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Abstract
We study ensembles of Rydberg atoms in a confined electromagnetic environment such as is
provided by a microwave cavity. The competition between standard free space Ising type and
cavity-mediated interactions leads to the emergence of different regimes where the particle
−particle couplings range from the typical van der Waals r−6 behavior to r−3 and to
r-independence. We apply a Ramsey spectroscopic technique to map the two-body interactions
into a characteristic signal such as intensity and contrast decay curves. As opposed to previous
treatments requiring high-densities for considerable contrast and phase decay (Takei et al 2016
Nat. Comms. 7 13449; Sommer et al 2016 Phys. Rev. A 94 053607), the cavity scenario can
exhibit similar behavior at much lower densities.

Keywords: Rydberg atoms, cavity quantum electrodynamics, quantum optics, Ramsey
interferometry

(Some figures may appear in colour only in the online journal)

1. Introduction

Long range interactions in many-body systems have recently
become of central interest [1–4]. A widely experimentally
investigated platform employs interacting Rydberg atom
ensembles where the evolution is governed by an Ising-type
Hamiltonian with couplings going beyond the nearest
neighbor [5, 6, 7]. Such investigations are mainly geared
towards describing regimes of strong quantum correlations
and towards quantum simulations [8–11]. In standard sce-
narios (such as free space), the Ising-type Hamiltonian comes
from an effective r−6 van der Waals interaction between
excited levels (optically addressable from the ground state) of
neighboring atoms. The interaction is an effective one and
stems from a perturbative treatment of the near-field dipole
−dipole coupling scaling as r−3 between a manifold of
Rydberg states in the vicinity of the level of interest (at fre-
quencies between 100 GHz to 10 THz). For such fast
decaying potentials, high density samples are usually
employed to allow the emergence of strongly correlated
many-body dynamics [5].

In this paper we propose replacing the free space
mechanism of dipole−dipole coupling with a microwave
cavity-mediated interaction. In a perturbative regime, one
expects that, for large enough distances, the cavity-mediated
interaction would be dominant and an all-to-all distance-
independent coupling would occur similarly as has been
obtained in [1, 7, 12]. To this end we derive particle−particle
interactions via the microwave cavity modes and analyze the
scaling from small to large distances. We find tunable regimes
describing all-to-all interaction at long distances [13] fol-
lowed by a r−3 scaling in the intermediate range transiting in
a counterintuitive manner into a r−6 van der Waals scaling for
short internuclear distances. Extending the derived results to
large ensembles, we show that the dynamics of such a system
can be read out by spectroscopic methods. In particular, we
employ a Ramsey interferometry sequence (see figure 1)
where two identical pulses map the coherence of the atoms
into population in the excited state as a function of the delay
time τ between the pulses [14]. Here, the particular features of
the interaction can result in characteristic outcomes of the
Ramsey signal. Using procedures previously explored in [15]
we find analytical solutions for the Ramsey contrast in the
large particle number limit.

The paper is structured as follows. Section 2 introduces
the model for a pair of four level atoms interacting via the free
space and cavity field modes. In section 3 we present a
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perturbative derivation of the cavity-mediated interactions
and analyze the resulting regimes. In section 4 we apply this
model to a typical Ramsey interferometry setup. We discuss
possible experimental feasibility in section 5.

2. Model

We consider an ensemble of Rydberg atoms inside a micro-
wave cavity and subjected to a two-pulse time-domain
Ramsey interferometric scheme as depicted in figure 1. The
relevant considered internal structure (see figure 2) of each
atom is given by ground level g and excited level d typically
reachable via a two-photon optical transition; in addition, two
adjacent states f and p are considered, lying in the neigh-
borhood of d and accessible from it via microwave photons.
The cavity mode, at frequency ω (in the microwave range)
can mediate transitions between levels f and d and d and p,
respectively (Rydberg states are typically separated by fre-
quencies on the order of 100 GHz to 10 THz). We assume a
preparation stage where an excitation scheme is employed to
selectively drive the atoms from the ground state g directly to
the d state via a two-photon process in the optical domain.
Afterwards, we are solely interested in the dynamics within
the Rydberg d, p, f manifold (assuming that the relevant
dynamics is on a much faster timescale than the lifetime of the
p, d, f states). The free Hamiltonian for a given particle i can
be expressed as

H d d p p a a, 1i d i i p i i
0 w w w= ñá + ñá +∣ ∣ ∣ ∣ ˆ ˆ ( )†

where level f has been set at the zero energy level such that
levels d and p have energies ωd,p (with ÿ set to unity). The
operators â, â† are the annihilation and creation operators with
respect to the cavity mode of frequency ω. The transition
dipoles between f d« and d p« are defined by μ a and μ b,
respectively. The direct, free-space mediated interaction

between two atoms indexed by i and j is

H U f d p d p d f d

J f d d f h c. ., 2

ij
F

ij i i j j i i j j

ij i i j j

= ñá Ä ñá + ñá Ä ñá

+ ñá Ä ñá +

(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣)
∣ ∣ ∣ ∣ ( )

where we have neglected the anti-resonant terms that couple
d d f fi j i j« and d d p pi j i j« due to their large detuning of 2ωd

and 2ωp. Additionally we have also neglected terms coupling
d p p di j i j« since they would require the initial presence of a
photon (we consider zero temperature environments). The
terms Uij and Jij mediate dipole–dipole interactions and
generally have a very complex dependence on the angle θ

(between the dipole direction and the interparticle axis rij)
characterizing the anisotropy of interaction. We restrict our
treatment to the following expressions:

U
r4

1 3 cos 3ij

a b

ij0
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while pointing out that different functions can be obtained by
addressing suitable states of the Rydberg manifolds and/or
manipulating the cavity mode polarization [16].

The cavity-atom couplings are standard Jaynes–Cum-
mings interactions:

H g a f d g a d p h c. ., 5i
JC

i
a

i i i
b

i i= ñá + ñá +ˆ ∣ ∣ ˆ ∣ ∣ ( )† †

where g V x2i
a b a b

i
, ,

0m w= F( ) give the coupling between
the cavity field and the atomic states. The cavity mode
function Φ(x) is evaluated at the position of the atom i and
V dx x2 3ò= F∣ ( )∣ determines the mode volume of the
electromagnetic field. To simplify our notation, the full
Hamiltonian is expressed as H=H0+H1 where
H Hi i

0 0= å and H H Hi i
JC

i j ij
F1 = å + å < .

We also assume that the dipole moments of the atoms
point along the same orientation, which can be obtained by
bringing the atoms to the same magnetic sublevel of the
electronic excited states.

Figure 1. Intracavity Ramsey interferometry. Sketch of the time-
delayed two pulses Ramsey spectroscopic process on a dilute
ensemble of Rydberg atoms located within a microwave cavity
wavelength.

Figure 2. Two atom system. (a) The level scheme involves the
Rydberg states f ñ∣ , dñ∣ and pñ∣ and an energetically distant ground
state gñ∣ . Free space and cavity coupling rates are highlighted in the
figure.
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3. Cavity-mediated effective interactions

Let us analyze the role of the cavity in mediating interactions
between pairs of atoms i, j separated by distance r within
the ensemble. In the two excitation subspace, the full
Hamiltonian can be written in matrix form in the two particle
basis df1ñ∣ , fd1ñ∣ , ff 2ñ∣ , pf 0ñ∣ , fp0ñ∣ , dd0ñ∣ as presented in
appendix A. We define the detunings δ=ωd−ω between
the cavity resonance ω and the atomic transition f dñ « ñ∣ ∣
and Δ=2ωd−ωp as the Förster detuning between the two
particle states ddñ∣ and pf fp1 2 ñ + ñ(∣ ∣ ). Our approach is
closely related to investigations of van der Waals interactions
of the ground states of two-level systems beyond the Jaynes–
Cummings approximation in planar cavities carried out
in [17].

3.1. Results in the perturbative regime

In the regime of sufficiently large detunings δ, Δ ? ga, gb,
U, J we can simplify the system even further so that effec-
tively only the dd0ñ∣ state is considered. By applying per-
turbation theory we acquire an effective interaction between
two atoms in dñ∣ states. The interaction can be obtained from
the energy shifts up to fourth order, which is necessary to
acquire all the coupling terms for the different distance
regimes

E dd H dd0 0 0, 61
1D = á ñ =∣ ∣ ( )

E
dd H n n H dd

E E

g g U
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2
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¹
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and already reveals the free space direct van der Waals
interaction in second order perturbation theory. Novel inter-
action terms are obtained from the third and fourth order
calculation
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Here, E Ei i
tot

1
4D = å D= is the total energy shift of the dd0ñ∣

state up to fourth order. Besides the terms resulting from ac-
Stark shifts up to fourth order E g gi i

a
i
atot 2 4 3d dD = -( ) ( ) ,

the dominant two particle interaction terms are given by
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This expression is found by taking only terms with O(e4) into
account, where e is the electric charge of an electron [18]. The
first term in equation (10) which is describing the free space
van der Waals interaction dominates at short internuclear
distances while the second and third term contribute strongly
in the intermediate regime defined by the relation
U g g2 1 2ij i

a
j
b d d» + D( )( ). The last two terms govern the

dynamics in the long distance regime where the all-to-all
interaction mediated by the cavity field is dominant [13].

Additionally, it can easily be shown that the expression
in equation (10) is the general solution for the interaction
between N atoms in the dd d... 0ñ∣ state residing in the cav-
ity field.

3.2. Analysis of emergent r-scaling regimes

The energy shifts derived above can be cast into an effective
Hamiltonian

H d d
U

d d d d
2

, 11
i

d i i i
i j

ij
i j i j
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Features of the potential are illustrated in figure 3. Here, the
anisotropy of the dipole–dipole interaction and by choosing
the right values and signs for the detuning Δ and δ allows for
the emergence of a weak binding potential at a specific spatial
orientation (see figures 3(b) and (c)), which would not be
possible for a free space van der Waals interaction. In the
following derivations we will apply the assumption that
μ a, b=μ are of equal magnitude which results in ga, b=g.
From equation (12) we understand that the interaction
between two atoms in the dñ∣ state can be rewritten as
U r C C r C r0 3

3
6

6= + +˜ ( ) , where

C
g2 1 1

, 130

4

2d d
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D
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2 2
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4
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4
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For simplicity, we ignore from now on the anisotropy of the
potential which is examplified in figures 3(a) and (b). For the
ongoing discussion we cast the potential in the form

U r C
r R r R

1
1

2

sgn 1

4
1

1
,

16

6 6 3 3 6d
d

d
= + +

D
+ +

D⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥˜ ( ) ( )

( )

where R is the constant effective cavity van der Waals radius
which is defined by R V 43 d pw= ∣ ∣ ( ). The different terms of
the potentialU r˜ ( ) have different ranges of dominance over the

other terms and therefore can play prominent roles at different
densities of the atomic ensemble.

The validity of the formalism in equation (11) is given
from r r 2 40

2
0

3 m p= D ( ) which originates from the
relation U2 2D  and is ranging to r≈L. Within this
range we find different regions where the interaction shows a
different characteristic dependence on the distance r. For
example, for r?r0 and

r r R
1

1
, 171

2
3

< =
+

d
D

( )

Figure 3. Effective potential. (a) The effective van der Waals interaction in the presence of the cavity environment for dipole orientation
described by θ=π/2. The radii r1 and r2 roughly indicate where the interaction changes from ∝r−6 to ∝r−3 and r−3 to r independence,
respectively. The inset shows a log−log plot of the potential in the case that C0=0 and C3,6 are both positive and reveals more clearly the
change from ∝r−6 to ∝r−3 dependence indicated by the dashed curves where the vertical line locates r1. (b) The potential is plotted for
different angles and radii. (c) In the case of a detuning or coupling constants that allow for a different sign for the terms proportional to r−6

and r−3, we obtain a minimum at θ=π/2 which results in a weak binding potential for two dimensional arrangements. The parameters
chosen here for the potential are C6=16C0 and C3=8C0 and C0=1.
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the interaction is of van der Waals character with U r 6µ -˜
and close to identical to the free space van der Waals inter-
action between atoms in the dñ∣ state. Here, the definition of r1
is derived from the equation C r C r3

3
6

6=∣ ∣ ∣ ∣. The behavior
of the interaction is changing in the range r>r1 and

r r
R

1 2 1

,

18

2
1

1 2

1 2

sgn2
3 d

< =
+ D + -d

d
d

d
+D

+D
+D∣ ( )∣

( )

∣ ∣
( ( ))

( ( ))
( )

whereU r 3µ -˜ . Here, the distance r2 has been obtained from
the relation C r C r C3

3
6

6
0+ =∣ ∣ ∣ ∣. For r>r2 and r<L/2

the interaction is practically constant and given
by U g g4 2 4 3d d= D +˜ ( ) .

There are two special cases for the detuning δ resulting in
the potential forms

U r C
r R

1 1

4 2
196 6 6

d= - = -
D⎜ ⎟⎛

⎝
⎞
⎠˜ ( ) ( )

U r C
r R r

1 1

2
. 206 6 3 3

d= - = -D⎜ ⎟⎛
⎝

⎞
⎠˜ ( ) ( )

In equation (19) we have a free space van der Waals term
followed by a constant all-to-all interaction at long range
while for equation (20) the potential is dominated by the van
der Waals term at close proximity and changes at long
internuclear distances solely into a dipole−dipole poten-
tial form.

The mixing of the cavity induced gi gj/δ dipole−dipole
interaction and the free space Uij, Jij dipole−dipole interac-
tion terms enables these novel dependencies on the inter-
nuclear distance.

4. Ramsey spectroscopy of an ensemble: from the
dilute to the dense limit

A method for the investigation of the dynamics of an
ensemble of interacting Rydberg atoms for short timescales is
time-domain Ramsey interferometry, as recently performed
experimentally [5] and analyzed theoretically [15]. This
method allows for the circumvention of the Rydberg blockade
regime and produces a record of the real time evolution of the
electronic Rydberg states. For longer timescales and weaker
interaction strengths, a frequency-domain Ramsey sequence,
as employed in [19], is also suitable and leads to the same
results as found by the aforementioned technique. The
Ramsey procedure roughly amounts to transferring popula-
tion from the ground state gñ∣ into the excited state dñ∣ by a
sequence of two time-delayed (delay τ) two-photon excitation
pulses allowing interference fringes to be formed. Here, the
width of such a pulse Δω needs to be sufficiently broadband
( U rminwD > ˜ ( )) to avoid any Rydberg blockade [20]. For
single Rydberg atoms or dilute samples with weak interac-
tions, the periodicity of the fringes reflect the natural evol-
ution of the Rydberg level. For high density samples, as
considered experimentally in [5] and theoretically analyzed in

[15], the fringes are delayed as well as reduced in amplitude
as a result of particle−particle interactions.

The build-up of correlations is, however, typically
strongly limited by decay and dephasing processes in the
system which limit the maximum allowed τ (for example, due
to technical limitations to hundreds of ps in the experiment of
[5]). During such short times, even for high density samples,
owing to the rapid falling off of the free space van der Waals
coupling with distance, the number of effective atoms parti-
cipating in the interaction is fairly small [5]. One could
therefore benefit from all-to-all interactions allowing the
whole sample to participate in the interactions even for very
small τ (and thus lifting the requirement of having high
density ensembles).

We therefore proceed to analytically evaluate the char-
acteristics of the Ramsey signal in a case of N intracavity
atoms placed within a wavelength and coupled to each other
only via the C0 mechanism. According to [15] the time-
domain Ramsey signal is

P p p e G2 1 , 21g d
i dgt t= + w t x+( ) { ( )} ( )( ˜ )R

where pg, pd are the population in the ground and excited state,
respectively, dg d gw w w= -˜ ˜ is the frequency difference
between the ground and excited state and ξ is a constant phase
resulting from ac-Stark shifts during the pump and probe
pulses. The Ramsey signal for a frequency-domain sequence is
similar to the expression in equation (21) except that dgw̃ needs
to be exchanged with the detuning dg l d gw w wD = - -( ˜ ),
where ωl is the frequency of the excitation laser. The interac-
tion modulation of the Ramsey signal [21–24] is encoded in the
term

G p p e 22
k j

g d
iUjkt = + t

¹

( ) ( ) ( )˜

p p e A e . 23g d
iC N N i N1 1 10» + =t z- - -( ) ( )( )

The quantities of interest experimentally accessible are the con-
trast Gm t t=( ) ∣ ( )∣ and phase i G Glnn t t t= -( ) ( ( ) ∣ ( )∣)
functions. The contrast can be written as

A p p p p C2 cos , 24N
g d g d

N1 2 2
0

1 2m t t= = + +- -( ) [ ( )] ( )( )

while the phase is derived from ν(τ)=(N−1)ζ where

p C

p p C
tan

sin

cos
. 25d

g d

0

0
z

t
t

=
+

( )
( )

( )
( )

In the case that pg=pd=1/2 the contrast function becomes
Ccos 2 N

0m t t=( ) ∣ ( )∣ . For N  ¥ this converges to 1
if τ=2πk/C0, for positive integer k and 0 otherwise.
Figure. 4(b) displays the contrast for a finite amount of atoms.
The width of the revival features changes Nµ in the cavity.

The very simple expressions obtained above are, how-
ever, strongly altered by the presence of the C3 and C6 terms.
For higher densities, we perform Monte Carlo simulations
presented in figure 4(c). Here, a Monte Carlo simulation
consists of generating random atom locations to form a
homogeneous ensemble of atoms of a given density that
can be used to calculate the interaction energies Uij˜ for
equation (22). On the other hand, we can find an analytic
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solution for the Ramsey signal at the revival times given by
τ=2πk/C0. The derivation follows a similar route as has
been presented in [15] and is outlined in detail in appendix B.
For a large number of atoms and a locally homogeneous atom
distribution of the ensemble, the interaction induced mod-
ulation term G(τ) in equation (22) can be approximated by

G p p , 26g d
N 1t g t» + -( ) ( ( )) ( )

where

r r
dr r e

3
. 27

r

r
iU r

0
3

B
3

2

B

0

òg t =
-

t( ) ( )˜ ( )

This transition to a continuum description allows us to obtain
simple analytical solutions by evaluating γ(τ) in the case of
N  ¥. For simplicity we have also taken r 0B  . In the
case that τ=2πk/C0 for the general interaction or for the

Figure 4. Ramsey interferometry. (a) Sketch of the Ramsey procedure for an ensemble coupled to the fundamental mode of a microwave
cavity. (b) Evolution of the contrast function for all-to-all interactions for N=100 (orange line), N=1000 (blue line) and N=10000
(purple line) atoms. (c) Monte Carlo simulation for N=1000 atoms comparing the contrast decay for the full interaction (orange line),
intermediated (blue line) and all-to-all (purple line). (d) Comparison of Monte Carlo simulation (dashed lines) to the analytical model (solid
lines) in the large particle number limit. The parameters are C6=10C0, C3=10C0/4, n=0.35 μm−3 and pd=5%.
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particular case where the detuning is set to cancel the constant
all-to-all interaction we can obtain a finite solution for the
amplitude of G(τ) which is given by

G
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where C C6 3
2h = and the functions S(x), C(x) and F(τ) are

defined in appendix B. The first exponential term in
equation (29) governs the contrast degradation at large time
delays while the other two exponential terms dominate the
decay at an early stage. The solution is illustrated in
figure 4(d). Here, good agreement with the results obtained
from Monte Carlo simulations — which are depicted by the
dashed curves — is found. In the former case, we also know
that the amplitude becomes G 0t =∣ ( )∣ when k

C

2

0
t ¹ p which

allows us to determine the contrast for all τ in the general case
of the cavity-mediated van der Waals interaction.

The phase, on the other hand, shows no finite solution for
all τ and strongly depends on the number of atoms involved
in the process. This is due to the trigonometric integral Ci(x)
emerging from the dipole–dipole interaction which diverges
for x 0 . For comparison we present a Ramsey contrast that
solely describes the contribution of the free space van der
Waals interaction (U r C rF

6
6=˜ ( ) ) which is expressed by

G eF p2 d 8t = k ht- p∣ ( )∣ and illustrated as well in figure 4(d).

5. Discussions

The tuning knobs to access the various regimes of the interaction
are given by the density of atoms n, the detuning between the
cavity and the d f« transition δ, the Förster detuningΔ as well
as the cavity frequency ω and the dipole matrix elements μa,b

that change with the principal quantum number ν of an atom.
However, simple scaling arguments already indicate an optimal

operation regime. Let us assume a Fabry–Pérot cavity of length L
and waist w such that V=π w2L. Working on a given resonance
ωm=2πc/λm with L=mλm/2, the mode volume is expressed
as V m w c m

2 2p w= . The optimization of the ratio
C C V mm0 6

2 2 4 2w wµ µ then obviously requires that one
chooses transitions with a high frequency difference. Given that,
for high principal quantum numbers the typical difference
between d states and neighboring p, f states is small, at the level
of 100GHz or lower, it is then desired to work with lower levels.
We list certain state configurations and detuning conditions in
table 1 for the case of 87Rb atoms as an example that allows for
sufficiently strong cavity induced terms. For example, the 5D5/2

state that couples strongly to the energetically higher 4F7/2 state
and the energetically lower 6P3/2 state can have a strong cavity
induced constant van der Waals interaction around 1MHz over
an internuclear distance range of λ/4≈1.3μm to 100 nm where
the cavity induced dipole−dipole term starts to dominate. For
atoms trapped in an optical lattice with a lattice constant of
250 nm up to ∼130 atoms can be coupled simultaneously via the
distance-independent interaction. An example where the cavity
induced dipole−dipole interaction dominates the dynamics is
given for 12D5/2 which couples strongly to 13P3/2 and 11F7/2.
This is true for a range extending from 330 nm to 2μm, while for
smaller internuclear distances the free space van der Waals and
for larger distances the constant all-to-all interaction (ranging to
λ/4=44μm) govern the dynamics, respectively. By choosing
the detuning appropriately, we can find a minimum as presented
in figures 3(a) and (c) forming a binding potential for two
dimensional arrangements of atoms in this region. For much
higher principal quantum numbers ν the cavity induced interac-
tion terms become small in comparison to the increasing free
space van der Waals interaction as it has been presented for
35D5/2 coupling to 37P3/2 and 33F7/2 in table 1. Nevertheless,
for 35D5/2 and sufficiently low densities with internuclear dis-
tances ranging from 7μm to λ/4=630μm the cavity induced
terms dominate with sub MHz strength. Finally, a full exper-
imental feasibility study will have to account for a plethora of
experimental detrimental effects among which, for example, are
magnetic/electric stray fields. These will modify the natural
frequency of the atoms. However, as cloud sizes are quite
reduced (order of microns), it is justified to assume that all atoms
will have the same shift at the same time. Moreover, experiments
as in [5] are performed on the picosecond to nanosecond time-
scale. During such short durations, one would expect that
magnetic/electric field fluctuations (usually in the kHz to MHz
regime) will have a negligible impact on the signature of the
temporal dynamics.

Table 1. Numerical estimates. For 87Rb the effective potential coefficients are listed for states 5D5/2, 12D5/2 and 35D5/2. Here, the cavity
mode volume is set to V=(λ/2)3 for each state, respectively. The transition energies and dipole moments have been obtained following [25]
and by applying the Numerov method as outlined in [26].

State ωd (THz) δ (GHz) Δ (GHz) μ (a0e) g (MHz) C0 (MHz) C3 (MHzμm3) C6 (MHzμm6)

5D5/2 2π×57 14 2.4×104 10 1.4×103 1.3 1×10−3 4×10−10

12D5/2 2π×1.7 0.12 31 100 12.3 1.3×10−2 0.1 3×10−3

35D5/2 2π×0.12 0.01 1.5 560 0.34 3.8×10−4 0.35 63.1
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6. Conclusions

We have shown that manipulating the density of modes of the
electromagnetic vacuum field by means of a microwave cavity
can strongly alter the van der Waals interaction between
Rydberg atoms in an ensemble. The main result indicates the
possibility of switching between nearest neighbor to all-to-all
interaction regimes. We have furthermore analyzed a particular
situation involving a standard Fabry–Pérot microwave cavity
and concluded that experimental feasibility requires the use of
Rydberg manifolds with low principal quantum numbers.
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Appendix A. Reduced Hamiltonian in the two
excitation basis

In the absence of any decay mechanism, the dynamics of the
system is fully described by the Hamiltonian matrix

30
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g U
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where δ=ωd−ω and Δ=2ωd−ωp. The expression in
equation (30) is quite general but can be simplified for smaller
distances r between the atoms where the coupling strengths
ga, b become equivalent at each atom site. Here we obtain the
reduced matrix

H

J g g g
g

g U

g U

2 2 2
2 2 2 0 0

0 2 2

2 0 2 2
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with respect to the basis states df fd1 2 1 1ñ + ñ(∣ ∣ ), ff 2ñ∣ ,
pf fp1 2 0 0ñ + ñ(∣ ∣ ), dd0ñ∣ .

Appendix B. Continuum description of the Ramsey
signal

With U r C C r C r0 3
3

6
6= + +˜ ( ) we can reformulate
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converge for 0b  against the standard trigonometric inte-
grals and vanish for b  ¥.

Using the relation ω0=4π n C3/(3N)=κ/N, where n
is the density of atoms in the spherical volume and by
employing the conditions N  ¥, Bw  ¥, equation (34)
can be simplified to
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