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Energy transfer and correlations in 
cavity-embedded donor-acceptor 
configurations
Michael Reitz, Francesca Mineo & Claudiu Genes

The rate of energy transfer in donor-acceptor systems can be manipulated via the common interaction 
with the confined electromagnetic modes of a micro-cavity. We analyze the competition between the 
near-field short range dipole-dipole energy exchange processes and the cavity mediated long-range 
interactions in a simplified model consisting of effective two-level quantum emitters that could be 
relevant for molecules in experiments under cryogenic conditions. We find that free-space collective 
incoherent interactions, typically associated with sub- and superradiance, can modify the traditional 
resonant energy transfer scaling with distance. The same holds true for cavity-mediated collective 
incoherent interactions in a weak-coupling but strong-cooperativity regime. In the strong coupling 
regime, we elucidate the effect of pumping into cavity polaritons and analytically identify an optimal 
energy flow regime characterized by equal donor/acceptor Hopfield coefficients in the middle polariton. 
Finally we quantify the build-up of quantum correlations in the donor-acceptor system via the two-qubit 
concurrence as a measure of entanglement.

Resonant energy transfer between light sensitive molecules is a near field effect occurring at separations d much 
smaller than an optical wavelength, via a virtual photon exchange1–3. In a standard picture, one considers a 
scenario where the zero-phonon electronic vibrational excited state of a light-absorbing molecule (the donor) 
lies far above the zero-phonon electronic vibrational excited state of the energy accepting molecule (the accep-
tor). In light-harvesting systems, under high-temperature conditions, energy transfer between incoherently 
pumped donor states and the excited vibrational manifold of the acceptor takes place mediated by the inherent 
dipole-dipole interactions (scaling as 1/d3). The process is unidirectional as a resonant virtual exchange of pho-
tons is followed by a high-rate incoherent non-radiative relaxation to the zero-phonon excited state of the accep-
tor. This quantifies a resonant Förster energy transfer rate proportional to 1/d6, that can be seen as arising from 
the overlap integral between the emission spectrum of the donor and the absorption spectrum of the acceptor1.

Controlled experiments under cryogenic conditions provide an alternative platform for the detailed descrip-
tion and manipulation of such effects4. We focus in this manuscript on scenarios where coherent or incoherent 
pumping of the zero-phonon line of a donor molecule is followed by energy exchange with an acceptor control-
lably detuned with frequency differences much smaller than vibrational separations. This justifies a three level 
system model for interacting quantum emitters where two vibrational states of the ground state vibrational man-
ifold are considered, coupled by non-radiative rates much larger than the radiative ones. Our aim is twofold: i) to 
investigate the effect of collective dynamics of vacuum-coupled quantum emitters (exhibiting subradiance and 
superradiance) on the energy flow and ii) to analyze the role of cavity-mediated processes in the energy transfer 
process.

The investigations are triggered by recent experimental results5,6 carried out in microcavity settings albeit in a 
different regime; in these experiments organic molecules are collectively and strongly coupled to highly confined 
optical modes either in microcavities or near plasmonic structures. It has been unveiled that some material prop-
erties involving the interaction of light and matter can be strongly modified by the reach of the strong coupling 
regime as occurring for example in cavity quantum electrodynamics. Examples are: charge and energy transport 
enhancement in organic semiconductors7–11, cavity quantum chemistry showing reaction rate slow-downs or 
modifications of molecular bond lengths12–17, etc. The process of Förster energy transfer has been tackled as well 
in experiments showing a vacuum-induced enhancement of the transfer for donor-acceptor molecular layers 
inside an optical microcavity5,6,18. While initial experiments have shown a competition between free space and 

Max Planck Institute for the Science of Light, Staudtstraße 2, D-91058, Erlangen, Germany. Correspondence and 
requests for materials should be addressed to C.G. (email: claudiu.genes@mpl.mpg.de)

Received: 12 February 2018

Accepted: 31 May 2018

Published: xx xx xxxx

OPEN

mailto:claudiu.genes@mpl.mpg.de


www.nature.com/scientificreports/

2Scientific REPORts |  (2018) 8:9050  | DOI:10.1038/s41598-018-27396-z

cavity induced effects5, a follow-up treatment involving spatially distant donor-acceptor layers has revealed a 
purely cavity induced energy transfer of high efficiency6. Theoretical considerations suggest that non-radiative 
processes that can couple light-matter polaritons especially in a dissipative fashion can play a role in the modifi-
cation of the energy transfer19–21. The fundamental mechanism of energy transfer mediated by strongly confined 
light modes has also been experimentally tackled in nano-optical systems such as between two nanoemitters 
attached to microspheres22. Moreover, high finesse microcavities promise the reach of strong coupling at the sin-
gle particle level and allow for a purely microscopic and controllable study of energy transfer between quantum 
emitter-like systems23.

In the free space scenario, we quantify the energy flow J [see Fig. 1] as a function of particle-particle distance 
and find that the inherent collective decay accompanying dipole-dipole interactions can lead to enhancement of 
the energy flow and even its sign reversal. Such effects are strictly brought on by the access to subradiant states 
which allows increased population accumulation for constant pump strength. We also analyze energy flow and 
donor-acceptor entanglement (quantified via the quantum concurrence measure) to reveal that generally the two 
quantities are not connected and even mutually exclusive under certain conditions. As our analytical treatment is 
restricted by the assumption of weak excitations, one can show that the set of equations we analyze are perfectly 
classical. A classical approach therefore suffices to characterize the energy transfer process24; however, this forbids 
entanglement which occurs when departing from the classical description including higher particle-particle cor-
relations (non-factorizable products of operators). While concurrence is present in the system, the occurrence of 
entanglement does not affect in any way the energy transfer rates either in free space or cavity settings. We then 
extend results obtained in free space to reveal effects of cavity subradiance and superradiance onto energy flow 
under strong cooperativity but weak coupling conditions. Under such conditions, a leaky cavity field can enlarge 
the emission and absorption spectra of the donor and acceptor and lead to an increase in the direct rate J. In the 
opposite case where a good cavity leads to the occurrence of polaritons (strong coupling conditions), we analyze 
optimal strategies for enhancing the long-distance cavity mediated transfer JA. We analytically derive the posi-
tioning of the cavity resonance with respect to the donor/acceptor resonances for optimal transfer: this occurs at 
the intersection of donor/acceptor Hopfield coefficients in the middle cavity polariton.

Model - We consider two types of molecules (donor-type D and acceptor-type A) with states |gD,A〉 and |eD,A〉, 
standing for ground and excited states respectively. The electronic transition frequencies are ωD,A with Δ = ωD − ωA. 
The relaxation rates are γ (for the zero-phonon line) and γ′ (for any other radiative transitions from the excited state) 
and γnr for quick phononic relaxation of the ground state vibrations. For small separations λd D A, , where 
λD,A = 2πc/ωD,A, two molecules interact via near-field effects where virtual photon emission-absorption processes 
amount to both coherent and incoherent interactions25. The coherent interaction consists of an effective 
dipole-dipole exchange quantified by the energy shift Ω (see Methods for exact expression) that takes into account 
the separation and the orientation of dipoles with respect to the interparticle axis25. The incoherent interaction is 
quantified by a mutual decay rate γ  responsible for sub-and superradiant behavior of symmetric and asymmetric 
hybrid states of the two-molecule system25. Both Ω and γ  are proportional to the zero-phonon line radiative rate γ 
such as at close separations, γ  saturates to γ. The formalism we follow is based on solving the master equation 

ρ ρ ρ∂ = − +i H[ , ] [ ]t   for the density operator of the full donor-acceptor-cavity system ρ under the action of 
coherent H and incoherent [ ] ρ  processes. Incoherent processes are included as Lindblad terms 

ρ ρ ρ ρ= Γ = Γ −Γ D O O O O[ ] [ ] [ { , )}/2]O O OO
 † †  and are characterized by rates ΓO for each collapse operator O (the 
brackets {.,.} stand for anticommutation). The incoherent terms are: (i) donor/acceptor population decay assumed 
for simplicity at rate γD,A with collapse operators σD,A, (ii) donor/acceptor dephasing owing to coupling to bulk pho-
nons for example at rate γφ and with operators D A

z
,σ , (iii) cavity decay rate at rate κ with collapse operator a. Two 

extra incoherent processes are modelled as pump (acting on the donor with rate Γ and operator σ†
D) and drain (act-

ing on the acceptor with rate Γ and operator σA). The pumping could stem either from driving with large-bandwidth 
incoherent light or from coherently driving to a manifold of excited vibrational donor states followed by 
non-radiative relaxation to the |eD〉 state of interest. In reality, the physics of light-harvesting systems under 

Figure 1. Schematics. (a) Two quantum emitters, in a donor-acceptor-like configuration, are separated by 
(small) distance d and embedded in an optical microcavity. The relevant internal structure in the inset shows 
transitions from the excited state to the vibrational manifold of the ground state occurring at rates γ (on the 
zero-phonon line) and γ′ (for all others). Non-radiative rates γnr characterize dynamics within the vibrational 
ground state manifold. Beside coupling to the cavity, the molecules can be dipole-dipole coupled with a position 
dependent rate Ω(d). (b) Representation of the relevant processes including the direct donor-acceptor energy 
flow rate J, mediated by the dipole-dipole coupling and indirect rates JA,JD through the cavity mode.



www.nature.com/scientificreports/

3Scientific REPORts |  (2018) 8:9050  | DOI:10.1038/s41598-018-27396-z

illumination by incoherent natural thermal light is quite complex as revealed in ref.26. We therefore assume a more 
simple model realizable under experimental conditions such as in ref.4 where coherent laser excitation on an addi-
tional excited vibrational level is followed by non-radiative decay to the zero-vibrations excited level. In the Methods 
section, we provide a simple adiabatic elimination method showing the emergence of an effective Lindblad damping 
term, that can also be viewed as decay from the ground to the excited level. We also compare results with a coherent 
drive model where we directly address the donor with a monochromatic laser ωL away from the acceptor frequency 
and pump strength η. In such a case the pumping process is simply included in the Hamiltonian (in a frame rotating 
at the acceptor): †η σ σ= +ω ω−H e e( )d D

i t
D

i tL L . Near field effects contribute as well which are casted in a non-standard 
form as † † † †ρ γ σ ρσ σ ρσ σ σ σ σ ρ= + − +γ [ ] [ { , }/2]D A A D A D D A . As discussed in detail in Methods, the presence of the 
mutual decay rate stemming from near field effects leads to different effective decay rates for symmetric/asymmetric 
states | 〉 ± | 〉e g g e1/ 2 ( )D A D A  at superradiant/subradiant rates γ γ± . In the so-called Dicke limit of d = 0, γ γ→  
such that the subradiant state is theoretically infinitely long lived. The coherent processes can be summed up in the 
total Hamiltonian

σ σ δ σ σ σ σ σ σ σ σ= Δ + + Ω + + + + +† † † † † † † †H a a g a a g a a( ) ( ) ( ), (1)D D D A A D D D D A A A

written in a frame rotating at the acceptor’s frequency such that δ = ω − ωA (with ω the cavity resonance). The 
third term represents the near-field exchange while the last two terms are the cavity Jaynes-Cummings interac-
tions with field-donor and field-acceptor couplings gD and gA. For experiments involving single or a few molecules 
in cavities decaying at rates around GHz4 the requirement for strong coupling κ>gD A, , and is fulfilled long 
before entering the ultra-strong coupling regime characterized by gD,A ≈ ωD,A. This is the focus of this manuscript. 
On the other hand, experiments with many organic molecules in bad cavities have decay rates of the order of tens 
to hundreds THz5,6, such that the strong coupling regime is very close to the ultra-strong coupling regime. Just as 
in the case of experiments involving superconducting artificial atoms coupled to on-chip cavities, the simple 
Jaynes-Cummings model is then insufficient to properly describe the dynamics27.

The efficiency of the energy transfer can be quantified by the changes in the acceptor population owing to the 
coupling to the donor system. A relevant quantity characterizing this process is the direct steady state energy flow 
rate †J 2 D Aσ σ= Ω 〈 〉I  representing the net energy transfer between donor and acceptor. The other relevant quanti-
ties similarly defined are I †σ= 〈 〉J g a2D D D  and I †σ= 〈 〉J g a2A A A  characterizing jump processes from the donor to 
the cavity mode and from the cavity to the acceptor, respectively. In the simplest case of two-level emitters inde-
pendently decaying and coupled to a single cavity mode, it is instructive to write equations of motion for 
two-operator correlations (see Methods), and to derive steady state rate equations showing migration of popula-
tion from the donor to the acceptor:

p p J J( ) , (2)D D D γ= Γ − Γ + − −

 γ= − Γ + + + .p p J J( ) (3)A A A

Generally, the source terms in the acceptor equation cannot be cast as a rate ∼pA as it is the case for the realistic 
case of Förster energy transfer in complex systems characterized by many vibrational levels. In that case, transfer 
to the vibrational manifold of the acceptor followed by quick decay via non-radiative processes insures the irre-
versability of the energy transfer process and can be characterized by an energy transfer rate. Our equations treat 
a reversible problem instead, where both directions donor-acceptor and acceptor-donor are allowed, which will 
eventually lead to new effects such as energy flow direction change under subradiant conditions. To avoid confu-
sion we therefore denote the derived quantities J and JA as energy flow rates in the following analysis.

Results
Free space resonant energy transfer including collective effects and dephasing. In free space, 
the only energy flow mechanism is provided by the direct donor-acceptor interaction. We proceed in analyzing 
the dependence of the energy flow rate J on the separation d between two similar quantum emitters in various 
regimes characterized by the presence of extra dissipation channels, collective decay and dephasing. To this end 
we solve the set of equations connecting energy flows to populations (Eqs 22–22f in the Methods section) in the 
absence of cavity couplings (setting gA and gD to zero) and in steady state. A general fully analytical result can be 
obtained relating the normalized energy flow
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to quantities such as additional population dissipation rates γ′, environmentally induced dephasing rate γφ and 
mutual decay rate γ . The multiple level scheme containing decay from the excited state to states non-radiatively 
coupled to the ground state leads to a renormalization of the effective two level system decay rate from γ to 
γtot = γ + γ′. The general expression above is a linearized form that assumes weak pumping such that the energy 
flow properties of the system are pumping independent besides the expected linear behavior. Notice that this 
assumption implies a regime of validity where tot γ γΓ −  outside of which the derived quantities do not reach 
steady state and which is straightforward to derive by applying stability conditions to the evolution matrix. Notice 
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also that γ  is a mutual decay rate associated with the direct excited-ground transition rate γ, therefore having an 
upper bound γ reached at very small distances. In treating the ideal case of pure two-level emitters (where γ′ = 0) 
special care has to be given to the small distances cases where γ γ−tot  tends to zero.

Setting γφ = 0 and 0γ =  we recover an expected simple expression

J/ 2
4

,
(5)tot

2

2 2 2γ
Γ =

Ω
Δ + Ω +

revealing the d−6 scaling (stemming from the near field behavior of the Ω2 term - see Methods) of the energy flow 
rate with particle-particle separation for Δ |Ω|  and a maximum energy flow rate of J/Γ = 1/2 in a resonant 
regime characterized by vanishing energy separation Δ = 0 and γ|Ω|  tot. The denominator can simply be seen 
as emerging from the overlap of two Lorentzians of widths γtot characterizing the emission spectrum of the donor 
and the absorption spectrum of the acceptor. A straightforward generalization, that we will find useful in the next 
section, can be performed for distinct emitters with γA ≠ γD. Neglecting extra dissipation channels we arrive at the 
following expression

γ γ γ
γ γ γ γ γ γ

Γ =
+ Ω

Δ + + + + Ω
J/ 4 ( )

[4 ( ) ] 4( )
,

(6)
A A D

A D A D A D

2

2 2 2 2

again obtainable via simple arguments as an overlap emission/absorpion spectra for different species. Notice that 
an asymmetry is now included as the main tuning parameter is now γA; a narrow acceptor absorption window can 
inhibit energy flow while for A Dγ γ  and small separations J → Γ.

Surprising results are predicted by Eq. 4 in the regime where the intrinsic collective decay is considerable (γ  
becomes of the order of γ for  λd ). We plot in Fig. 2 results for the scaling of the energy flow for different dipole 
alignment configurations and for a transition associated wavelength of 500 nm. Figure 2a shows that subradiant/
superradiant behavior is linked to an uncharacteristic scaling of the energy flow at small distances and even a 
change in the direction of the flow from the acceptor to the donor. The effect stems from pumping into subradiant 
states. A simple argument for such behavior can be understood from the following proportionality: from Eq. 22 
one can show that J ∝ (pD − pA), i.e. the energy flow magnitude and direction are proportional to the population 
imbalance in steady state. While pumping an independently decaying system, both populations would be of the 
order of Γ/(γ + γ′ + Γ), pumping into collective states, one of them characterized by a subradiant rate γ γ γ+ ′ −  
can give rise to a more efficient population accumulation proportional to /( )γ γ γΓ Γ + + ′ − . The effect is an 

Figure 2. Free space results. (a) Normalized energy flow J/Γ versus donor-acceptor separation for the parallel 
case ( dA D,μ || , left) and for the perpendicular case (μ ⊥ dA D, , right) for a detuning Δ = 200γ. The black lines 
represent the result without collective decay γ = 0. Including collective decay leads to a modified behavior 
which is quite significant in the presence of small additional radiative decay (γ′ = 0.1γ - blue curve) but is 
eventually washed out with increasing γ′ (green and red curves). (b) Energy flow rate J/Γ as a function of 
detuning Δ and dipole-dipole coupling strength Ω and (c) comparison to steady state concurrence C(ρ) 
(without collective decay). (d) Energy flow J/η for coherent driving as function of distance for μ || dA D,  (orange) 
and μ ⊥ dA D,  (purple) for η = 0.1γ, Δ = 200γ, ωL = Δ. (e) Energy flow J/η for coherent driving versus laser 
frequency ωL and dipole-dipole coupling Ω for η = 0.1γ, Δ = 4γ.
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increased effective energy flow Γ J. However, close inspection of the equations of motion shows that a physi-
cally necessary upper bound J γ  occurs.

The efficiency of pumping into subradiant states is however easily blurred under realistic scenarios by the 
presence of extra decay channels (γ′ ≠ 0) or dephasing (γφ ≠ 0). The analysis of the connection between entangle-
ment and efficient flow as shown in Fig. 2b,c. As a characterization of entanglement we make use of concurrence 
(monotonously increasing from 0 for separable states to unity for maximally entangled Bell states) as defined in 
Methods. As apparent from a scan of detuning around regions of efficient energy flow, the concurrence is maxi-
mized around the borders of efficient energy flow. While the full numerical solution can show large levels of 
concurrence, we restrict this treatment on the low excitation regime where the validity of our linearized treatment 
is insured. The alternative approach characterized by a coherent drive of the donor indicates the following analyt-
ical result ( , , 0γ γ γ′ =φ ) for the energy flow rate as a function of pump strength η and of the detuning between 
the laser frequency and the acceptor ωL

γη
γ ω γ ω η γ ω ω

=
Ω

+ + Δ − + + Ω + Δ − + Ω
.J 16

( 4 )[ 4(( ) 2 )] 8 [ 4 ( )] 16 (7)L L L L

2 2

2 2 2 2 2 2 2 4

The behavior of the energy flow rate with respect to the interparticle distance is illustrated in Fig. 2d, for both 
dipoles parallel or orthogonal to d. The direct discrepancy with respect to the incoherent pump case is the vanish-
ing rate at small distances. As the pump is monochromatic, in the regime of strongly interacting emitters (small 
separations) the resonance condition is shifted away from the bare donor frequency. The physics is completely 
elucidated in Fig. 2e where we employ an additional scan of the laser drive frequency to reveal the shifting of the 
resonances to closely follow the linear dependence of the symmetric/antisymmetric resonance energies with Ω.

Cavity mediated energy transfer. Let us now consider additional energy transfer channels brought on by 
the presence of a common confined mode of a microcavity (see Fig. 1b). The analysis is quite complex as various 
regimes can occur characterized by the ratios gD,A/κ as well as C g4 /( )D A D A, ,

2 κγ=  (which we denote cooperativity 
and is proportional to the Purcell factor). We mainly distinguish between weak cooperativity (and also weak 
coupling) regimes with 

 γ κgD A,  and C 1D A, < , strong cooperativity but still weak coupling regime with 
gD A, γ κ but C 1D A, >  and strong coupling regime with g / 1D A, κ  . In the first two regimes the effect of a 

bad cavity is mainly in enhancing the dissipation rate of the donor or acceptor (depending on the choice of δ), 
which can lead to an increased overlap between the emission spectrum of the donor and the absorption spectrum 
of the acceptor. In the strong coupling regime, polariton dynamics occurs as the emitters are hybridized by the 
cavity field.

Strong cooperativity regime. In the bad cavity regime, analytical simplifications can be employed when condi-
tions are met for the adiabatic elimination of the cavity mode. Assuming either 

κ g g,A D we can find an adiaba-
tic solution for the intracavity field:

a t
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t
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κ δ
σ〈 〉 = −

+ − Δ
〈 〉 −

+
〈 〉

that allows us to recast the equations of motion between the donor and acceptor as including additional cou-
plings owing to the common interaction with the cavity mode. The noise terms are not explicitly written as the 
usual fluctuation-dissipation theorem insures that they are consistent with the derived decay rates. An effec-
tive coherent and incoherent evolution for the donor-acceptor system can be derived with the main result that 
cavity-modified decay rates as well as a mutual decay rate occur:
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2 , C g( ) 4 /( )D D D

2 κγΔ =  are the maximum cooperativities of acceptor and donor, respec-
tively. An expected result is the Purcell enhancement of the two independent emitter decay rates. However, the 
crucial term is the occurrence of a cavity-mediated mutual decay rate proportional to the geometrical average of 
the two cooperativities. The solution is straightforward as it can be easily written down by identification with the 
expression in Eq. 4 and under the assumption that 
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Comparison of the above analytical expression with exact numerical simulations (see Fig. 3) show almost 
perfect agreement, validating that cavity-mediated collective subradiant behavior leads to the same effect as pre-
viously unveiled in the free-space case. The effect of the cavity in this regime is to ‘dress’ the free space interac-
tion J and not in providing an extra channel independent of emitter-separation (the corresponding JA is close to 
zero). This is in stark contrast to the situation tackled in the next subsection under strong coupling conditions: 
there, even for large distances characterized by vanishing J, energy transfer is large stemming solely from the JA 
contribution.

Strong coupling regime. In the strong coupling regime the coherent processes dominate over dissipation rates. 
We focus our analysis on distant emitters (Ω = 0) to analyze the effect of the cavity mode on transfer in regimes 
where no direct transfer is expected. In the uncoupled basis of donor-cavity and acceptor-cavity, donor-like polar-
itons occur at  δ δ= Δ + ± + Δ −± g2 4 ( )D D

2 2  and acceptor-like polaritons occur at  δ δ= ± +± g2 4A D
2 2 

(see Fig. 4a). However, the correct description of the system which allows an analytical understanding is obtained 
by considering the proper basis for the system made up by three new eigenstates which we denote as upper, mid-
dle and lower polariton. These are obtained from diagonalizing the Hamiltonian H matrix:

δ=







Δ 





.H
g

g g
g

0

0 0 (11)

D

D A

A

While analytical expressions are not readily available, we will write in the single excitation regime symbolically 
the new basis: α α α| 〉 = | 〉 + | 〉 + | 〉P D C APD PC PA  with P standing for U, M, L (upper/middle/lower) and 
α| |PD PC PA, ,

2 denote the Hopfield coefficient of each polariton (the contribution of donor/cavity/acceptor state to 
the respective polariton). The incoherent Lindblad term that populates the donor can then be written in the cou-
pled basis as a pump into all three polariton populations and six polariton-polariton coherences. Optimal 
donor-acceptor energy flow rate occurs then when the middle polariton contains equal content of donor and 
acceptor components (minimizing the cavity Hopfield coefficient at the same time). While the polariton expres-
sions are not analytically expressable, the intersection of the donor and acceptor Hopfield coefficients can be cast 
in a very simple form:

g g g
g g (12)

opt
D A A

A D

2 2

δ =
−

Δ
+

Δ

+

Figure 4 shows numerical evidence of the polariton physics described above. A sketch (arbitrary units) is 
shown in Fig. 4a, where the energy of the polaritons is plotted for varying cavity-acceptor detuning δ with insets 
showing the corresponding Hopfield coefficients. Figure 4d illustrates that the reach of an optimal energy flow is 
at the middle polariton Hopfield where donor-acceptor coefficients are equal. Under optimal conditions (fixing 
the cavity frequency at ωc = ωA + δopt we then perform a numerical analysis (Fig. 4b,c) of the energy flow rate JA 
with varying controllable parameters such as Δ and κ. Figure 4c shows the transition from bad to good cavity 
regimes (weak to strong coupling) exhibiting a transition region around the onset of strong coupling condition. 
For the more clear understanding of the hybrid resonances in the system, we employ again a coherent drive 
scheme which allows an analytical expression for the energy rate:

J
g g

g g[ ( ) ( ( )( ))] (13)
A

A D

A L L D L L

2 2 2

2 2 2

γη

ω ω δ ω ω
=

Δ − + − + − Δ −

Figure 3. Strong cooperativity results. Modification of free space energy transfer (black lines) by cavity 
induced collective decay for (a) dipole orientation parallel to d and (b) dipole orientation perpendicular to d, 
for κ = 2000γ. The green and blue lines correspond to exact numerical results with gA,gD = 20γ (green) and 
gA,gD = 70γ (blue). The dashed red lines correspond to the analytical result from Eq. 10.
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Coherent pump analysis reveals that optimal energy transfer under such monochromatic drive is insured 
around the polariton frequencies with maximized valued when pumping is directed at the middle polariton (as 
shown in Fig. 4e). The analytical result listed above agrees very well with the numerical simulation used in Fig. 4e. 
While in the incoherent pumping scenario, reaching the optimal transfer rate does not guarantee good concur-
rence, direct pumping into the middle polariton with monochromatic drive can give rise to entanglement (see 
Fig. 4f).

Discussions and Outlook
The simplified model analyzed here could be relevant for experiments aiming at strong coupling of pairs of mol-
ecules to microcavity modes under low temperature conditions4 and fulfilling the condition that donor-acceptor 
detunings as well as cavity linewidth are small compared to vibrational energies. This allowed us to focus on the 
zero-phonon line and to include extra decay channels only in the ground state vibrational manifold, justifying a 
three level quantum emitter approach that can easily be mapped onto a two-level effective model. More generally, 
in realistic scenarios, the donor and acceptor detunings can be large compared to vibrational energies which 
means that the vibrational manifold of the excited energy state (of the acceptor) has to be accounted for. A direct 
extension of our approach possibly allowing for an analytical understanding of the role of vibrations in the pro-
cess of energy transfer inside cavities would assume the addition of localized molecular vibrations as 

ν ν= +H b b b bv D D D A A A
† †  at frequencies νD,A and annihilation operators bD,A. The coupling between vibrations and 

electronic degrees of freedom can be simply modelled as a Holstein interaction Hamiltonian:

† † † †H b b b b( ) ( ) (14)e v D D D D D D A A A A A Aλ ν σ σ λ ν σ σ= + + +−

Figure 4. Strong coupling regime. (a) The energy of the polaritons of the total system (dark grey) as well as 
individual donor/acceptor polaritons (light grey) as a function of the cavity frequency (detuning δ with respect 
to the acceptor’s resonance). Dashed lines show the energies of the bare (uncoupled) system. The insets show 
the donor (blue), cavity (red) and acceptor (green) Hopfield coefficients for each polariton. (b) and (c) Energy 
flow JA,opt obtained at the optimal working points for varying donor-acceptor detuning and varying cavity decay 
rate (from dark to light colors: gA,gD = 10γ,50γ,100γ,500γ). (d) Upper panel: Hopfield coefficients for the middle 
polariton versus energy flow rate JA/Γ (grey) and steady state concurrence C(ρ) (orange) (lower panel) for 
gA = 50γ, gD = 10γ, κ = 10γ, Δ = 40γ. (e) and f) Results for coherent driving: JA/η and steady state concurrence 
C(ρ) versus both cavity frequency δ and laser frequency ωL for gA = gD = 50γ, κ = 10γ, Δ = 40γ.
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where the λD,A characterize the mismatch between the equilibrium nuclear coordinates in the excited and ground 
states. An analytical treatment will be tackled in the future employing the diagonalizing polaron transformation 
applied to both donor and acceptor systems λ σ σ− † †b bexp( ( ) ). The expected result in the cavity case is that the 
bare cavity-donor-acceptor polaritons which are orthogonal in the absence of localized vibrations will couple. 
This leads to an additional transfer channel via vibrations-assisted polariton-polariton dissipative coupling. This 
would for example lead to a decay of an excitation introduced coherently in the upper polariton down to the lower 
polariton and therefore a considerable contribution to the transfer process.

As an illustration of possible follow-ups on this approach meant on increasing the complexity and relevance 
of our model we will consider sets of vibrational states of the acceptor denoted by a single state vector iA close to 
the energy of the excited donor state. We can immediately supplement our model to include the dynamics of the 
intermediate states. Two possible paths for energy transfer occur now: (i) direct off-resonant transfer from the 
donor to the acceptor low lying vibrational levels followed by emission and (ii) resonant transfer from the donor 
to the intermediate states with high vibrational occupancy followed by non-radiative transfer and emission. 
While for ωΔ v  (with ωv being the frequency of the vibrational level) the first process is negligible, the second 
process gives rise to rate equations marked by the common signature of the Förster resonant energy transfer 
mechanism:

p p( ) , (15)D FS ET Dγ κ κ= − Γ + + + + Γ

γ κ κ= − Γ + + +p p p( ) ( ) , (16)A A FS ET D

showing transfer rates κFS (for free space) and κET (for cavity) that also can be deduced as an increased linewidth 
of the donor. indicating the typical signature of unidirectionality of the resonant Förster energy transfer mecha-
nism where population migrates from the donor to the acceptor and the modification of the natural linewidth of 
the donor occurs. In the low excitation regime where the two emitters behave linearly, such a model could be 
sufficient for simulating the behavior of molecular layers under collective strong coupling conditions5,6. While 
such a slightly more complex model to describe this dynamics will be tackled in the future, we point out here a 
first prediction of this result applicable in the free space scenario showing that the intermediate level flow rate is 
given by Ji/Γ = 4Ω2/(γDγnr + 4Ω2) and dominates over the off-resonant transfer characterized by Δ2 in the denom-
inator under the condition γ Δnr . For such unidirectional flow a energy transfer rate can be defined: 
kFS = 4Ω2/γnr. We will extend our analysis in future endeavors to tackle such a more complex model under simpli-
fied assumptions including coupling of electronic levels to vibrational and phononic baths.

Methods
Vacuum mediated dipole-dipole coherent and incoherent interactions. Subradiance and super-
radiance. The complete expression of the dipole-dipole energy shift arising between two dipoles μD and μA 
separated by distance d is given by

{ kd
kd

kd
kd

kd
kd

d d

d d

3
2

[( ) ( )( )]cos

[( ) 3( )( )] sin
( )

cos
( ) (17)

D A
D A D A

D A D A 2 3

γ γ
μ μ μ μ

μ μ μ μ

Ω = − ⋅ − ⋅ ⋅

+ ⋅ − ⋅ ⋅






+












The incoherent coupling that leads to collective decay is signaled by the mutual decay function:

{ kd
kd

kd
kd

kd
kd

d d

d d

3
2

[( ) ( )( )]sin

[( ) 3( )( )] cos
( )

sin
( ) (18)

D A
D A D A

D A D A 2 3

γ
γ γ

μ μ μ μ

μ μ μ μ

= ⋅ − ⋅ ⋅

+ ⋅ − ⋅ ⋅






−












In the main text we used simplified expressions for the above quantities by assuming μA = μD so that they are 
always parallel to each other and only vary the angle between the dipoles and the inter-particle separation direc-
tion. To signal the occurrence of subradiance and superradiance, let us consider two quantum emitters separated 
by d with a dipole-dipole interaction strength Ω(d). Assuming equal transition frequencies of the donor and 
acceptor, diagonalization of the Hamiltonian in the presence of the interaction leads to new eigenstates 

e g g e1/ 2 ( )D A D A| 〉 ± | 〉 . Rewriting the Lindblad terms one finds that two decay channels are present, one for the 
symmetric combination e g g e1/ 2 ( )D A D A| 〉 + | 〉  with decay rate γ γ+  and one for the asymmetric combination 

e g g e1/ 2 ( )D A D A| 〉 − | 〉  with decay rate γ γ− . In the limit of very small separations, the mutual decay rate tends 
to γ such that the symmetric state becomes fully superradiant decaying at the rate 2γ while the asymmetric state 
becomes fully subradiant at effective zero decay rate.

Model for incoherent pumping. Let us assume three levels of interest in the donor: excited, ground and 
some intermediate level that can very quickly decay onto the excited state at rate γie. Driving from the ground to 
the intermediate level takes place at the Rabi frequency and is followed by quick relaxation into the excited state 
with γie. The excited state population as well as the i − g coherence are therefore vanishingly small and one can 
derive an effective two-level model. To derive this model let us write the Bloch equations for the i − e − g system:
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d
dt

, (19a)ee e ee ie iiρ γ ρ γ ρ= − +

d
dt

i
2

, (19b)eg
eg

eg eiρ
γ

ρ ηρ= − +

d
dt

i ( ), (19c)gg e ee ig ii gi igρ γ ρ γ ρ η ρ ρ= + + −

ρ γ ρ γ ρ η ρ ρ= − − − −
d
dt

i ( ), (19d)ii ig ii ie ii gi ig

d
dt

i
2

( ), (19e)ig
ie ig

ig gg iiρ
γ γ

ρ η ρ ρ= −
+

− −

d
dt
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2 (19f)ei

ie ig eg
ei egρ

γ γ γ
ρ ηρ= −

+ +
+ .

Elimination of the fastly decaying elements ρig and ρii and ρei leads to a set of coupled equations for a complete 
two levels system:

ρ γ ρ
η γ

η γ γ
ρ= − +

+ +
d
dt

4
4 ( )

,
(20a)

ee e ee
ie

ie ig
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2

2 2
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ρ γ ρ
η γ
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+ +
d
dt

4
4 ( )

,
(20c)

gg e ee
ie

ie ig
gg

2

2 2

In the limit that , ,ie eg igγ γ γ η
 one can approximate all the new rates with an effective pump rate Γ = 4η2/γie. 

The dynamics is then the opposite of the spontaneous decay, namely a Lindblad term with an |e〉〈g| collapse 
operator.

Equations of motion for operators. Starting with the master equation one can derive equations of motion 
for single operator averages:

d
dt

a i a ig ig
2

,
(21a)D D A Aδ κ σ σ〈 〉 =



− −



〈 〉 − 〈 〉 − 〉 〉

ˆσ
γ

σ σ γ σ γ σ〈 〉 =


− Δ − −
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i i ig a p
2 2 2

,
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d
dt

i ig a p
2 2 2 (21c)A
tot

A D A D A D

While the equations are not linear as higher order correlations are present as source terms, under the assump-
tion of weak pumping, terms containing products of population with coherence operators will be neglected. 
Notice also that when one sets gA = gD = 0 one can simply diagonalize the linearized form of the equations above 
to derive the collective shift and decay rates of symmetric (superradiant) and asymmetric (subradiant) states.

Complete set of equations of motion for two-body correlations. For the derivation of quantities 
of interest such as energy flow rates and populations in steady state we start with the full master equation and 
compute equations of motion for operator-operator correlations:

†σ σ γ γ〈 〉 = = Γ − Γ + − − −
Ω

d
dt

p p J J J( )
2

, (22a)D D D tot D D

r


†
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Ω
d
dt

p p J J J( )
2

, (22b)A A A tot A A

r
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We have defined †σ σ= Ω 〈 〉J 2r
D AR . Solutions in the particular cases analyzed throughout the manuscript are 

obtained by setting the derivatives to zero which corresponds to steady state conditions. The existence of steady 
state solutions is validated by an analysis of the real parts of the drift matrix. For gA,gD = 0 and assuming weak 
pumping  γΓ  we obtain

γ
γ

∝
Ω

+ Δ
−J p p2 ( ),

(23)
tot

tot
D A

2

2 2

signaling the dependence of J on the population gradient between donor and acceptor.

Adiabatic elimination of the field in the bad cavity regime. The equation of motion for the cavity 
field amplitude reads

d
dt

a t i a t ig t ig t( )
2

( ) ( ) ( )
(24)D D A Aδ κ σ σ〈 〉 =



− −



〈 〉 − 〈 〉 − 〈 〉.

A formal integration leads to the following solution

a t a e ig t e dt ig t e dt( ) (0) ( ) ( ) , (25)
i t

D

t
D

i t t
A

t
A

i t t( /2 )

0

( /2 )( )

0

( /2 )( )∫ ∫σ σ〈 〉 = 〈 〉 − 〈 ′ 〉 ′ − 〈 ′ 〉 ′κ δ κ δ κ δ− + − + − ′ − + − ′

which can be approximated in the bad cavity regime where κ is larger than any other parameter. To this end, we 
assume evolution of the coherence at their natural frequencies and integrate the exponents to arrive at the expres-
sion in Eq. 8. Replacing a(t) with the adiabatic elimination result in Eq. 21 we find the cavity mediated effective 
decay rates in Eq. 9.

Concurrence. After tracing out the light mode from the density operator of donor-acceptor-cavity field one 
obtains a two qubit mixed state described by a total density matrix ρ; as a measure of entanglement the concur-
rence is defined as

ρ λ λ λ λ= − − −C( ) max (0, ), (26)1 2 3 4

where λi are the eigenvalues, in decreasing order, of the Hermitian operator

ρ ρ ρ=


R (27)

and
⁎ρ σ σ ρ σ σ= ⊗ ⊗ .( ) ( ) (28)y y y y

Our procedure is numerical28 consisting of a partial trace over the cavity mode degree of freedom to derive the 
reduced ρDA and applying the steps above to the reduced matrix.
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