
Double-folding potentials from chiral effective field theory

V. Durant,1, 2, ∗ P. Capel,1, 2, 3, † L. Huth,1, 2, ‡ A. B. Balantekin,4, § and A. Schwenk1, 2, 5, ¶

1Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
2ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
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The determination of nucleus-nucleus potentials is important not only to describe the properties
of the colliding system, but also to extract nuclear-structure information and for modelling nuclear
reactions for astrophysics. We present the first determination of double-folding potentials based
on chiral effective field theory at leading, next-to-leading, and next-to-next-to-leading order. To
this end, we construct new soft local chiral effective field theory interactions. We benchmark this
approach in the 16O–16O system, and present results for cross sections computed for elastic scattering
up to 700 MeV in energy, as well as for the astrophysical S-factor of the fusion reaction.

I. INTRODUCTION

Determining the interaction between two nuclei is a
long-standing and challenging problem [1]. It constitutes
an important input in the modelling of nuclear reac-
tions, which provide key information about the structure
of nuclei and are relevant for processes that take place
in stars. The interaction between two nuclei has been
modelled by phenomenological potentials, e.g., of Woods-
Saxon form, whose parameters are adjusted to reproduce
elastic-scattering data. Numerical potentials have also
been obtained from inversion of scattering data [2]. Al-
beit precise when experimental data exist, these poten-
tials lack predictive behavior and do not have controlled
uncertainties. Alternatively, it has been suggested to con-
struct nucleus-nucleus potentials from the densities of the
colliding nuclei and a given nucleon-nucleon (NN) inter-
action using a double-folding procedure [3]. It is known
that this framework provides more realistic potentials
for the nucleon-nucleus interactions than for the nucleus-
nucleus case [4]. Nevertheless, it constitutes a first-order
approximation to optical potentials derived from Fesh-
bach’s reaction theory [1]. Interesting results have been
obtained in such a way, e.g., by considering zero-range
contact NN interactions [5, 6] or using a G-matrix ap-
proach, see, e.g., Refs. [7, 8] for recent work.

During the last decade, there have been great advances
in nuclear structure and nuclear reactions based on effec-
tive field theories (EFT). For example, chiral EFT has
become the standard method for developing systematic
nuclear forces rooted in the symmetries of quantum chro-
modynamics (see, e.g., Refs. [9–11] for recent reviews).
Efforts have been made to derive nucleon-nucleus optical
potentials using chiral EFT interactions from many-body
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perturbation theory [12, 13] and self-consistent Green’s
function calculations [14, 15]. In this work, we focus on
the derivation of nucleus-nucleus potentials from chiral
NN interactions and nucleonic densities. In particular,
we use local chiral EFT interactions [16–22], because this
simplifies the double-folding calculation.

In this first study, we explore and test this idea for
16O–16O reactions, comparing our calculations to elastic-
scattering [23–30] and fusion data [31–35]. For this sys-
tem, phenomenological Woods-Saxon potentials [30] and
potentials obtained through inversion techniques [36, 37]
also exist. We show that the double-folding potential
and the reaction observables exhibit an order-by-order
behavior expected in EFT and observe that, for soft po-
tentials, our calculations have only a weak dependence
on the regularization scale. The comparison of our re-
sults with experiment leads us to suggest various direc-
tions for improvements for constructing nucleus-nucleus
potentials from chiral EFT interactions with the double-
folding method.

This paper is organized as follows. We start with a
brief review of the formalism for the double-folding po-
tential in the following section. In Sec. III, we discuss
local chiral EFT interactions and the construction of new
soft local chiral NN potentials. We then determine the
double-folding potentials at different chiral orders and
apply these to 16O–16O elastic scattering in Sec. IV and
to the S-factor for 16O+16O fusion in Sec. V. Finally, we
summarize and give an outlook in Sec. VI.

II. DOUBLE-FOLDING POTENTIAL:
FORMALISM

We consider the potential between nucleus 1 (with
atomic and mass numbers Z1 andA1) and nucleus 2 (with
Z2 and A2). In the double-folding formalism, the nuclear
part of the nucleus-nucleus potential VF = VD + VEx can
be constructed from a given NN interaction v by dou-
ble folding over the densities in the direct (D) channel
and the density matrices in the exchange (Ex) channel.
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FIG. 1. Coordinates of the nuclei involved in the double-
folding calculation.

The review of the formalism for the double-folding po-
tential in this section follows Ref. [7]. We will include
only NN interactions here and leave the investigation of
many-body contributions to future work.

In the direct channel, the double-folding potential is
calculated by integrating the NN interaction over the
neutron (n) and proton (p) density distributions ρn,p1 and
ρn,p2 of the colliding nuclei,

VD(r) =
∑

i,j=n,p

∫ ∫
ρi1(r1) vijD (s) ρj2(r2) d3r1d

3r2 , (1)

where r is the relative coordinate between the center of
mass of the nuclei, r1 and r2 are the coordinates from
the center of mass of each nucleus, s = r − r1 + r2 (the
geometry is shown in Fig. 1), and the sum i, j is over
neutrons and protons with their respective densities.

To account for the antisymmetrization between nucle-
ons, the double-folding potential receives contributions
also from the exchange channel,

VEx(r, Ecm) =
∑

i,j=n,p

∫ ∫
ρi1(r1, r1 + s) vijEx(s)

× ρj2(r2, r2 − s) exp

[
ik(r) · s
µ/mN

]
d3r1d

3r2 , (2)

where µ = mNA1A2/(A1+A2) is the reduced mass of the
colliding nuclei (with mN the nucleon mass) and the inte-
gral is over the density matrices ρi(r, r± s) of the nuclei.
In the exchange channel, there is an additional phase that
renders the double-folding potential dependent on the en-
ergy Ecm in the center-of-mass system. The momentum
for the nucleus-nucleus relative motion k is related to
Ecm, the nuclear part of the double-folding potential, and
the double-folding Coulomb potential VCoul through

k2(r) = 2µ
[
Ecm − VF(r, Ecm)− VCoul(r)

]
. (3)

As a result, VEx has to be determined self-consistently.
Note that at our level of calculation the double-folding
potential, VF = VD + VEx, is real. The density matrices
entering in Eq. (2) are approximated using the density
matrix expansion [38] restricted to its leading term,

ρi(r, r± s) =
3

s kiF(R)
j1
(
s kiF(R)

)
ρi(R) , (4)

where R = r ± s/2, j1 is a spherical Bessel function
of the first kind, and we take the effective local Fermi
momentum, which is an arbitrary scale in the density-
matrix expansion, as in Ref. [7]:

kiF =

[
(3π2ρi)2/3 +

5(∇ρi)2

12(ρi)2
+

5∇2ρi

36ρi

]1/2

. (5)

In the case of spherical nuclei, the densities and the ef-
fective local Fermi momenta depend only on the distance
from the center of mass of the nucleus (ri or R).

For doubly closed-shell nuclei, the NN interaction en-
tering the double-folding potential in the direct and ex-
change channels, vD and vEx, respectively, at this level re-
ceive contributions only from the central parts of nuclear
forces. Then also the NN interaction and the double-
folding potentials depend only on the relative distance
(s or r). Writing the NN interaction in terms of their
two-body spin-isospin components, vST , and distinguish-
ing between proton-proton (pp), proton-neutron (pn, np),
and neutron-neutron (nn) interactions, vD and vEx read

vpp,nnD,Ex (s) =
1

4

[
v01(s)± 3v11(s)

]
, (6)

vpn,npD,Ex (s) =
1

8

[
±v00(s) + v01(s) + 3v10(s)± 3v11(s)

]
,

(7)

where the upper (lower) signs refer to the direct (ex-
change) term and we have neglected the small isospin-
symmetry-breaking corrections to v.

The densities of the colliding nuclei are an important
input for the calculation of the double-folding potential.
In this first study based on chiral EFT interactions, we
adopt the two-parameter Fermi distributions provided
by the São Paulo group [5] for the proton and neutron
densities, whose parameters were fitted to Dirac-Hartree-
Bogoliubov calculations

ρp,n(r) =
ρ0

1 + exp
(
r−Rp,n

ap,n

) , (8)

where ρ0 = 0.091 fm−3 and the radii Rp,n and diffuse-
nesses ap,n depend on the proton and neutron numbers
of the nucleus. Expressed in fm, they are given by

Rp = 1.81Z1/3 − 1.12 , ap = 0.47− 0.00083Z , (9)

Rn = 1.49N1/3 − 0.79 , an = 0.47 + 0.00046N . (10)

III. LOCAL CHIRAL EFT INTERACTIONS

A. Nucleon-nucleon potentials

Chiral EFT provides a systematic expansion for nu-
clear forces using nucleons and pions as degrees of free-
dom, which is connected to the underlying theory of
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TABLE I. Low-energy constants (LECs) for the soft cutoffs
R0 = 1.4 fm and 1.6 fm at LO, NLO and N2LO. In the last
row, the deuteron binding energy Ed, not used to constrain
the LECs, is given in MeV; its experimental value is Ed =
2.224 MeV. The LO LECs CS and CT are given in fm2, the
others are in fm4.

R0 [fm] 1.4 fm 1.6 fm

LO NLO N2LO LO NLO N2LO

CS −2.675 −0.480 1.331 −3.590 −0.988 0.538

CT −0.021 0.723 0.363 −0.188 0.660 0.495

C1 0.124 −0.104 −0.098 −0.206

C2 0.302 0.188 0.393 0.368

C3 −0.224 −0.217 −0.311 −0.278

C4 0.192 0.166 0.312 0.267

C5 −2.268 −2.083 −2.416 −2.282

C6 0.471 0.355 0.603 0.536

C7 −0.578 −0.529 −0.798 −0.790

Ed 1.886 2.151 2.193 2.043 2.147 2.178

quantum chromodynamics [9, 10]. The different contri-
butions to NN and many-nucleon interactions are or-
dered according to a power counting scheme in powers
of (Q/Λb)

ν , where Q is a typical momentum or the pion
mass and Λb the breakdown scale of the theory of the
order of 500 MeV. This leads to a hierarchy of two- and
many-nucleon interactions, with NN interactions start-
ing at leading order (LO, ν = 0) followed by a contri-
bution at next-to-leading order (NLO, ν = 2), whereas
three-nucleon interactions enter at next-to-next-to lead-
ing order (N2LO, ν = 3).

Because they facilitate the calculation of double-
folding potentials, we use local chiral NN interactions,
developed initially in Refs. [16, 17], but construct new
soft NN interactions up to N2LO. As in these references,
the long- and short-range parts of the interaction are reg-
ularized by

flong(r) = 1− e−(r/R0)4 and fshort(r) =
e−(r/R0)4

πΓ(3/4)R3
0

,

(11)
where R0 is the coordinate-space cutoff in the NN po-
tentials used. The long-range regulator is designed to re-
move the singularity at r = 0 in the pion exchanges, while
it preserves its properties at large distances. The short-
range regulator smears out the NN contact interactions.
A second cutoff Λ̃ is used in the spectral-function regu-
larization of the two-pion exchange, which enters first at
NLO. In Refs. [16, 17] it was shown that the calculations

are practically insensitive to Λ̃ for local interactions; in
the present work, we consider Λ̃ = 1000 MeV.

As it turns out, the available local interactions from
Refs. [16, 17] with R0 = 1.0 fm and 1.1 fm are too
hard (see also Ref. [40]) and, thus, not suitable for cal-
culations of a nucleus-nucleus potential at the simple
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FIG. 2. Phase shifts for R0 = 1.4 fm in different partial
waves as a function of laboratory energy. Results are shown
for the LO (blue), NLO (red), and N2LO (grey) interactions
compared to the Nijmegen partial wave analysis (PWA) [39].
The bands at each order give the theoretical uncertainty as
discussed in the text.

“Hartree-Fock” level1 considered here, because the re-
sulting double-folding potentials are repulsive. Addi-
tional NN attraction coming from beyond Hartree-Fock
many-body contributions would solve this behavior of the
resulting double-folding potentials. To perform calcula-
tions at the Hartree-Fock level, we can only use the ex-
isting interaction with R0 = 1.2 fm. In order to estimate
the impact of the regulator, we construct softer interac-
tions with cutoffs R0 = 1.4 fm and 1.6 fm. We deter-
mine the low-energy constants (LECs) by fitting to the
np phase shifts from the Nijmegen partial wave analysis

1 The double-folding potential is calculated at the Hartree-Fock
level, but using phenomenological densities, which would other-
wise be deficient, when taking them from a Hartree-Fock calcu-
lation based on NN interactions.
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(PWA) [39]. To this end, we minimize the following χ2

χ2 =
∑
i

(δPWA
i − δtheo

i )2

∆δ2
i

, (12)

computed from the squared difference between the PWA
phase shifts and the calculated ones. The uncertainty
∆δ2

i is obtained from the PWA, a model uncertainty, and
a numerical error:

∆δ2
i = (∆δPWA

i )2 + (∆δmod
i )2 + (∆δnum

i )2 . (13)

For the model uncertainty we use a relative uncertainty
multiplied with a constant value [22, 41],

∆δmodel, LO
i =

(
Q

Λb

)2

C , (14)

∆δmodel, ν
i =

(
Q

Λb

)ν+1

C , (15)

where Q = max(mπ, p =
√
Elab
i mN/2) and C = 1◦.

For both cutoffs (R0 = 1.4 fm and 1.6 fm), we take
Λb = 400 MeV, which also roughly corresponds to a
coordinate-space cutoff R0 = 1.4 fm to get a more con-
servative uncertainty estimate.

Our interactions are fit up to laboratory energies of
50 MeV at LO and up to 150 MeV at NLO and N2LO.
In particular, we consider the energies 1, 5, 10, 25, 50,
100, and 150 MeV. The LO interaction is fit to the two S-
wave channels, while the NLO and N2LO interactions are
also constrained by the four P -waves and the 3S1–3D1

mixing angle ε1. The LECs and the deuteron binding
energy obtained for each interaction are given in Table I.
All other inputs and conventions for these softer local
chiral NN potentials are as in Refs. [16, 17]. The phase
shifts for R0 = 1.4 fm are shown in Fig. 2; we find similar
results with R0 = 1.6 fm. The phase shift reproduction
here is comparable to the interactions from Refs. [16, 17].

B. Double-folding potential

To apply the double-folding method using local chiral
NN interactions, we consider the 16O–16O system, where
there are ample sets of data to which we can compare our
calculations. Elastic scattering has been accurately mea-
sured at various energies [23–30] and these data sets have
been precisely analyzed with phenomenological optical
potentials [30, 42] or using inversion techniques [36, 37].
This enables us to compare our results with state-of-the-
art phenomenological calculations. At lower energy, the
fusion of two 16O nuclei [31–35] is another observable
with which we can test our double-folding potential. In
this section, we present results for the double-folding po-
tential computed at different energies and we illustrate its
order-by-order behavior and the sensitivity to the cutoff
scale.
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FIG. 3. Direct (upper panel) and exchange (lower panel)
contributions to the double-folding potential for the 16O–16O
system based on the local chiral EFT interaction at N2LO
with R0 = 1.4 fm. The direct contribution is energy inde-
pendent and we show results for different laboratory energies,
Elab, in the exchange channel.
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FIG. 4. Double-folding potential for the 16O–16O system at
Elab = 350 MeV. The results obtained at LO, NLO, and
N2LO (for R0 = 1.4 fm) illustrate the order-by-order behav-
ior, while the shaded area at N2LO shows the sensitivity to
the cutoff for R0 = 1.2, 1.4, and 1.6 fm.

Figure 3 shows the direct (upper panel) and exchange
(lower panel) contributions to the double-folding po-
tential based on the local chiral N2LO potential with
R0 = 1.4 fm. Since the NN interaction is energy in-
dependent, the direct contribution of the double-folding
potential is also energy independent [see Eq. (1)]. The
exchange contribution given by Eq. (2), however, includes
an energy dependence through the relative momentum k
in the exponential factor [see Eq. (3)]. The shape of this
exchange contribution does not vary significantly with
energy, but its attractive strength decreases with increas-
ing energy, which can be understood by the increasing
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variation of the exponential factor.
The final double-folding potential computed at dif-

ferent orders and with different cutoffs is displayed for
Elab = 350 MeV in Fig. 4. The order-by-order behavior is
similar to what is observed in Fig. 2. As explained before,
lower cutoffs (R0 < 1.2 fm) provide harder NN interac-
tions, which lead to repulsive double-folding potentials at
LO and NLO. These interactions require the additional
attraction expected to come from many-body contribu-
tions beyond the simple Hartree-Fock level considered
here. At N2LO, the calculations have been performed
with three different NN cutoffs: R0 = 1.2 fm (dotted
line), 1.4 fm (solid line), and 1.6 fm (dashed line); the
lowest cutoff providing the less attractive potential. It is
interesting to notice that the sensitivity to the NN cutoff
R0 decreases at larger distance, where all three N2LO po-
tentials present nearly identical asymptotics. The range
of the regularization cutoff, R0, highlighted by the shaded
band in Fig. 4, will allow us to gauge the level of details
needed in NN interactions to reproduce the physical ob-
servables in nucleus-nucleus reactions.

IV. ELASTIC SCATTERING

The elastic scattering of medium to heavy nuclei can
be described within the optical model. In that model,
the nuclear part of the interaction between the collid-
ing nuclei is described by a complex potential. Roughly
speaking, the real part corresponds to the attractive in-
teraction between the nuclei, whereas the imaginary part
simulates the absorption of the incoming channel to other
open channels, such as inelastic scattering or transfer.
Double-folding potentials are often used for the real part
of the optical potential. In this first study, we follow the
São Paulo group and assume the imaginary part of the
optical potential UF to be proportional to its real part [6]

UF(r, Ecm) = (1 + iNW )VF(r, Ecm) , (16)

where VF is our double-folding potential and NW is a real
coefficient taken in the range 0.6–0.8.

The cross section for 16O–16O elastic scattering for lab-
oratory energy Elab = 350 MeV is shown in Fig. 5 as a
ratio to the Mott cross section. In these calculations,
we take for the imaginary part NW = 0.8, whereas we
study the sensitivity to NW later. Note that since 16O
is a spinless boson, the wave function for the 16O–16O
relative motion needs to be properly symmetrized.

As in Figs. 2 and 4, we observe a systematic order-
by-order behavior. The uncertainty related to the cutoff
choice at N2LO (shaded area) is similar to that observed
in the double-folding potential itself (see Fig. 4). At for-
ward angles, i.e., up to 10◦, the agreement of our cal-
culations with experiment is excellent, knowing in par-
ticular that there are no parameters fitted to reproduce
the data. At larger angles this agreement deteriorates.
Since the spread observed in the NN cutoff band remains
small even at larger angles, this discrepancy cannot be
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FIG. 5. Ratio of the cross section for elastic 16O–16O scatter-
ing to the Mott cross section for laboratory energy Elab =
350 MeV. Results are shown at LO, NLO, and N2LO for
R0 = 1.4 fm, and the sensitivity to R0 = 1.2–1.6 fm is il-
lustrated at N2LO by the shaded area. In all cases, we take
for the imaginary part NW = 0.8 [see Eq. (16)]. The results
are compared to experimental data from Ref. [24].

fully explained by the detail of the NN interactions con-
sidered. It is likely due to the simple Hartree-Fock level
of the many-body calculation or to the choice of the 16O
density, which could be improved. In addition, it could
also reflect the simple description of the imaginary part.
The elastic scattering cross sections computed at vari-
ous laboratory energies between 124 and 704 MeV are
displayed in Fig. 6 as a ratio to the Mott cross section.
To compare the calculations performed at different en-
ergies, we plot them as a function of the momentum
transfer q. The bands are delimited by results for the
range NW = 0.6 − 0.8. Results generated by the cutoffs
R0 = 1.2 fm, 1.4 fm, and 1.6 fm are displayed in red, blue,
and green, respectively. We find that the cutoff variation
is less relevant than the impact of the imaginary part
coefficient NW . As in Fig. 5, we observe a general agree-
ment between our calculations and the data, especially
at forward angles. At larger momentum transfer, the
agreement is less good, although the experimental points
remain close to the spread obtained for the NW range.
This confirms that going beyond the simple description
of the imaginary part could improve our calculations.

For comparison, we also show the cross sections com-
puted with the phenomenological optical potential devel-
oped by Khoa et al. [30] (dotted line in Fig. 6). This po-
tential, containing nine adjustable parameters that are
modified at each energy, provides a near-perfect repro-
duction of the data. Given that we do not include any
adjustable parameter to fit the data, our results with the
double-folding potential based on chiral EFT interactions
are therefore very encouraging.
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transfer q for various laboratory energies (the different en-
ergy results are offset by a factor as indicated). Results are
shown at N2LO for R0 = 1.2 fm (red), 1.4 fm (blue), and
1.6 fm (green). For these cutoffs, the region between the re-
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upper line is shown as a dashed line. For comparison, we also
show the optical-potential results of Khoa et al. [30] and the
experimental data from Refs. [24, 26–30].

V. FUSION REACTIONS

The 16O+16O fusion reaction is another test for our
double-folding potential. This cross section σfus has been
measured at low energies to study the role of intermediate
resonances during fusion [31, 32] and because this reac-
tion takes place in medium- to heavy-mass stars [32–35].
Oxygen fusion is crucial in medium-mass nuclei burning
chains, which provide the seeds to the synthesis of heavy
elements. At low energy, the reaction takes place through
quantum tunneling of the effective potential barrier that
results from the combination of the attractive strong in-
teraction, the repulsive Coulomb interaction, and the
centrifugal term of the kinetic energy:

Veff(r, Ecm) = VF(r, Ecm) + VCoul(r) +
l(l + 1)

2µr2
. (17)

Since the fusion reaction takes place at very low ener-
gies and involves light spherical nuclei, we take the (real)
double-folding potential as the nuclear interaction for this
reaction [43]. For light systems like 16O+16O, the fusion
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Results are shown at LO, NLO, and N2LO for R0 = 1.4 fm,
and the sensitivity to R0 = 1.2–1.6 fm at N2LO is illustrated
by the shaded area. The results are compared to experimental
data from Refs. [31–35].

barrier is at around 9 fm, well before the neck formation,
which justifies the use of the double-folding procedure.
For the code used in the computation of the fusion cross
section, we approximate the Coulomb interaction by a
sphere-sphere potential of radius RC = 2× 4.39 fm [44].
We do not expect this change from the double-folding
Coulomb term used in Eq. (3) to affect significantly our
results.

The fusion cross section of 16O+16O can be obtained
from the probability Pl to tunnel through the barrier in
each of the partial waves [43]

σfus(Ecm) =
π

k2

∑
l

(1 + (−1)l)(2l + 1)Pl(Ecm) . (18)

The probabilities Pl are determined using the incoming-
wave boundary condition detailed in Ref. [43] and imple-
mented in the code CCFULL [45], in which we have in-
cluded the effects of the symmetrization of the wave func-
tion for the fusing nuclei being identical spinless bosons.

At low energy, the fusion process is strongly hindered
by the Coulomb repulsion. This effect is well accounted
for by the Gamow factor, which is usually factorized out
of the cross section to define the astrophysical S factor

S(Ecm) = Ecm e2πη σfus(Ecm) , (19)

where the Sommerfeld parameter is given by η =
Z1Z2e

2/(4πε0v), with v the relative velocity between the
two nuclei.

The S factor obtained at LO, NLO, and N2LO for
R0 = 1.4 fm and with different cutoffs R0 at N2LO is
displayed in Fig. 7. Given the very weak energy depen-
dence of the double-folding potential observed at the rel-
evant energies, VEx is taken at the center of the energy
range, Ecm = 12 MeV. We have tested that taking a



7

different energy in this range leads to indistinguishable
results from those in Fig. 7. It is interesting to note that,
due to the nearly cutoff-independent asymptotic behav-
ior of the nuclear folding potential, the spread between
the results obtained with different values of R0 is small
around the Coulomb barrier. This leads to results at
N2LO in Fig. 7 that are closer than what Fig. 4 would
suggest. Note also that the less attractive potentials (at
NLO with R0 = 1.4 fm, and N2LO with R0 = 1.2 fm)
naturally lead to the lowest fusion cross sections. The
general agreement with the data is good, recalling that
there is no fitting parameter. As for elastic scattering,
we observe that the sensitivity to the details in the NN
interaction shown by the shaded area can only partially
explain the discrepancy with experiment. In future work,
we will explore how a better many-body calculation of
the double-folding potential and more realistic densities
of the fusing nuclei may improve this agreement.

VI. SUMMARY AND OUTLOOK

We have presented a first study of constructing
nucleus-nucleus potentials from local chiral NN inter-
actions [16, 17, 22] using the double-folding method ap-
plied to the 16O–16O system. Our results show that for
soft cutoffs, R0 & 1.4 fm, the resulting double-folding
potential exhibits a systematic order-by-order behavior
expected in EFT and a weak cutoff dependence on the
details of the NN interactions used. These features carry
through to the elastic scattering cross section and the S-
factor for the fusion reaction.

We have focused on the 16O–16O reactions, because
these have been accurately measured and are well stud-
ied theoretically [23–35, 42]. In all cases, a good agree-
ment with the data has been obtained without any fitting
parameter. Our results thus suggest that the idea to de-
rive nucleus-nucleus potentials using the double-folding
method based on local chiral EFT interactions is very
promising.

We consider this a first step in a more fundamental
description of nucleus-nucleus potentials, but there are
several directions how the calculations can be improved,
both at the level of the input interactions and the many-
body folding method. First, the influence of the nu-
cleon density of the colliding nuclei needs to be evalu-

ated. This can be done by using more realistic densities,
such as those obtained from electron-scattering measure-
ments or accurate nuclear-structure models. Second, we
need to refine the imaginary part of the potential. As-
suming it to be proportional to the double-folding po-
tential provides a first estimate, but it is clear that this
can be improved. Comparisons with phenomenological
potentials [30] and potentials built from inversion tech-
niques [36, 37] can also provide tests towards more realis-
tic prescriptions. In a calculation beyond Hartree-Fock,
an imaginary part as well as nonlocal contributions would
arise (see, e.g., Refs. [46, 47]). Moreover, going beyond
the level of the density-matrix expansion considered here,
there will be gradient corrections [38] (i.e., surface terms)
to the double-folding potential. Finally three-nucleon in-
teractions need to be investigated in this approach, as
they also enter at N2LO.

In conclusion, coupling chiral EFT interactions with
the double-folding method provides nucleus-nucleus po-
tentials that lead to very encouraging agreement with
elastic-scattering and fusion data in a broad range of en-
ergies. This idea is thus a promising first step towards
the construction of microscopic optical potentials from
first principles with control over uncertainty estimates.
Through the above future developments, we hope to im-
prove this new method to obtain a systematic way to
build efficient optical potentials for nuclear reactions.
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