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Abstract

A novel code is presented, which is capable of computing the NBI fast-ion distri-

bution in real-time. We discuss the approximations needed to arrive at this goal:

A simplified beam geometry is used for calculating the beam attenuation. Finite-

orbit-width effects are taken into account by an orbit average of the beam deposi-

tion. The time-dependent solution of the Fokker-Planck equation (2D in velocity)

is then calculated based on analytic expressions. This code currently takes ≈25 ms

per time step, which is roughly a factor of 1000 faster than the more sophisticated

NUBEAM code. Nevertheless, good agreement between both codes is found in a

comprehensive benchmark.

1 Introduction

Knowledge of the fast-ion distribution arising from neutral beam injection (NBI) is im-
portant for transport analysis and magnetic equilibrium reconstruction. For sophisticated
real-time plasma control, which will be essential for the success of future fusion devices,
this distribution function needs to be known already during the discharge. Then, the
relevant quantities (e.g. heating profiles, current-drive etc.) can be coupled to real-time
transport and equilibrium codes like RAPTOR [1–3], which has already been imple-
mented and tested in the discharge control systems of present-day machines like TCV
and ASDEX Upgrade. Beyond real-time applications, such fast models are essential for
optimization problems, e.g. reactor design studies or discharge planning [2].

The NBI fast-ion distribution f can be calculated by solving the kinetic equation:

∂f

∂t
+ (~v · ∇~xf + ~a · ∇~vf) = Ĉ(f) + σ (1)

Here, the terms correspond, from right to left, to the source term (e.g. due to NBI),
the collision operator (e.g. slowing down and pitch angle scattering), the orbit effects
(where ~a = Ze

m
( ~E + ~v

c
× ~B) is the acceleration due to the Lorentz force on ions with

charge Ze, mass m, velocity vector ~v in an electric and magnetic field ~E and ~B) and the
partial time derivative. Several sophisticated models exist, that can calculate this beam
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ion distribution in good agreement with experimental data [4–6], such as the Monte-
Carlo codes NUBEAM [7, 8], ASCOT [9] or NEMO/SPOT [10]. The high accuracy of
these codes has, however, to be paid with relatively intensive numerical efforts, which
compromises their use in real-time applications. In addition, there are reduced models
like FIFPC [11], SINBAD-SSFPQL [12–14], RISK [15], CQL3D [16–18]. However, also
these models are not optimized for real-time applications. For example, RISK needs ≈
30 s per time-step according to [15]). Other reduced-model codes like PENCIL [19–22]
and the NBI block in ASTRA [23, 24] are faster, but still not fast enough for real-time
applications. In addition, they usually make quite strong approximations, e.g. PENCIL
neglects finite-orbit-width effects entirely and calculates only steady-state solutions.

In this paper, we present the novel code RABBIT (Rapid Analytical Based Beam
Injection Tool). RABBIT currently takes ≈25 ms per time step, which is roughly a factor
of 1000 faster than the NUBEAM code. This execution time is comparable with the
energy confinement time (e.g. ≈100 ms on ASDEX Upgrade), which makes real-time
applications possible. The approximations needed to arrive at this goal are discussed in
this paper, following the terms of the kinetic equation (1) from the right to the left: A
strongly simplified beam geometry is used for calculating the beam attenuation (section
2). The collisions are treated by an analytic solution of the steady-state Fokker-Planck
equation in each radial cell, locally in the uniform-plasma limit (section 3). A correction
for finite orbit width effects is included by an orbit average of the source term over the
first fast-ion orbit (section 4). Our analytic treatment of the time-dependence is discussed
in section 5. We continue our discussion with a comprehensive benchmark with NUBEAM
(sections 6,7), and discussions of further details of the model such as the treatment of
plasma rotation (section 8) and speed diffusion correction (section 9).

2 Beam attenuation - source term

The calculation of the source term – the fast-ion birth rate – is equivalent to calculating
the beam attenuation: Each neutral atom, which is lost from the beam through ionization,
becomes a newly born fast ion. For the calculation of the beam attenuation, we use
BESFM (beam emission forward-model), which was developed for the analysis of beam
emission charge exchange spectra [25]. The code solves a collisional radiative model,
including excitation and ionization reactions with electrons, main and impurity ions and
charge exchange reactions with main and impurity ions. The code calculates the neutral
density evolution, resolved for different atomic states, on straight beamlets. The geometry
and number of beam-lets representing one source can be modified. For our purposes, we
choose the simplest geometry, which is the thin center-line of the source. In addition, we
restrict the amount of simulated atomic states to n ≤ 2. The restriction to such a low
amount of atomic states greatly shortens the computation time, since the matrices have
sizes proportional to n2 . To compensate for this low max(n), we multiply the losses into
higher states by a factor flast (see fig. 1) [25]. It should be noted that (unlike NUBEAM)
we do not treat the reactions of beam neutrals with fast-ions separately. In principle,
they behave differently than the reactions with thermal bulk ions, because the relative
velocities are different. We neglect this and model the fast-ions as if they were thermal. In
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Figure 1: Calculated shine-through power as function of the highest considered atomic

state nmax for two ASDEX Upgrade beams (comp. fig 17). By enhancing the losses into

higher states (factor flast) the results for low nmax can be improved with respect to the

nmax →∞ limit. Throughout this paper we use flast = 10.

a comparison to NUBEAM this approach still gave a good agreement of the shine-through
power, even for unrealistically high central fast-ion concentrations of 80%.

As a result of BESFM, we get the flux Γ of neutrals along the thin center-line (coordi-
nate l) of the NBI source (in [1/s]). The shine-through power is given by the neutral flux
at the end of the calculation grid (i.e. when the beam has left the plasma and will the
first wall) multiplied by the energy of the neutrals Pshine =

∑
i Γi(∞)Ei (summed over

all beams and energy components).
The fast-ion birth (or deposition) rate can be calculated from the derivative along the

line. To get the fast-ion birth-rate (in [1/s]) between two grid points separated by ∆l, we
simply take the difference S̃line(l+ ∆l/2) = Γ(l+ ∆l)−Γ(l). We can get a birth profile S
(in [1/m3/s]) by rebinning the grid points along the line into a radial grid (e.g. in terms
of ρtor), and by dividing with the volume of each radial grid cell (S(ρi) = S̃(ρi)/∆Vi). If
we would continue to consider only the thin center-line, this would lead to bad agreement
with NUBEAM calculations. This is illustrated by the dashed line in fig. 2: In reality, a
neutral beam has a quite significant broadening in the poloidal plane, perpendicular to
the center-line. In the outer plasma, this is not so crucial for the birth profile, because
the flux surfaces are tangential to this broadening. In the plasma center, however, bad
agreement is observed with realistic NUBEAM calculations. E.g. in this case, the “thin
beam” model shows an almost divergent behavior, because the considered NBI source
(AUG Q3) lies very close to the magnetic axis.

In order to improve the birth-profile calculation, we need to consider the poloidal
spreading of the beam. The geometry of our model is sketched in fig. 3: We assume a
Gaussian spreading locally perpendicular to the beam-centerline. Its standard deviation
σ = σ(l) is allowed to be a function of the coordinate along the center-line l. We discuss
now our beam-width model at a given point B (with given R,z coordinates Rb, zb) on
the center-line. In order to be fast, we assume locally circular flux surfaces: We calculate
the geometric minor radius rb and the radial flux coordinate ρb corresponding to (Rb, zb)
based on the realistic (numeric) equilibrium. For all other points in the poloidal plane
(away from the beam center-line), we assume a linear relation:

r(ρ) = ρ · rb

ρb

(2)
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Figure 2: Beam deposition. Left: Comparison of radial profiles. Right: 2D beam deposition

calculated by NUBEAM (color scale) with the beam center-line.
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Figure 3: Illustration of the analytic beam-width correction.

In that sense, it is important to use a flux coordinate ρ which behaves very similar to
a radius, and we have chosen ρ = ρtor (the square root of normalized toroidal flux) for
this reason. If we want to calculate the contribution of the birth rate in point B S̃line(lb)
into a given radial cell ρi, we need to consider the crossing-points between the orange
line (perp. to the beam) and the flux surface boundaries of that radial cell: h1l, h2l, h1u

and h2u. Due to our assumption of circular flux surfaces, these crossing-points can be
calculated analytically by elementary geometrical considerations. The contribution into
the i-th radial cell ρi is then given by:

S̃(ρi) = S̃line(lb) ·w(ρi)/s (3)

w(ρi) =
1

2

(
erf

h2u√
2σ
− erf

h1u√
2σ

)
+

1

2

(
erf

h2l√
2σ
− erf

h1l√
2σ

)
(4)

since the integral of our assumed Gaussian broadening is given by the error function.
For the parts of the beam that are well inside the plasma, these contributions add up to
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s =
∑

iw(ρi) = 1 (at least within the numerical accuracy). When the beam-center line
is close to the plasma boundary, a significant fraction of the beam-width can be outside
of the plasma, and hence s will be smaller than 1. In such a situation, the attenuation
calculation along the center-line will over-estimate the attenuation, since in reality, a part
of the beam is outside the plasma and will fly through the given grid-cell unattenuated.
Further outside, a fraction ∆f of the beam may intersect with the wall (at ρlim). We use
s and ∆f to correct the beam-centerline calculation for these finite-beam-width effects,
and modify attenuation and shine-through accordingly:

Γ(l + ∆l)

Γ(l)
→ s

Γ(l + ∆l)

Γ(l)
+ (1− s)−∆f Pshine → Pshine + ∆fΓ(l)E (5)

where ∆l is the distance between two center-line grid points. In consistence with that,
we use the renormalized contribution w(ρi)/s in eq. (3).

As discussed above, this beam-width correction is most important close to the plasma
center. Here, the flux surfaces are also in realistic equilibria very close to a circular shape,
which justifies our assumptions. Nevertheless, we do a correction for elongation of the
flux surfaces. Elongation effectively means, that the length scales in fig. 3 are different
along the vertical and horizontal axes. This means also that the length scales along the
blue and orange line are different. We can take this into account by rescaling the beam
standard deviation to an “effective” value (on each point on the grid along the beam).
We use the following rescaling:

σ → σ ·

√
(a cos θ)2 + (b sin θ)2

(a cos β)2 + (b sin β)2
(6)

This is motivated by the equation of an ellipse with the two axis a and b, defined on a
given flux surface by:

a =

{
max(R)−R0 for: R > R0

R0 −min(R) for: R < R0

; b =
max(z)−min(z)

2
(7)

where R0 is the major radius of the magnetic axis.
Fig. 2 shows the results of this beam width correction for the birth profile. We get

a very good agreement to NUBEAM simulations, which do take a fully realistic NBI
geometry into account with a computationally much more expensive Monte-Carlo ap-
proach. In addition, figure 4 shows a comparison of the shine-through calculated by a
”thin beam” approach, RABBIT (i.e. BESFM including above correction for finite-beam-
width), FIDASIM [26, 27] and NUBEAM in a low-density case at ASDEX Upgrade
for several beam geometries (comp. fig. 17). The comparison between FIDASIM and
BESFM/RABBIT is interesting, because these codes have a similar collisional radiative
model and use the same cross-sections. This allows to compare the center-line attenu-
ation (BESFM/RABBIT) with a Monte-Carlo-based calculation (FIDASIM) including
the fully realistic NBI geometry. We find a good agreement with FIDASIM, which indi-
cates that taking only the center-line is an acceptable approximation for the attenuation
calculation. Largest (but still acceptable) deviations are found for the two off-axis and
most tangential sources Q6 and Q7. These beams enter the plasma in the most oblique
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Figure 4: Comparison of calculated shine-through power between FIDASIM, NUBEAM,

a center-line only calculation (”thin NBI”) and RABBIT (BESFM center-line + correc-

tions for finite-beam-width). The injected NBI Power is ≈2.5 MW for all beams. The

case is based on ASDEX Upgrade discharge #33856, with a lower electron density

(ne(0) = 3.3 · 1019 m−3) to enhance the shine-through for testing purposes. The ”thin NBI”

line is only visible for Q6+Q7 since, for the other beams, it coincides with the RABBIT

line. The short spikes correspond to additional Q3 beam blips, which were added to the

discharge for diagnostic purposes.

angle and have a turning point in the poloidal plane close to the separatrix (compare
fig. 17), where the density gradients are large. This explains the deviations, which are
lowered by our above described correction for finite-beam-width.

3 The Fokker-Planck equation and its analytic solution

In this section we describe and review the analytic solution of the Fokker-Planck (FP)
equation, which we solve in RABBIT. In order to make the kinetic equation 1 analytically
solvable, we will neglect the orbit term in this section. A correction for orbit effects will
be discussed later in section 4. Locally we assume an uniform plasma for the solution
of the FP equation, namely the FP equation is solved on each radial cell with the local
density and temperature, and independently from the other radial cells. The distribution
function f depends then only on two velocity-space dimensions, the speed v and the
pitch ξ = v‖/v. The third dimension would be given by the gyro-angle, but f is supposed
to be symmetric with respect to that. If we write out the collision term in the limit of
(thermal electron velocity) � (fast-ion velocity) � (thermal ion velocity), we get the
Fokker-Planck equation: [7]

1

τsv2

∂

∂v
[(v3 + v3

c )f ] +
β

τs

v3
c

v3

∂

∂ξ
(1− ξ2)

∂f

∂ξ
+

1

τsv2

∂

∂v

[(
Te

mfi

v2 +
Ti

mfi

v3
c

v

)
∂f

∂v

]
=

=
∂f

∂t
− σ

(8)

with the Spitzer time:

τs = 6.32 · 108 · Afi

Z2
fi ln Λe

· (Te [eV])3/2

ne [cm−3]
s (9)
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the critical velocity:

vc = 5.33 · 104 ·
√
Te [eV] ·

〈
Z2
i

Ai

〉1/3

m/s (10)

and:

β =
〈Z2

i 〉

2
〈
Z2
i

Ai

〉
Afi

,

〈
Z2
i

Ai

〉
=

∑
i ni(Z

2
i /Ai) ln Λi

ne ln Λe

,
〈
Z2
i

〉
=

∑
i niZ

2
i ln Λi

ne ln Λe

(11)

where the sums with index i go over the ion species. The subscript fi stands for the
fast-ion (i.e. beam) species. ln Λe and ln Λi denote the Coulomb logarithms for fast-ion
collisions with the electrons and the i-th ion species, respectively. We calculate them with
the same formulas that are also implemented in NUBEAM [28–30]. For a fast ion with
energy E in a magnetic field B we calculate the Coulomb logarithms with respect to a
thermal bulk species α (this can be now both electrons and ions) by:

ω2
α = 1.74 ·Z2

α/Aα ·nα + 9.18 · 1015 ·Z2
α/A

2
α ·B2 (12)

v2
rel,max,α = 9.58 · 1010 · (Tα/Aα + 2E/Afi) (13)

rmax =
√

1/
∑

α(ω2
α/v

2
rel,max,α) (14)

v2
rel,min,α = 9.58 · 1010 · (3Tα/Aα + 2E/Afi) (15)

rmin,cl,α = 0.13793 · |Zα ·Zfi| · (Aα + Afi)/(AαAfiv
2
rel,min,α) (16)

rmin,qu,α = 1.9121 · 10−8 · (Aα + Afi)/(AαAfivrel,min,α) (17)

rmin,α = max(rmin,cl,α, rmin,qu,α) (18)

ln Λα = ln(rmax/rmin,α) (19)

In these formulas, Tα and E are in keV and nα are in m−3. Ze = −1 and Ae = 1
1836.1

are supposed to be used for the electrons. Since these formulas depend (weakly) on the
fast-ion energy E, the coefficients in the FP equation (e.g. τs or vc) become weak func-
tions of v themselves. Collisions between fast ions themselves are neglected in RABBIT
and NUBEAM. The effect of a finite fast-ion density is treated instead indirectly by a
dilution of the bulk ions, which decreases ni/ne and the critical energy as a consequence.
NUBEAM uses the same approach, which is, according to [7], a good approximation
even up to relatively high fast-ion concentrations of 50%. In principle, this introduces a
non-linearity into the model, which we resolve by taking the fast-ion density from the
previous time-step as input for the calculation of the following time-step.

This Fokker-Planck equation describes the physics of fast ions in velocity space, i.e.
the collisions with thermal bulk ions and electrons. In general, the term “Fokker-Planck”
equation is used for an equation describing the evolution of a distribution function f
due to drifts and diffusion. The drift terms are recognized by a single derivative of f .
In our case, the first term in eq. (8) is a drift term with respect to v: It is the slowing
down term (often called also drag or friction), which leads to a drift of the distribution
function towards lower velocities. The second and third term have double derivatives
and therefore describe diffusion - in the pitch direction (pitch angle scattering) and the
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Figure 5: Analytic solution of the FP equation for a single, point-like source. The effect

of the slowing down term is illustrated with ←, the effect of the pitch angle scattering

operator is indicated by l.

velocity direction (speed diffusion). Pitch angle scattering leads to a broadening of the
pitch distribution, which is, at the birth energy, defined by the properties of the NBI
source, and becomes increasingly more isotropic towards lower energies (as illustrated in
fig. 5). The scattering is weak for v � vc (collisions with electrons dominate) and strong
for v � vc (collisions with ions dominate).

In general, the terms containing vc correspond to collisions with thermal ions and
the remaining terms to collisions with thermal electrons. Pitch-angle scattering is thus
a pure effect of collisions with ions, because in collisions with electrons the momentum
transfer is negligible. The slowing down and speed diffusion parts of the collision operator
have contributions from both types of collisions. The effect of the speed diffusion is very
weak for velocities below the birth velocity, since the slowing down term dominates here.
Therefore, we neglect the speed-diffusion in this section. Above the birth energy, speed
diffusion leads to a high energy tail, which we discuss in section 9.

Finally, σ is the NBI source term in the FP equation. We parametrize it as

σ =
S

2πv2
δ(v − v0)K(ξ) (20)

which assumes a mono-energetic injection velocity v0. The typically three energy compo-
nents of a beam can be modeled by summation, then. A broad pitch distribution K(ξ)
(e.g. due to the broadening of the beam) can be taken into account. The normalization
is defined such, that

∫
K(ξ)dξ = 1 and thus

∫∫∫
σd3~v = S. Hence S is the fast-ion birth

(or deposition) per volume and time (e.g. in units of [1/m3/s]).
The steady-state solution to the FP equation for such a source term has been found in

[31, 32]. Since Legendre polynomials Pl(ξ) are eigenfunctions of the pitch-angle scattering
operator, the solution is given as a series of Legendre polynomials:

f(v, ξ) =
1

2π

S · τs

v3 + v3
c

·
∞∑
l=0

(
l + 1

2

)
ul(l+1)Pl(ξ)Kl ·H(v0 − v) (21)
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with:

Kl =

∫
K(ξ)Pl(ξ) dξ (22)

u =

(
v3

0 + v3
c

v3 + v3
c

v3

v3
0

)β/3
(23)

and H being the Heaviside step function. For the derivation of this solution it has been
assumed that the coefficients τs, vc and β are constants that do not depend on v, which
is contradicted by our Coulomb logarithm formulas (12)-(19). We treat this by evaluat-
ing the Coulomb logarithms with respect to a reference energy Eref: If the distribution
function is to be evaluated in the interval E1 < E < E0, we use the weighted average

Eref = 0.6E1 + 0.4E0 (24)

which is motivated by the fact that the energy dependence of ln Λi is stronger towards
lower energies.
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Figure 6: (a) Solution of the Fokker-Planck equation (8) using three injection energies.

(b) Calculated TRANSP fast-ion velocity distribution in the plasma center.

Fig. 6(a) shows an example of this solution in the plasma core. We have calculated
the solutions for the full, half and third energy component of the NBI independently
of each other, and added them together. This is possible because in our model (and
also in NUBEAM), collisions between fast ions are neglected. 6(b) shows the result of a
NUBEAM calculation as comparison and the shape of the solutions agree very well.

In the end we are interested in integrals of the distribution function (e.g. fast-ion
current, pressure, heating profiles etc.). Many of these integrals can be solved analytically,
which is ideal for real-time calculations. For example, the fast-ion density is given by:

nfi =

∫ v0

0

∫ +1

−1

f · 2πv2dvdξ =
Sτs

3
ln

(
v3

0 + v3
c

v3
c

)
(25)

In these integrals, the orthogonality relation of the Legendre polynomials is exploited:

1∫
−1

Pn(ξ)Pm(ξ) dξ =
2

2n+ 1
δnm (26)
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Since P0(ξ) = 1, we can interprete the above integration over ξ as
∫

dξ =
∫
P0(ξ)dξ,

which lets only survive the l = 0 term of the infinite sum. A subsequent integration over
v leads then to the final result.

The first few Legendre polynomials are given by:

P0(ξ) = 1, P1(ξ) = ξ, P2(ξ) =
1

2
(3ξ2 − 1), . . . (27)

In general, Pl(ξ) is a polynomial of order l. Since the integrals of interest contain usually
only low powers of ξ (e.g. the fast-ion current ∝

∫∫
vξf · 2πv2), we need in fact only

very few summands of the infinite sum in eq. 21 - e.g. RABBIT considers currently only
l = 0, 1.

For a first comparison with NUBEAM, we consider the fast-ion density and heating
to electron and ions (the latter is calculated according to eq. 43 and 44). The results
are shown by the dashed lines in fig. 12. While the overall agreement is reasonable, the
profile shapes do not yet agree very well. All three profiles show an under-estimation in
the plasma core and an over-estimation at the plasma edge. These deviations stem from
the orbit effects, which we have neglected so far and which we will take into account in
the next section.

4 Orbit-average of the source term

Solving the full kinetic equation including the orbit term is a much more difficult task,
and analytically not possible. This is the reason, why many codes such as NUBEAM rely
on Monte-Carlo methods. Here, the source term is represented by a set of Monte-Carlo
markers. For each marker, the orbit trajectory is calculated and during each orbit step,
a Monte-Carlo collision operator is applied (changing the velocity vector). In a real-time
application, such a complete treatment is not possible. We therefore have to consider an
ad-hoc correction for these orbit effects.

A way to do this is to average the NBI source term over the first (unperturbed) orbit.
This is illustrated in fig. 7 for a trapped fast-ion. Up to now, we have only considered the
birth position and assumed that the ion stays on that initial flux surface. In reality, the
ion travels towards other flux surfaces, and thereby also changes its pitch. In the concrete
example, which is typical for co-current NBI, the birth position (marked with a circle)
is almost on the furthest outside part of the orbit, and the ion moves further inside on
the orbit. This leads effectively to a broadened birth distribution of this individual ion,
which is broadened towards the plasma center with respect to its initial position. We
can take this into account by mapping the orbit into a 2D deposition function S̃(ρ, ξ),
where the weight for each bin is given by the fraction of time the ion spends in the given
bin (relative to the duration of a full poloidal orbit turn). If an orbit is unconfined (i.e.
promptly lost), S̃(ρ, ξ) is set to zero. In order to use S̃(ρ, ξ) in our analytic solution of
the FP equation, we further decompose it into Legendre polynomials according to eq.
(22) (again we need only very few moments, currently l = 0, 1).

The brute force approach to calculate such an orbit average for the whole NBI source
would be then to take a MC representation of the source, calculate such a 2D deposition
function (i.e. an orbit) for every marker, and sum over all markers [33]. To get reasonable
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Figure 7: (a) 2D Deposition profiles S̃(ρtor, ξ) for an individual fast-ion (ξ = v‖/v). It is

calculated by averaging over the first orbit, shown in (b). In both plots, the birth position

is indicated by the full circle.

statistics, ≈ 5000 markers are needed. Using a conventional 4th order Runge-Kutta in-
tegrator, roughly 1 s would be needed to calculate these orbits, which is clearly too slow
for real-time applications.

To overcome this one could, in principle, either use approximation formulas for the or-
bits or try to reduce the number of necessary orbits. We initially tried the first approach,
which however gave not fully satisfactory results. Although there are quite precise approx-
imation formulas for e.g. the orbit widths, it is still difficult to estimate the 2D deposition
function, i.e. the radial profile and the pitch evolution. In addition, a MC approach does
not work well with our approach for calculating the beam attenuation along a single line
(the beam center-line).

Ultimately, we decided to implement the second approach, by calculating only very
few orbits and doing an appropriate interpolation in between. Fig. 8 shows an example of
all (19) guiding center orbits calculated for the highest energy component. We calculate
only orbits along the beam attenuation grid (i.e. the beam centerline), and even here we
calculate an orbit only for every n-th grid point. The guiding center starting position
is slightly elevated from the beam-centerline because we take the Larmor radius into
account. In doing so, we need to calculate 3 · 19 = 57 orbits per injector. This is possible
with a conventional 4th order Runge-Kutta integrator in ≈ 10 ms (without paralleliza-
tion) and hence fast enough for real-time applications. In order to get the deposition
function also for the grid-points along the center-line in between (e.g. at lb), we need to
do an interpolation, as illustrated in fig. 9. Assuming that we have calculated the orbit
deposition functions S̃1 and S̃2 for l1 and l2 with l1 < lb < l2 we use:

S̃b(ρ) = S̃1(ρ− (ρb − ρ1)) · l2 − lb
l2 − l1

+ S̃2(ρ− (ρb − ρ2)) · lb − l1
l2 − l1

(28)
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Figure 9: Illustration of the interpolation of the deposition function according to eq. (28).

The two blue points correspond to the same colored points in fig. 8 (they are the two

passing orbits closest to the low field side).
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Figure 10: Illustration of the combination of orbit-average and beam-width correction:

Orbits are only calculated along the center-line (Point b in radial cell ρref), and are extra-

polated perpendicular to the center-line (=orange line) according to eq. (29).

This corresponds to a shift of S̃1 and S̃2 to the flux coordinate ρb of the new location
and a subsequent linear interpolation with respect to the beam center-line coordinate l.
The shift ensures, that the width of S̃b is equal to an interpolation of the widths of S̃1

and S̃2, whereas a pure interpolation without shifting would lead to an over-estimation
of the width of S̃b.

With this method, we are able to calculate the orbit averaging for ions born on the
beam center-line. Now, we have to make this compatible with our beam-width correction
(introduced in section 2). This is illustrated in fig. 10. We start on the center-line at point
b, which is in the radial cell ρref . The beam-width correction is applied on the orange
straight line perpendicular to the beam center-line and we need now to extrapolate the
orbit distribution function from ρref to other radial cells ρi along the orange line. We
do this in a similar fashion as for the interpolation technique: We shift the distribution
function from ρref to the new position ρi:

S̃i(ρ) = S̃b(ρ− (ρi − ρref)) (29)

This is based on the assumption, that the orbits at ρi and ρref are similar: same width
(in terms of ρ), same topology, same pitches and same starting position (e.g. in terms
of poloidal angle θ). Most of these assumptions should be fulfilled quite well. Topology
changes may occur at the trapped-passing boundary, and with this method we effectively
”smooth” over this boundary, which is done in reality by collisions anyway. The last
assumption is well fulfilled in the outer plasma, since the width of the beam imposes
only small changes of θ here. In the plasma center, this assumption may be not fulfilled
well, for example if the beam center-line approaches closely the magnetic axis as in the
example which we have considered earlier in fig. 2. Since the orbit widths are usually
small close to the magnetic axis, this should however be tolerable.

In order to test the accuracy of the RABBIT-orbit averaging technique, we compare
it in fig. 11 to a conventional Monte-Carlo orbit average of a FIDASIM [26, 27] birth
distribution as described in section 2 of [33]. We get very good agreement in the birth
profile, and also a good agreement in the average pitch (which is the first Legendre
component). Also, the RABBIT-orbit average produces smoother profiles (due to the
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Figure 12: Calculated profiles from RABBIT with and without orbit-averaging of the

source, in comparison to NUBEAM results. This case is based on the AUG discharge

#29783 at 3.11 s.

interpolations), while the MC profiles contain Monte-Carlo noise. At the same time, the
RABBIT-orbit average is orders of magnitude faster than the Monte-Carlo approach,
since it requires only ≈ 60 orbit calculations compared to the 5000 orbit calculations in
the MC calculation.

It should be noted that we have observed some cases, where the inner-most radial
point of the birth profile (i.e. closest to the magnetic axis) shows an unphysical jump
with respect to the rest of the profile. This could be caused because our assumptions (see
above) are not so well fulfilled close to the magnetic axis, or because the volume of the
inner-most cell is very small, such that it is covered only by very few orbits and is thus
more prone to suffer from numerical noise. To cure this, we have implemented an upper
limit of the gradient between the first and second profile point (based on a fraction of
the maximal gradient in the rest of the birth profile). If this limit is violated, we smooth
the spike in the first point of the birth profile by redistributing into the neighboring cells
under conservation of the volume-integrated birth rate. Since the volume element of the
neighboring cell grows very fast (roughly ∝ ρtor, i.e. the second cell has roughly the triple
volume of the first cell), their absolute values are much less affected by this smoothing
procedure than the first radial point, where the spike is being removed.
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Figure 13: Comparison of volume-integrated heating power to electrons and ions.

As final step, we plug the orbit-averaged source term in the FP equation and calculate
the profiles (figure 12). The orbit averaging leads to a very good agreement with the
profiles from NUBEAM. Slight deviations remain in the plasma center, affecting only
a small fraction of the plasma volume. In fig. 13 we compute the volume-integrated
heating power to electrons and ions. It is interesting to note, that the orbit average has
also an effect on these volume-integrated quantities and improves the agreement with
NUBEAM. This is due to the (mostly) linear dependence of the critical energy on Te:
Since we consider co-current NBI in this exampe, the orbits shift the fast-ion distribution
further inwards - i.e. away from the cold plasma edge (where the critical energy is lower
and electron heating more dominant) towards the hot plasma core (where the critical
energy is higher and electron heating is thus weaker).

It should be noted that NUBEAM stops following the Monte Carlo markers when
their energy has reached 3/2 of Ti, while in this paper the integrals of f are calculated
all the way down to v = 0. In NUBEAM, the remaining heating power after stopping the
MC markers is stored as ”thermalization power”. To ensure a fair comparison between
RABBIT and NUBEAM, we add this thermalization power to the NUBEAM ion-heating
(since one can expect that at such low energies one is well below the critical energy such
that the slowing down is mainly on the background ions). In general, RABBIT has an
option to set the lower integration boundary to an user-defined multiple of Ti.

5 Treatment of time-dependence

In the previous sections, we have discussed the steady-state solution of the Fokker-Planck
equation, which we will label now fss. In order to treat the time-dependence, we follow the
approach introduced in [32]. Using a Laplace-transform and neglecting speed diffusion,
he derived the following time evolution of the distribution function:

f(v, ξ, t) =
τs

v3 + v3
c

·
∞∑
l=0

(
l + 1

2

)( v3

v3 + v3
c

)l(l+1)β/3

Pl(ξ) ·∫ ∞
v

Sl

(
v′, t− τs

3
ln
v′3 + v3

c

v3 + v3
c

)
·
(
v′3 + v3

c

v′3

)l(l+1)β/3

v′2dv′

(30)
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The key ingredient here is, that thanks to the neglection of speed diffusion, one can
calculate the time τ which is needed to slow a fast ion down from v′ to v:

τ(v′, v) =
τs

3
ln
v′3 + v3

c

v3 + v3
c

(31)

This function appears in eq. (30), meaning that ions that have been injected with an
injection velocity v′ a time τ(v′, v) ago, will appear now with a lower velocity v.

It should be noted, that this time evolution still assumes a constant background plasma
– and only a time-dependence of the source Sl(v, t) (i.e. injector power) is taken into
account. We will now discretize our time steps, and assume that plasma parameters are
constant during a time step ∆t = t1 − t0. This allows us to use the above equation.
Furthermore, we assume that the injected power during that time step is a δ-function
pulse at the beginning of the time-step: Sl(v, t) = SKl

2πv2
δ(v − v0)δ( t−t0

∆t
), and we will

average over the time-step later. This has the advantage that we only have to track the
slowing down of a single fast-ion pulse per time step (according to eq. 31), rather than a
continuous set. The δ-function is normalized such, that it yields a constant birth rate of
S if it is averaged over the time-step and integrated over d3v.

Plugging this into the above equation yields the following:

f(v, ξ, t) =
1

2π

S · τs

v3 + v3
c

·
∞∑
l=0

(
l + 1

2

)( v3

v3 + v3
c

)l(l+1)β/3

KlPl(ξ)

· δ
(
t− t0 −

τs

3
ln
v3

0 + v3
c

v3 + v3
c

)
·
(
v3

0 + v3
c

v3
0

)l(l+1)β/3

·∆t

=fss(v, ξ) · δ
(
t− t0 −

τs

3
ln
v3

0 + v3
c

v3 + v3
c

)
·∆t

(32)

This is equivalent to a δ-function-like fast-ion pulse, which moves in time to lower energies.
The pulse stays a δ-function, because we have neglected speed diffusion and thus all fast
ions slow down at exactly the same rate. Averaging over the duration of the time-step∫ t1
t0

dt/∆t yields then:

f(v, ξ)
∣∣t1
t0

= fss(v, ξ) ·H
(
t1 − t0 −

τs

3
ln
v3

0 + v3
c

v3 + v3
c

)
(33)

= fss(v, ξ) ·H
(
v3 + v3

c − (v3
0 + v3

c ) · exp
−3 ·∆t
τs

)
(34)

≡ fss(v, ξ) ·H(v − v1) (35)

In the last step we have called the velocity v, for which the argument of the Heaviside
function vanishes, v1. v1 is then the velocity, to which the fast-ions have been slowed
down during the time-step ∆t = t1 − t0, starting from a velocity v0 at time t0.

This result is illustrated in fig. 14. In the given example, the fast ions have slowed down
from 59 keV to 48 keV during the 10 ms time-step. The resulting distribution function
(averaged over the time-step) is hence the normal steady-state distribution function fss,

multiplied by a Heaviside box function. If we want to calculate moments of f(v, ξ)
∣∣t1
t0

, we
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Figure 14: In the time-interval ∆t = 10 ms, the fast ion pulse slows down from 59 keV

to 48 keV (according to v3
1 = (v3

0 + v3
c ) · exp −3 ·∆t

τs
− v3

c ). The corresponding distribution

function during that time-step is given by the colored part of the steady-state solution (grey

contour lines).

can still use the same analytic integrals as described in section 3: The pitch integral is
exactly the same, and velocity integrals evaluate as:∫ ∞

0

f(v, ξ)
∣∣t1
t0

dv =

∫ v0

v1

fss(v, ξ)dv =

∫ v0

0

fss(v, ξ)dv −
∫ v1

0

fss(v, ξ)dv (36)

As it turns out, the above is all we need for a consistent time-dependent solution: At
the end of a time step, we can use the its final state f(v, ξ, t1) = fss(v1, ξ) as new, ’virtual’
source for the next time-step. The source for time-step (2), going from t1 to t2 is then
defined by the following values:

S(2) = S(1) (37)

v
(2)
0 = v

(1)
1 (38)

K(2)(ξ) = f (1)
ss (v1, ξ)/

∫
f (1)

ss (v1, ξ
′)dξ′, or equivalently: (39)

K
(2)
l = u(1) l(l+1)|

v=v
(1)
1
K

(1)
l =

(
v3

0 + v3
c

v3
1 + v3

c

v3
1

v3
0

)β
3
l(l+1)

Kl (40)

where we have omitted the (1) in the last step for brevity.
Equation (37) means that we keep the source strength constant, i.e. we assume there

are no losses in between consecutive time-steps. In the future, a modification of this
assumption could allow one to model e.g. charge exchange losses or radial diffusion (=
losses into other radial bins). As new birth energy we use the end-point of slowing down
in the previous time-step, and as new pitch distribution we use the end-point of the
pitch-angle scattering in the previous time-step - i.e. K(2)(ξ) will in general be broader
and more isotropic than K(1)(ξ).

This scheme is illustrated in fig. 15, where the time-steps correspond to different
columns. If the beam is still turned on in time-step (2), then we simply need to add
a new ’row’, with the (current) nominal birth energy and birth pitch distribution. The
full solution at each time-point is then given by a sum over the rows. This scheme contin-
ues then, e.g. during each time-step where the beam is turned on, a new row gets added.
A row gets terminated, once its fast-ion pulse has reached v = 0.
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Figure 15: Time-dependence scheme. Columns correspond to time steps, and for each time

step the rows are summed (indicated by the Σ symbol). This example assumes constant

background plasma and constant beam power (switched on at time step 1).
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Figure 16: Time-dependence scheme. This example illustrates the effect of a changing

background plasma between step 1 and 2. The steady-state solutions 2a and 2b are now

different, because the fast ions in the upper row have had a different ’past history’.
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If the plasma parameters and beam source are constant in time, then we ultimately
reach the steady-state solution, such that our time-dependent solution is consistent with
that. The solution which we get from this approach is in fact slightly more precise,
because we evaluate the analytic solutions only in small velocity-intervals. Thus we can
take the weak velocity-dependence of the Coulomb-logarithm into account by evaluating
it for each interval individually (using eq. 24).

In addition, we can treat changes of the source and/or plasma parameters consistently.
The latter is demonstrated in fig. 16, where we have introduced a strong change of ne and
Te from step 1 to step 2. We see that we have now two different steady-state solutions
f

(2a)
ss 6= f

(2b)
ss , because the fast ions in the upper row (2a) have had a different ’past

history’. They have endured e.g. weaker pitch angle scattering in step 1, and the resulting
effects on the distribution function are taken into account consistently. In that sense our
approach is more general than previous attempts [34], where this effect is neglected. It
must be noted that when we add together all partial solutions for one time point (i.e. the
rows), we can get discontinuities in the distribution function. Since the goal of RABBIT
is to provide mainly integrals of the distribution function, this is not of concern here.
For future applications, where e.g. the gradients of the distribution function would be of
interest, another numerical method should be implemented.

6 Heating power

For a first comparison of our time-dependent solution with NUBEAM we will consider
the heating power. We calculate the heating density rates (units W/m3) by an integral
over the slowing-down (sd) part of the collision operator:

Ptot = −
∫
mv2

2
Ĉsd(f)d3~v (41)

Here, m is the mass of the fast-ion species. The collision operator can be rewritten in

terms of a collisional flux Ĉ(f) = −∇ · ~Γc [33], with ~Γc,sd = − 1
τs

v3c+v3

v2
f êv. This and a

subsequent partial integration allows us to rewrite:

Ptot =

∫
mv2

2
∇ · ~Γc,sdd3~v = −

∫
~Γc,sd · ∇

(
mv2

2

)
d3~v =

∫
mv|~Γc,sd|d3~v (42)

The integration over ξ lets survive only the l = 0 summand from the Legendre expansion
of f . Using our time-dependent solution from eq. (35) we get for the total heating density:

Ptot =

∫ v0

v1

mv · v
3
c + v3

τsv2
· τsS

v3
c + v3

· v2dv =

∫ v0

v1

Smvdv = S

(
mv2

0

2
− mv2

1

2

)
(43)

This is equal to the kinetic energy that the fast-ion pulse looses in slowing down from v0

to v1 and thus the intuitively expected result. For the heating to the ions we shall consider
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Figure 17: Overview of the eight NBI injectors at ASDEX Upgrade (the inclination of Q6

and Q7 is steerable).

only the part of the collision operator corresponding to collisions between fast-ions and
thermal ions (i.e. the terms containing vc):

Pi =

∫ v0

v1

mv · v
3
c

τsv2
· τsS

v3
c + v3

· v2dv = Smv3
c

∫ v0

v1

v

v3
c + v3

dv = (44)

=
Smv2

c

6

(
ln(v2

c − vcv + v2)− 2 ln(vc + v) + 2
√

3 arctan
2v − vc√

3vc

) ∣∣∣∣v=v0

v=v1

(45)

With v1 = 0, these results are identical to [35]. The electron heating is then given by
Pe = Ptot − Pi.

To compare with NUBEAM, we have chosen the ASDEX Upgrade discharge #33856
where seven (out of eight) NBI sources are turned on alternately. This allows also a
benchmark under a large variation of beam geometries (see fig. 17). The resulting time-
traces of (volume-integrated) heating to ions and total heating are shown in fig. 18. We
can see, that we find a very good agreement of the temporal evolution.

It should be noted that RABBIT currently considers three power loss channels: The
first is the shine-through, which has already been benchmarked in section 2 (for a lower ne

case). Secondly, prompt orbit losses are calculated during the orbit-averaging. The user
provides the coordinates (Rlim, zlim) of a point on the limiter, which is calculated into a
flux radius ρlim. If a guiding center orbit (+ gyro-radius) exceeds ρlim it is considered as
being lost. In this benchmark case, orbit losses are however insignificant (in agreement
both in NUBEAM and RABBIT) due to co-current NBI. Finally, the third loss channel
is plasma rotation, which will be discussed in section 8.
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Figure 18: Comparison of volume-integrated heating time-traces between RABBIT and

NUBEAM (lower figure is a zoom-in between 2.0 and 3.2 s). The upper two curves corre-

sponds to the total heating power, and the two lower curves to the ion heating.

7 Current drive

As next step for comparison, we consider the toroidal current carried by the fast ions.
The related moment of the distribution function is the toroidal fast-ion current given by:

jfi = Zfie ·
∫∫

vξf(v, ξ) · 2πv2dvdξ (46)

= SτsK1

∫
v3

v3 + v3
c

(
v3

0 + v3
c

v3 + v3
c

v3

v3
0

) 2β
3

dv (47)

The ξ-integral can be evaluated analytically and only the l = 1 Legendre components
survives from the infinite sum, because ξ = P1(ξ). The remaining v-integral has an
analytic solution as well, which however involves the hypergeometric function. Since the
evaluation of such special functions is typically more complex than a numeric integration,
we solve the v-integral numerically using Simpson’s rule. Fig. 19 shows a comparison
with NUBEAM of the timetraces and two profiles for Q2 (intermediate on-axis) and
Q7 (off-axis). All curves correspond to the fast-ion current (without electron shielding),
except for the two lower time-traces in the top row, which include electron shielding (as
explained later in this section). The overall shapes of the profiles agree quite well. In the
absolute values of the area-integrated total current, we see some significant deviations.
If we calculate the ratio between RABBIT and NUBEAM values, we can see that the
RABBIT values typically are within ± 15% of the NUBEAM values, which can still be
seen as a reasonable agreement (considering that RABBIT is roughly a factor 1000 faster
than NUBEAM).

The reason, why the deviations between RABBIT and NUBEAM are much higher
for the fast-ion current than for other quantities, is that the signed value of v‖ enters
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into the integral. This means that knowledge of the orbits (also during slowing down)
is very important. For example, trapped particles contribute only very little to the to-
tal current, because positive v‖ on the outer banana leg and negative v‖ on the inner
banana leg largely cancel each other. In RABBIT, we do calculate the initial orbits of
the fast ions (for the orbit average of the source). However, we neglect orbit changes
during the slowing down. In the top row of fig. 19, we have checked whether a more so-
phisticated Monte-Carlo orbit average of a realistic 3D FIDASIM NBI birth distribution
(as explained in section 2 of [33]) would improve the agreement. It gives, however, very
similar results as RABBIT. This demonstrates again (as already shown in fig. 11) that
the fast orbit-averaging technique implemented in RABBIT is in good agreement with a
conventional Monte-Carlo orbit-average and the deposition calculated with the simplified
beam geometry in RABBIT is in good agreement with a fully realistic one. Instead, the
deviations arise mainly from the concept of orbit-averaging itself.

From fig. 19 and 20 we can assess that the deviation between RABBIT and NUBEAM
is a function of the beam inclination with respect to the magnetic field. Very radial
sources (like Q4) are under-estimated by RABBIT while very tangential sources (like
Q6 and Q7) are over-estimated. In the following, we will try to discuss reasons for this
dependency: For very tangential sources (like Q6 and Q7), the initial orbits are mostly
passing. Some of these orbits will later change their topology (e.g. due to pitch angle
scattering), become trapped orbits and can no longer significantly contribute to the fast-
ion current. Even if they may become passing again in subsequent collisions, they now
can become co- or counter-passing with approximately equal probability. This means
that once an ion has moved from passing to trapped, it looses its ability to contribute
strongly to the fast-ion current. Since we neglect this transport over the trapped-passing
boundary, RABBIT tends to over-estimate the current for very tangential sources. For
very radial sources, this effect does not occur because many fast ions are already initially
trapped when they are born. The under-estimation of these sources could be explained
by the neglected speed-diffusion: It would create a high energy tail above the injection
energy, which would increase the current. In that sense, the simultaneous neglection of
both these effects seems to be beneficial, because they tend to cancel each other (most
efficiently for intermediate beams like Q3 or Q8.

In the future, the above findings could allow a further improvement of the model:
Either a suitable ad-hoc modeling of the above physics can be found, or, if this is not
feasible, one could also think of a correction factor as function of the beam inclination
(based on the observation in fig. 20). This would, however, first require an investigation
of this dependence under a larger variation of plasma parameters.

Electron shielding current

To calculate the current driven by the neutral beams (NBCD), we need to take into
account that a part of the fast-ion current is shielded by electrons following the fast ions.
This is done by a factor ηnbcd such that the driven current is given by jnbcd = ηnbcd · jfi.
Various models and formulas exist for ηnbcd. In RABBIT, we have implemented ηnbcd =
1 − Zfi/Zeff · (1 − L31), where L31 comes from neoclassical transport theory [36, 37]. For
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Figure 21: Ratio between the approximative (eq. 53) and exact (eq. 52) trapped electron
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L31 we use a formula that was obtained by O. Sauter et. al [38, 39] by fitting numerical
results from the CQLP code:

L31 = (1 +
1.4

Z + 1
)X − 1.9

Z + 1
X2 +

0.3

Z + 1
X3 +

0.2

Z + 1
X4 ([38] 14a) (48)

X =
ft

1 + (1− 0.1ft)
√
ν∗e + 0.5(1− ft)ν∗e/Z

([38] 14b) (49)

ν∗e = 6.921 · 10−18 |q|RneZeff ln Λe

T 2
e ε

3/2
([38] 18b with Z = Zeff) (50)

ln Λe = ln

(
1.09 · 1011 Te

Zeff

√
ne/106

)
([38] 18e with additional Zeff dependence)

(51)

In these equations, ne is in m−3, temperatures are in eV, R = (Rmax + Rmin)/2 and
ε = Rmax−Rmin

Rmax+Rmin
is the (local) inverse aspect ratio. The above equations correspond to

the NUBEAM implementation with option nmcurb=4. Differences to the original Sauter
paper [38] are outlined above. The Sauter formulas have been obtained from one-species
calculations, and it is therefore a controversial issue [40], which Z is to be used in eq.
(48) and (49). We follow the NUBEAM implementation (and the original suggestion from
Sauter [39]) and use Z = Zeff in (48) and (49).

Above formulas include the trapped electron fraction ft correction by Lin-Liu [36]
(NUBEAM nmcurb=3) and take, in addition, the collisionality of the electrons ν∗e into
account (which in general increases the electron shielding and thus decreases the current-
drive efficiency).

It should be noted that Hager et al [41] introduce further correction factors γ3i for the
L3i. These corrections are however very small for L31 (|γ31 − 1| / 10−3) such that we
stick with the Sauter formulas for the sake of simplicity.
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The final question to clarify is how we calculate the trapped electron fraction ft. For
a given flux surface, it is defined as:

ft = 1− 3

4

〈
B2
〉 ∫ 1/Bmax

0

λdλ〈√
1− λB

〉 (52)

where the integration dλ and averages 〈〉 are to be taken along the flux surface. This is
a numerically expensive double integral. A very sophisticated estimate can be calculated
from a single integral [42]. For our real-time purposes, we need to simplify further and
use:

ft = 1.4624256 · ε0.5 − 0.46 · ε1.5 (53)

which is also used in e.g. [37, 43] (we use however more decimals for the first term). With
ε = Rmax−Rmin

Rmax+Rmin
≡ ε0, this formula is a good approximation for elliptic flux surfaces in

the zero-pressure limit (i.e. with zero Shafranov shift). In fig. 21, we have compared this
approximation formula (53) with the exact numeric solution (52) for a range of ASDEX
Upgrade equilibria (calculated with the CLISTE code). We find a quite significant over-
estimation of ft which increases with the Shafranov shift. This is essentially a geometric
effect: Due to the Shafranov shift, the low field side of the plasma becomes smaller and
the high field side larger. Thus the trapped particle fraction is reduced, since trapped
particles occur dominantly on the low field side. We have found a heuristic correction, to
take these finite-β effects into account: If we use ε = εeff with:

εeff =
Rmax −R0

R0

(54)

where Rmax is the maximal major radius on the flux surface and R0 the major radius
of the magnetic axis, we obtain a much better agreement to the exact calculation, such
that we have implemented this in RABBIT. For zero β, εeff is equal to the conventional
inverse aspect ratio ε0, while for finite-β, εeff evaluates the minor radius solely on the
low-field-side (i.e. εeff < ε0), which is more relevant for the trapped particle fraction and
therefore leads to a better agreement.

The lower curves of the top row of fig. 19 show a comparison of the driven current
between RABBIT and NUBEAM. We observe the same behavior as with the fast-ion
current - which is very reasonable, since we use the same formulas for the current drive
efficiency as NUBEAM.

8 Treatment of plasma rotation

In this section, we want to describe how toroidal plasma rotation ωtor is included in
the RABBIT model. Plasma rotation affects the fast ions from NBI in various ways.
The beam attenuation is slightly changed, because the relative velocities between beam
neutrals and thermal plasma ions or electrons are changed. This effect has been easily
implemented in our beam-attenuation calculation.

We move now to the rotation effects for slowing down and orbit calculations. The
toroidal plasma rotation motivates to introduce two different frames of reference: The
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lab frame, which is an inertial frame at rest with respect to the torus hall, and a plasma
frame, which rotates along with the plasma. Our analytic solution of the FP equation
(21) does not include any terms with respect to ωtor - therefore this solution must be
evaluated in the plasma frame. In contrast, the NBI injector is located at rest in the lab
frame. This makes necessary a transformation of the birth velocity vector (e.g. of the
injection energy and pitch):

v
(lab)
‖ = v

(plasma)
‖ +Rωtor sgn Ip (55)

v
(lab)
⊥ = v

(plasma)
⊥ (56)

The additional factor containing the sign of the plasma current Ip arises from the fact that
we define the parallel direction with respect to the plasma current, and the direction of
ωtor and Ip with respect to the toroidal angle ϕ. In typical situations, the toroidal plasma
rotation has the same direction as the NBI injection (because it is mainly driven by that).
In that case the injection energy is effectively reduced in the plasma frame (e.g. from 60
keV to 50 keV for strong rotation), which leads to weaker plasma heating, current drive
etc.

In addition, the orbit calculations (necessary for the orbit-average of the source term)
are affected by toroidal plasma rotation. In the lab frame, a given plasma rotation with
velocity vector ~vrot creates a radial electric field ~Er, which can be calculated by solving
the radial force balance equation:

~Er =
∇pα
nαZαe

− ~vrot,α × ~B (57)

For our purposes, we neglect the pressure-gradient term and the possibly different rotation
velocities among different plasma species α and the poloidal plasma rotation. This allows
us to rewrite Er:

~Er = −~vrot × ~B = −ωtor∇ϕ
(∇ϕ)2

× (∇ϕ×∇Ψ + F∇ϕ) = ωtor∇Ψ (58)

with Ψ being the reduced poloidal flux (in Wb/rad). ωtor is assumed to be a flux surface
constant, i.e. a function of Ψ (or ρtor). In guiding-center orbit calculations, ~Er enters
through an additional ~E× ~B-drift term. In terms of the constants of motion, the potential
V = −

∫
ωtordΨ is of relevance: Since ωtor is typically a radial profile, the plasma rotation

creates a radial potential well. Since the total energy (i.e. the sum of kinetic and potential
energy) is a constant of motion, the kinetic energy of an ion may change along an orbit
due to the potential well.

To study this effect, we consider ASDEX Upgrade discharge # 30809 at 4.48s, which
features a rather strong core rotation frequency of 24.2 kHz. Fig. 22 shows the NUBEAM
fast-ion distribution calculated for an off-axis position on the low field side. This case
has only one active NBI source (AUG Q3 with 58.4 keV). There are three beam injec-
tion peaks visible at this plot position: From highest to lowest pitches, they arise from
deposition on the high-field-side, deposition on the low-field-side (at the plot position)
and deposition into a trapped orbit further outside on the low field side. Despite the fact
that the distribution function is given in lab-frame coordinates, only the middle peak is
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Figure 22: Right: Fast-ion distribution function in the presence of NBI Q3, calculated by

NUBEAM. Left: The orbits corresponding to the three visible injection peaks.

located at the nominal injection energy. The ions deposited at the high-field-side have
gained kinetic energy on their orbit to the plot position (because they have been born
at a more central flux surface), and the trapped orbits have lost kinetic energy (we see
them here at the inner leg of their banana).

In RABBIT, we have implemented the orbit-average in the plasma frame. This invokes
a Lorentz-transformation of the electric and magnetic fields. In the non-relativistic limit
(ωtorR� c), only ~E undergoes a transformation:

~E(plasma)
r = ~E(lab)

r + ~v × ~B = 0. (59)

Within our approximations, the Lorentz-transformation exactly cancels out the electric
field in the plasma frame. This is beneficial for the calculation time, since we do not need
an additional ~E× ~B-drift term. However, the fact that the plasma frame is not an inertial
frame gives rise to fictitious forces (namely Coriolis, centrifugal and Euler force). Both
a back-of-the-envelope estimate and a numerical comparison (fig. 23) indicate, however,
that the drifts resulting from these fictitious forces are weak compared to the gradient-B
and curvature drifts and hence can be neglected.

Since we assume that the electric field vanishes in the plasma frame, the potential well
vanishes as well such that the kinetic energy remains constant along ion orbits. We only
need to do one transformation for the birth energy, from the nominal injection energy in
the lab frame to the corresponding energy in the plasma frame at the birth position. This
introduces however a conceptual problem: It gives rise to different birth energies on the
same flux surface, because ions deposited on high or low-field-side may have different birth
energies, and the orbit average introduces a further mixing of different birth locations
onto a given radial cell. In our analytic solution of the FP equation we have, in contrast,
assumed a mono-energetic source. We solve this by taking only the average birth energy
per radial cell into account. In doing that, we assume that the real birth energies show
only a small variation in a radial cell, which can be justified because the gradients of the
rotation profile are small.

To benchmark our treatment of plasma rotation, we choose the time-point 3.48s from
our previous benchmark case (AUG #33856). We set up a simulation run, where all
plasma parameters (including equilibrium) are kept constant to this reference point,
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except for the toroidal plasma rotation. Here, we use the experimentally measured profile
from #30809 at 4.48 s (fig. 24a) and scale it with a time-dependent factor, which starts
from 0 to 2 in several steps (fig. 24b). Increasing time means thus increasing plasma
rotation. Fig. 24c+d show then a comparison of heating powers and fast-ion current. Both
reduce significantly with increasing rotation, because the fast-ion birth energy becomes
lower in the rotating plasma frame. We find excellent agreement with NUBEAM for the
heating powers and reasonable agreement for the fast-ion current.

In the RABBIT calculations of the fast-ion current, a distinct step appears at 3 s when
using our default 20 orbits per energy component for the orbit-average. This step is not
visible in the volume-integrated heating powers. It occurs, because at that time, one of
the 20 orbits switches from passing to trapped (because the plasma rotation lowers the
parallel velocity in the plasma frame). This gives an indication about the uncertainty
introduced by the low number of orbits into the current calculation. In a comparative
RABBIT run with 150 orbits the curves are smooth and the step does not occur, the
overall trend and results however are the same.

9 Fast-ion pressure and correction for speed-diffusion

In this section, we discuss the calculation of the fast-ion pressure and energy density
and perform a comparison with NUBEAM. The energy density is given by the following
distribution function moment:

ε =
1

2
mfi

∫∫
v2f · 2πv2dvdξ (60)

=
mfi

2
· Sτs

6

(
3v2 + v2

c log
(v + vc)

2

v2 − vvc + v2
c

− 2
√

3v2
c arctan

2v − vc√
3vc

)
+ const (61)

and the pressure is given by p = 2
3
ε. The integral is solvable analytically. Fig. 27 shows

a comparison of this calculation (red dashed lines) with NUBEAM (black). The pres-
sure profile shapes agree in general quite well, but in terms of absolute values, there is
a systematic underestimation of about 5% (as seen in the volume-integrated fast-ion en-
ergy). This under-estimation arises from the neglection of the speed-diffusion: It creates
a high-energy tail above the injection energy, which is increasingly important for higher
velocity momenta. Below the injection energy, the effect of the speed diffusion is usually
considered as negligible [32]. We will therefore focus to model only the high energy tail
above the injection energy.

For this purpose, we can ignore the ξ-component (pitch-angle scattering) and consider
only drag A and diffusion D with respect to v. To make the equation analytically better
treatable, we consider constant drag and diffusion rates A and D, evaluated at the injec-
tion energy v = v0. This is justified by the fact that the width of the high energy tail is
supposed to be small compared to the birth velocity v0 and A and D hence vary slowly.
Then, the Fokker-Planck equation reads as:

A
∂f

∂v
+D

∂2f

∂v2
=
∂f

∂t
with: (62)

A =
v3

0 + v3
c

τsv2
0

D =
Tev

3
0 + Tiv

3
c

τsmfiv3
0

(63)
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NBI on-set, as computed by NUBEAM.

In the current version of RABBIT, we neglect the time-dependence of the speed-diffusion
correction, and consider only the steady-state solution. This can be justified, because the
high-energy-tail reaches its steady-state on a faster time-scale than the slowing-down
time. This can be infered e.g. from a NUBEAM calculation (fig. 25) where we compare
the build-up after the NBI-onset of the high-energy-tail (orange curve) with the build-up
of the fast-ion density below the injection energy. We find the solution:

f(v) =
1

2π

Sτs

v3
0 + v3

c

exp
−(v − v0)

vw

(64)

vw = D/A =
Tev

3
0 + Tiv

3
c

v3
0 + v3

c

1

mfiv0

(65)

which has also been obtained by [31, 32].
Equivalently, one can perform a coordinate transformation from speed v to energy E

( ∂
∂v

= mv ∂
∂E

). The differential equation reads then:

AE
∂f

∂E
+DE

∂2f

∂E2
=
∂f

∂t
with: (66)

AE = mfi
E

3/2
0 + E

3/2
c

τs

√
2E0/mfi

DE = mfi
TeE

3/2
0 + TiE

3/2
c

τs

√
2E0/mfi

(67)

which is solved by:

f(v) =
1

2π

Sτs

v3
0 + v3

c

exp
−(v2 − v2

0)

v2
eff

≡ 1

2π

Sτs

E
3/2
0 + E

3/2
c

exp
−(E − E0)

Teff

(68)

v2
eff =

DE/AE
1
2
mfi

=
D/A ·mfiv0

1
2
mfi

=
2

mfi

Tev
3
0 + Tiv

3
c

v3
0 + v3

c

≡ 2Teff

mfi

(69)

This approach is also found e.g. in [44].
In figure 26, we compare both solutions with a NUBEAM calculation, for a ASDEX

Upgrade discharge with Te = 3.2 keV and a particularly high bulk ion temperature of
Ti = 6.9 keV, which leads to a relatively strong high-energy-tail due to speed diffusion.
It can be seen that eq. (68) gives a very good estimate of the slope of the tail, while
the agreement between NUBEAM and eq. (64) is slightly inferior, which is why we have
implemented the former solution.
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.

The integral for the contribution of the high-energy-tail to the fast-ion energy density
can be solved analytically (owing to the assumption of constant drag and diffusion rates):

mfi

2

∫ +∞

v0

v2f · 2πv2dv = (70)

=

(
3

8

√
πv5

eff exp
v2

0

v2
eff

(
1− erf

v0

veff

)
+

3

4
v4

effv0 +
1

2
v2

effv
3
0

)
Sτs

v3
0 + v3

c

mfi

2
≈ (71)

≈
(

3

8

v6
eff

v0

+
3

4
v4

effv0 +
1

2
v2

effv
3
0

)
Sτs

v3
0 + v3

c

mfi

2
(72)

In the last step, we have used the first term of the Taylor approximation of (1− erf x) ≈
e−x

2
( 1√

πx
− 1

2
√
πx3

+ 3
4
√
πx5

+ . . . ) for large x.
For the correction to the fast-ion density we get:∫ +∞

v0

f · 2πv2dv =
v2

eff

4

(
2v0 +

√
πveff exp

v2
0

v2
eff

(
1− erf

v0

veff

))
Sτs

v3
0 + v3

c

≈ (73)

v2
eff

4

(
2v0 +

v2
eff

v0

− v4
eff

2v3
0

+
3v6

eff

4v5
0

)
Sτs

v3
0 + v3

c

(74)

where it is more beneficial to use the first three terms from the Taylor expansion. In
both cases, the considered terms of the expansion are good enough to yield only an error
in the order of 10−3 for a relatively low v0/veff = 2 - we consequently use the Taylor
approximation for higher v0/veff and the exact solution for lower v0/veff.

Fig. 27 shows in green lines the result of this speed-diffusion correction, which is a
significant improvement.

10 Conclusion and outlook

The RABBIT code consists of three parts: In the first part, the beam attenuation and
fast-ion birth profile is calculated. We use a realistic collisional radiative model resolved
for atomic states, which is evaluated in a simplified beam geometry (only along the center-
line of the beam). The effect of finite beam-width is included analytically. In the second
part, the orbit average of the source term is calculated. This is done with a conventional
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Figure 27: Benchmark of fast-ion pressure and energy between RABBIT and NUBEAM.

The correction for speed-diffusion leads to an improved agreement. Upper figure: Compar-

ison of confined fast-ion energy (=volume-integral of the energy density eq. 60). Middle

figure: Ratio of confined fast-ion energy (RABBIT/NUBEAM). Bottom row: Fast-ion pres-

sure profiles at 1.80 s (left, Q2) and 6.10 s (Q7).

Runge-Kutta integrator using arbitrary numerical axisymmetric equilibria. To speed up
the calculation, only a very low number of orbits are calculated (≈ 20 per beam energy
component) and a suitable interpolation is used in between. The third part calculates
the time-dependent solution of the Fokker-Planck equation. Since it is almost purely
analytically calculated, this part is clearly the fastest part, while the other two parts take
approximately 12 ms each. In total, the RABBIT code needs ≈25 ms per time-step and
beam (serial), which is roughly a factor of 1000 faster than NUBEAM. The calculation
time could be further reduced, e.g. by faster hardware, further code optimizations or
higher parallelization. The reported 25 ms have been estimated on an Intel Xeon E5-2680
v3 CPU with 2.5 GHz clockrate, using a parallelizing scheme with one thread per beam.
A higher parallelization could, e.g., be achieved trivially by using one thread per beam
energy component.

A comprehensive benchmark is carried out with the more accurate NUBEAM code,
indicating very good agreements for heating profiles as well as profiles of fast-ion density
and pressure. The fast-ion current density (necessary for neutral-beam current drive
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calculations) is more challenging to calculate. In the considered test-cases, we see typical
deviations in the order of ± 10% between RABBIT and NUBEAM which should still
be acceptable for many applications. The fast-ion current depends directly on v‖ and
thus on the orbital motion during the whole slowing down process. In particular, orbit
topology changes (e.g. due to pitch angle scattering) are supposed to play an important
role, because initially passing ions carry no longer a significant current when they have
become trapped. In a comparison with a Monte-Carlo-based orbit-average (based on a
fully realistic 3D beam deposition calculation by FIDASIM) we could check that these
deviations mainly stem from the concept of orbit-averaging, and not from the further
approximations that RABBIT introduces (namely simplified beam geometry and the
orbit interpolation technique). Finding an ad-hoc correction for this effect remains a
challenging task for the future, but could help to further improve the agreement with
NUBEAM.

Several applications of the code are already in planning. An interface with the dis-
charge control system of ASDEX Upgrade and with the RAPTOR code has already
been started, and it should allow an improved real-time control of the plasma discharges.
Here, the kinetic input profiles will be provided by estimates from RAPTOR, which are
constrained by the real-time diagnostics (when available) and complemented by model-
based estimates. Currently, real-time Te and ne diagnostics are used, and there are plans
to make the charge-exchange diagnostics (Ti and rotation) real-time capable as well. The
plasma equilibrium is reconstructed in real-time by the JANET code [45]. An extension
of these activities and further applications to other tokamaks such as JET, DIII-D and
TCV is planned.

It should be noted that RABBIT is also well suited for non-real-time applications,
where fast models are desired. For example, it can be used for fast intershot analyzes
which are needed to facilitate the decision-making for the next discharge. To this end,
RABBIT is foreseen to be used for accurate equilibrium reconstructions at ASDEX Up-
grade with the IDE code [46, 47], which allow sophisticated estimates of e.g. the safety
factor (q) profile directly after a discharge. This will aid e.g. the development of advanced
scenarios, where a fine-tuning of the q-profile is desired. In addition, RABBIT could also
be used for scenario optimization or reactor design studies, where the short calculation
time will allow large parameter scans.

As outlook, several extensions of the code are possible in the future. The calculation
of neutron rates has already been tested in initial benchmarks on ASDEX Upgrade and
DIII-D. The inclusion of charge-exchange losses could be relevant for smaller machines
such as TCV. In addition, radial transport could be included within our time-dependence
numerical scheme, which could allow to model radial transport, e.g. due to MHD activity
or plasma turbulence.
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