

5.1.1. Mathematical Proof of Full Response Reconstruction

Following the time-domain picture of absorption introduced in section 2.5, a mathematical
proof of the response reconstruction based on the Fourier transform is provided in this
section. As discussed above, the goal of the reconstruction method is to access the real-
time dipole response d(t) of a quantum system initiated at t0 = 0 by the XUV pulse
EXUV(t), while the system experiences the subsequent interaction V (t). This additional
interaction introduces an explicit non-trivial time dependence to the response denoted as
d(V (t), t).

The mathematical derivation starts with the trivial case of V (t) = 0. This case is covered
by linear-response theory, like it was introduced in chapter 2.5.1, where time-translation
invariance is assumed. This means the dipole response of the system is not affected by the
arrival time of the probing field. If V (t) = 0, the following holds for the transformation
t → t +∆t:

EXUV(t)→EXUV(t +∆t) and d(t) = d(t +∆t) (5.3)

.
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If there is an additional interaction V (t) 6= 0 at a time τ after the initial interaction, this
time-translation invariance is broken. Consequently a shift of EXUV(t) by any value ∆t
will result in a different response of the system.

However, even in the case of a system which is not time-translation invariant, the response
has to fulfill d(t) = 0 for times t < 0 due to causality. There can be no response before the
interaction with the initial field EXUV(t). For such a ’causal’ response, knowledge of only
the imaginary part of the spectral response d̃(ω), which is closely related to the measured
absorption signal, is enough to fully reconstruct the temporal response d(V (t), t) using
the Fourier transform and the causality condition. This can be shown, starting from the
imaginary part of the spectral response i Im[d̃(ω)], where the factor i needs to be taken
into account to get the correct phase of the temporal response, following

F−1{i Im[d̃(ω)]}(t) = 1√
2π

∫
i Im[d̃(ω)]eiωt dω

=
1√
2π

∫ 1
2
[d̃(ω)− d̃∗(ω)]eiωt dω

=
1
2

[
1√
2π

∫
d̃(ω)eiωt dω

]
− 1

2

[
1√
2π

∫
d̃(ω)eiω(−t) dω

]∗

=
1
2
[d(t)−d∗(−t)] =


d(t)

2
if t > 0

− d∗(−t)
2

if t < 0

(5.4)

where the result is proportional to d(t) for times t > 0.

If the excitation process is short compared to all other time scales in the response, the
field EXUV (t) can be approximated in the impulsive limit according to

EXUV (t)≈ ẼXUV ·δ (t), (5.5)

with an approximately constant spectral amplitude ẼXUV (ω). This spectral amplitude is
then given by

ẼXUV (ω)≈ EXUV
.
=
∫

EXUV (t)dt . (5.6)

According to [222], the absorption spectrum of such a signal can be written in terms of
the excitation field and the spectral response as

A(ω) ∝ ωIm
[

d̃(ω)

ẼXUV (ω)

]
. (5.7)
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The absorption spectrum A(ω) can thus be used to reconstruct the real-time dynamics of
the system encoded in the dipole response d(t). In a quantum system there are generally
many possible excited states which can contribute to a given response. It is possible to
study the dynamics of these states separately by only considering one excited state |ψ〉
and its associated dipole response d|ψ〉(t). This is achieved by selecting a spectral range
centered on the central energy E|ψ〉 as long as the bandwidth is sufficiently broad to cap-
ture the full spectral line shape and thus resolve the fine temporal details induced by the
interaction V (t). As the proposed method uses ultrashort (attosecond) XUV pulses, the
absorption spectrum and the accessible spectral range is limited by the bandwidth of the
XUV pulse. This in turn implies that the temporal resolution is limited by the duration
of the XUV pulse. However, if this excitation pulse is shorter than any time scale of the
interaction V (t) or any time scale of natural evolution of the excited states, this does not
limit the reconstruction of the dynamics induced by V (t).

Therefore, if the approximation of impulsive interaction is used, both ω and ẼXUV (ω) in
equation 5.7 become constants in such a selected spectral range. It immediatly follows
that the absorption spectrum A(ω) is now directly proportional to the imaginary part of
the system’s spectral response

A(ω) ∝ ωIm
[

d̃(ω)

ẼXUV (ω)

]
≈ ωXUV

Im[d̃(ω)]

EXUV
. (5.8)

Inserting equation 5.8 into equation 5.4 then yields one of the main results of this work:
the relation for the unique reconstruction of the time domain response d(t) of the system
for times t > 0 from the absorption spectrum, following the excitation by an ultrashort
signal EXUV (t):

d(t) ∝ F−1[iA(ω)](t) =
1√
2π

∫
iA(ω)eiωt dω for t > 0. (5.9)

The real physical quantitiy of the time-dependent dipole moment which is defined as the
expectation value of the position of the electron distribution can be retrieved by taken the
real part of this expression.

5.1.2. Fourier Reconstruction for Finite Pulse Duration

The derivation of equation 5.9 which provides an analytic expression for the reconstruc-
tion of the general response from the absorption spectrum of a system uses the impulsive
limit for the interaction with the XUV pulse as a key approximation. However, the real
physical XUV pulse will always have a finite duration different from a Dirac delta distri-
bution, it is necessary and instructive to examine this case in more detail. As stated in the
discussion above, even if the approximation EXUV(t)≈ EXUV ·δ (t) is discarded, the XUV
pulse still has to fulfill (TXUV � TV ,Td), where TV ,Td are the time scales and durations
of the interaction and the unperturbed response of the system under investigation. Only
then is the picture of the XUV pulse initiating the dynamics and providing a well defined
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starting point in time for the following explicit time evolution correct.

In order to study the effects of a finite pulse duration on the reconstruction scheme, an
XUV pulse of finite duration, given by

EXUV (t)≈
EXUV

TXUV
sinc

(
πt

TXUV

)
e−iωXUV t , (5.10)

is considered, which still has no significant overlap with the action of V (t).

The spectral amplitude is constant within a bandwidth ∆ω = 2π/TXUV , which can be
expressed as,

ẼXUV (ω)≈ EXUV Π

(
ω −ωXUV

∆ω

)
, (5.11)

where the spectral amplitude shape is defined as Π(x) = θ(x+1/2)−θ(x−1/2) in terms
of the Heaviside step function θ(x). In the limit of TXUV → 0, ∆ω → ∞ the approxima-
tion assuming impulsive interaction described by a Dirac δ -function is recovered. This
pulse with a finite duration of TXUV is now inserted into equation 5.8. Within the now
limited pulse bandwidth [ωXUV −∆ω/2,ωXUV +∆ω/2] equation 5.8 can still be applied
to describe the absorption. However the limited bandwidth has to be taken into account
explicitly and it becomes

A(ω)≈ ωXUV
Im[d̃(ω)]

EXUV
Π

(
ω −ωXUV

∆ω

)
. (5.12)

Outside of the defined bandwidth, no photon is measured by the detector. If this expres-
sion is inserted into equation 5.9, one obtains the following expression for the reconstruc-
tion method

F−1[iA(ω)](t) ∝
ωXUV

2πEXUV

∫
i Im[d̃(ω)] Π

(
ω −ωXUV

∆ω

)
eiωt dω

=
ωXUV

2EXUV
[d(t)−d∗(−t)]∗

[
e−iωXUV t

TXUV
sinc

(
πt

TXUV

)] (5.13)

where the ∗-sign denotes the convolution of two functions according to the definition

x(t)∗ y(t) =
∫

x(t ′)y(t − t ′)dt ′. (5.14)

The convolution theorem states that the Fourier transform of this expression is given by
the product of the respective Fourier transforms:

F [x(t)∗ y(t)] = F [x(t)]F [y(t)]. (5.15)
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Equation 5.13 immediately shows, that the duration TXUV of the probe pulse used to trig-
ger the dynamics of the system determines the time resolution with which the dipole
response d(t) can be reconstructed because the convolution with a function of finite width
will effectively smooth over fine temporal details of the response. In turn, if TXUV is much
shorter than the time scale TV of the interaction V (t) and Td of the system (TXUV � TV , Td)
like it is demanded for the reconstruction method, the effect of the convolution in equa-
tion 5.13 can be neglected. In the limit of TXUV → 0 the probe pulse can be approximated
using the δ function and the convolution can be carried out analytically resulting again in
equation 5.9. This shows, that the reconstruction method using the Fourier transform of
the absorption spectrum is also viable for real pulses with finite duration, as long as they
are short compared to all time scales of the dynamics that are to be investigated. In the
following sections, the derived approach is tested both numerically and experimentally.

5.1.3. Numerical Proof of Viability for Complex Systems

For a proof-of-principle demonstration of the reconstruction method, the response of a
prototype field-driven model system is numerically calculated. First, the Hamiltonian of
a simple three-level system consisting of a ground state |g〉 and two excited states |e1〉 and
|e2〉. |e1〉 is initially coherently excited by a weak and broadband pulse, and subsequently
strongly coupled to |e2〉 by an intense short laser field representing V (t) after a fixed time
delay. The initial ultrashort broadband pulse and the subsequent strong driving pulses do
not overlap temporally.

The resulting dipole response, driven and modified by a strong laser pulse at time delay
7 fs after the excitation, is calculated following the methods outlined in section 3.1 and
is shown in figure 5.2 a). The resulting absorption spectrum A(ω) according to equation
5.1 is depicted in figure 5.2 b). The green lines indicate the width of a Gaussian filter
window (FWHM) used to select a spectral region, like it is applied for the experimental
data. The real-time coherent response drec(V (t), t) of the whole system is retrieved by
applying the Fourier reconstruction discussed in the previous section using equation 5.9
on the selected spectral region. The nearly perfect agreement between the reconstructed
(figure 5.2 c)) and original (figure 5.2 a)) coherent dipole response, including the entire
time-resolved holographic (amplitude and phase) information, confirms the validity of the
approach for simple systems. It further illustrates the effects of a limited bandwidth on
the results of the reconstruction. If only a limited spectral region and not the full spec-
trum (spectral response) is used for the reconstruction (Gaussian filter window, indicated
by green lines), details like the fast oscillations on short time-scales (1 fs) in the overall
response in figure 5.2 a) are not included in the reconstructed response. If however the
spectral signatures outside the filter window around 56 eV and 64 eV are also included
as input for the reconstruction, as it is indicated by the orange lines in figure 5.2 b), a
broader spectral range is available which directly results in a higher temporal resolution
of the reconstruction. Thus, also the fast oscillation on the response can be reconstructed
which is shown in figure 5.2 d).
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Figure 5.2.: Numerical proof of the reconstruction method: a) Amplitude (blue curve)
and phase shift induced by the NIR field (modulo 2π , orange curve) of the
numerically simulated time-dependent response function using a two-level
model including a ground state and two coupled excited states. b) Calculated
optical density from a) according to equation 5.1. c) Test of the reconstruc-
tion method of amplitude and phase of the response function by selecting
(Gaussian filter window with its FWHM indicated by green lines) the plot-
ted spectral range and taking the inverse Fourier transform of the observable
spectrum b) restricted to the causal domain (t ≥ 0). Due to the limited spec-
tral bandwidth only the slow modulation features are reconstructed. d) Re-
construction with larger bandwidth (indicated by orange lines). This yields
also the fast oscillations on the time dependent response.

As an extension to these calculations, a system mimicking complex dynamics was exam-
ined. To this end, the chosen Hamiltonian consists of the ground state |g〉 and now fifty
excited states |en〉 with random energies and random dipole-coupling matrix elements
to the ground state and to each other. As neither angular momentum nor parity are as-
sumed to be good quantum numbers, dipole selection rules are not taken into account in
the Hamiltonian. The simulation and calculation again follow the same line as discussed
in section 3.1 and above. The results are shown in figure 5.3, where the spectral region
for the reconstruction was chosen such that it includes all excited-state signatures using
a Gaussian window filter (FWHM indicated by green lines). The reconstructed response
plotted in figure 5.3 c) again shows very good agreement of the amplitude and phase evo-
lution with the directly calculated response. Compared to the simple model discussed
above, the full spectrum was selected as input for the reconstruction, which results in al-
most perfect agreement with the original, directly calculated response. This proofs the
principle applicability of the reconstruction method to arbitrary complex systems as en-



82 STRONG-FIELD SPECTROSCOPY

Figure 5.3.: Extension of the numerical test to complex systems The simulated system
now includes fifty excited states with random energies, line widths and cou-
plings. The red curve shows the electric field of the non-linearly interacting
laser pulse. a) Calculated time-dependent response function. b) Calculated
optical density from a) according to equation 5.1. c) Test of the reconstruction
method of amplitude and phase of the response function. Even for very com-
plex systems the response can be fully reconstructed if the whole bandwidth
of the spectral signature is probed simultaneously.

countered in nature (e.g. biologically relevant molecules and condensed-matter systems).

5.2. Real-Time Response of Strongly Driven Doubly
Excited Helium

For a first practical application and experimental proof of principle of the findings pre-
sented above, the reconstruction is directly applied to an important prototypical problem
in strong-field atomic physics and attosecond science: the strong coupling between au-
toionizing states [95, 217] in an intense laser field. As we focus on the case where the
initializing excitation and strong driving pulses arrive sequentially after each other, and
by directly reconstructing the dipole response, we also avoid previously studied difficul-
ties in extracting population dynamics in the temporal-overlap regime [214]. The target is
the simplest atomic system with more than one active electron, namely the helium atom.
The required pulse configuration for the observation of non-equilibrium dynamics in he-
lium is provided by the transient-absorption setup described in chapter 4.
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Figure 5.4.: Scheme of the relevant states and couplings in strong-field-driven dou-
bly excited helium: The NIR pulse induces resonant couplings Ω1,Ω2,Ω3
between the autoionizing doubly excited states and also leads to resonantly
enhanced strong-field multi-photon ionization γ into the N=2 continuum at
the highest intensities of up to 20 TW/cm2.

5.2.1. Experimental Data

In the experiment, the doubly excited states of helium (see figure 2.9 and 5.4) are co-
herently excited by extreme-ultraviolet (XUV) attosecond-pulsed light defining the time
t0 = 0 for the measurement. The spectrometer is tuned to optimum resolution (<50 meV)
in the spectral range between 58 eV and 62 eV in order to resolve the signature of the
dynamics between the 2s2, 2s2p, 2p2 and sp23+-state if they are coupled by a strong 7-fs
(full width at half maximum) NIR laser pulse. The pulse duration was extracted from
data using the in-situ characterization technique described in [223] (see appendix C). The
CEP of the NIR pulse was not stabilized for this measurement. Figure 5.4 illustrates
the states, couplings and ionization channels mainly involved in the driven dynamics of
doubly excited helium. The coupling dynamics manifest in the recorded spectrum as the
Autler–Townes (AT) splitting in the vicinity of the 2s2p-state [177] as well as periodic
changes of the line shapes depending on the time-delay.

For the measurement, a fixed time-delay value of the NIR pulse at τ = 7.4± 0.1 fs is
chosen such that the AT splitting in the line shape is most pronounced and the overlap
between the NIR and the XUV pulse is minimized. It is important to note, that the NIR
pulse strongly drives the excited-state dynamics on a time scale (7 fs) comparable to the
2s2p natural life time (17 fs). The overall error of the time delay, δτ = 0.1 fs, originates
in the experimental systematic uncertainty of the sub-cycle determination of τ = 0 fs in
exact pulse overlap. As mentioned above, periodic sub-cycle line-shape changes, mainly
due to resonant coupling with the sp23+ state, are observed [216], which depend on the
exact time delay between the XUV and the NIR pulses and the CEP of the NIR pulse. It
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I)

II)

III)

IV)

Figure 5.5.: Experimental Data: NIR intensity scan of Autler–Townes (AT) splitting
[177] in doubly excited helium around the 2s2p state at 60.15 eV at fixed
time delay τ = 7.4 ± 0.1 fs. The high spectrometer resolution allows for
the observation of the line shape in great detail. White dashed lines (I)-(IV)
indicate the intensities of the spectral lineouts shown on the right, which are
used in the reconstruction discussed in figure 5.10.

has to be noted, that slight changes in CEP have the same effect as minimal changes in the
time delay. Furthermore, the phase of the periodicity of these sub-cycle line shape mod-
ifications changes with the NIR intensity. Since the reconstruction method is sensitive
to these changes, the sp23+ state is included in the simulation. As CEP and time-delay
effects for very small changes cannot be distinguished, the CEP is kept fixed in the cal-
culations and the time delay is adjusted within the given interval of τ = 7.4± 0.1 fs, to
correctly reproduce the reconstructed time-dependent dipole response. The NIR intensity
was calibrated by comparing the evaluated data to ab-initio numerical time-dependent
Schrödinger-equation (TDSE) calculations described in section 3.3.
Figure 5.5 shows the recorded intensity scan of the 2s2p resonance which exhibits the
well-known AT splitting [177] due to resonant coupling to the 2p2 state. The inten-
sity ranges up to the maximum achievable value for the pulses in the experiment of
20 TW/cm2. The lineouts (I)-(IV) show the different spectral line shapes at INIR =
0.5, 2.0, 6.0, 20.0 TW/cm2 NIR intensity in detail. They exhibit the asymmetry of Fano
resonances as well as multiple maxima and amplitude changes for increasing intensity.
These line shapes encode the full time-dependent evolution of the dipole response of the
excited states during the interaction with the NIR pulse, which can be accessed using the
reconstruction method introduced above.
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5.2.2. Application of the Reconstruction to Measured Spectra

As the measured spectra contain non-resonant absorption of the continuum as well as the
spectral information of the transmitted XUV light produced by high harmonic generation,
the response of the doubly excited states has to be extracted using reference spectra and
filtering. This section describes the reconstruction from experimentally recorded spectra
in detail. The evaluation uses a directly measured reference of the XUV radiation shown
in figure 5.6.

Figure 5.6.: Raw Absorption Spectrum and XUV Reference Spectrum: The plotted
spectra are subsequently recorded measurements of the XUV spectrum with
and without the target gas in the target cell.

Dividing the measured absorption spectra by this reference and taking the negative loga-
rithm yields the optical density of the medium, which includes the resonant response of
the discrete states and the non-resonant response of the continuum shown in figure 5.7.
The remaining ∼ 3 eV-oscillation of the optical density across the spectrum originates
from the fact that the reference is recorded after the absorption measurement and not si-
multaneously. Because of the highly nonlinear process of high-harmonic generation the
reference spectrum deviates slightly which introduces uncertainties in the measurements.
The in-situ reference technique was not used for this data set, as it was not yet avail-
able at the time of the measurement. However, it is most likely that it will significantly
improve the quality of the reconstruction method, as the exact line shapes can be mea-
sured now more accurately. This continuum response is fitted with a quadratic function
and subtracted in order to isolate the resonant response from the non-resonant continuum
response like it is illustrated in figure 5.8.

This way, only the resonant response of the observed system remains without the broad-
band response of the continuum which, would manifest as a pronounced peak for small
times t ∼ 0 fs in the Fourier reconstruction. The reconstruction method employing equa-
tion 5.9 uses these spectra of only the resonant part as input A(ω). Furthermore, the
responses of single resonances can be studied by applying a Gaussian window function
to the spectra illustrated in figure 5.9. The lowest panel of this figure shows the recon-
structed response for such a selected resonance.

In contrast to the experimental data, the ab-initio simulations use a Fourier-low-pass filter
with a Gaussian window function to separate the XUV response from the dipole response
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a)

b)

Figure 5.7.: Evaluated optical density: The Fano-resonances of doubly excited helium
as well as the non-resonant continuum absorption are visible. The remaining
modulation on the spectrum is due to the fact that the measured reference
was not recorded simultaneously with the absorption spectrum and the XUV
spectra fluctuate over time.

a)

b)

Figure 5.8.: Resonant optical density: Optical density before and after subtraction of the
non-resonant continuum absorption.

of the states. This filter is applied in the time domain and cuts away the XUV response for
short times. Only the resonant part remains in the calculation. By Fourier transforming
the time-domain results, selecting a spectral range and applying equation 5.9 again the
response from a single resonance can be obtained from the simulation.
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Figure 5.9.: Selecting individual states: In the resonant optical, density signatures of
specific resonances can be selected with a Gaussian window function in or-
der to study the response of separate states in time. The lower panel shows
the reconstruction following equation 5.9 applied to the selected spectrum.
As expected for an unperturbed state, the reconstructed time evolution shows
a monotonous decay of the amplitude, which deviates from the theoretical
exponential decay according to the state’s life time because of the finite spec-
trometer resolution, which will be discussed in more detail in the next section.
The kink for small times is the result of the removal of the continuum re-
sponse (the broadband absorption would result in a strong response for short
times).

5.2.3. Normalization and Correction for Spectrometer
Resolution

In order to better compare experimental results and calculations, the data sets are each
separately normalized by comparing the spectra to the case of zero NIR intensity. The
function f (t) = a · exp(−b · t) is fitted to the reconstructed response at zero NIR intensity
which should follow an exponential decay according to the natural life time of the ex-
amined states. The recovered parameter a is subsequently used to normalize all response
curves of the corresponding intensity scan data set (a is determined separately for experi-
ment, ab-initio or few-level calculation).
Furthermore, if the reconstructed dipole response is to be compared with a calculated
response, the resolution of the spectrometer used in the experiment has to be taken into
account explicitly. This limits the observable duration of the oscillating dipole response
given by the reconstruction. It can easily be seen by considering again the convolution
theorem

1
2π

F−1[S(ω)∗R(ω)] = F−1[S(ω)] ·F−1[R(ω)], (5.16)

with S(ω) being the spectral response of the system and R(ω) being the spectrometer
resolution function (typically Gaussian). It shows that any resolution function convolved
with the physical spectrum results in a time window after the Fourier transform, which
imposes a limit on the observable duration of the dipole oscillation that is reconstructed.
The spectrometer resolution of ∆E ∼ 40 meV present in this setup limits the observable
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TDDM oscillation to a duration of TFWHM ∼ 17 fs (width of a Gaussian window in time).
It was calibrated by fitting the Gaussian window multiplied with the ab-initio data for zero
NIR intensity to the experimental data at zero NIR intensity, with the only fit-parameter
being the width of the Gaussian window function.

5.2.4. Determining the Error of the Reconstructed Response

In order to estimate the statistical error of the reconstructed time-dependent response
functions, the standard deviation of the values at each point in real time is calculated.
The analysis is based on the data sets measured at time-delay τ and τ ±T/2 (where T is
the duration of one optical cycle 2.02 fs of the NIR field). This provides a conservative,
upper, estimate of the statistical error. The resulting error bars are plotted in figure 5.10
(shaded blue areas), and as error bars in figure 5.10. The systematic errors arising due to
the uncertainty of the experimental pulse shape arriving in the interacting region, are not
taken into account in this analysis. Furthermore, as the insitu reference measurement was
not used for this experiment additional systematic errors are introduced. The deviations
caused by slight discrepancies between the spectral intensity of the signal and the subse-
quently measured reference spectra of the XUV pulses, which are used to determine the
optical density, do not enter in the evaluation of the statistical error.

5.2.5. Real-Time-Resolved Response of the 2s2p Helium State
in Strong Fields

To retrieve the full time-resolved dipole dynamics of the 2s2p autoionizing state, the re-
construction method is applied to the intensity-dependent measured line profiles of the
1s2-2s2p transition. The results are presented in figure 5.10 for a wide range of NIR
intensities. In this case, the response is the time-dependent dipole moment (TDDM) of
the chosen resonance d2s2p(t). Both the amplitude and the phase (blue lines) are recon-
structed using the presented method.
The reconstructed dipole response is compared to full ab-initio simulations (green lines)
solving the time-dependent Schrödinger equation for helium in the presence of the XUV
and NIR fields (see section 3.3). The validity of the impulsive-excitation approximation
underlying the reconstruction algorithm (see equation 5.5) was verified by varying the
pulse duration. This shows that the results are independent of the XUV pulse duration as
long as the pulse is on the attosecond scale and short compared to time scales governing
the dynamics of the coupled autoionizing states. In addition to the calculations described
in section 3.3. It was verified that reconstructing d(t) from the dipole acceleration yields
the same results, assuring that the calculation is not influenced by the finite size of the
grid used for the wavefunction representation. Propagation effects of the XUV radiation
are not considered since the probability for reabsorption of photons is negligible in the
investigated energy region and for the sufficiently low target densities in the experiment.
In order to more clearly identify the contribution of individual states and to obtain more
insight on the underlying physics during the strong-field NIR interaction, we also devel-
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oped a few-level model including the states shown in figure 5.4, as well as autoionization
and multi-photon ionization (see section 3.1). The dipole responses from this calculation
are represented by the orange lines in figure 5.10. All results shown in figure 5.10 are
normalized to the curves at zero NIR intensity (see section 5.2.3).
The four NIR intensities in figure 5.10 represent different regimes of NIR strong-field
interaction from the weak perturbative regime up to the regimes of strong coupling and
strong-field ionization of autoionizing states. For NIR intensities of INIR = 0.5 TW/cm2

and INIR = 2.0 TW/cm2, the TDDM amplitude in figure 5.10 a), b) displays increas-
ingly pronounced minima. For higher NIR intensities of INIR = 6.0 TW/cm2 and up to
INIR = 20.0 TW/cm2 shown in figure 5.10 c), d) several oscillations of the amplitude are
observed over time with rapid phase changes near each minimum of the amplitude. The
ab-initio simulation allows for a direct and unambiguous determination of the full time-
dependent dipole moment and confirms the reconstructed dipole response for this strongly
driven helium system. Deviations at early (0-1 fs) and late times may result from the non-
Gaussian experimental pulse shape and the experimental limitation of the measurement of
temporally very broad and low-signal line shapes. An improvement would require longer
measurement times and a more precise determination of the reference spectrum which
was not yet possible at the time of the measurement.
The comparison with the few-level-model calculations allows for more detailed insights
into the strong-field-driven coupling dynamics. For weak XUV excitations and subse-
quent interactions, which leave the ground state unaffected, the dipole is directly related
to the amplitude (and thus population) of the excited state. The minima in the ampli-
tude combined with the associated phase changes therefore indicate a significant resonant
population transfer due to Rabi oscillations [83] mostly between the 2s2p and the 2p2

states. The increasing number of minima with increasing NIR intensity directly follows
from the field dependence of the generalized Rabi frequency ΩR,i j =

√
∆2

i j +Ω2
i j(t), with

Ωi j(t) = ENIR(t) · di j/h̄, ENIR(t) being the NIR electric field, di j = 〈i|d | j〉 the transition
dipole matrix element connecting two doubly excited states, and ∆i j the respective detun-
ing of the laser from the transition frequency between state |i〉 and | j〉.
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Figure 5.11.: Keldysh parameter γ for doubly excited states in helium The Keldysh
parameter [49] for the 2s2p, 2p2 and sp2,3+ states is shown depending on
the intensity of the NIR light (center wavelength λ = 730 nm). In addition,
the critical intensity for over-the-barrier ionization is shown for the ioniza-
tion potentials of each state. As the Keldysh parameter is γ > 1 up to the
highest intensities and the critical intensity is reached for all involved states
(no tunneling barrier), it is reasonable to describe the strong-field ioniza-
tion channels using a multi-photon ionization model, meaning an ionization
cross section which scales in intensity with the power of the number of in-
volved photons.

At higher intensities, the decrease in the TDDM amplitude as a function of time shows
that the contributions of NIR-driven ionization can no longer be neglected. In the absence
of an analytical model for nonlinear laser ionization of doubly excited states, ionization
rates Γn = αn · INIR(t)n are employed in the few-level simulation, with INIR(t) being the
time-dependent NIR intensity envelope, n the order of the process (number of absorbed
photons) and αn are constants adjusted for each involved state but independent of inten-
sity. This multi-photon ionization model is used following an analysis of the Keldysh
parameter and the critical intensity needed for over-the-barrier ionization, shown in fig-
ure 5.11. The amplitude evolution of the TDDM predicted by this model still shows
qualitative agreement with its experimentally reconstructed counterpart and the ab-initio
results at higher NIR intensities. The phase evolution at high intensities even reveals the
Rabi cycling to the 2s2 excited state [129]. Although it is not resonantly coupled, it can
be unambiguously detected by the phase jump of about −π near 10 fs, which is absent
if the 2s2 state is excluded from the model. Thus, this state significantly participates in
the strongly driven bound-state dynamics and has to be accounted for explicitly in the
few-level model in order to achieve agreement with the experimental results.

In addition, the TDDM-reconstruction approach allows for the examination of the tran-
sition from few-level to complex multi-level coupling dynamics in increasingly strong
fields. For both theory and experiment, figures 5.12 a) and b) show the amplitude of
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t = 20 fs
(after the NIR pulse)

t = 7.5 fs
(within the NIR pulse)

a b c

Figure 5.12.: The onset of complex strong-field dynamics in a small quantum system:
(a) Amplitude of the reconstructed response at time t = 7.5 fs during the
interaction with the NIR pulse (at time delay τ = 7.4 fs). (b) Amplitude of
the reconstructed response at real time t = 20 fs, i.e., after the interaction
with the NIR pulse has concluded. The few-level model starts to signif-
icantly deviate from experiment and ab-initio simulation between 2.0 and
6.0 TW/cm2 (c) Ratio between the population in 24 excited states, excluding
the four states used in the few-level simulation, and the population in these
four states after the strong-field interaction at t = 20 fs, extracted from the
ab-initio simulation. The form of this curve explains the breakdown of the
few-level model: the state space involved in the dynamics abruptly increases
at a threshold value for the intensity. This value is reached at intensities be-
tween 2.0 and 6.0 TW/cm2. For even higher intensities the interpretation in
the framework of a few-state model is no longer reliable.

the reconstructed response at real time t = 7.5 fs and 20 fs, respectively. In both cases,
the ab-initio simulation agrees well with the experiment. However, above an intensity
threshold of about 2.0 TW/cm2, the few-level model starts to disagree significantly not
only quantitatively but also qualitatively. The explanation can be found when studying
the results of the ab-initio simulation. Taking known wavefunctions (eigenfunctions) |φi〉
for stationary states of the system, the population of these states after the interaction with
the NIR laser pulse can be determined at different intensities of the pulse. This is done by
calculating the projection of the wavefunction |ψ(t)〉 onto the eigenfunctions |φi〉 of the
corresponding states, using the non-conjugate dot-product

(φi,ψ(t)) =
∫

d~r1d~r2φi ·ψ(t). (5.17)

The necessary eigenfunctions are obtained using exterior complex scaling [224]. Ap-
plying this analysis to a set of eigenfunctions which includes a lot more states than the
few-level model provides an explanation for the observed deviations: a rapid increase of
dynamical complexity in a small quantum system. The results presented in figure 5.12
show that above intensities of about 2.0 TW/cm2, the number of states with significant
population increases abruptly. Consequently the number of states contributing to the dy-
namics in the system grows significantly, which explains the breakdown of the few-level
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model. Additionally, analysis of the photoelectron spectra of the fully propagated wave-
function in ab-initio simulation indicates that the approximation of neglecting ionization
to the adjacent continua of different parity made in the few-level model is no longer viable.
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Figure 5.13.: NIR time-delay scan of time-dependent dipole moment amplitude:
a),c): Time-delay scan of reconstructed TDDMs from experimental data
for an intensity of 2.0, 6.0 TW/cm2. The time of interaction imprinted on
the response as well as sub-cycle changes with time delay are in very good
agreement with the simulation. b),d): Scan of the time delay for the reso-
lution corrected simulated TDDMs using the same intensity. The few-level
model was used for the calculations. The biggest differences in the interac-
tion region which is moving to later times for larger time delays originate
in the experimental pulse shape deviating from the idealized Gaussian enve-
lope used in the simulation.

5.2.6. Time-Delay-Dependence of the Response

Another very important aspect of the reconstruction method is, that it directly reveals
the point in time at which the interaction with the NIR pulse takes place. In order to
show this, the TDDM was reconstructed in dependence of the NIR time delay for a fixed
NIR intensity of 2.0 and 6.0 TW/cm2. The results are illustrated in figure 5.13 a), c),
which shows a time-delay scan of the reconstructed TDDMs from measured data. This
is compared to the resolution-corrected, simulated TDDMs in figure 5.13 b), d). The
position of the nodes in the time evolution of the TDDM amplitude remain at a constant
time delay until the NIR pulse moves out of overlap with the XUV pulse at τ ∼ 7 fs. The
position then moves linearly with time delay to later times in both the measurement and
the simulation. These plots confirm that the resulting Rabi oscillations and the correct and
accurate time of interaction with the NIR field in the TDDM can be accessed using the
reconstruction approach. The results further demonstrate the sub-cycle sensitivity of this
method. The scan over the reconstruction applied to the experimental data shows periodic
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changes in the obtained responses along the time-delay axis, on a time scale shorter than
the duration of one cycle of the NIR field. As these changes match the simulated dipole
responses very well and the simulation uses time-delay steps of 5 a.u. which samples
several points within one cycle of the NIR field, the reconstruction is indeed sensitive
to different responses caused by a change in the moment of interaction on a sub-NIR-
cycle time scale. Differences between experiment and calculation appear mainly for later
time delays, where the reconstructed responses show additional fluctuations and weaker
minima. They originate in an experimental pulse shape which is not perfectly Gaussian
but exhibits a weak post pulse.
These results show, that in contrast to conventional pump-probe schemes, there is no need
for scanning time delays in order to access real-time information. Still varying the time
delay grants access to additional information in the reconstruction of the dipole response.
In principle this means that the reconstruction can be applied in single-shot measurements
of absorption spectra with light pulses of high brilliance. This is the case for free electron
lasers, where the single-shot capability of the method is especially useful due to the very
high statistical fluctuations in the pulse spectra and pulse energies.

5.3. Studying Electron Correlation in States with
Different Symmetries

The experimental approach of SFS in combination with the in-situ reference measure-
ment technique developed as part of this work can furthermore be used to study electron
correlation effects in different state manifolds of two-electron atoms. The high resolution
of the XUV spectrometer together with the improved contrast and high sensitivity intro-
duced by the new reference measurement allows for the simultaneous measurement of
sp2,n+ and sp2,n− states in doubly excited helium below the N = 2 ionization threshold.
As outlined in section 2.4.3 these different manifolds emerged historically as a classifi-
cation of doubly excited states

∣∣sp2,n±
〉
, where the two orbitals of the excited states can

couple in different ways

∣∣sp2,n±
〉
≈ 1√

2
(|2snp〉± |2pns〉). (5.18)

In a classical picture, the joint motion of the electrons in such doubly excited states can
be understood as the motion of two coupled springs with the electrons sitting at the end of
each spring. Such a system can perform radial and angular oscillatory motion with both
ends moving in or out of phase designated by the ’±’-labels. The different phases in this
motion can then be related to the vastly different lifetimes and excitation cross sections
due to the different dipole matrix elements of these states. Of course this does not fully
describe a real highly correlated quantum state. A much better approach is given by the
treatment of this three-body problem in hyperspherical coordinates [109, 110]. Here, the
doubly excited states are classified using a set of quantum numbers (n, N, (K,T )A). In
this notation, n is the main quantum number of the outer electron, N is the dissociation
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limit and (K,T )A denotes a set of correlation quantum numbers, which orders the states
by radial and angular correlation properties. Following the work presented in [109, 110]
and [105], sp2,n+, and sp2,n+ series are given in this notation by (n, 2, (0,1)+1) and (n, 2,
(1,0)−1). It directly follows that these states possess different correlation characteristics.
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Figure 5.14.: Transient absorption measurements of the sp2,n+ and sp2,n− series in
helium a.1),a.2): Full Time-delay scan of the measured high resolution ab-
sorption spectra for an intensity of 2.0 TW/cm2. In addition to the Autler–
Townes splitting on the 2s2p state, the higher-lying doubly excited states of
different symmetry are visible together with the sp3,n+ series at the highest
accessible energies. b.1),b.2): Zoom in along the energy axis on the higher
excited sp2,n+ and sp2,n− states. The red boxes indicate the dynamic changes
on the sp2,3− and sp2,4− state which significantly differ from the behavior of
the sp2,n+ series.

The behavior of these states under the influence of DC and pulsed electric fields was
already subject of experimental [225] and theoretical studies [226, 227], where different
changes in ionization cross sections for the sp2,n+, and sp2,n− based on their correlation
properties were observed and calculated. Strong-field spectroscopy is now used to further
study differences in the driven dynamics of these states both time-resolved and depending
on the intensity of the applied laser pulses. Figure 5.14 shows an overview of the spectral
lines accessible with the resolution of the setup. In figure 5.14 a.1) states of the series
below N = 2 and even N = 3 are visible. These higher-lying states appear very weak
because of their short lifetimes and small dipole couplings to the ground state. The fact
that they are still visible, and even show time-delay-dependent changes again highlights
the capabilities of the in-situ reference technique. Figure 5.14 a.2) gives the spectra of the
time-delay scan at the intensity INIR = 2.0 TW/cm2. In the energy zoom-in, which is given
in figures 5.14 b.1), b.2) it is already clearly visible that the sp2,n− states exhibit delay-
dependent changes which are strikingly different from the sp2,n+ series both in amplitude
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and line shape. These changes are studied in detail in the following sections.

5.3.1. Experimental Results
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Figure 5.15.: Measurements of the sp2,n+ and sp2,n− series in helium a)-d): High res-
olution time delay scans (steps of 85 as) for the moderate intensities of
1.0, 2.0, 4.0, 7.0 TW/cm2.

In the presented measurement, the delay between XUV and NIR pulse was scanned and
a spectrum was recorded for each position using the in-situ reference method. The time-
delay range extends from -19 fs to +32 fs in steps of 85 as (50 nm mirror movement).
The conversion medium used for HHG was neon, at a backing pressure of 110 mbar. The
pressure of the helium gas target was kept at 75 mbar. The NIR pulse duration was charac-
terized using a fit of the dipole control model [223], described in appendix C, which yields
a pulse duration of TNIR = 5.7±0.1 fs. This method was also used to calibrate the pulse
overlap at τ = 0 at the turning point of the fit which describes the phase change due to the
NIR laser pulse. The intensity is calibrated by analyzing the Autler–Townes splitting of
the 2s2p state also visible in figure 5.14. The results are shown as well in appendix C and
give an intensity range of 0.1 up to ∼ 30.0 TW/cm2. However, the interesting intensity
range for the study of the dynamics in the sp2,n+ and sp2,n− series lies between 1.0 and
10.0 TW/cm2. Below this range, no significant changes can be observed, also due to the
low absorption signature, and above this range the states are almost immediately washed
out after the pulse overlap when the full NIR pulse interacts with the excited system.
In between however, the two differently correlated manifolds show interesting changes,
which are presented in figure 5.15.
Already at relatively low intensity, the sp2,4− shows significant changes. While the sp2,n+
series only shows the ripples associated with resonant coupling to the 2s2p state [127,216]
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and very slight modifications of the line shape, the sp2,4− resonance completely moves
from a Fano resonance shape to an inverted Lorentz line. Most interestingly, this drastic
change happens already at low NIR intensity, where the sp2,n+ states are not yet signifi-
cantly modified. This behavior continues for the higher intensities, where also the sp2,3−
shows line-shape modifications which seem to match the evolution of the sp2,n+ series.
In order to further quantify and develop an understanding of these differences, the exact
shape of the resonances is analyzed in detail in the next section.
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Figure 5.16.: Analysis of the sp2,3± and sp2,4± states in helium a.1-3) and b.1-3) show
the time dependent spectral line of the sp2,3± states (orange, blue) as well as
the fit results of equation 5.20 for the parameters A and φmod at NIR inten-
sity of 1.0, 2.0 TW/cm2. c.1-3) and d.1-3) show the same for sp2,4± states
(orange, blue). The phases which should be limited to the range between
±π are unwrapped in order to avoid fast jumps which occur in fitted phases
because of the low signal-to-noise ratio for the sp2,n− states.
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5.3.2. Analysis of sp2,n+ and sp2,n− Series

From the data presented in the previous section it is already evident that the state mani-
folds react very differently to dressing with a strong and short laser pulse. In the following
section a first preliminary analysis of this work in progress is presented. In order to quan-
tify the evolution of the resonance modifications, a general normalized Fano cross section
is fitted to the data. The fit function is given by

F(E,ER,Γ,φmod,A,B,C) = A ·
(

1+q(φorg)
2

1+q(φmod)2

)
·
(
(ε +q(φmod))

2

ε2 +1
−1
)
+B+E ·C,

(5.19)

with ε =
E −ER

Γ/2
, (5.20)

where the energy E, the resonance energy position ER, the linewidth Γ, the phase φmod ,
and the amplitude A are fit parameters describing the resonance, while B and C are pa-
rameters describing a linear absorption background. The phases φmod , φorg determine the
Fano-q parameter according to the relation q = −cot(φ/2) given in [116]. Furthermore,
φorg is a fix constant which is determined by fitting the profile of the unperturbed reso-
nance at zero NIR intensity. The results are shown in figure 5.16 and figure 5.17 for four
different intensities of INIR =1.0, 2.0, 4.0, 7.0 TW/cm2. The time-delay-dependent spectra
are shown together with the calculated fit parameters A and φmod which characterize the
evolution of the line shape. A sliding average over ten spectra along the time-delay axis
has been applied to improve the very low signal-to-noise ratio especially for the sp2,n−
resonances, while still retaining the quickly oscillating features in the spectra originating
from resonant coupling. In the phase graphs, the phases φmod which are limited to the
range [−π,π] are shown unwrapped to avoid fast phase jumps around ±π . The rapid
phase changes result from a low signal-to-noise ratio and very low resonance amplitude
for the weak spectral lines belonging to the unperturbed sp2,n− resonances, where the fit
routine may not converge properly to the sensible set of parameters.

First, for the sp2,3± pair shown in figure 5.16, 5.17 a.1-3) and b.1-3), the spectral lines
and fit results show several interesting features. The amplitude and phase of the sp2,3+
exhibit a decrease and continuous shift as well as fast oscillations in the region after pulse
overlap between 0 fs and +15 fs time delay. These features become more pronounced
for increasing intensity. The oscillations originate in resonant two photon coupling to the
2s2p state which has been discussed in detail in [127,216]. The changes in amplitude are
caused by resonant population transfer during this coupling process and by the onset of
strong-field ionization especially at the highest intensity of 7.0 TW/cm2. For the lowest
intensity the sp2,3− shows almost no changes. For increasing intensity however, the phase
of the spectral line exhibits a rapid step by ∼ π at time delay τ = 0 fs compared to the
more steady changes in the phase of the sp2,3+ resonance, while its amplitude remains
mostly unaffected.
This peculiar phase and amplitude behavior is even more apparent in the sp2,4± pair. The
fit results of these resonances are shown in figure 5.16, 5.17 c.1-3) and d.1-3). Here, even
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Figure 5.17.: Analysis of the sp2,3± and sp2,4± states in helium a.1-3) and b.1-3) show
the time dependent spectral line of the sp2,3± states as well as the fit re-
sults of equation 5.20 for the parameters A and φmod at NIR intensity of
4.0, 7.0 TW/cm2. c.1-3) and d.1-3) show the same for sp2,4± states. The
phases which should be limited to the range between ±π are unwrapped in
order to avoid fast jumps which occur in fitted phases because of the low
signal to noise ration for the sp2,n− states.

for the smallest intensity there is a clear phase jump by +π in the sp2,4− resonance at
time delay τ = 0 fs which persists until τ = 15 fs to τ = 20 fs. This fast change persist
for all recorded intensities, while the phase change of the sp2,4+ resonance again exhibits
a smooth change towards negative values which becomes larger for increasing intensity.
Also the amplitude of the sp2,4− increases by a factor of ten compared to the decrease
of the sp2,4+ resonance which is again due to coupling to other states and ionization for
higher intensities. The large amplitude of the sp2,4− resonance decreases again for higher
intensities which is due to overlap with the broadened features of neighboring resonances.
Comparing the two pairs of resonances shows that the phase behavior of the sp2,n+ and
sp2,n− series are qualitatively consistent. However, the phase step of the sp2,4− line occurs
more clearly even for the lowest intensity, whereas the sp2,3− only develops it for higher
intensities values, where it assumes both +π and −π values. Furthermore, the changes in
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amplitude between sp2,3− and sp2,4− appear completely different. As shown in table 2.3
the sp2,3− has a slightly larger linewidth, which means that this effect is not related to
spectrometer resolution but caused by changes introduced during the interaction with the
NIR pulse.
The more erratic features in the fits around time delay τ = 0 and at later times are due
to the fact that the fit algorithm has problems with following the evolution of the spectral
lines for very small amplitudes. Also a line splitting due to resonant coupling is visible
at later times between +5 fs and +20 fs which is not correctly included in the function
used to fit the line shape. This explains the jump in the plots for the sp2,3+ state in figure
5.17 b.2, b.3).
Concerning the different amplitude evolution of the sp2,n− states, it will be very interest-
ing for future experiments to further improve the resolution and also look at the higher
sp2,n− states to study if these amplitude modifications progress further for these states and
if they are even more sensitive to the influence of the NIR pulse. Additional experiments
with longer measurements times and increased statistics will also be necessary to further
examine and possibly confirm the different asymtotic values of the phase shifts (±π) in
the sp2,3− and sp2,4− states.

A first interpretation of these findings can be given by using a very simple picture. The
evolution of the spectra observed in the experiment is determined by the time-dependent
dipole moment of the excited states to the ground state which is for the ’-’-states given by
d(t) =

〈
1s2
∣∣ x̂ ∣∣sp2,n−

〉
. If this is expanded in the two possible configurations it becomes

d(t) =
〈
1s2∣∣ x̂ |2snp〉−

〈
1s2∣∣ x̂ |2pns〉 . (5.21)

Without the NIR field, the two contributions to the overall dipole moment are almost equal
and can be thought of as approximately canceling each other, which can be illustrated as
the electrons moving out of phase. This also gives an explanation for the much smaller
amplitude of the spectral line compared with the ’+’-states. In the presence of the NIR
field, both during excitation (in pulse overlap) and afterwards, the contributions of these
configurations are changed such that they no longer cancel and the overall dipole moment
increases. The reason for this behavior could be different polarizabilities for orbitals of
ns- and np-character which contribute to the fully correlated states.
In order to fully understand the reason for this very interesting switching behavior of the
phase at time delay τ = 0 fs and the significant changes in amplitude, based on the correla-
tion properties of the states, it is necessary to carry out more detailed theoretical studies,
which take into account the different orbital contributions to the correlated states and
can pinpoint which parts are responsible for the vastly different time-dependent behavior.
Furthermore, experimental studies with higher spectral resolution and more statistics may
provide further insights by observing the evolution for even higher-lying states, which are
not currently accessible.
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5.4. Intensity-Dependent Ionization Threshold for
Different Excited-State Manifolds in Helium

A different application of strong-field spectroscopy is the study of the strong-field ioniza-
tion of multi-electron systems from the perspective of the changes observed in bound-state
resonances due to the ionization process. The ionization dynamics of multi-electron atoms
and molecules include complex processes like autoionization, Auger decay, inter-atomic
coulombic decay, shake-up and non-sequential double or multiple ionization. Especially
for the case of strong-field ionization, the transition from a single-active-electron picture
to (correlated) two-electron ionization effects for increasing field intensities is still a topic
of interest.
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Figure 5.18.: Multiple diffraction orders recorded simultaneously. The spectrum is
recorded at zero NIR intensity. Colors indicate spectrometer diffraction or-
der. The first order XUV-spectrum shows the singly excited 1snp series,
whereas the third order light contains the doubly excited states of the sp2,n+
series.

Compared with the commonly utilized techniques of measuring photoelectrons and ions
with time-of-flight spectrometers, the SFS method can be used to provide a complemen-
tary approach to the study of strong-field-ionization dynamics. Because of the broad ac-
cessible spectral range with simultaneous high spectral resolution, the role of two-electron
effects in strong-field ionization can be studied by directly comparing the response of
singly and doubly excited states in gas-phase helium.
Using the broadband XUV pulses, both state manifolds are excited simultaneously in the
same measurement. The excited states then interact with a few-cycle near-infrared laser
pulse of variable intensity at different time-delay values. In this configuration the onset of
ionization and broadening of the spectral lines are measured depending on the intensity
of the NIR pulse. As the effects of strong fields on the ionization dynamics of different
bound-state configurations are studied, it is very important to know and control the in-
tensity of the involved fields and to record the dynamics of the states simultaneously. In
pump–probe experiments it is usually very challenging to exactly measure the NIR pulse
intensity in the target during the experiment. Furthermore, it is very challenging to record
absorption spectra with high resolution over a large spectral range. Therefore, the differ-
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ent diffraction orders of our spectrometer grating are used to simultaneously observe the
absorption lines of the singly excited and doubly excited states of helium. Figure 5.18
shows an example of a spectrum with zero NIR intensity obtained this way. The 1snp
series up to the ionization threshold at 24.6 eV is visible, as well as the sp2,n+ series of
the doubly exited states starting at 60.15 eV in third order diffraction, which translates to
a third order energy of 20.05 eV. This way, it is possible to record the spectral lines of
both types of electron configurations at the same time making sure that both manifolds of
resonances are affected by a NIR pulse of the same intensity. It is therefore possible to
make reliable observations of different behavior for increasing NIR intensities.

5.4.1. Experimental Data

In the measurement, the experimental parameters were chosen such that the XUV spec-
trum extends up to 65 eV in order to excite the entire sp2,n+ series but not below 22 eV,
avoiding population in the 1s2p state which would coincide with the spectral signatures
of the doubly excited states and obstruct the 1snp resonances with n > 2 due to resonant
coupling effects described in [216, 228].
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Figure 5.19.: Cycle averaged intensity scan for singly and doubly excited helium res-
onances. The resonances and continuum edges are indicated at the top. The
data was evaluated using a reconstructed reference, described in section 4.3
and [116]. The Fourier filter creates artifacts at the continuum edges of the
spectrum which are no physical effects. The doubly excited states are mod-
ified and vanish for the highest intensities while the singly excited states
change their line shape and are still present.

With these settings, scans of the time delay τ between XUV and NIR pulse were recorded
for a NIR intensity range between 0.1 and 20.0 TW/cm2. Figure 5.19 shows the aver-
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age over spectra for time delays across one laser cycle centered at a time-delay τ = 5 fs
depending on the NIR intensity. The data used in this plot was evaluated with the re-
constructed reference method using a Fourier low pass filter, discussed in section 4.3.
This method was chosen, because only resonant features are of importance and directly
measuring a reference is further complicated by the multiple diffraction orders of the
XUV visible in the spectrum. In figure 5.20 a)-d) lineouts of this scan at the intensities
INIR = 0.5, 2.0, 5.0, 20.0 TW/cm2 are shown, respectively. For lower intensities the
Autler–Townes splitting of the 2s2p state [177] is visible and modifications of the line
shape arise for the singly and doubly excited states which have been explained as a mod-
ification of the Fano-q-parameter due to the strong NIR pulse [116]. However, for the
highest intensities, the doubly excited resonances differ from the bound states with only
one excited electron and become fully ionized. This is reflected by the vanishing of the
spectral lines above INIR = 10.0 TW/cm2 while the resonance lines of the singly excited
states are still clearly visible (figure 5.20 d)).
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Figure 5.20.: Lineouts taken from figure 5.19 Both manifolds show changes in the line
shape from Lorentz to Fano resonances and vice-versa. This behavior has
been linked to a control of the q-parameter with the NIR pulse, discussed
in detail in [116]. For the highest intensities the doubly excited states are
completely washed out, while the singly excited resonance lines are still
clearly visible.

Therefore, different thresholds of ionization intensity are observed for the strongly corre-
lated (doubly excited) and less correlated (singly excited) states respectively, indicating a
significant role of electron interaction in the intensity-dependent ionization dynamics of
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multiply excited-state configurations. The origin of these differences is explored using an
ab-initio numerical time-dependent Schrödinger-equation simulation, where differences
in the evolution of the two-electron wave function can be observed.

5.4.2. Numerical 1D-TDSE Simulations

In order to understand the underlying mechanisms of the different intensity thresholds for
ionization of the resonance lines presented above, extensive numerical calculations have
been performed in the course of a Master’s thesis supervised in this work [203]. The prin-
ciples of the 1D-TDSE simulation are discussed in section 3.2. The propagation uses a
singly excited state (SES) and a doubly excited state (DES) of the same symmetry, which
have roughly the same ionization potential of 0.1 a.u. to their respective continua. The
states were prepared by wave function condensation using imaginary time propagation in
the unperturbed potential starting from a random initial wave function. These prepared
wave functions are then propagated in time with the time dependent electric field mod-
ifying the potential. The electric field used in the simulation follows equation 3.9 with
a Gaussian envelope, a field strength of E0 = 0.02 a.u. corresponding to an intensity of
∼ 15 TW/cm2, and CEP Φ = 0. For a first interpretation of the dynamics, it is most in-
structive to look at the wave function itself at several points in time during the pulse.

The results of this simulation are shown in figure 5.21 for the SES and figure 5.22 for
the DES, respectively. The graphs show the probability density or absolute square Pψ =
〈ψ|ψ〉= |ψ|2 of the wave function which gives the probability to find the electrons at the
coordinates (x1,x2) for all x1 and x2. The plotted times are chosen such that the cycles
of the NIR pulse are sampled at four points. This way, the changes in the wave function
over each maximum of the field can be tracked. Recalling the interpretation of the wave
function in different sections of the grid (see section 3.2.2), figure 5.21 shows, that for
the SES the population in the sections of single ionization increases while no population
is in the sections indicating double ionization. So only the one active electron is ionized
in this picture. However, in the DES case shown in figure 5.22 significant occupation
probability is found in the regions of double ionization after the maximum of the pulse
envelope is passed. This indicates that the DES possess an additional double ionization
channel which may contribute to the lower intensity threshold for ionization.

While these results definitely point towards correlation effects between both excited elec-
trons as the cause for the different intensity thresholds in the state manifolds, the exact
mechanism could not yet be pinned down by these simulations. However, the results of the
previous chapter indicating a significant increase in participating states and complexity of
the strong-field driven dynamics in doubly excited helium allow for a second interpreta-
tion. It is possible that high number of involved excited states leads to a dephasing of the
dipole response. Future experiments, measuring the photoelectrons leaving the system
after the interaction with the NIR pulse utilizing for example a reaction microscopes, and
further calculations are necessary to fully determine the underlying mechanism for the
difference in intensity-dependent ionization.
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Figure 5.21.: Snapshots of the wave function time propagation of a singly excited
state (1)-(16) show the evolution of the probability density |ψ|2 given by
the wave function of the singly excited state at the times indicated on the
inset illustrating the electric field. For the singly excited state, no spread of
the wave function outside of the single-ionization regions (see section 3.2.2)
is observed. Figure adapted from [203].
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Figure 5.22.: Snapshots of the wave function propagation of a doubly excited state
(1)-(16) show the evolution of the probability density |ψ|2 given by the wave
function of the doubly excited state. The considered times are the same as
in figure 5.21. The wave function of the doubly excited state exhibits signif-
icant contributions outside the single ionization regions after the maximum
of the electric field has passed. Figure adapted from [203].



6. Observation of Resonance
Buildup

The method of strong-field spectroscopy (SFS), where an impulsive broadband response
is excited by an ultrashort laser pulse and subsequently manipulated by an interaction
with a strong field, represents a useful technique to study bound-state dynamics and even
ionization mechanisms in quantum systems like atoms and molecules. This method aims
at accessing time-resolved dynamics of systems interacting with short laser pulses ranging
from perturbative coupling up to nonlinear strong-field effects and ionization. However,
the effect of very high intensity laser pulses can also be used for a different type of time-
resolved measurement: The strong-field ionization induced by these pulses can impose a
variable time gate on processes initialized by the XUV pulse. This experimental technique
uses the same setup as introduced in chapter 4 and is explained in detail in the following.

6.1. Observing Ultrafast Processes with
Time-Gating based on Strong-Field Ionization

If the intensity of an ultrashort laser pulse is high enough, its interaction with an already
excited target medium will completely ionize (or dephase) the atoms in the sample. This
terminates any response of the system within a very short time, i.e., below the NIR pulse
duration due to the nonlinear interaction. By varying the time delay between excitation
and ionization, a variable time gate can be imposed on the response. Its influence can then
be measured in the change of the observed spectral line shapes originating in the response
of the atoms. In this way, the time-dependent formation of quantum states and interfer-
ence on ultrashort time scales can be studied. Figure 6.1 a) illustrates the principle behind
the time gate imposed on the response of the excited state. After the initial excitation by
the XUV pulse, the response of a system can be terminated at a chosen time using the
saturated ionization within a strong NIR pulse. If the detailed line shape based on this
response is observed in the absorption spectrum, the formation process can be tracked by
varying the time of termination (the time delay τ between the pulses).

6.2. Time-Resolved Buildup of a Fano Resonance

The gating technique has been successfully applied to the observation of the ultrafast
formation of a Fano resonance in doubly excited helium. The results presented in the fol-
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Figure 6.1.: Illustration of the principles behind the time gate technique: a) The lower
plane (time domain) and the upper plane (frequency domain) show the rela-
tion between evolution of the temporal dipole response (lower curves) and
the measured spectral line shape (upper curves). The response is excited by
an ultrashort XUV pulse (blue), decays exponentially and is subsequently
terminated by the interaction with the high-intensity NIR pulse (red) after a
variable time delay τ1,...,τ5. b) Verification of the time gate by ab-initio cal-
culations following section 3.3. The plot shows the occupation of the 2s2p
state at a fixed time t = 40.5 fs after the excitation if the delay τ between
the XUV and NIR pulse at 20 TW/cm2 is varied. The decrease in population
happens over the duration of 4 fs which indicates a very fast closing time
compared to the states life time of ∼17 fs. The inset shows the population
in the 2s2p state at a fixed time delay of τ = 20 fs for increasing NIR inten-
sity. For 20 TW/cm2 less than one percent remains which demonstrates the
efficiency of the gate for these intensities. Figure adapted from [229].

lowing have been published in [229] and the following discussion closely relates to this
work. The characteristic asymmetric Fano resonance is found for discrete states energeti-
cally degenerate and coupled to a continuum as discussed in section 2.4.1. Since this type
of configuration can occur in many classes of systems, such resonances are of interest
in many fields of physics. The line shape itself results from the interference of different
quantum paths with different phases depending on the energy. While several theoretical
calculations predicted a time dependence of the formation of the Fano resonance caused
by the interference [230–235], strong-field spectroscopy was one of the first techniques
capable of measuring this time-dependent build-up for the doubly excited 2s2p state in he-
lium. The measurement was possible using the high spectral resolution of the all-optical
SFS approach together with the time-gating technique described above. The viability of
this gating technique for helium as the target system is verified using full ab-initio calcu-
lations of the system in three dimensions (see section 3.3). The wave function evolution
is calculated for the interaction with the pulse configuration in SFS. The remaining occu-
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pation in the 2s2p-state at a fixed time t = 40.5 fs after the excitation by the XUV pulse
is studied by projecting the evolved wave function onto the field free (zero NIR intensity)
2s2p-state. The results are shown in figure 6.1 b) for an NIR pulse of 20 TW/cm2 intensity
and 7 fs duration. The pulse duration was reconstructed from the data using the in-situ
calibration method described in [223] (see appendix C). For large negative time delays
the population is unaffected. However, already for τ ≈ −5 fs, 90% of the population is
depleted by strong field ionization in the rising flank of the pulse. Complete depletion
(less than 1% of the population remains) is achieved at τ ≈ 4 fs. The results confirm a
gate closure time of about 4 fs by looking at the time-delay difference between a depletion
of 10% up to 90% as indicated in the figure. This time is short compared to the 1/e life
time of the 2s2p state of ∼17 fs and thus the dynamical formation of the 2s2p resonance
can be sampled. Furthermore, the inset of figure 6.1 b) shows an exponential dependence
of the depletion on the field strength of the applied laser pulse.

6.2.1. Experimental Results
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Figure 6.2.: Data of the buildup of a Fano resonance measured using strong-field
spectroscopy: a) The absorption spectrum is shown depending on the time
delay τ between excitation and ionization/termination of the response of the
2s2p doubly excited state. In the evaluation, the measured spectra were av-
eraged over a time-delay range corresponding to one cycle of the NIR field
in order to remove the fast oscillations due to resonant coupling to the sp2,3+
state. b) Lineouts of the spectral line for different durations of the time gate
(different time delay values). For small time delays the spectrum shows a
broad shape and with increasing delay values the asymmetry begins to form.
Figure adapted from [229].
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Using the established time gate, the experimental results shown in figure 6.2 were recorded
using the setup described in chapter 4 (without the in-situ reference). NIR pulses of 7 fs
duration and peak intensity of 1013 W/cm2 were used for the experiment. For small time
delays τ the duration of the dipole oscillation triggered by the XUV pulse is short com-
pared to the life time of the state. In this region the response is too short to fully form the
asymmetric Fano line profile, which can be seen in figure 6.2 for τ < 10 fs. The NIR pulse
has the strongest impact at the time delay τ = 6 fs where it almost completely washes out
the spectral line. In such a case, where the state is completely depopulated right after the
excitation process, the response is only determined by the interaction with the attosec-
ond XUV pulse. As the response is cut short in time by the almost immediate ionization
in the NIR pulse, the resulting spectral features extend across several eV in agreement
with theory [230, 231]. If the delay τ between excitation and ionization is increased in-
crementally, the effective life time of the doubly excited state also increases. Now the
interference with the quantum path of direct ionization can build up, which gives rise to
a narrower, more asymmetric spectral line now carrying information about the autoion-
ization process. For time delays close to the lifetime of the state (τ = 17 fs), the spectral
signature increasingly resembles the Fano line shape and for even larger time delays the
well-known Fano resonance profile emerges. For the largest time-delay value shown in
figure 6.2 the measured absorption line matches the expected Fano line shape very well.
It has to be noted, that also in this comparison of the data with theoretical line shape, the
finite spectrometer resolution of 50 meV FWHM, which has a significant effect on the
line width, has to be taken into account. Considering the limit of τ → ∞ and following
the analytic theory [231, 233, 235], it takes approximately 100 fs (140 fs) for the forming
2s2p resonance to reach 95% (99%) agreement with the theoretical line shape. Due to
the optics and beam geometry in the target, larger time-delay settings than those given
in figure 6.2 could not be reached. However, it was still possible to measure the main
features of the build up of the Fano resonance.

6.2.2. Comparison to Theoretical Models

In order to further examine the results of the measurement of the build up presented in
figure 6.2, the experimental data is compared both to absorption spectra obtained from
a full ab-initio calculation and an analytic model following [233] and the calculations
in [229]. The analytic description of the cross section is

σ(ε,τ) ∝ Re
(

1+
(q− i)2

1− iε

(
1− e−

Γ

2 (1−iε)τ
))

, (6.1)

where q and Γ denote the Fano q-parameter and the width of the line and ε defines the
scaled photon energy according to ε = 2(E −ER)/Γ. The results of these models are
shown together with the measurement in figure 6.3, where panel a) gives the spectra cal-
culated using the analytic theory resulting in equation 6.1, panel b) shows the results of
the numeric ab-initio simulation and panel c) represents the experimental data already
shown in figure 6.2. For this comparison the spectra obtained from theory are scaled in
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Figure 6.3.: Comparison of the experimental data to ab-initio calculations and an an-
alytic model for the Fano resonance: a) Absorption spectra calculated using
equation 6.1. b) Numerical ab-initio calculations for NIR pulses of 7 fs du-
ration and peak intensity of 2 ·1013 W/cm2. c) Lineouts of the experimental
data shown in figure 6.2. All spectra are plotted for a set of time-delay values
indicated in the central panel. Figure adapted from [229].

amplitude with a delay-independent factor to match the experimental data. Furthermore,
the closing of the gate in the ab-initio calculations and the experiment has a finite duration
following the NIR pulse length, whereas the analytic model treats the depletion instanta-
neously. The effective beginning of the formation is not exactly at τ = 0 in the experiment
and therefore the data set obtained from analytic theory needs to be shifted by +4.5 fs in
order to accurately compare it to both ab-initio and experimental results.
Comparing the three sets of spectral line shapes at different time delays shows very good
agreement between experiment and the theoretical descriptions of the formation of the
Fano resonance. The spectra match especially well for larger time-delay values where the
exact shape of the NIR pulse and its finite duration does not affect the response as much
as in the region of pulse overlap and shortly after. While the spectra also agree qualita-
tively for smaller time delays, with a broadened line shapes originating in the time-energy
uncertainty relation, there remain differences especially between analytic theory and the
experiment. On the one hand, the differences between ab-initio simulation and experi-
mental data can be explained by the deviation of the exact experimental NIR pulse shape
compared with the ideal Gaussian pulse used for the numeric calculation. On the other
hand, the analytic theory deviates from the other two data sets most notably for small time
delays, because in this region the strong NIR field significantly influences the excitation
process by modifying the 2s2p state. Therefore, the simplified two-step picture of exci-
tation and subsequent instantaneous depletion, as it is used in the analytic model, is no
longer sufficiently accurate. This issue can be reduced by using even shorter NIR pulses
which decreases the gate closing time and the region affected by pulse overlap effects.
However, the overall agreement between experiment and ab-initio simulation proves that
the time-dependent formation of the Fano resonance could be resolved using SFS and
that the presented technique is viable for the observation of ultrafast correlated quantum
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dynamics.
It has to be noted, that there is a complementary experiment using spectrally resolved
electron interferometry [236]. Here, the buildup of a Fano resonance is resolved by mea-
suring the amplitude and phase of a photoelectron wave packet created through a Fano
resonance in helium.

6.3. Time-Resolved Buildup of a Rydberg Series

The previous section dealt with the time-dependent formation of a single Fano resonance.
The presented technique, combined with the high-resolution spectrometer and in-situ ref-
erence measurement, can furthermore be used to study the buildup of a series of reso-
nances belonging to highly excited and partly overlapping states. This can be used to
study the formation of a continuum edge and how the coherent excitation of very closely
spaced resonances belonging to highly correlated states influences their time-dependent
formation.
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Figure 6.4.: High-intensity time-delay scan of highly excited states in helium: a) Full
time-delay scan of the measured high-resolution absorption spectra for an
intensity of 14.0 TW/cm2. b) Zoom in along the energy axis on the sp2,n+
Rydberg series. The spectral lines completely vanish for the chosen intensity
around the time delay of 5 fs. This indicates the validity of the timing-gate
approach.

6.3.1. High Resolution Time-Delay Scan

In order to study the formation of these highly excited resonances close to the continuum a
measurement with high spectral and time-delay resolution, which additionally uses the in-
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situ reference technique was carried out. The goal of this measurement is to examine how
long it takes for a pair of highly excited states to be resolved into two separate resonances.
In order for the time gate to be viable, NIR intensities of more than 10.0 TW/cm2 need to
be used as indicated by the calculations shown in figure 6.1 b). The measured time-delay
scan for the intensity of 14.0 TW/cm2 is shown in figure 6.4 a). In the time-delay region
around τ = 5 fs, shortly after the pulse overlap, the resonance lines of the highly excited
states are already completely suppressed by the strong-field ionization during the NIR
pulse. Again only a limited time-delay range up to τ = +31 fs could be reached due to
the delay mirror and focusing geometry. Neon at a backing pressure of 110 mbar is used as
the conversion medium for HHG, while the helium pressure in the target is set at 75 mbar.
The NIR pulse duration is again characterized using the dipole-control model [223] (see
appendix C), which results in a pulse duration of TNIR = 5.7±0.1 fs. Figure 6.4 b) shows
a zoom-in of the data set along the energy axis. The Rydberg series of the sp2,n+ states
is visible up to sp2,8+. For increasing time delay beyond 5 fs, the broad features become
sharper and the spectral lines experience a slight shift towards lower energies, as the Stark
shift introduced by the strong field of the NIR pulse affects the response of the bound state
less (at a later time).

6.3.2. Comparison to Dipole Control Model
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Figure 6.5.: Comparison of the experimental data to a simulation using the dipole
control model: a) Zoom in on the observed buildup of the Rydberg series.
b) Numerical calculations using the dipole control model which simulates the
evolution of the dipole response that is cut off after a variable time delay τ .

As the goal is to examine the formation of partly overlapping resonances and pinpoint
effects and changes in the buildup caused by interactions of different states or electron
correlation, the measured data is compared to simulated spectra which use the dipole con-
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trol model (DCM) [237]. In the framework of this model an initially excited response
can be instantaneously cut off after a certain time delay which simulates the complete de-
pletion of the states due to strong-field ionization via the experimental time-gating tech-
nique. The model treats all involved states completely independently, meaning that they
influence each other only by optical interference in the spectrum and that no quantum or
correlation effects are considered. This also implies, that the DCM does not include Stark
shifts or coupling between bound and continuum states.
As it can be seen in section 5.3, the spectral lines exhibit rapid modifications of the line
shape depending on the time delay. In order to compare experimental data and simulation
results, these effects, originating in resonant coupling between the excited states have to
be excluded, since they are not captured by the model. To this end, a cycle-averaged
time-delay scan is considered, where a sliding average over one cycle of the NIR laser
(time-delay range of 2.45 fs) is applied. Furthermore, because of the finite duration of
the gating NIR pulse in the experiment compared to the delta like interaction in the DCM
model, the experimental data has to be shifted by ∼ 5 fs to allow for the correct com-
parison of the data. The correct delay value for the shift is determined by comparing the
experimental spectrum at the latest time-delay of +31 fs to the DCM simulation and de-
termining the best fit.
Comparing now the two data sets several differences appear. First the spectral lines in the
experimental set appear shifted towards higher energies at small time delays. This is due
to the Stark shift induced by the strong NIR pulse and does not show in the DCM as it
is not included. Second, the spectral lines in the experiment seem to emerge faster and
separate sooner than in the DCM, where this can be observed only for the lower states
and at later time delays. This may be due to destrictive interference between the spectral
amplitudes of the completely independently treated resonances in the DCM or interaction
between the electrons which change the ionization behavior in the NIR pulse. As these
effects are not included in the DCM the lines emerge at different time delays.

In order to quantify the evolution of amplitude, width and separability of the closely
spaced resonances in the Rydberg series, the partly overlapping Fano resonances have
to be characterized. This is done by tracking the maxima and minima of the Fano-like
lineshape along the time-delay axis, as it is illustrated in figure 6.6. The function

F(E,Er,γ,A,B,C) = A · e−
1
2
(E−Er)2

γ2 +E ·B+C, (6.2)

is fitted to the extrema of the spectrum. Here, E is the energy, Er is the energy position,
γ is the width parameter, A is the amplitude while B and C parametrize a linear offset
function. In the following, the Fano resonance is fitted with two Gaussians (maximum
and minimum) as given in equation 6.2. The position, amplitude and width is tracked by
using the nth set of best fit parameters for the (n+1)th spectrum as initial guess parameters
for the fit. With this method, the evolution of the pairs of maxima and minima belonging
to each Fano resonance is tracked along the time-delay axis. In order to examine this
evolution, an artificial measure to characterize the Fano resonance is introduced based
on these fit parameters. Using the results of the minimum and maximum fit the Fano
resonance is described by a Gaussian with the parameters A for the amplitude, ΓFit for the
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Figure 6.6.: Tracking method of the resonances and the characterization of its
widths: a) Experimental data set of the Rydberg-series buildup. b) Illustra-
tion of the minimum and maximum peak fit used to trace the position, width
and amplitude of the line shape.

width and ER for the resonance position. The parameters for the state sp2,n+ are calculated
from the fit results according to

A[sp2,n+] = AMax[sp2,n+]−AMin[sp2,n+], (6.3)
ER[sp2,n+] = (Er,Max[sp2,n+]+Er,Min[sp2,n+])/2, (6.4)

∆Fit [sp2,n+] = (Er,Max[sp2,n+]−Er,Min[sp2,n+]), (6.5)
ΓFit = 2∆Fit . (6.6)

The amplitude of the new measure is the difference between the amplitude of minimum
and maximum, the energy position is the mean value and ΓFit was chosen as twice the
energy separation of minimum and maximum. The reason for this is that for two Fano
resonances to appear as separated, they need to be shifted by at least twice the separa-
tion of minimum and maximum. Otherwise the maximum of the second resonance would
coincide with the minimum of the first, which would lead to the spectral amplitudes can-
celing each other and distorting the line shape. If equations 6.6 are applied to the fit results
the data points in figure 6.7 a) are obtained for all states. Figure 6.7 b) shows a reference
spectrum for negative time delay τ = −20 fs, where the NIR pulse does not affect the
spectral lines. Here, the error bars indicate the width characterized by ΓFit . Only the
results for amplitudes A[sp2,n+] greater than the spectral noise are plotted.

The spectral lines of all states become narrower and shift towards lower energies (their
unperturbed energy positions) with increasing time delay. With the new measure the spec-
tral lines can be defined as being separate if they are further apart than the mean value of
their widths, or in other words, if the error bars in the plot do not overlap anymore. The
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Figure 6.7.: Analysis of the Rydberg series buildup: a) Results of the fit algorithm in the
form given by equations 6.6. The times τs,i indicate the points where spectral
lines are separable for the first time during the buildup scan. b) Reference
spectrum for τ = −20 fs. For large positive time delays the spectral lines
move towards their original position. However, for the higher-lying states
the measurement of the buildup is difficult, as they partly overlap even for
negative time-delays due to the insufficient spectrometer resolution.

time-delay values τs,i in figure 6.7 a) indicate the time delay where the lines become sep-
arated. This can be determined for the first two pairs of resonances (sp2,3+, sp2,4+) and
(sp2,4+, sp2,5+). Unfortunately, due to the limited spectrometer resolution and time-delay
range, these points could not be determined for the higher-lying resonances. For these
states the resonances partly overlap even for negative time delays (or zero NIR intensity).
Furthermore, figure 6.7 a) shows at which time delay the spectral lines are first discernible
from the background noise. The lines appear later the closer the resonances are to the con-
tinuum. An explanation for this could be their respective proximity to the continuum or
that they are more sensitive to the influence of the NIR pulse an thus the time t = 0 for
the gating becomes different. Again, limited resolution for the higher states makes fur-
ther statements about a relation between energy separation and emergence of the spectral
lines very difficult. The results show that the measurement of the buildup of complex
resonance structures can be achieved with the time gating technique. However, a higher
spectral resolution and scanning to later delays is necessary in order to obtain for example
a (possibly nonlinear) relation between relative resonance energy and time of spectral line
separation, where this measurement was only able to contribute two data points. Addi-
tionally, also the preliminary measure for characterizing the evolution and separation of
the Fano profiles needs to be further improved to better characterize the evolution of the
resonance lines.



7. Conclusion and Outlook

The subject of this thesis is the study of nonlinear dynamics of two-electron quantum
systems interacting with strong and short laser fields. To this end, the well established
method of attosecond transient absorption spectroscopy with strong laser fields is applied
and both experimentally and conceptually extended. This method, referred to as strong-
field spectroscopy, uses the interaction with photons of an attosecond laser pulse as a
probe to study ultrafast electron dynamics in bound excited states. Thus, the focus of
this work lies on improving the quality of recording absorption spectra and developing
methods to access time-resolved information from the obtained spectra, which is in turn
applied to enhance our understanding of two-electron dynamics in external fields.

On the experimental side, the setup used to observe strong-field-induced dynamics is
improved by a new technique to measure both absorption and reference spectra simulta-
neously. This is achieved using two-dimensional transmission gratings which effectively
act as a beamsplitter for the XUV signal together with a specially designed target cell.
In this way, the given experimental beam path can be maintained while measuring the
spectra with the same high-resolution spectrometer. With this approach, the sensitivity to
changes in the optical density due to the underlying electron dynamics can be increased
by an order of magnitude. Furthermore, the in-situ reference allows for the accurate study
of absorption effects in the continuum and the associated broad spectral features which
were previously not accessible using sequentially recorded signal and reference or evalu-
ation methods based on spectral filtering. However, due to the absorption of the grid and
the losses into the unused diffraction orders the XUV flux is significantly decreased which
increases measurement times. This could be even further improved by optimizing the grid
layout of the transmission grating in the future. However, systematic changes in the XUV
spectra that are connected to the longer measurement times are still effectively eliminated
with the here developed technique of simultaneously measuring both the absorption and
reference spectra.

With the experimental method for the reconstruction of the time-domain response devel-
oped in the framework of strong-field spectroscopy it is possible to extract the complex
time-dependent dynamics of a quantum system induced by a general interaction from
just a single absorption spectrum. The method is based on the causality properties of a
response that is triggered by a laser pulse that is shorter than the time scales of all dy-
namics that have to be resolved. Using the inverse Fourier transform, the response can be
reconstructed from the absorption spectrum using the equation

d(t) ∝ F−1[iA(ω)](t) =
1√
2π

∫
iA(ω)eiωt dω for t > 0. (7.1)
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Since no assumption about the characteristics of the interaction have been made aside
from it being non-relativistic, the reconstruction method is very general and can thus be
applied to complex systems with possibly overlapping resonances or absorption bands in
large molecules interacting with strong laser fields. This was successfully demonstrated
for a complex multi-level system. Furthermore, it is not limited to the interaction with
electric fields and can be more generally applied for the reconstruction of non-equilibrium
response functions of any kind of interaction, for example the magnetic dipole response,
and across all spectral energy regions.
The reconstruction is successfully applied to the observation of Rabi cycling in doubly
excited helium directly in the time domain. The reconstructed responses show very good
agreement with full ab-initio calculations which solve the three-dimensional Schrödinger
equation. It is also possible to observe the emergence of complexity in the driven dy-
namics of this system if the results are compared to more simple few-level simulations.
Considering the technological aspect of light-matter interaction, it can be applied to the
study of dynamic processes in laser machining, chemical dynamics, plasma dynamics
and imaging of molecules which all involve (multiply) excited-state configurations as
intermediate steps on the ultrafast femtosecond timescale. Regarding the aspect of the
fundamental physics of few-electron dynamics, possible applications include the test and
development of the theoretical description of many-electron quantum dynamics or the
extraction of diagonal (populations) and off-diagonal (coherences) elements of the non-
linearly driven density matrix. From the experimental point of view, the in-situ reference
will further improve the reconstruction method, as the spectral profiles can be recorded
with much more accuracy. In addition, the real-time-reconstruction approach is viable for
single-shot detection of absorption spectra. This is especially interesting for absorption
experiments at X-ray free electron lasers (FELs), because their high brilliance provides
pulses with enough photons to get a complete absorption spectrum with a single shot,
as compared to HHG sources where absorption spectra are typically accumulated over
many pulses. At FELs, the reconstruction could thus be used to determine the timing
and ensuing dynamics of X-ray and optical pulses, which is otherwise often lost due to
temporal jitter. Also for the FEL application it would be very interesting to combine this
approach with an in-situ reference measurement, as it is otherwise very difficult to extract
the accurate absorption signals due to the stochastic nature of the pulse spectra originating
in the self-amplified spontaneous emission in the pulse generation process. With all this
combined, the here presented methods could thus open up a completely new approach to
apply time-resolved x-ray absorption spectroscopy for the study of few-electron dynamics
in small quantum systems.
Moreover, the method of strong-field spectroscopy is used to study the time-dependent
evolution of the response of excited-state manifolds with different correlation proper-
ties. Again, helium serves as the most simple model target with two excited electrons,
where the sp2,n± series are studied. In this measurement, the in-situ reference greatly im-
proved the sensitivity to spectral signatures and enabled the observation of the dynamical
changes in the sp2,n− series which only appears weakly in the absorption spectrum. This
series shows significantly different behavior compared to the sp2,n+ series with abrupt
phase and amplitude changes at time delay τ = 0 which seem to originate in the different
correlation properties. As a first attempt of an explanation the different polarizability of
the involved multi-electron configurations is proposed. It is however necessary to conduct
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detailed theoretical calculations and further measurements with higher spectral resolution
in order to study this interesting behavior in more detail.

The presented technique of imposing a time gate on the coherent dipole response using
saturated ionization in a strong and short laser field can be used to study the buildup of
various dynamic processes of short-lived bound states which are observable using photon
absorption spectroscopy. The method is applied to measure the time-dependent buildup
of a Fano resonance which agrees very well with the analytical and numerical theoretical
predictions. Furthermore the buildup of a Rydberg series of Fano resonances, a more com-
plex resonance structure, was experimentally observed using the in-situ reference. While
this measurement demonstrates that the time-gating technique is also viable for this com-
plex resonance structure and provides first insights into the time-dependent emergence of
such closely spaced states near the continuum threshold, further studies with improved
resolution are necessary, in order to fully understand the physics involved in its forma-
tion. In the future, possible targets for buildup studies are resonances originating in elec-
tron-electron or electron-internuclear correlations in complex systems such as molecules,
liquids or solids, or the signatures belonging to quasi particles in crystal structures.





A. Atomic Units

The system of atomic units is frequently used in the field of atomic and molecular physics.
It is relates the physical quantities to the scales defined by the physical properties of the
hydrogen atom. The following conventions me = e = h̄ = a0 =

1
4πε0

= 1 are used in this
system. Table A.1 gives the basic physical quantities, their atomic units and the respective
values in SI units. More information about the system of atomic units can be found in [85].

Quantity Unit Value
Mass Electron mass me 9.109×10−31 kg
Charge Elementary charge e 1.602×10−19 C
Angular momentum Reduced Planck constant h̄ 1.055×10−34 Js
Length First Bohr radius a0 5.292×10−11 m
Velocity v0 = αc0 2.188×106 ms−1

Momentum p0 = mev0 1.993×10−24 kgms−1

Time a0
v0

2.419×10−17 s

Energy Eh =
e2

4πε0a0
= α2mec0

2 4.360×10−18 J=27.2114 eV
Electric potential Eh/e = e

4πε0a0
27.2114 V

Electric field E0 =
e

4πε0a02 5.142×1011 Vm−1

(Laser) Intensity I0 =
1
2ε0c0E2

0 3.509×1016 Wcm−2

Table A.1.: Relationship between physical quantities in the system of atomic units and the
SI.





B. Numerical Simulations of
Helium: Equations of Motion

B.1. Few-Level Model

The few-level model of an atomic system does not treat the time evolution of the full wave
function and thus requires several input parameters like state energies, natural state life
times, configuration interaction strengths and dipole transition moments for the dipole
coupling terms which are proportional to the electric fields. These parameters are listed
below for the model of doubly excited helium described in section 3.1. Table B.1 shows
the dipole matrix elements between the bound states taken from theoretical ab-initio cal-
culations which are used in the calculations.

DTM [a.u.] 2s2 2s2p 2p2 sp2,3+
2s2 0 -1.56 0 approx. 0

2s2p -1.56 0 2.17 0
2p2 0 2.17 0 -0.81

sp2,3+ approx. 0 0 -0.81 0

Table B.1.: Dipole transition moments (DTM) in atomic units for the discrete states in-
cluded in the few-level model calculation



124 NUMERICAL SIMULATIONS OF HELIUM: EQUATIONS OF MOTION
T

he
eq

ua
tio

ns
of

m
ot

io
n

th
at

ar
e

so
lv

ed
fo

rt
he

di
sc

re
te

le
ve

lm
od

el
of

he
liu

m
ar

e
th

e
co

up
le

d
di

ff
er

en
tia

le
qu

at
io

ns
be

lo
w

.T
he

re
su

lt
fr

om
th

e
Sc

hr
öd

in
ge

re
qu

at
io

n
w

ith
th

e
st

at
e

ve
ct

or
ex

pa
nd

ed
in

th
e

di
sc

re
te

ba
si

s
m

od
el

ed
af

te
rt

he
en

er
gy

le
ve

ls
of

do
ub

ly
ex

ci
te

d
he

liu
m

:

i∂
t         c g c a c b c c c d c ε

p

c ε
s         =

          

E
g

0
0

0
0

0
0

0
E

a
−

µ
ab
E N

IR
(t
)

0
0

0
V c

,ε
s

−
µ
∗ gb
E+ X

U
V
(t
)

−
µ
∗ ab
E N

IR
(t
)

E
b

−
µ

bc
E N

IR
(t
)

0
V b

,ε
p

0
0

0
−

µ
∗ bc
E N

IR
(t
)

E
c
−

iα
3I

3 N
IR
(t
)

−
µ

cd
E N

IR
(t
)

0
V c

,ε
s

−
µ
∗ gd
E+ X

U
V
(t
)

0
0

−
µ
∗ cd
E N

IR
(t
)

E
d
−

iα
2I

2 N
IR
(t
)

V d
,ε

p
0

−
µ
∗ g,

ε
pE

+ X
U

V
(t
)

0
V

∗ b,
ε

p
0

V
∗ d,

ε
p

p2 /
2
−

iΓ
ε

p
0

0
V c

,ε
s

0
V

∗ c,
ε

s
0

0
p2 /

2
−

iΓ
ε

s                   c g c a c b c c c d c ε
p

c ε
s         

(B
.1

)



B.2 FEW-LEVEL MODEL FOR COMPLEX SYSTEMS 125

B.2. Few-Level Model for Complex Systems

Figure 5.3 in the main text the response reconstruction for complex systems like bio-
logically relevant molecules or solids is discussed. In order to emulate such a system,
a few-level system consisting of a ground state and n = 50 excited states with random-
ized energies in the range between 60 eV to 65 eV and linewidths randomized between
0.5 meV to 30 meV is constructed. The dipole matrix elements between the states are
also randomized between −1 a.u. and 1 a.u. including matrix elements to the ground
state. No symmetries and thus no dipole selection rules are considered. The randomized
Hamiltonian of such a system in atomic units reads:

Hrand =


0 0.502EXUV (t) −0.394EXUV (t) · · · 0.884EXUV (t)

0.502EXUV (t) 2.229−0.012i −0.940ENIR(t) · · · 0.750ENIR(t)
−0.394EXUV (t) −0.940ENIR(t) 2.311−0.025i · · · 0.535ENIR(t)

...
...

... . . . ...
0.884EXUV (t) 0.750ENIR(t) 0.535ENIR(t) · · · 2.303−0.091i

 .

(B.2)
The system is propagated in time according to the description given in section 3.1.





C. NIR Pulse Characterization

C.1. Response Reconstruction and Fano
Resonance Buildup Measurements

C.1.1. Temporal Characterization

The older measurements used for the application of the response reconstruction discussed
in section 5.2 and the study of the time-resolved buildup of a Fano resonance were
recorded using the same pulse parameters. The duration of the near-infrared pulse in-
teracting with the target in these experiments were extracted from the data sets using the
method described in [223]. Here, the dipole-control model developed in [237], Eq. (5),
is fitted to the absorption line profile of a doubly excited state close to the N = 2 contin-
uum. The assumption is that these highly excited states experience phase changes due to
ponderomotive shifts in the NIR field.

a) b)

FWHM: 7fs

Figure C.1.: NIR pulse temporal characterization for Response Reconstruction a)
Measured, cycle-averaged absorption spectra depending on the time delay
for the sp2,5+ Fano resonance. The dressing with the NIR pulse causes a
transient ponderomotive shift. b) phase change induced by the NIR pulse
extracted form the data (red). A fit with an integrated sech2 profile (orange)
yields the characterization of the pulse shape. The pulse envelope is given
by the derivative of this fit (gray). For this measurement a pulse duration of
TNIR = 7.0±0.2 fs is recovered. The time delay axis is given for a first esti-
mation of the pulse overlap using data from experimental alignment. Using
the pulse position in this fit it can be calibrated more accurately.

This change is dependent on the intensity and can be recovered from the changes in line
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shape which are quantified in the fit. The pulse shape is given by the derivative of this
phase change. The results of the evaluation for this measurement are given in figure C.1.
The position of the phase change (significant contributions for τ < 0) was afterwards used
to better calibrate the pulse overlap τ = 0 along the time-delay axis.

C.1.2. Intensity Calibration

The intensity calibration for these measurements was performed by comparing the recon-
structed responses presented in section 5.2 with full ab-initio numerical simulations with
known NIR intensity.

C.2. sp2,n± and Rydberg Buildup Measurements

C.2.1. Temporal Characterization

For the high-resolution scan which also uses the in situ reference method the following
NIR pulse duration was extracted using the technique described above [223]. The results
of the evaluation for this measurement are given in figure C.1.

a) b)

FWHM: 5.7 fs

Figure C.2.: NIR pulse temporal characterization for sp2,n± measurement a) Mea-
sured, cycle-averaged absorption spectra depending on the time delay for
the sp2,4+ Fano resonance. The dressing with the NIR pulse causes a tran-
sient ponderomotive shift. b) phase change induced by the NIR pulse ex-
tracted form the data (red). A fit with an integrated sech2 profile (orange)
yields the characterization of the pulse shape. The pulse envelope is given
by the derivative of this fit (gray). For this measurement a pulse duration of
TNIR = 5.7±0.1 fs is recovered.

C.2.2. Intensity Calibration

In general the determination of the exact pulse intensity in the focus of the target cell
is very challenging without using a streaking measurement. An estimated intensity cali-
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bration for the NIR pulses in this measurement was performed by determining the energy
difference in the Autler–Townes (AT) splitting and calculating the NIR field strength from
the equation

E =

√
∆E2

AT −∆2

d2s2p,2p2
. (C.1)

Here, ∆EAT is the energy difference between the two energy positions of the spectral
maxima of the AT splitting, ∆ is the detuning of the laser with respect to the transition
between the 2s2p and 2p2 states. The photon energy is extracted from the fast modulation
across the spectral lines in the time-delay scans for moderate intensities. These modula-
tions occur at twice the laser frequency [127, 216]. The transition dipole matrix element
d2s2p,2p2 = 2.17 a.u. is taken from numerical calculations (section 3.1). The position of
the maxima are fitted from the data presented in figure C.3 a). The results of the cal-
culation following equation C.1 including a unit conversion into intensity are shown in
figure C.3 b). This plot gives the calibration curve of the intensity depending on the posi-
tion of the NIR iris aperture. Because of the uncertainty in photon energy, pulse duration
and position of the spectral maxima, the error is estimated to be 20%.

a) b)

Figure C.3.: NIR pulse intensity calibration for sp2,n± measurement a) Measured,
cycle-averaged absorption spectra depending on the NIR iris aperture posi-
tion for the 2s2p Fano resonance. The dressing with the NIR pulse causes the
Autler–Townes splitting observed on the left of the resonance. b) Calibration
curve for the NIR intensity depending on aperture position.

The AT calibration method is applicable even for higher intensities because the new ref-
erence measurement method is sensitive to very weak spectral signatures.
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