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We experimentally investigate second harmonic generation from strongly coupled localized and propagative
phonon-polariton modes in arrays of silicon carbide nanopillars. Our results clearly demonstrate the hybrid
nature of the system’s eigenmodes and distinct manifestation of strong coupling in the linear and nonlinear
responses. While in linear reflectivity the intensity of the two strongly coupled branches is essentially symmetric
and well explained by their respective localized or propagative components, the second harmonic signal presents
a strong asymmetry. Analyzing it in detail, we reveal the importance of interference effects between the nonlinear
polarization terms originating in the bulk and in the phonon-polariton modes.
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I. INTRODUCTION

Controlled confinement of light in subdiffraction volumes
has always been a key goal in photonics. In this regard, plas-
monic systems provide rich opportunities for manipulation of
light on the nanoscale [1–3]. Recently, an alternative approach
utilizing polar dielectrics operating in the midinfrared (mid-
IR) spectral range has attracted considerable attention [4–14].
The photonic modes of these systems, termed surface phonon
polaritons, exhibit low optical losses due to their relatively
large phonon lifetimes, allowing for higher degrees of energy
concentration and smaller Purcell factors than their plasmonic
counterparts [15]. Conventional methods of probing the field
enhancement include multiphoton effects such as surface-
enhanced Raman scattering, optical rectification, and second
harmonic generation (SHG).

Bearing strong conceptual similarities to nonlinear plas-
monics in metals [16], efficient SHG mediated by localized
and propagating phonon-polariton modes in polar dielectrics
has been reported [17–20]. In contrast to noble metals sup-
porting surface plasmon polaritons, the lack of inversion
symmetry enables bulk SHG in these systems, opening in-
triguing questions about the nonlinear-optical response of
phonon polaritons. In 2016 Gubbin and coworkers observed
strong coupling between phonon-polariton modes localized
in SiC nanopillars and propagative modes sustained on the
substrate surface, giving rise to the two hybrid localized-
propagative polariton branches [8]. While the mechanisms of
SHG enhancement in plasmonic and phononic structures are
reasonably well understood, the nonlinearity of coupled sys-
tems where multiple interacting resonances hybridize remains
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widely unexplored. Previous works on coupled localized and
propagating plasmon modes [21–27] focused on the linear
optical response and its tunability prospects, meaning that
little is known about the nonlinear-optical properties of the
coupled polaritonic modes.

In this paper, we study the nonlinear-optical response of
coupled surface phonon polaritons in arrays of SiC nanopil-
lars. Employing a free-electron laser (FEL) as a powerful,
tunable source of mid-IR radiation, we perform SHG spec-
troscopy on a series of samples with varied array pitch, thus
tuning the surface phonon-polariton resonance. Our results
demonstrate pronounced differences between the spectral re-
flectivity and SHG response at the avoided crossing in the
polariton dispersion. We further outline relevant mechanisms
for the observed SHG spectral behavior and discuss the key
role of the substrate for the disparate optical response of the
coupled modes in the linear and nonlinear domains.

II. EXPERIMENT

We perform spectroscopic measurements in the IR range,
recording both linear reflectivity and SHG from square arrays
of SiC nanopillars (0.8 μm high, 1 μm in diameter) etched on
a 3C-SiC substrate. The fabrication procedure has previously
been described in the literature [8]. The FEL radiation (10 Hz
macropulse repetition rate, 3 ps micropulse duration, 5 cm−1

bandwidth; see Ref. [28]) was tuned through a frequency
range of 750–1050 cm−1 (wavelength of 9–13 μm). The
fundamental p-polarized beam of about 102 W average power
during the macropulse (∼10 μJ micropulse energy) was
focused onto the sample into a spot of about 200 μm in diam-
eter by means of Au spherical mirrors with a focal distance of
about f = 15 cm. The angle of incidence was θ = 62◦ from
the surface normal. The outgoing SHG radiation was collected
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by another 2-inch spherical Au mirror at the 2f distance
and directed onto a liquid-nitrogen-cooled mercury cadmium
telluride detector (Infrared Associates). The long-pass 7 μm
filter (LOT) in the incident beam ensured the suppression of
intrinsic FEL-produced harmonics, whereas the fundamental
frequency was filtered out from the SHG output by means
of a MgF2 plate. The reflected fundamental radiation was
registered by a home-built pyroelectric photodetector.

Localized phonon polaritons are supported in the individ-
ual nanopillars [4,19,29], while propagative surface phonon
polaritons are supported by the SiC substrate [20,30,31]. The
periodicity of the nanopillars enables phase-matched coupling
of far-field, p-polarized radiation with the propagative modes
[32,33] which can hybridize with the localized modes of the
pillars [8,34]. These modes are observed as narrow dips on
the high reststrahlen reflectivity background of the substrate,
as well as pronounced peaks in the SHG spectra due to
strong light localization and enhancement of the electromag-
netic field. Typical spectra shown in Fig. 1(a) were obtained
on a sample with the array pitch d = 5.5 μm. As a few
localized polariton modes observed inside the reststrahlen
band have been analyzed in a number of previous publications
[4,8,19,29], here we directly employ these results to identify
the observed spectral features. The monopole mode appears
at about 865 cm−1, while the frequency of the propagative
phonon polariton (here ≈ 890 cm−1) shifts with the array
pitch. The positions of the features associated with the ex-
citation of surface phonon resonances are indicated with the
dashed vertical lines. Note that at this particular array pitch,
the coupling between the localized and propagative polariton
modes is weak, allowing the observation of the two fundamen-
tal modes in an almost unperturbed regime. In what follows,
we shall focus on those features and do not discuss the dipole
localized surface phonon-polariton modes, as well as the SHG
peaks at the frequencies of the transverse (≈ 790 cm−1) and
longitudinal (≈ 980 cm−1) optical phonons in SiC, which
are the fingerprints of the SiC crystalline symmetry. These
features have been analyzed previously [35,36] and are insen-
sitive to the pitch d of the nanopillar array.

Strong coupling of the polaritonic modes can be observed
if the array pitch enables the excitation of propagating surface
phonon polaritons at a frequency near that of a localized mode
[8]. In particular, this results in significant hybridization of
the propagating phonon polariton with a so-called monopolar
mode [4,29,34] accompanied by the avoided-crossing behav-
ior. To study the strong-coupling regime in detail and map
out the dispersion of the coupled modes in the vicinity of the
avoided crossing, we performed spectroscopic measurements
on a series of arrays with varied pitch d in the range of
5.3–6.6 μm. The reflectivity data [Fig. 1(b)] are in good agree-
ment with the previously published results [8,34], demon-
strating the avoided crossing of the dispersion curves of the
two phonon-polariton modes. As in this work we are mostly
interested in the nonlinear-optical response of the coupled
polaritonic modes, we compare the SHG spatiospectral map
with that in the linear domain. The direct comparison (Fig. 2)
reveals similar behavior of the dispersion of the coupled
modes. Further, the coupling of the propagating surface mode
to the monopolar localized phonon polariton results in notice-
able spectral shifts of the linear extinction and SHG output
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FIG. 1. Strong coupling of a localized surface phonon resonance
(LSPhR) and a propagating surface phonon-polariton (SPhP) mode.
(a) Typical linear reflectivity (red) and SHG intensity (blue) spectra
measured on a nanopillar array with pitch d = 5.5 μm. The vertical
dashed lines indicate the positions of the surface phonon resonances.
The gray box shows the SiC reststrahlen band. Inset: sketch of the
experimental geometry and the excited propagating and monopole
localized polariton modes. (b) Linear reflectivity plots measured on
a series of arrays showing the shift of the resonances with varied
pitch due to the localized-propagative mode coupling.

peaks, demonstrating that the nonlinear emission originates in
the hybrid localized-propagative modes.

Notably, in Fig. 2(b) it is clearly seen that in the SHG
output the low-frequency polariton branch is more strongly
pronounced than the high-frequency one, while in the reflec-
tivity map the two branches are almost symmetric. The latter
means here that along both branches, the reflectivity depth
is the largest at the monopolar localized mode and gradually
decreases upon moving away from it. The difference in the
slopes of the two branches seen here and in Fig. 3(a) originates
in the SiC dispersion and will not be discussed further. To
better understand the difference in the linear reflectivity and
SHG output spectra we analyzed the magnitudes of the SHG
peaks and the reflectivity dips along the dispersion curves
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FIG. 2. False-color experimental spatiospectral maps of (a) lin-
ear reflectivity and (b) SHG intensity measured on a set of arrays of
nanopillars with varied pitches d . The white dashed lines illustrate
the calculated dispersion of the strongly coupled polariton modes.

modified by the strong coupling. In order to do this, for each
pitch d we extracted the reflectivity and SHG data at the
frequencies given by the dispersion of the coupled modes ω±:

ω± = ω1 + ω2 ±
√

(ω1 − ω2)2 + 4g2

2
, (1)

where ω1,2 are the frequencies of the localized and propaga-
tive modes and g is the coupling strength (Rabi frequency).
The results of this procedure are shown in Fig. 3, where the
open and solid symbols refer to the upper (ω+) and lower (ω−)
polariton branches, respectively.

III. DISCUSSION

In Fig. 3(a) we plot the depth of the corresponding dip
in the reflectivity, that is, the difference between the high
reflectance within the reststrahlen band observed on a flat
SiC surface and the respective data point obtained on the
array of nanopillars. This difference is taken at the frequencies
ω± given by the calculated dispersion of the coupled modes
(with g ≈ 16 cm−1), shown in Fig. 2 with white dashed lines.
Each pair of points (consisting of an open symbol and a
solid symbol) in Fig. 3 corresponds to a particular array pitch
d. The pronounced increase of the depth upon approaching
the frequency of the monopolar mode ω1 ≈ 865 cm−1 is
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FIG. 3. Analysis of the coupled polariton modes. Magnitudes
of the (a) reflectivity dip and (b) peak SHG intensity along the
dispersion branches of the strongly coupled polariton modes. The
dashed lines are guides to the eye.

related to the hybrid character of the two coupled modes.
While the monopolar localized mode couples strongly to the
far-field radiation, suboptimal grating conditions mean that
the excitation of the surface phonon polariton with free-space
photons is inefficient. This inequality results in deeper reflec-
tivity dips when a hybrid mode is predominantly monopolar
in character, as can be seen in Fig. 1. The reflectivity dip
depth of the monopolar mode (≈ 865 cm−1) is significantly
larger than the depth at the propagative mode far away from
it. When the detuning of the bare, uncoupled polaritons ap-
proaches zero, their hybridization results in the coupled modes
composed of approximately equal proportions of monopolar
localized and propagative modes, leading to the equilibration
of the depths of the resonances. The slight asymmetry visible
in the reflectivity data [Fig. 3(a)] can be attributed to the upper
polariton (at frequency ω+) engaging in a quasiresonance with
the localized transverse dipolar mode at around 912 cm−1.
The resulting avoided coupling slightly redshifts the upper
polariton branch, leading to the small difference in the slopes
of the two polaritonic modes.
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However, the hybridization between the two disparate po-
lariton modes upon their strong coupling alone cannot account
for the striking asymmetry in the SHG intensity from the
coupled modes. It is seen in Fig. 3(b) that the SHG output
along the lower polariton branch increases upon approaching
the monopolar mode from the low-frequency end, whereas the
upper branch shows the opposite trend. The larger SHG output
of the propagative mode on the high-frequency end of the
spectrum (≈ 900 cm−1) compared to that on the opposite side
(≈ 820 cm−1) originates in the interplay of the dispersion of
the SiC nonlinear susceptibility χ (2) and the effective Fresnel
factors of the electric field, including its polariton-driven en-
hancement [10,36]. The former factor peaks at the transverse
optical phonon resonance at about 780 cm−1, whereas the
latter is responsible for the SHG peak at the longitudinal
optical phonon frequency (≈ 980 cm−1). The characteristic
SHG spectrum shown in Fig. 1(a), consistent with previous
results for SiC SHG spectroscopy [35,36], indicates the higher
importance of the electric field enhancement factor, giving
rise to the steadily increasing SHG background at larger
frequencies in the spectral range of 830–950 cm−1.

IV. MODELING

Summarizing these observations, we note that the SHG
spectrum of the coupled polaritons demonstrates behavior
strikingly disparate from the relatively simple and intuitive
picture obtained in the linear reflectivity measurements. To
understand this difference, we employ a simple model of two
coupled oscillators, giving rise to the SHG signal on top of
the background contribution. For clarity, we neglect the weak
interaction of the propagative polariton with the aforemen-
tioned transverse dipolar localized mode. Within this model,
the resonances can be described by the two Lorentzians:

Lk (ω) = Ak

ω − ωk + iγk

eiϕk , (2)

where k = 1, 2 and ωk , γk , and ϕk are the resonant frequen-
cies, damping rates, and phases of the two modes. Ak are
the effective oscillator strengths of the two modes related to
their excitation efficiency. In our model, ω1 is set constant to
865 cm−1 (to match the monopole mode frequency), while ω2

can be tuned by an external parameter, i.e., the array pitch
d, representing the dispersion of the propagative mode and
its grating-mediated excitation. To simulate the propagative-
monopole mode coupling, we continuously change the control
parameter d so that ω2 sweeps across ω1, and the reso-
nant frequencies of the coupled modes are given by Eq. (1)
[see Fig. 4(a)]. There, the extinction of the electric field E(ω)
is given by the imaginary part of the linear-optical response at
the frequencies ω±:

r (ω±) ∝ Im[L1(ω±) + L2(ω±)], (3)

where the permutation of ω± does not change the result. In
turn, the depth in the experimental reflectivity data is propor-
tional to |r (ω±)|2 [Fig. 4(b)]. Here we neglect the absorption
in the SiC substrate due to its high reflectivity within the
reststrahlen band.
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FIG. 4. Model with two coupled oscillators. (a) Dispersion of the
uncoupled (dashed black lines) and strongly coupled (solid green
lines) modes. Calculated (b) reflectivity dip (solid red lines) and
(c) SHG peak intensity (solid blue lines) along the branches of the
coupled modes. The shaded area in (c) illustrates the line shape
of a localized oscillator. (d) The calculated phase of the nonlinear
polarization P 2ω in the vicinity of the two resonances. The solid
lines in (c) and (d) were calculated with a phase of the complex
background contribution Abg ϕbg = 70◦ with respect to that of the
resonant Lorentzians [Eq. (2)], resembling the experimental obser-
vations. Such agreement cannot be met when Abg is set to have the
same phase as Lk or Abg = 0, as is illustrated by the dashed and
dot-dashed lines, respectively.

In contrast, the SHG response needs to include the back-
ground contribution of the substrate. We can write down the
nonlinear polarization at the double frequency P 2ω created by
the excitation at the fundamental frequency ω in the following
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way:

P 2ω(ω±) ∝ χ
(2)
1 L2

1(ω±) + χ
(2)
2 L2

2(ω±) + Abge
iϕbg . (4)

Here χ
(2)
k are the effective nonlinear-optical susceptibilities

of the two modes, and we have introduced a background
nonlinearity with amplitude Abg and phase ϕbg. The reso-
nant increase of the SHG efficiency is attributed to the the
polariton-induced enhancement of the electric field E ∝ Lk .
For instance, the SHG enhancement at the localized monopo-
lar mode originates in the subdiffractional localization of the
electric field and the prominent increase of its out-of-plane
component Ez [10,19]. The surface-mode-induced SHG is
additionally quenched by the low efficiency of the grating
consisting of the nanopillars, as discussed above. Within our
model, the experimentally observed SHG intensities at the
frequencies of the coupled modes are given by |P 2ω(ω±)|2.

The results of our modeling are summarized in Fig. 4,
nicely resembling our experimental observations. The slight
asymmetry between the two branches in the reflectivity
[Fig. 4(b)] is introduced by the phase shift between the lo-
calized and propagative resonances, �ϕ = ϕ2 − ϕ1. We found
that the degree of asymmetry commensurate with the exper-
imental observations can be obtained for |�ϕ| < 5◦. Taking
into account the simplicity of our model and possible quasires-
onance with the transverse dipolar polariton, we can conclude
on the zero phase shift between the two considered polariton
modes. At the same time, the phase shift between the resonant
and background SHG contributions appears to be crucial for
the asymmetry in the SHG dependence. The antisymmetric
shape seen in Fig. 4(c) can be obtained only when the phase
shift of the complex background contribution Abg with respect
to the resonant Lorentzians |�ϕbg| = |ϕbg − ϕ1,2| is set to
about 90◦. In particular, the results of our calculations shown
with the solid lines in Fig. 4(c) were obtained for �ϕbg ≈ 70◦.

To demonstrate the importance of the phase-shifted back-
ground contribution to the total SHG output in the vicinity of
the strong coupling, in Fig. 4(c) we further plot the shapes
of the resonant SHG yields in the cases when the phase shift
�ϕbg vanishes (dashed lines) and when the background con-
tribution is not taken into account at all (dash-dotted lines). It
is seen that the experimentally observed degree of asymmetry
in the resonant SHG response can be obtained in calculations
only if the background contribution Abg with its own distinct
phase is considered. If either ϕbg or the entire Abg is set to zero,
it is further seen that when |�ϕ| ≈ 0 (as enforced by the linear
reflectivity data), the asymmetry of the two branches of the
coupled resonances is eventually lost, thus ruling out the re-
production of the experimentally achieved SHG behavior. Fig-
ure 4(d) provides additional insight into the nonlinear optics
of the strongly coupled resonances, showing the calculated
phases of the nonlinear polarization P 2ω in these three cases.
The curves in Fig. 4 were calculated for a coupling strength
of g = 15 cm−1, which is in good agreement with the values
found from the analysis of the experimental data [8]. There,
linear reflectivity was recorded in similar nanopillar arrays,
and then the dispersion of the coupled polariton modes was
retrieved from the fits of the reflectivity spectra, indicating
strong coupling of the localized and propagative polaritons in
comparable experimental conditions.

As such, this disparate behavior of the resonant linear
and nonlinear properties is an interesting optical phenomenon
originating in the utter complexity of the nonlinear-optical
response [37,38]. We emphasize that the goal of our mod-
eling was not to accurately reproduce the experimental data
(which would require inclusion of too many fitting param-
eters in the model) but rather to demonstrate how the main
features of the SHG intensity variations in the vicinity of
the coupled resonances, which exhibit behavior drastically
different from that of the linear reflectivity data, can be
relatively simply understood. With the help of our modeling
we found that the interference of the resonantly enhanced
SHG waves with the phase-shifted background contribution
produced by the substrate is a key for the asymmetry be-
tween the two branches of the coupled polaritonic modes.
Importantly, this phase shift is inherent in the polaritonic
nature of the modes: on top of the well-known enhance-
ment of the electric field amplitude, the surface polaritons
(both localized and propagating) are characterized by the
phases of various electric field components. In other words,
the phase shift of the electric fields associated with the
particular surface polariton mode is then imprinted on the
phase of the corresponding nonlinear polarization term P 2ω.
Because our model does not explicitly consider the polariton-
driven electric field enhancement, this effect is instead taken
into account by introducing the effective phases ϕk and sus-
ceptibilities χ

(2)
k . As such, not only the amplitude but also

the phase of the resulting total P 2ω can vary between the
resonant and nonresonant cases, giving rise to the interesting
interference conditions at the strong-coupling resonance.

V. CONCLUSIONS

To summarize, we have analyzed the SHG response of
strongly coupled surface phonon-polariton modes. In partic-
ular, we observed SHG from the normal modes of an array
of SiC nanoresonators, consisting of hybridized localized and
propagating surface phonon polaritons in the SiC reststrahlen
band. The far-field excitation of the polaritons is enabled by
the periodicity of SiC nanopillar arrays with a systematically
varied pitch. In contrast to the linear reflectivity measure-
ments, we found clear antisymmetric behavior of the resonant
SHG output along the two dispersion branches of the coupled
polaritons. Employing a simple coupled oscillator model, we
demonstrated that the disparate symmetry of the linear and
SHG responses can be explained by the interference of the
polariton-induced SHG with the background contribution. We
further argued that the polaritonic enhancement of the electric
fields and their phase shifts are responsible for the partic-
ular interference conditions leading to the experimentally
observed asymmetry. Our results advance the understanding
of the nonlinear nanophononics in the midinfrared spectral
range, while retaining a high degree of generality and thus
remaining valid for, e.g., surface plasmon polaritons in metals.
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APPENDIX: MATHEMATICAL FORMALISM

We begin with a model of two coupled oscillators with
eigenfrequencies ω1,2 and a coupling strength g. There are
multiple ways to obtain the frequencies of the coupled modes
ω±. Here we use a relatively straightforward Hopfield ap-
proach, where in the rotating-wave approximation the Hamil-
tonian H takes the following form [8,39–41]:

H = h̄ω1â
†â + h̄ω2b̂

†b̂ + h̄g(â†b̂ + âb̂†), (A1)

where â† (â) and b̂† (b̂) are the bosonic creation (anni-
hilation) operators for the two uncoupled oscillators. The
coupling strength g is introduced as an effective phenomeno-
logical parameter. The eigenfrequencies of the coupled modes
can be obtained by diagonalizing the Hopfield-Bogoliubov
matrix [8]:

H = h̄

(
ω1 g

g ω2

)
. (A2)

The eigenvalues of this matrix yield the frequencies ω± from
Eq. (1).

Next, we approximate the spectral line shapes of the two
resonances with the Lorentzians from Eq. (2) with their
amplitudes Ak , frequencies ωk , and damping rates γk . Then,
the optical losses due to absorption are intertwined with
the mode excitation efficiency and given by the imaginary
part of the Lorentzians Im L(ω). Assuming weak nonlinear-
optical conversion, the optical absorption at the fundamental
frequency can be represented as a sum of the absorption
coefficients provided by the two modes independently. In the
case of the coupled modes, optical losses (or extinction) at the
eigenfrequencies ω± are thus given by Eq. (3).

In SHG, the nonlinear (second-order) polarization is given
by

P 2ω = χ (2) : EωEω, (A3)

where χ (2) is the nonlinear susceptibility tensor. The excita-
tion of a polariton mode results in a prominent enhancement
of the fundamental electric field Eω, which can be taken into
account in Eq. (A3) by introducing the so-called local field
factors FL. The latter relate the electric fields in the nonlinear
medium Eω from Eq. (A3) to the incident optical fields Eω

inc:

Eω = FLEω
inc. (A4)

Peaking at the resonance frequencies, the line shapes of these
local factors can be modeled with the same Lorentzians as
the optical extinction, FL(ω) ∝ L(ω). An additional phase
shift of the electric fields associated with the polaritonic mode

nature can be incorporated into an effective phase of the
nonlinear polarization, originating primarily in the tensorial
character of the nonlinear susceptibility χ (2). To illustrate it,
we consider a simple example of a propagative polariton at
an isotropic interface. There, three independent nonzero χ (2)

components exist (χ (2)
⊥⊥⊥, χ

(2)
⊥‖‖, and χ

(2)
‖⊥‖). The total nonlinear

polarization is given by the interference of the three respective
terms of χ

(2)
ijkEjEk , and the phases of the electric fields Ej,k

are imprinted on the phase of the respective P 2ω term. Be-
cause it is not practical to introduce the phases and amplitudes
of each χ

(2)
ijk component and each field projection Ej,k , we

instead consider only effective phases and amplitudes.
Employing these effective parameters, for the total nonlin-

ear polarization in the scalar form we can write

P 2ω ∝ χ (2)L2(ω)eiϕ, (A5)

where the effective phase ϕ encompasses both the phase shift
induced by the local field factors and the tensorial phase shift
of the nonlinear susceptibility. In the case of the two coupled
polaritons and the background contribution this equation can
be expanded into Eq. (4). Further, because we are not inter-
ested in the absolute values of the SHG intensity, we can write
the proportionality:

I 2ω ∝ |P 2ω|2. (A6)

Since the total phase of the nonlinear polarization is not regis-
tered in the experiment, the common phase of the three terms
in Eq. (4) can be eliminated, and the number of phase parame-
ters is effectively reduced to two, namely, the phase difference
between the two resonances, �ϕ = ϕ2 − ϕ1, and the relative
phase of the background contribution �ϕbg = ϕbg − ϕ1. Since
the analysis of our experimental results requires �ϕ ≈ 0, in
the definition of the background phase ϕ1 can be substituted
with ϕ2 without the loss of generality.

To obtain the data shown in Fig. 4, we first calculate the
resonant frequencies ω± for each value of the array pitch d

[Fig. 4(a)]. Then, using these values, we calculate the linear
optical losses shown in Fig. 4(b) using Eq. (3) and plot
them against the previously obtained resonant frequencies ω±.
Similarly, we plot the SHG intensity calculated with the help
of Eqs. (4) and (A6) in Fig. 4(c). The importance of the
interference of the resonant SHG field with the background
contribution can be seen in Fig. 4(d), where the phase of
the nonlinear polarization P 2ω from Eq. (4) is shown. In the
absence of the background contribution (Abg = 0, dash-dotted
lines), the phase of P 2ω is opposite on both sides of the
localized polariton resonance. As such, interference with a
phase-shifted background term with a frequency-independent
amplitude results in the enhancement or suppression of the
total SHG yield, in agreement with the experiment.
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