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Brain development and function 

The outstanding complexity of the human brain is the product of an evolutionary journey that 

started millions of years ago. The human connectome is a myriad of specialized neuronal cell 

types and its synaptic connections, which add up to assemble the neural circuits and 

networks (van den Heuvel et al. 2016).  Much more than the sum of its individual 

components, the structural and functional connectivity of the brain is shaped by the unique 

interaction between an individual and its environment. 

In its most simple definition, the human adult brain is composed by an average of 86.1 billion 

neurons and an approximately equal number of glial cells with a heterogeneous distribution 

(Azevedo et al. 2009, Herculano-Houzel 2009). To achieve such numbers, tightly regulated 

molecular and cellular processes take place, starting from early stages in embryonic 

development until adulthood. In the ectoderm, undifferentiated cells are recruited to give rise 

to neural stem cells. Once in the neural plate, they acquire their identity and begin the first 

steps of differentiation to neuronal and glial lineages. A coordinated spatial and temporal 

regulation of gene expression takes place along with extensive cell proliferation. The default 

mode of neural induction proposes that, in the embryonic ectoderm cells adopt a neural fate 

as a result of inhibition of the bone morphogenic protein (BMP) (Kandel et al. 2000, Munoz-

Sanjuan et al. 2002). The balance between self-renewal and differentiation allows neural 

stem cells to either remain in a multipotent status or develop to neural progenitor cells and, 

ultimately, to a mature progeny. Notch signalling is highly involved in controlling the balance 

between expansion of neural stem cells/neural progenitor cells and neural differentiation, by 

blocking neuronal differentiation and maintaining neural stem cells in an undifferentiated 

state (Kandel et al. 2000). 

After neuroectoderm induction, neurulation takes place to form the neural tube. Cellular 

diversity in the central nervous system (CNS) depends on spatial patterning cues, 

responsible for production of different types of neural progenitor cells.  Early neural induction 

and spatial patterning involves the transcription factors orthodenticle homeobox 1 (OTX1), 

LIM homeobox 1 (LIM1) and forkhead box protein A2 (FoxA2), and specify anterior neural 

tissue. Further refinement of anterior/posterior patterning is regulated by gradients of Wnts, 

and Wnt antagonism. Patterning of the telencephalon occurs along the dorsal-ventral axis by 

dorsally produced fibroblast growth factor 8 (FGF8), BMPs, and Wnts and by a ventral 

gradient of sonic hedgehog (Kandel et al. 2000, Germain et al. 2010). 

The output of neural stem cells overtime is a dynamic process in which these cells either 

commit to a neuronal or glial cell fate. In the developing neocortex, cortical laminar 

organization is dictated by radial migration of neuronal progeny. In the ventricular and 

subventricular zones, expansion of the progenitor pool starts with several rounds of 
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symmetric division of the neural stem cells. Later on, a small percentage of these cells 

undergo asymmetric cell divisions to generate the early born neurons. With the progression 

of neurogenesis, these earlier born neurons differentiate to radial glia cells, progenitor cells 

with the dual role of serving as a migratory scaffold for neurons and as neuronal progenitors 

themselves. Later-born neurons migrate past the earlier-born neurons, migrating radially to 

the cortical plate and resulting in six distinct cortical layers formed in an inside-out fashion. 

The end of the neurogenic period dictates a switch form neurogenesis to gliogenesis. 

Following the formation of the cortical layers, the radial glia cells in the ventricular zone lose 

competence to produce neurons and acquire competence to produce glia, terminally 

differentiating to astrocytes. Oligodendroglia originate in the anterior entopeduncular area of 

the telencephalon and later migrate tangentially to populate the cortex. The cerebral cortex is 

comprised primarily of glutamatergic projection neurons, originating from dorsal telencephalic 

progenitors, and of GABAergic interneurons of ventral origin that migrate tangentially from 

the ganglionic eminences into the cortical plate. Upon arriving to the cortical plate, both 

neuronal populations are instructed to stop migrating and proceed with differentiation, 

forming and extending dendrites and establishing synaptic connections (Schuurmans et al. 

2002, Molyneaux et al. 2007, Germain et al. 2010, Kohwi et al. 2013, Silbereis et al. 2016).  

In the cortex, glutamatergic and GABAergic neurons are responsible for information 

processing, with excitatory and inhibitory synaptic inputs being tightly coupled. In fact, 

interneurons inhibit glutamatergic cells and are excited by them. Excitatory glutamatergic 

signalling is mediated by a series of glutamate receptors, grouped in two main categories: 

the ianotropic or metabotropic receptors. The α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA), kainate (KA) and N-methyl-D-aspartate (NMDA) receptors 

represent the three main subtypes of ianotropic receptors. Inhibitory GABAergic signalling, 

triggered by γ-aminobutyric acid (GABA) is associated with type A GABA ianotropic 

receptors (GABAAR) and the type B GABA metabotropic receptors (GABABR). Cortical 

transmission is largely mediated by ionotropic neurotransmitter receptors.  Glutamate elicits 

excitation via the activation of AMPAR and NMDAR, while GABA evokes inhibition via 

GABAAR (Kandel et al. 2000, Isaacson et al. 2011). Inhibition is somehow proportional to the 

excitation produced, resulting in a relatively constant excitation/inhibition (E/I) ratio that 

controls neural excitability. At the network level, balanced inhibition allows a progressive 

recruitment of firing neurons and prevents epileptiform discharges and excitotoxicity. 

Disruption of the E/I balance might impair brain function, and possibly contribute to 

neurological disorders such as autism and schizophrenia (Tao et al. 2014). 
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NMDA receptors 

NMDA receptors (NMDAR) are ionotropic glutamate-gated ion channels, assembled as 

heteromers in a tetrameric conformation, which are essential mediators of brain plasticity 

(Sheng et al. 1994, Paoletti et al. 2013). Their molecular composition is variable and usually 

associates two copies of the obligatory GluN1 subunit with two GluN2 subunits or a mixture 

of GluN2 and GluN3 subunits, resulting in different biophysical and pharmacological 

properties (Mayer 2011). Sequence homology within the seven subunits divides them into 

three subfamilies: GluN1 subunit, GluN2 subunits (GluN2A, GluN2B, GluN2C and GluN2D) 

and GluN3 subunits (GluN3A and GluN3B) (Paoletti 2011, Paoletti et al. 2013). Alternative 

splicing increases GluN1 variability and together with receptor subunit composition 

influences receptor properties such as ion conductance, affinity to agonistic agents and 

sensitivity to allosteric modulation, receptor desensitization characteristics and association 

with intracellular signalling molecules. Post-translational modifications influencing receptor 

function include glycosylation, palmitoylation, S-nitrosylation and phosphorylation (Paoletti et 

al. 2013, Lussier et al. 2015, Hogan-Cann et al. 2016, Iacobucci et al. 2017).  

Each NMDAR subunit comprises four elements spanning the extracellular, transmembrane 

and intracellular regions (Figure 1). NMDAR extracellular epitopes sense diffusible ligands 

such as glutamate, glycine, H+, Zn2+ and respond by gating a Ca2+-rich cationic current. 

Flow of Na+, K+ and Ca2+ depends on the controlled gating of the transmembrane pore 

(Paoletti et al. 2013). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of the GluN1 subunit of NMDAR. The extracellular amino-terminal domain (NTD) 

participates in allosteric regulation and subunit assembly; the ligand-binding domain (LBD; consisting of the S1 

and S2 segments) is the binding site for glycine in GluN1 and glutamate in GluN2 or D-serine in GluN3 subunits. 

Three transmembrane helices (A, B and C) and a pore loop that contains the ion channel constitute the 
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transmembrane domain (TMD). Finally, the intracellular carboxy-terminal domain (CTD) is involved in receptor 

trafficking, anchoring, and binding to downstream signalling molecules (Furukawa et al. 2005, Gielen et al. 2009, 

Mayer 2011, Paoletti 2011, Paoletti et al. 2013). 

 

NMDAR activity is required for synaptogenesis, experience-dependent synaptic remodelling 

and long-term potentiation and depression (Lau et al. 2007, Paoletti et al. 2013). NMDAR 

subunit composition and number are not static. Different receptor subtypes coexist in the 

CNS depending on the developmental stage, cellular type, sub-cellular location and neuronal 

activity (Lau et al. 2007). Typically, they are found in the post-synapse in a di-heteromeric 

GluN1/GluN2A or tri-heteromeric GluN1/GluN2A/GluN2B conformation (Lau et al. 2007, 

Iacobucci et al. 2017). Peri-synaptic and extra-synaptic sites are enriched in GluN2B-

containing receptors while at the synapse the GluN1/GluN2A conformation is more frequent. 

Enrichment in GluN1/GluN2A occurs upon a postnatal developmental switch in synaptic 

NMDAR phenotype from GluN2B to GluN2A (Lau et al. 2007, Gladding et al. 2011, Paoletti 

et al. 2013). Receptor number at the synapses is regulated by neuronal activity. While 

blocking neuronal activity promotes alternative ribonucleic acid (RNA) splicing and export of 

NMDAR from the endoplasmic reticulum to the synapse, receptor internalization and 

degradation through the ubiquitin–proteasome system is driven by chronic activity (Lau et al. 

2007, Horak et al. 2014). 

The presence of NMDAR and glutamate signalling goes beyond the CNS. NMDAR are 

expressed across a wide range of non-neuronal cells and tissues, including glial and 

endothelial cells, kidney, bone, pancreas, among others. Physiological tasks attributed to 

these non-neuronal receptors include bone deposition, wound healing, inhibition of insulin 

secretion, blood brain barrier (BBB) integrity and activity-dependent myelination (Skerry et al. 

2001, Hogan-Cann et al. 2016). 

NMDAR dysfunction is linked to synaptic defects and ultimately neurological and psychiatric 

conditions. Altered subunit expression, trafficking, localization or activity might underlie 

several phenotypes. These include neurodegenerative conditions such as Parkinson’s and 

Alzheimer’s disease in which glutamate toxicity contributes to neuronal loss (Mehta et al. 

2013). Associated neuropsychiatric conditions include schizophrenia, anti-NMDAR 

encephalitis and autism spectrum disorders in which altered glutamate signalling due to 

either reduced or enhanced NMDAR function is implicated (Paoletti et al. 2013). 
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The blood brain barrier 

The BBB is a dynamic interface between the CNS and the blood. Together with the blood-

cerebrospinal fluid (CSF) barrier, the blood-retinal barrier, the blood-nerve barrier and the 

blood-labyrinth barrier, the BBB exerts a bi-directional control of the molecular and cellular 

trafficking into the brain (Blanchette et al. 2015). 

The development of the BBB starts with the vascularization of the neuroepithelium via 

sprouting angiogenesis and consequent invasion of the neural epithelium by endothelial 

progenitor cells and pericytes in a later stage (Hellstrom et al. 1999, Stenman et al. 2008, 

Engelhardt et al. 2014). The brain endothelial cells interact with neural, vascular and immune 

cells to regulate its permeability via intra and intercellular events (Neuwelt et al. 2008, 

Ransohoff 2009, Neuwelt et al. 2011). The extracellular matrix, located at the abluminal 

endothelial surface acts as central scaffold, linking different cells and molecules of the BBB 

and providing a physical barrier for leukocyte migration (Correale et al. 2009, Blanchette et 

al. 2015). 

The maintenance of the BBB properties involves the interaction of brain endothelial cells with 

different cell types and environmental cues. On the luminal side, a paracellular barrier is 

created via tight junctions to seal the space between adjacent brain endothelial cells and 

prevent unspecific influx of ions and small charged molecules from the blood stream (Huber 

et al. 2001, Blanchette et al. 2015). The assembly of tight junctions requires the 

transmembrane proteins occludin, claudin and junctional adhesion molecules. On the 

abluminal side, astrocyte-derived signals regulate the BBB phenotype by preventing immune 

cell infiltration and sealing the paracellular space (sonic hedgehog) (Alvarez et al. 2011); 

decreasing vascular permeability (angiopoietin) (Lee et al. 2003); and regulating tight 

junction integrity (angiotensin and Apolipoprotein E; ApoE) (Wosik et al. 2007, Bell et al. 

2012). ApoE immunoreactivity in the brain is evident in astrocytic end-feet (Boyles et al. 

1985) (Figure 2A). There, it regulates tight junction integrity through the activation of protein 

kinase C and phosphorylation of occludin (Nishitsuji et al. 2011). In fact, ApoE-/- mice display 

extravasation of serum immunoglobulin G (IgG) in the cerebellum and discrete cortical and 

subcortical areas such as the hippocampus (Fullerton et al. 2001). 

Homeostasis in the brain is kept by specific transport systems and enzymes in the BBB. 

While drug and nutrient-metabolizing enzymes process neuroactive blood-borne compounds, 

specific transport systems in the plasma membrane of brain endothelial cells allow the 

passage of nutrients and water-soluble compounds (Correale et al. 2009). This balance can 

be altered by inflammatory cytokines, hormones and drugs (Blanchette et al. 2015). During 

neuroinflammation, inflammatory cytokines in the CNS or blood, as interleukin-1β (IL-1β), 

tumour necrosis factor α (TNF-α), CC-chemokine ligand 2 (CCL-2), and interleukin-17A (IL-



INTRODUCTION 

 

 22 

17A), modulate the BBB permeability by degrading tight junction proteins, modifying their 

phosphorylation status or affecting their turnover rate (Argaw et al. 2006, Stamatovic et al. 

2009, Marchiando et al. 2010). Breakdown of the BBB allows a free flow of blood-derived 

components and neurotoxic proteins that can accumulate in the CNS and lead to neuronal 

toxicity and progressive neurodegeneration (Winkler 2012; Montagne 2015). Additionally, 

influx of immunoglobulins (Ig) through the brain can occur via modulation of barrier properties 

due to brain endothelial cells activation or by transfer of antibodies in the absence of brain 

endothelial cell activation. Efflux to the circulation of up taken antibodies is mediated by 

neonatal Fc receptors, present in brain endothelial cells which actively transport 

immunoglobulins out of the brain (Figure 2B) (Zhang et al. 2001). Additionally, the BBB is not 

a homogenous structure. There is a differential distribution of the receptors for the 

modulating molecules of BBB permeability that, ultimately, can mediate different effects of 

the same circulating Ig on brain function by determining its primary entry site (Brimberg et al. 

2015).  

Figure 2. BBB and Ig access to the brain parenchyma. (A) Basic cellular composition of the BBB. (B) 

Mechanisms of Ig influx to the brain: via endothelial cell activation due to interaction of pro-inflammatory 

molecules with Toll-like receptor 4 (TLR4) (a) or cytokine receptors (b); transcellular-dependent mechanisms can 

transport cytokines and chemokines through the BBB and activate CNS immune cells (c) or by direct binding of 

circulating antibodies (d). Transfer of antibodies in the absence of endothelial cell activation can occur by 

receptor-mediated endocytosis (e), retrograde axonal transport by neurons protruding towards the lumen of BBB 

capillaries (f) or by transendothelial migration of B cells (g). Neonatal Fc receptors present in endothelial cells 

mediate efflux of Ig back to the circulation (h) (Fabian et al. 1987, Roth et al. 2004, Ge et al. 2008, Diamond et al. 

2009). ApoE: apolipoprotein E; LPS; lipopolysaccharide; ABs: autoantibodies; Fc: Fragment crystallisable. 
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Synergies between nervous and immune systems  

Both the CNS and the immune system are self-organizing: they start with genetically 

encoded primary instructions, to which information retrieved from environmental cues is 

added to develop individualized systems. Once seen as two unrelated systems, the bi-

directional interaction between brain and immune molecules has been challenging this view.  

Two major classes of immune effector molecules – cytokines and antibodies – have been 

linked to brain development and function (Boulanger 2009, Deverman et al. 2009, Brimberg 

et al. 2015). The BMPs, belonging to the transforming growth factor β (TGF-β) cytokine 

superfamily, regulate induction of the neuroepithelium and signalling via the gp130 cytokine 

family maintains the radial glia cells pool by promoting its self-renewal during embryogenesis 

(Hatta et al. 2002, Munoz-Sanjuan et al. 2002). Also chemokines, small cytokines with 

chemoattractant properties, are implicated in migration, proliferation and differentiation of 

neurons and glia. The stromal cell-derived factor 1 (SDF-1) chemokine and its receptor C-X-

C chemokine receptor type 4 (CXCR4) regulate cell proliferation and migration in the brain 

(Lu et al. 2002, Stumm et al. 2003). 

Microglia, the resident macrophage-like cells in the brain are responsible for immune 

surveillance, responding to infection and injury by secreting a large repertoire of cytokines 

and chemokines. They scan the brain parenchyma making transient contacts with synapses 

(Wake et al. 2009). During embryogenesis, microglia promotes astrocyte proliferation by 

secreting IL-1 and regulates developmental apoptosis and synaptogenesis by secreting TNF-

α (Giulian et al. 1988, Deverman et al. 2009). Immature astrocytes induce the expression of 

the complement cascade protein C1q on retinogeniculate neurons. The complement system, 

besides their opsonizing functions plays a role in synaptic elimination. Indeed, C1q and C3 

complement components localize at the synapses and tag unwanted synapses for 

elimination by microglia during synaptic pruning (Stevens et al. 2007, Schafer et al. 2012). 

The class I major histocompatibility complex (MHC) engages antigen presentation to T cells 

during adaptive immune responses. In the brain it modulates plasticity in the hippocampus 

and participates in synapse refinement processes (Huh et al. 2000, Bhat et al. 2009, Lee et 

al. 2014). Antibodies targeting brain proteins also impact brain function and homeostasis, 

and the effects of brain exposure will be discussed later in the “Neurological diseases driven 

by autoimmunity” section of the introduction.   

The crosstalk between the nervous and immune systems is not unidirectional and CNS 

molecules also interact with immune cells in the periphery. Of particular interest is the role of 

neurotransmitter signalling in immune cells. In the CNS, GABA is the major neurotransmitter 

involved in inhibitory processes. Additionally, immune cells like macrophages, T cells and 

antigen presenting cells (APC) express functional GABAAR. GABA synthesis by 
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macrophages, dendritic cells and T cells has immunoinhibitory effects as downregulation of 

CD4+ T cell-mediated autoimmune processes (Tian et al. 2004, Bhat et al. 2010, Dionisio et 

al. 2011). In dendritic cells, GABAergic signalling potentiates chemotactic responses by 

promoting hypermotility (Fuks et al. 2012, Barragan et al. 2015).  

Glutamate is another player in neurotransmitter-driven immunomodulation extending its role 

beyond excitatory processes in the brain. After maturation in the thymus, resting T cells 

express several metabotropic glutamate receptors (mGluR): mGlu2/3R mGlu5R, mGlu8R 

and ionotropic receptors like NMDAR, AMPAR and KA receptors. Dendritic cells undergoing 

maturation and in contact with T cells release glutamate to prevent T cell activation (Levite 

2008). T cells initially uptake glutamate via the constitutively expressed mGluR5. Upon 

antigen presentation by dendritic cells and T cell activation, mGluR1 are expressed for 

glutamate uptake and attenuate the mGluR5-triggered effects, mediating enhanced T cell 

proliferation and secretion of pro-inflammatory cytokines (Levite 2008). Hence, during cross 

talk between dendritic and T cells, glutamate signalling appears to control the proliferation of 

T cells depending on which receptor is involved on its uptake (Pacheco et al. 2006, Pacheco 

et al. 2007). Additionally, T cell responses seem to be modulated by glutamate signalling via 

NMDAR upregulation upon CD4+ T cell activation. T helper 1 versus T helper 2 cell functions 

such as proliferation, cytokine production and cell survival seem to be differentially affected 

by NMDAR signalling. In vitro, pharmacological stimulation of NMDAR results in reduced T 

helper 1-like cytokine production and unaltered T helper 2-like or IL-10 responses, most 

probably due to susceptibility of T helper 1 cells to NMDAR-dependent physiological cell 

death (Orihara et al. 2018). However, a direct link between glutamate and NMDAR signalling 

in immune cells has not been established yet.  

 

Innate and adaptive immunity 

Down the road of (auto)immunity there are two ways to go: the innate or the adaptive one 

(Figure 3). When a prompter response to danger is required, innate immunity takes place 

and immune events are driven by transmembrane receptors like Toll-like receptors, cytokine 

and chemokine receptors or fragment crystallisable (Fc) receptors (Figure 3A) (Alberts et al. 

2002, Church et al. 2008, Bhat et al. 2009). On the other side, adaptive immunity involves 

antigen-specific T cells and an orchestrated antibody response by B cells to antigen-driven 

stimulation (Figure 3B). In the core of adaptive immune responses is the production of high 

affinity antibodies able to recognize virtually any antigen due to somatic hypermutation 

events of Ig genes (Bhat et al. 2009). Both innate and adaptive immunity can be involved in 

autoimmune events. While innate-related autoimmunity events are mainly associated with 

the inflammasome in adaptive-related autoimmunity, involvement of immune cells as 
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macrophages, T and B cells as well as production of antibodies recognizing self-antigens 

and activation of the complement system are possible (Church et al. 2008).    

Antibody production is the result of the combined activity of innate and adaptive immunity. In 

fact, immunostimulants, secreted during innate responses can promote inflammation and 

trigger adaptive immune responses in which macrophages and dendritic cells can engage in 

antigen presentation to naïve T cells (Alberts et al. 2002). T cell receptors (TCR) recognize 

both peptide segments of antigenic proteins and fragments of the antigen-bound MHC on the 

surface of APCs (Figure 3B). If on one side naïve T cells interact with dendritic cells during 

its activation, B cells require stimulation via activated T helper cells (Alberts et al. 2002). In 

the germinal centres of the lymph nodes activated B cells can differentiate to plasma cells or 

memory B cells. Differentiation of B cells into antibody-synthetizing plasma cells allows mass 

production and secretion of specific antibodies. Post-proliferative plasma cells usually 

secrete IgM, IgG or IgA antibodies with moderate affinity. Further cycles of B cell 

proliferation, somatic hypermutation and affinity purification leads to differentiation to plasma 

cells able to secrete antibodies with increased affinity. Additionally, memory B cells can be 

re-stimulated during a second encounter with the antigen and engage secondary antibody 

responses (Janeway et al. 2001). 

Antigen recognition leads to lymphocyte activation and clonal expansion, producing clones of 

lymphocytes carrying the same antigen-specific receptor (Rose 2015). Mechanisms of 

tolerance to self-antigens must take place to prevent severe autoimmune reactions. 

Immunological tolerance is acquired by clonal deletion and inactivation of developing 

lymphocytes. Thus, the mature lymphocyte repertoire is shaped by negative and positive 

selection. Self-tolerance is granted by elimination or neutralization of lymphocytes with 

strongly self-reactive receptors during negative selection. Positive selection identifies and 

preserves lymphocytes fit to respond to foreign antigens (Janeway et al. 2001).  

 

Immunoglobulin diversification 

Immunoglobulins are Y-shaped molecules presenting two distinct regions: the variable (V) 

region that controls the specificity to bind to the antigen and the constant (C) region that 

determines how the antigen is eliminated, upon binding by recruiting cells and immune 

molecules to destroy the antigen source via phagocytosis or the complement system (Figure 

3C). Membrane bound Ig on B cell surface, serve as cell receptor (BCR) for the antigen and 

have no effector functions. Its V regions, exposed on the cell surface, recognize and bind to 

antigens in order to activate B cells, promote clonal expansion and the production of specific 

antibodies (Janeway et al. 2001). 
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In early stages of B cell development, the primary antibody repertoire is created by assembly 

of exons encoding the antigen-binding variable regions of Ig heavy and light chains (Hwang 

et al. 2015). Diversification of Ig genes in mature B cells can occur via two deoxyribonucleic 

acid (DNA) modifying mechanisms: somatic hypermutation and class switch recombination 

(Kracker et al. 2011). Somatic hypermutation takes place in the germinal centres and 

enables the selection of antibodies with increased antigen affinity by introducing point 

mutations in the exons of Ig heavy and light chains (Rajewsky 1996). This stochastic process 

generates an extensive repertoire of immunoglobulins able to recognize virtually any antigen. 

To produce high affinity antibodies antigen-activated B cells undergo affinity maturation 

processes, including multiple rounds of somatic hypermutation  and selection of clones with 

high antigen affinity followed by clonal expansion (Hwang et al. 2015). Class switch 

recombination modulates antibody’s effector function. Immature B cells express mainly IgM 

and, upon antigen stimulation and interaction with T cells in the periphery they proliferate, 

differentiate and acquire the ability to produce antibodies of other isotypes. During class 

switch recombination events, the coding exons of the C region, within the IgH gene, are 

replaced by DNA recombination between switch (S) region DNA segments, while the binding 

specificity (V region) of the BCR is maintained (Selsing 2006, Kracker et al. 2011). 

In mammals there are five isotypes of antibodies: IgA, IgD, IgE, IgG, and IgM (Lefranc et al. 

2001). In the bone marrow, the first isotype produced by a developing B cell is IgM, to be 

inserted in the plasma membrane as the BCR of immature naïve B cells. Upon migration to 

peripheral lymphoid organs, these cells start to express IgD at their surface evolving to 

mature naïve B cells responsive to foreign antigens. IgM is the major isotype secreted into 

the bloodstream upon first exposure to the antigen. In its secreted form, IgM is a pentameric 

molecule with a total of ten antigen-binding sites and the ability to activate the complement 

system, while IgD seem to function mostly as cell-surface receptors. IgG is a monomer 

heavily produced during secondary immune responses and the main isotype present in the 

blood. Besides activating the complement system, its Fc region can signal to phagocytic cells 

via Fc receptors present in macrophages and neutrophils and, ultimately, trigger 

phagocytosis. IgA is the main antibody isotype in body fluids. Present in the blood as a 

monomer, it acquires a dimeric conformation, when present in secretions, thought to be 

protective against the proteolytic action of enzymes. IgE molecules are monomers that serve 

as cell-surface receptors for antigen in mast cells and basophils. After being secreted, IgE 

bind to Fc receptors in mast cells and, upon binding to an antigen, it signals the mast cell to 

release histamine (Janeway et al. 2001, Lefranc et al. 2001, Alberts et al. 2002). 
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Figure 3. Innate and adaptive immunity. (A) Innate responses are mediated by recognition of foreign molecules 

by transmembrane receptors located in antigen presenting cells (APCs). Stimulation of these receptors activates 

intracellular signalling pathways as Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) or 

nuclear factor kappa B (NF-ĸB) that culminate in triggering the inflammasome and its major player interleukin 1 

(IL-1). (B) Adaptive responses rely partially in pre-existing elements of innate immunity for T cell activation. Näive 

T cells are able to bind to antigen-MHC complexes via its T cell receptor (TCR) and engage proliferation and 
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differentiation to effector cells as regulatory (Tr), cytotoxic (Tc) and helper (Th) T cells. APCs secrete cytokines 

that influence the functional differentiation of T cells. CD4+ T cells differentiate to Th1 in the presence of IL-12 and 

IFN-ɣ, while secretion of IL-4 promotes Th2 differentiation. This has a direct impact on the outcome of the immune 

response as Th1 preferentially activate macrophages and Th2 activate B cells. Upon activation by Th2 cells in the 

germinal centres, antigen-stimulated B cells undergo proliferation and differentiation events that culminate in high 

affinity antibody production by plasma cells and acquisition of immunological memory. (C) Antibody structure. 

Four polypeptide chains: two identical light (L) chains and two identical heavy (H) chains connected by a 

combination of noncovalent and covalent disulphide bonds (Alberts et al. 2002). IFN-γ: interferon gamma; MHC: 

major histocompatibility complex; Fc: fragment crystallisable region; Fab: antibody-binding fragment.  

 

 

Autoimmunity – a case of molecular misunderstanding? 

An autoimmune condition occurs when a specific adaptive immune response develops 

against a self-antigen, leading to chronic inflammatory tissue damage.  As in a protective 

immune response, self-antigen triggered T cytotoxic cell responses and activation of 

macrophages by T helper 1 can cause tissue damage, whereas inappropriate T helper 2-

mediated activation of self-reactive B cells can initiate detrimental autoantibody responses. 

Although the T and B cell repertoire are purged of most self-antigen high-affinity receptors by 

clonal deletion, they still include low-affinity self-reactive receptors. Transient autoimmune 

responses are common and pathological status arises only when they are sustained and a 

cause of tissue damage. Susceptibility to autoimmune disease has been most consistently 

associated with human leukocyte antigen (HLA) gene complex. The T cell response to an 

antigen depends on the HLA haplotype. Being so, susceptibility to autoimmunity can be 

determined by different levels of efficacy of MHC variants, coded by the HLA complex, in 

presenting autoantigenic peptides to autoreactive T cells. Additionally, during the selection of 

the TCR repertoire, self-antigens associated with certain MHC variants might induce positive 

selection of cells bearing TCRs specific for these self-antigens. A scenario only possible if 

these self-antigens are expressed at low levels or bind too poorly to self-MHC molecules and 

do not trigger negative selection events (Janeway et al. 2001).  

Autoimmune responses can be initiated by molecular mimicry events during immune 

responses to foreign antigens, possibly due to sequence homology between human and the 

pathogen peptides. According to the molecular mimicry hypothesis, autoreactive T cells and 

autoantibodies are initially directed to microbial antigens and further react with similar self-

antigens (Fujinami et al. 1985, Ang et al. 2004, Atassi et al. 2008). Immunological cross-

reactivity can occur due: (i) to homology between amino acid sequences, (ii) recognition of 

non-homologous peptide sequences by a single BCR or TCR due to their high level of 

degeneracy, (iii) variability in antigen recognition by T cells during antigen presentation by 

influence of HLA haplotypes and (iv) recognition of structural similarity in complex molecular 
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structures by immunological receptors, that might include double-stranded DNA molecules or 

glycolipids for example (Fujinami et al. 1985, Mason 1998, Ang et al. 2004). Being so, one 

can define molecular mimicry as a dual recognition of self and non-self-peptides by a single 

BCR or TCR, in which cross-reactive antibodies and T cells can engage autoimmune events 

(Ang et al. 2004). A role for molecular mimicry has been proposed in some immune-

mediated diseases including acute rheumatic fever (Group A streptococci), Chagas’ disease 

(Trypanosoma cruzi) and Guillain–Barre’ syndrome (Campylobacter jejuni) as examples (Ang 

et al. 2004, Sheikh et al. 2004, Teixeira et al. 2011, Cunningham 2012). 

 

Neurological diseases driven by autoimmunity 

In several autoimmune conditions, the presence of autoantibodies can be a direct cause of 

the disease as it happens in systemic lupus erythematosus, myastenia gravis and 

Rasmussen encephalitis or it can contribute to the severity of the disease as in rheumatoid 

arthritis. When it comes to autoimmune responses to brain antigens, autoantibodies can 

induce brain damage and likely initiate or worsen multiple neurologic conditions (Brimberg et 

al. 2013, Mader et al. 2017). Their contribution to brain pathology is dependent on BBB 

function that usually prevents their access to the brain (Hammer et al. 2014, Platt et al. 

2017). Brain-reactive autoantibodies can target neuronal or non-neuronal antigens. In 

neuropsychiatric systemic lupus erythematosus, autoantibodies targeting double stranded 

DNA molecules, can cross react with the GluN2A and GluN2B subunits of the NMDAR and 

induce excitotoxic neuronal death due to prolonged channel opening time and exacerbated 

calcium influx (DeGiorgio et al. 2001, Faust et al. 2010).  In neuromyelitis optica 

autoantibodies target the astrocytic aquaporin 4 water channel present in astrocytic endfeet, 

resulting in astrocyte loss and demyelination (Lennon et al. 2004). 

In utero exposure to certain brain-reactive autoantibodies can lead to neurodevelopmental 

changes in the fetal brain. Contactin-associated protein 2 (CASPR2) autoantibodies, isolated 

from seropositive mothers of autistic children, when injected to female mice lead to neuronal 

abnormalities and an autistic-like phenotype in their male offspring upon in utero exposure. 

These include abnormal cortical development, decreased dendritic complexity of excitatory 

neurons and reduced numbers of inhibitory neurons in the hippocampus, as well as 

impairments in sociability, flexible learning and repetitive behaviour (Brimberg et al. 2013, 

Brimberg et al. 2016). 

Two outcomes are possible upon entry of brain-reactive autoantibodies in the brain. 

Remission of the neuropsychiatric symptoms can be achieved by removal of the 

autoantibodies, as it is the case in limbic encephalitis, associated predominantly with 

antibodies targeting the leucine-rich glioma inactivated protein 1 (LGI1) (Mader et al. 2017). 
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Alternatively, exposure to brain-reactive autoantibodies might have persistent effects by 

triggering irreversible mechanisms that cannot be reverted by autoantibodies elimination. In 

neuropsychiatric systemic lupus erythematosus patients, acute exposure to GluN2A/GluN2B 

autoantibodies leads to neuronal apoptosis and chronic damage of surviving neurons 

mediated by microglia-dependent synaptic loss persistent upon autoantibodies removal 

(DeGiorgio et al. 2001, Faust et al. 2010, Bialas et al. 2017). 

Rasmussen’s encephalitis was one of the first autoimmune conditions to be associated with 

neuronal surface autoantibodies targeting the glutamate system (Rogers et al. 1994). Since 

the identification of the pathogenic role of GluR3 autoantibodies in this condition, several 

other CNS disorders have been related to autoimmune processes targeting ion channel and 

synaptic proteins in the brain (Table 1). Of those, anti-NMDAR encephalitis was one of the 

first synaptic autoimmune encephalitides to be characterized at the molecular level (Dalmau 

et al. 2007).  
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Table 1. Antibodies targeting neuronal or synaptic proteins and associated disorders. 

 

Notes: GluN1: glutamate ionotropic receptor NMDA type subunit 1; AMPAR: α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor; mGluR1/5: metabotropic glutamate receptor 1/5; GABAAR: γ-aminobutyric acid  

type A receptor; GABABR: γ-aminobutyric acid  type B receptor; GlyRα1: glycine receptor α1 subunit; D2R: 

dopamine D2 dopamine receptor; CASPR2: contactin-associated protein 2; LGI1: leucine-rich glioma inactivated 

protein 1; IgLON5: immunoglobulin G superfamily member 5; DPPX: dipeptidyl aminopeptidase-like protein 6; 

NMDAR: N-methyl-D-aspartate receptor; HEK: human embryonic kidney; ADAM22: disintegrin and 

metalloproteinase domain-containing protein 22; PERM: progressive encephalitis with rigidity and myoclonus; GI: 

gastrointestinal (Diamond et al. 2013, Crisp et al. 2016, Dalmau 2016). 

 

 

Target Antibody effects Associated disorder Phenotype 

GluN1 

Endocytosis of NMDAR in 

neurons with disruption of epitope 

function  

Anti-NMDAR encephalitis 
Psychosis, seizures, 

dyskinesia 

AMPAR Endocytosis of AMPAR in neurons Limbic encephalitis Memory loss, confusion 

mGluR1 

Blockade of induction of long-term 

depression in Purkinje cells              

Reduction of AMPAR clusters at 

the synapse  

Cerebellar ataxia, 

limbic encephalitis 

Reduction of basal 

activity of Purkinje cells 

mGluR5 Unknown  
Limbic encephalitis, 

Ophelia syndrome 
Memory loss, confusion 

GABAAR 
Reduction of GABAAR at the 

synapse and extrasynaptic sites 
Encephalitis Seizures 

GABABR Unknown Limbic encephalitis Memory loss, seizures 

GlyRα1 
Endocytosis of GlyRα1 in HEK 

cells 
PERM Muscle rigidity, spasms 

D2R Unknown 

Basal ganglia 

encephalitis,         

Tourette syndrome 

Parkinsonism 

Neurexin3α 

Decreased expression of 

Neurexin3α on synapses and 

decreased synapse formation 

Encephalitis Seizures, confusion 

CASPR2 
Alteration of gephyrin clusters in 

inhibitory synapses 

Morvan syndrome,     

limbic encephalitis 

Memory loss, sleep 

disorder, neuromyotonia 

LGI1 

Inhibition of interaction with 

ADAM22; Decrease of 

postsynaptic AMPAR with 

disruption of epitope function 

Limbic encephalitis Memory loss, seizures 

Amphiphysin 
Disruption of vesicle endocytosis 

in neurons 

Stiff-person 

encephalomyelitis 

Rigidity, spasms, 

confusion, memory loss 

IgLON5 
Decrease of cell surface IgLON5 

in neurons 
Sleep disorder 

Sleep apnea, brainstem 

dysfunction 

DPPX 
Hyperexcitability of enteric 

neurons 

PERM, cerebellar ataxia, 

encephalitis 

Hyperekplexia, diarrhoea 

and other GI symptoms 
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Anti-NMDAR encephalitis  

Anti-NMDAR encephalitis patients develop psychosis, cognitive problems and seizures, and 

its clinical picture can progress to altered status of consciousness, dyskinesias and 

autonomic dysfunction (Dalmau et al. 2007). At the cellular level, binding of GluN1 

autoantibodies (NMDAR-AB) leads to a reduction of NMDAR cluster density, mediated by 

direct disruption of the epitope upon binding, receptor internalization and degradation 

(Hughes et al. 2010, Gleichman et al. 2012). This decrease in NMDAR has been reported in 

vitro using mouse or rat hippocampal neurons exposed to CSF or IgG extracts of anti-

NMDAR encephalitis patients or individuals with other conditions (Hughes et al. 2010, 

Hammer et al. 2014, Moscato et al. 2014). Additionally, surface and total GluN2A and 

GluN2B protein levels which assemble with GluN1 to form functional NMDARs, decrease 

upon exposure to patients autoantibodies (Hughes et al. 2010). 

In the context of anti-NMDAR encephalitis, only IgG antibodies have been reported to bind to 

the extracellular NTD of the GluN1 subunit. The NTD domain includes seven N-linked 

consensus glycosylation sites (G1-G7); and glycosylation and deamidation of the G7 site 

contribute to epitope formation and recognition by NMDAR-AB (Gleichman et al. 2012). 

Exposure to patient-derived CSF prolongs the duration of NMDAR opening in HEK293 cells 

expressing GluN1-GluN2B, and induces reduction of long-term potentiation in acute 

hippocampal slices (Gleichman et al. 2012, Zhang et al. 2012, Jezequel et al. 2017). 

Moreover, injection of IgG or CSF into rodent brains leads to increased glutamate levels and 

excitability of the motor cortex (Manto et al. 2010, 2011). In vitro, NMDAR-AB have no 

binding preference to inhibitory or excitatory neurons (Moscato et al. 2014). Thus, in theory, 

the acute effects of antibody exposure, such as seizures might be due to a hyper-

glutamatergic state and consequent increase in network excitability coupled with homeostatic 

changes in inhibitory neurotransmission (Crisp et al. 2016). Although NMDAR-AB do not 

induce compensatory changes in glutamate receptor gene expression upon receptor 

internalization in vitro, they cause a decrease in inhibitory synapse density onto excitatory 

hippocampal neurons. In fact, a reduction on GABAAR cluster density has been observed in 

hippocampal neurons exposed to NMDAR-AB+ CSF with no change in GABAAR-mediated 

miniature inhibitory postsynaptic currents (Moscato et al. 2014). 

Studies using patient serum or CSF report a strong binding of NMDAR-AB to the 

hippocampal region, with no evidence of neuronal loss as consequence (Dalmau et al. 2008, 

Hughes et al. 2010). In the hippocampus, the binding pattern of patient’s NMDAR-AB is 

dependent on NMDAR density, with higher intensities observed in proximal dendrites of the 

dentate gyrus (Hughes et al. 2010). In line with the pivotal role of NMDAR signalling in 

mediating synaptic plasticity in the hippocampus, long term effects in anti-NMDAR 
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encephalitis patients include deficits in executive function and memory (Finke et al. 2012, 

Planaguma et al. 2015). 

Presence of NMDAR-AB has been associated with contact with influenza A and B, CNS 

herpes simplex virus infection, a diagnosis of ovarian teratoma, and a genome-wide 

significant marker (rs524991) in the proximity of nuclear factor I A (NFIA) gene, a 

transcription factor that mediates neuroprotection upon NMDAR activation (Dalmau et al. 

2007, Zheng et al. 2010, Pruss et al. 2012, Armangue et al. 2014, Hammer et al. 2014, Pruss 

et al. 2015). Regardless of the triggering events leading to autoantibody production, NMDAR-

AB seem to be generated in secondary lymphoid organs and potentially gain access to the 

CNS upon BBB disruption or via the choroid plexus. This hypothesis is supported by 

NMDAR-AB seropositivity in healthy individuals (Busse et al. 2014, Dahm et al. 2014). In the 

lymph nodes, antigen-presenting cells expose naïve B cells to NMDAR that differentiate into 

memory B cells and antibody-producing plasma cells. Plasma cell-secreted NMDAR-AB and 

circulating memory B cells can potentially access the brain. NMDAR-AB can exert their 

effects by direct contact with their target antigens and memory B cells can undergo re-

stimulation, antigen-driven affinity maturation, clonal expansion, differentiation into antibody-

producing plasma cells and ultimately engage intrathecal production of NMDAR-AB (Moscato 

et al. 2014, Dalmau 2016).  

Post mortem or biopsy histopathological studies of anti-NMDAR encephalitis patients 

revealed that complement-mediated cell death mechanisms are not related with the 

pathogenesis of the disease. NMDAR-AB (IgG1) are able to fix complement in vitro, 

however, no evidence of complement deposition and only residual neuronal and glial cell 

death has been reported (Martinez-Hernandez et al. 2011, Bien et al. 2012). Overall, there is 

a low density of inflammatory cells in the parenchyma with the majority of them locating in 

perivascular and Virchow-Robin spaces. In fact, B and T cell lymphocytic perivascular cuffing 

along with the presence of antibody secreting plasma cells or plasmablasts (CD138+) and 

microglial activation are the main histopathological findings reported thus far (Camdessanche 

et al. 2011, Martinez-Hernandez et al. 2011, Bien et al. 2012). The presence of CD138+ cells 

in the parenchyma supports additional intrathecal synthesis of NMDAR-AB and the fact that 

memory B cells can migrate to the brain, cross the BBB and differentiate to antibody 

secreting plasma cells. Both mouse and human studies have reported immunoglobulin 

deposition in the brain upon exposure to NMDAR-AB (Martinez-Hernandez et al. 2011, Bien 

et al. 2012, Planaguma et al. 2015, Wright et al. 2015). 
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Scope of the present work 

 

In the introduction of this thesis, the synergetic interaction between the nervous and immune 

systems and the potential pathological outcomes mediated by autoimmune processes 

targeting the brain was addressed, with a particular focus on autoantibodies targeting 

NMDAR in the context of anti-NMDAR encephalitis.  

The first two projects were designed to understand the role of these autoantibodies beyond 

this pathological condition and gain insight to its effects upon access to the brain. 

Specifically, Project I aimed at (i) determining the functional properties of NMDAR-ABs of 

different isotypes; for this purpose a new assay employing human induced pluripotent stem 

cell-derived neurons was developed. (ii) Identifying which NMDAR epitopes are recognized 

by these autoantibodies. Project II focused on (i) determining if these NMDAR-AB are 

present and functional in other mammal species; (ii) assessing the protective role of the BBB 

and the effects of endogenously produced NMDAR-AB on the brain, in the presence of an 

open BBB. 

Additionally, I have briefly mentioned that disruption of the balance between excitation and 

inhibition in the brain can contribute to brain diseases as autism and schizophrenia. The 

contributors for such disruption are not completely understood and might have a common 

ground between diseases. In Project III, we focused on dissecting the relationship between 

the severity of autistic traits in schizophrenic patients and imbalances in excitation and 

inhibition. Specifically, using transcranial magnetic stimulation (TMS), we aimed at 

determining if individuals with low severity of autistic traits and individuals with high severity 

of autistic traits would differ in terms of glutamatergic or GABAergic neurotransmission. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. ESTABLISHING A CELL CULTURE SYSTEM FOR 

TRANSLATIONAL STUDIES 
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2. ESTABLISHING A CELL CULTURE SYSTEM FOR TRANSLATIONAL STUDIES 

 

To address the aims of the projects aforementioned, with a particular focus on the 

translational potential of project I and II, a new methodology was implemented. The 

generation of induced pluripotent stem cell (IPS)-derived neurons from human fibroblasts has 

been previously described (Shi et al. 2012). To implement this method, different molecular 

biology techniques were applied in a workflow that comprised reprogramming of fibroblasts 

to pluripotent stem cells, several steps of quality control of pluripotency, induction of neuronal 

differentiation and assessment of neuronal maturity and activity (Figure 4). Here, it will be 

briefly described how this was achieved, and examples of applications of this tool will be 

addressed in Projects I and II. 

Resorting to the Göttingen Research Association for Schizophrenia (GRAS) sample 

collection, fibroblasts were obtained from five different individuals, complying with Helsinki 

Declaration, and approved by the Ethics Committees of Georg-August-University, Göttingen. 

All subjects provided written informed consent.  

To achieve pluripotency, fibroblasts were reprogrammed using either Sendai virus (SeV) or 

the STEMCCA excisable polycistronic lentiviral vector to overexpress the four 

reprogramming factors: the octamer-binding transcription factor 4 (OCT4), the Kruppel-like 

factor 4 (KLF4), the sex determining region Y-box 2 (SOX2), and the MYC proto-oncogene 

(c-MYC) (Figure 4A). These two reprogramming strategies differ essentially in their 

interaction with the host genome. The STEMCCA system requires the integration of the 

polycistronic vector into the host genome, under the promoter of the elongation factor 1 alpha 

(EF1α) gene (Sommer et al. 2009, Sommer et al. 2010).  In contrast, the SeV-based vector is 

a non-integrative system, in which the vectors containing the reprogramming factors replicate 

in the form of negative-sense single stranded RNA in the cytoplasm of infected cells (Fusaki 

et al. 2009). Different clones, produced using the two reprogramming strategies, were 

selected and further expanded for pluripotency assessment (Streckfuss-Bomeke et al. 2013). 

Our strategy included (i) detection of placental alkaline phosphatase expression; (ii) 

immunofluorescent detection of a panel of markers specific to human embryonic stem cell 

physiology and fundamental to maintain an undifferentiated state: OCT4, Nanog, SOX2, 

podocalyxin (Tra1-60), zinc finger CCHC domain-containing protein 1 (LIN28), and stage-

specific embryonic antigen-4 (SSEA4); (iii) detection of pluripotency markers at the RNA 

level and its upregulation from patient fibroblasts to patient IPS using quantitative real time 

polymerase chain reaction (qPCR). Expression of nuclear (OCT4) and surface (Tra1-60) 

pluripotency markers was monitored regularly using flow cytometry to assess the 

pluripotency level overtime. 
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Neuronal conversion and differentiation was based on a dual SMAD inhibition protocol 

(Figure 4B) (Shi et al. 2012). Here, IPS cells are exposed to a neural induction medium 

complemented with SB431542 and dorsomorphin molecules. The synergistic action of these 

neural fate-inducing molecules selectively blocks the TGF-β and the BMP pathways, 

promoting differentiation towards the neuroectodermal lineage (Chambers et al. 2009, Zhou 

et al. 2010). Signalling through the nodal/activin branch of the TGF-β pathway induces 

mesodermal gene expression in ectodermal cells and activation of the BMP pathway leads to 

the acquisition of epidermal fates. Conversely, inhibition of both Activin/Nodal and BMP 

signalling, promotes neuroectoderm specification (Munoz-Sanjuan et al. 2002). Successful 

neural induction results in the formation of a homogeneous neuroepithelial sheet after ten 

days, with downregulation of pluripotency markers and upregulation of neural stem cell 

markers such as paired box 6 (PAX6), OTX1/2, Nestin, forkhead box G1 (FOXG1), empty 

spiracles homeobox 1 (EMX1) and SOX2. Dissociation of the neuroepithelial sheath leads to 

rearrangement of neural stem cells (SOX2+) in a rosette-like structure, further expanded by 

application of the mitogen fibroblast growth factor 2 (FGF2). Neuronal progenitors 

(doublecortin; DCX+) emerge from these structures during the neurogenesis period. A 

coordinated differentiation of these progenitors is promoted with the application of the small 

molecule N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), giving 

rise to neurons (positive for microtubule-associated protein 2; MAP2+). DAPT inhibits γ-

secretase, necessary for canonical Notch signalling (Nelson et al. 2007). The Notch 

signalling pathway is critical for several aspects of neural development: it promotes the 

survival of neural stem and progenitor cells and newly generated neurons, helps progenitor 

cells to maintain their undifferentiated state throughout the neurogenic period and promotes 

the glial fate in multipotent progenitor cells (Mason et al. 2006, Yaron et al. 2006, Nelson et 

al. 2007). Thus, transient inhibition of Notch signalling using DAPT, leads to delayed G1/S-

phase transition committing cells to neurogenesis and a synchronized differentiation of 

neural progenitors (Nelson et al. 2007, Borghese et al. 2010). Neuronal identity and 

maturation was confirmed by combining RNA expression and protein markers for DCX, ß-

Tubulin III, MAP2, NeuN, GluN1, CAMKII and Synapsin1 (Figure 4C). Functional analysis by 

calcium imaging coupled with field stimulation revealed both spontaneous and evoked 

activity (Figure 5).  

This in vitro tool enabled us to add a translational aspect to several projects. Specifically, it 

allowed to assess the expression of erythropoietin receptor in human stem cells (Ott et al. 

2015 – see Appendix) and the effects of autoantibodies targeting the NMDAR, using a 

receptor endocytosis assay based on human-derived IPS-neurons as described in detail in 

Protects I and II (Castillo-Gomez&Oliveira et al. 2017, Pan&Oliveira et al. 2018, Ehrenreich 

2016 – see Appendix).   
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Figure 4. Reprogramming of human fibroblasts and differentiation into neurons. (A) Cellular reprogramming 

of fibroblasts collected from patient’s gingiva involved cell transduction via Sendai or lentiviral systems to 
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overexpress the four transcription factors: OCT4, KLF4, SOX2 and c-MYC. Successful reprogramming leads to 

formation of colonies of IPS cells expressing high levels of hPALP, OCT4, Nanog, SOX2, Tra-1-60, LIN28 and 

SSEA4 markers. Pluripotent colonies can be selected and adapted to feeder-free conditions. (B) Induction of a 

neuronal phenotype can be achieved by dual SMAD inhibition, upon which cells form a neural stem cell 

monolayer. Dissociation of the neuroepithelial sheath leads to rearrangement of neural stem cells into a rosette-

like structure, further expanded by application of the mitogen FGF2. Neuronal progenitors emerge from these 

structures during the neurogenesis period and are further differentiated with the application of the small molecule 

DAPT to give rise to mature neurons. (C) Immunofluorescent stainings of neuronal markers over several days 

after induction of the neuronal phenotype. N represents the number of days after the beginning of dual SMAD 

inhibition (Castillo-Gomez&Oliveira et al. 2017). hPALP: human placental alkaline phosphatase; qPCR: real time 

quantitative polymerase chain reaction;  FGF2: fibroblast growth factor 2; DAPT: N-[N-(3,5-Difluorophenacetyl)-L-

alanyl]-S-phenylglycine t-butyl ester;  

 

 

Figure 5. Calcium imaging and field stimulation of N65 IPS-derived neurons labelled with Fluo-4 AM 

calcium dye. (A) Spontaneous activity was detected with transient changes in fluorescence intensity, over a 

period of 300 seconds. The number of times the emission of fluorescence surpassed the baseline fluorescence 

and decayed to close to baseline was determined as a peak of activity. In the bottom figure, the temporal colour 

code represents the asynchronous nature of the spontaneous activity and some cells with no spontaneous activity 
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(white) for the recorded period. (B) Evoked activity – excitability protocol: cells were stimulated at a constant 

frequency of 20 Hz with an increasing series of action potentials (APs) triggered from 5 to 40, in a total of four 

stimuli. The majority of the cells were responsive to the four stimuli (line graph) with stronger responses to the 

highest number of APs (temporal colour code figure; pink). (C) Evoked activity – stimulation protocol: cells were 

stimulated with a constant number of APs (20) at an increasing frequency ranging from 5 to 100 Hz, in a total of 

six stimuli. The majority of the cells were responsive to the six stimuli (line graph) with stronger responses at 

higher frequencies (temporal colour code figure; pink). The line graphs display the results of one clone from two 

different individuals and represent the number of peaks recorded during the stimulation period, and its amplitude 

as readout of the area under the curve (AUC). Temporal colour code is displayed in seconds. Irresponsive cells 

are labelled in white. 
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3. PROJECT I – All naturally occurring autoantibodies against the NMDA receptor 

subunit GluN1 have pathogenic potential irrespective of epitope and immunoglobulin 

class 

 

Overview of Project I 

The involvement of NMDAR-ABs in anti-NMDAR encephalitis has been mentioned in the 

introduction. Despite the pathogenic role attributed to NMDAR-AB in this context, circulating 

NMDAR-AB, along with other brain-reactive autoantibodies, have been detected in the serum 

of healthy individuals and with other conditions. These included Parkinson’s and Alzheimer’s 

disease, schizophrenia, affective disorders, stroke, amyotrophic lateral sclerosis and cancer 

(Levin et al. 2010, Brimberg et al. 2013, Busse et al. 2014, Dahm et al. 2014, Doss et al. 

2014, Steiner et al. 2014, Schou et al. 2016, Finke et al. 2017, Jezequel et al. 2017). Indeed, 

seropositivity for NMDAR-AB has been reported with an overall seroprevalence of ~10%, 

where the isotypes IgM (~7%) and IgA (~5%) are more frequently detected than IgG (~1%) 

(Dahm et al. 2014, Finke et al. 2017). Effects of IgG NMDAR-AB have been assessed in vitro 

using rat hippocampal neurons and rodent brain sections  or in vivo by intraventricular CSF 

IgG+ infusion in mice (Dalmau et al. 2007, Moscato et al. 2014, Planaguma et al. 2015). In 

both cases, effects of autoantibody exposure led to reduced surface expression of NMDAR1 

synaptic clusters in both inhibitory and excitatory neurons (Moscato et al. 2014, Planaguma 

et al. 2015). Moreover, in vivo experiments demonstrated acquisition of progressive 

anhedonic/depressive-like behaviours and memory deficits upon exposure (Planaguma et al. 

2015). Further studies confirmed the functional effect of NMDAR-AB of other isotypes in vitro 

and in vivo (Pruss et al. 2012, Hammer et al. 2014). Given the high seroprevalence of 

NMDAR-AB in healthy and diseased individuals, it is of outmost relevance to understand 

their potential pathogenic role. Therefore, this project aimed at a thorough characterization of 

NMDAR-AB at the functional and molecular level. To do so, a set of NMDAR-AB seropositive 

and seronegative human samples was selected to cover the immunoglobulin isotypes IgM, 

IgA and IgG and a spectrum of diseased and healthy individuals. These samples were part of 

a systematic screening of a large number of individuals for the presence of NMDAR-AB of 

IgG, IgA and IgM isotypes and determination of their seroprevalence (Dahm et al. 2014, 

Hammer et al. 2014, Zerche et al. 2015).  

Two different approaches were employed to assess NMDAR-AB functionality in vitro: first the 

ability of all NMDAR-AB isotypes to internalize the NMDAR in human IPS cell-derived 

neurons was tested and secondly their ability to alter glutamate-evoked responses in 

Xenopus laevis transfected oocytes. Since all previous studies employed rodent cultures to 
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assess functionality, a receptor endocytosis assay based on human IPS cells that underwent 

neuronal differentiation and express the GluN1 subunit of NMDAR was developed (for details 

see “Establishing a cell culture system for translational studies”). In this live cell-based assay, 

exposure to all NMDAR1-AB+ dialysed sera led to receptor endocytosis. A significant 

decrease in cell-surface fluorescence intensity ratio 37°C/4°C was detected as readout of a 

reduction in surface expression of NMDAR, while negative sera had no effect. This effect 

was also present when the impact of immunoglobulin isotypes was assessed separately 

(Castillo-Gomez&Oliveira et al. 2017). To investigate the impact of NMDAR1-AB on receptor 

activity, glutamate evoked responses were evaluated in Xenopus laevis oocytes co-

expressing human GluN1-1/GluN2A subunits using two-electrode voltage clamp. After 

exposure of oocytes to human dialyzed sera, the area under the curve of the glutamate-

evoked current was significantly lowered in seropositive compared with seronegative 

samples. This effect was sustained for at least 16 minutes in all seropositive samples 

regardless of their isotype, with no significant differences between isotypes (Castillo-

Gomez&Oliveira et al. 2017). With these two experiments it was possible to demonstrate that 

(i) NMDAR-AB of IgG, IgA and IgM isotypes lead to receptor endocytosis and (ii) 

consequently reduce the cell response to glutamate. 

After identifying the functional effect of NMDAR-AB, the interaction between these 

autoantibodies and NMDAR were characterized at the molecular level. Based on the concept 

of seropositivity detection using a cell based assay, HEK293 cells transfected with a series of 

mutated or chimeric GluN1-1b receptors using the GluN2B as backbone were used. The 

seven constructs generated allowed to test epitope recognition in the extracellular, 

transmembrane and intracellular regions of the NMDAR (Castillo-Gomez&Oliveira et al. 

2017). Epitope mapping using different GluN1-1b constructs revealed binding to epitopes 

located in the extracellular ligand-binding domain and NTD, the intracellular CTD and extra-

large pore domains (xlp) with no particular disease or isotype-related pattern. Overall, in both 

monospecific and polyspecific sera involvement of extracellular epitopes was more frequent 

(11/14). Monospecific and monoclonal sera reactive with intracellular epitopes (3/14) was 

less frequent and also reactive with GluN2A subunit. The NTD G7 glycosylation site, 

reported to be important for NMDAR-AB epitope recognition in anti-NMDAR encephalitis, 

was recognized in 2/10 sera binding to NTD. Targeting specifically the G7 site, seven 

additional sera from encephalitis patients were tested. All sera had NMDAR-AB of two 

immunoglobulin isotypes, challenging the previously described exclusivity for IgG associated 

with this condition and not all of them required the G7 site for binding (Castillo-

Gomez&Oliveira et al. 2017). Moreover, autoantibodies targeting the GluN2A subunit were 

also present in these sera, while no positivity was detected regarding the GluN2B subunit. 

This result is in line with the postnatal developmental switch in NMDAR conformation, where 
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the GluN2A subunit becomes the preferential partner of the GluN1 subunit upon synaptic 

maturation leading to a decrease in expression of GluN2B in the adult brain (Gladding et al. 

2011, Paoletti et al. 2013). 

In this project, NMDAR-AB of three immunoglobulin isotypes (IgM, IgG and IgA) regarding in 

vitro functionality and epitope recognition has been analysed. Previous studies have focused 

on the IgG isotype and its role on the pathophysiology of anti-NMDAR encephalitis (Dalmau 

et al. 2008, Gleichman et al. 2012, Moscato et al. 2014). Thus, in this work the spectrum of 

NMDAR-AB effects has been broadened to other immunoglobulin isotypes by demonstrating 

their ability to promote receptor endocytosis and reduce glutamate-evoked responses. The 

diversity of epitopes recognized by NMDAR-AB demonstrated here, points to a more diverse 

interaction of these autoantibodies with NMDAR and overcomes the relevance credited 

exclusively to the G7 site of the NTD.   

The presence of these autoantibodies in healthy individuals along with an increase in 

seroprevalence upon ageing points to the involvement of the BBB in their pathogenicity 

(Hammer et al. 2014). An intact BBB might pose as the ultimate obstacle for NMDAR-AB to 

exert their effects in the CNS. In this sense, the consequences of a compromised BBB in the 

context of NMDAR-AB are the focus of the next project.  
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ORIGINAL ARTICLE

All naturally occurring autoantibodies against the NMDA
receptor subunit NR1 have pathogenic potential irrespective
of epitope and immunoglobulin class
E Castillo-Gómez1,9, B Oliveira1,9, D Tapken2,9, S Bertrand3, C Klein-Schmidt2, H Pan1, P Zafeiriou4, J Steiner5, B Jurek6,7, R Trippe2,
H Prüss6,7, W-H Zimmermann4, D Bertrand3, H Ehrenreich1,8,10 and M Hollmann2,10

Autoantibodies of the IgG class against N-methyl-D-aspartate-receptor subunit NR1 (NMDAR1) were first described in anti-NMDAR
encephalitis and seen as disease indicators. Recent work on together over 5000 individuals challenged this exclusive view by
showing age-dependently up to 420% NMDAR1-autoantibody seroprevalence with comparable immunoglobulin class and titer
distribution across health and disease. The key question therefore is to understand the properties of these autoantibodies, also in
healthy carriers, in order to assess secondary complications and possible contributions to neuropsychiatric disease. Here, we believe
we provide for human NMDAR1-autoantibodies the first comprehensive analysis of their target epitopes and functionality. We
selected sera of representative carriers, healthy or diagnosed with very diverse conditions, that is, schizophrenia, age-related
disorders like hypertension and diabetes, or anti-NMDAR encephalitis. We show that all positive sera investigated, regardless of
source (ill or healthy donor) and immunoglobulin class, provoked NMDAR1 internalization in human-induced pluripotent stem cell-
derived neurons and reduction of glutamate-evoked currents in NR1-1b/NR2A-expressing Xenopus oocytes. They displayed
frequently polyclonal/polyspecific epitope recognition in the extracellular or intracellular NMDAR1 domains and some additionally
in NR2A. We conclude that all circulating NMDAR1-autoantibodies have pathogenic potential regarding the whole spectrum of
neuronal NMDAR-mediated effects upon access to the brain in situations of increased blood–brain–barrier permeability.

Molecular Psychiatry advance online publication, 9 August 2016; doi:10.1038/mp.2016.125

INTRODUCTION
Circulating autoantibodies (AB) directed against brain epitopes
have long been documented, mainly in connection with classical
autoimmune diseases or paraneoplastic syndromes.1–4 AB target-
ing the N-methyl-D-aspartate-receptor subunit NR1 (NMDAR1;
new nomenclature GluN1 disregarded here for consistency with the
respective literature, except in the molecular biological section) have
attracted considerable attention lately. NMDAR1-AB of the IgG
class were first described in connection with a condition named
anti-NMDAR encephalitis5 and induced a flood of publications,
among them many case reports. In several of them, immunosup-
pressive treatment of seropositive subjects is recommended.6–8

Anti-NMDAR encephalitis symptoms typically include psychosis,
cognitive decline, seizures, dyskinesia, decreased consciousness
and autonomic instability.5 These symptoms are reminiscent of
those found upon NMDAR antagonism by ketamine, MK801, or
related drugs, and have been explained by reduced surface
expression of NMDAR1 upon exposure to NMDAR1-AB.5

Rendering the situation more complex, a high age-dependent
seroprevalence of NMDAR1-AB has been recognized recently.9–14

According to these findings in meanwhile 45000 subjects, any
40-year-old person has an ~ 10%, any 80-year-old person an ~ 20%

chance of displaying NMDAR1-AB seropositivity.11 Disease groups,
ranging from schizophrenia and major depression, over multiple
sclerosis, Parkinson’s and Alzheimer’s disease, to hypertension,
diabetes and stroke, as well as healthy individuals, share not only
similar NMDAR1-AB seroprevalence but also immunoglobulin (Ig)
class distribution (IgM, IgA and IgG) and titer range.9–11,13 These
unexpected results raised the question of functionality and
relevance of the highly seroprevalent NMDAR1-AB. In translational
mouse studies, similar effects of the different classes (IgG, IgM and
IgA) of NMDAR1-AB on behavioral readouts were observed.9

Likewise, in a human study, an equivalent impact of circulating
NMDAR1-AB of all three isotypes on evolution of lesion size after
ischemic stroke was noticed.11 Detectable neuropsychiatric
consequences of circulating NMDAR1-AB of all three classes were
restricted to individuals with compromised blood–brain–barrier,
for example, ApoE/APOE carrier status, both clinically and
experimentally.9,11,15 In studies using rodent hippocampal neu-
rons, we found NMDAR1 internalization upon NMDAR1-AB
(IgM, IgA, IgG) binding as explanation of its reduced surface
expression.9,15 A comparable finding had previously been
described only for IgG.5,16
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Considering the high seroprevalence of NMDAR1-AB across
health and disease, the key question is to understand the
properties of these AB, also in healthy carriers, in order to assess
secondary complications and possible contributions to neuropsy-
chiatric disease, for example, cognitive decline, psychotic symp-
toms or epileptic seizures. Are they like a ‘ticking time bomb’ once
the blood barrier opens?
Here, we believe we provide for human NMDAR1-AB the first

comprehensive analysis of their target epitopes and of function-
ality. We investigated whether NMDAR1-AB of different Ig classes,
derived from sera of subjects with very diverse conditions, would
(i) reveal functionality in an internalization assay using human
induced pluripotent stem cell (IPSC)-derived cortical neurons; (ii)
lead to electrophysiological consequences in NR1-1b/NR2A-
expressing Xenopus oocytes; and (iii) be directed against the
same or against different epitopes of NMDAR1.
We report as most important take-home message that,

independent of any medical condition or Ig class, NMDAR1-AB
are functional, leading to decreased NMDAR surface expression

and reduced glutamate-evoked currents. The AB recognize
epitopes in the extracellular and/or intracellular NMDAR1 domains
and, surprisingly, some positive sera also in the NR2A subunit of
NMDAR. Thus, most intriguingly, they all have potentially (patho)
physiological relevance regarding brain functions.

MATERIALS AND METHODS
All experiments were performed by researchers unaware of group
assignment (‘fully blinded’).

Human samples
Serum specimens (N= 29) from our phenotyping/biomarker trials8,10,11,17

were selected to (i) cover a spectrum of diseases and health, (ii) include all
NMDAR1-AB Ig classes and (iii) build on enough material for extensive
testing (Table 1). In addition, samples (N= 7; few μl available) for targeted
epitope mapping were obtained from anti-NMDAR encephalitis patients
(Charité, HP). Subject data/human materials (including IPSC) were collected
according to ethical guidelines/Helsinki Declaration including subjects’
informed consent.

Table 1. Overview of donors of NMDAR1-AB-positive and -negative serum samples

Seropositive individuals (N= 14) Seronegative individuals (N=15) P-value

Gender, No. (%), womena 10 (71.4) 7 (46.7) 0.176
Age at examination, mean± s.d., yearsb 62.87± 24.44 65.24± 10.99 0.234

Diagnosis, No. (%)a

Healthy 2 (14.3) 4 (26.7)
NMDAR1-AB encephalitis 2 (14.3) 0 (0.0)
Psychiatric conditionsc 1 (7.1) 1 (6.3)
Diabetes 0 (0.0) 2 (13.3)

9>>>>>>>>=
>>>>>>>>;

0.418
Hypertension 7 (50.0) 6 (40.0)
Diabetes and hypertension 2 (14.3) 1 (6.7)
Other medical conditionsd 0 (0.0) 1 (6.7)

NMDAR1-AB seroprevalence, titers, No.e

IgA (1:10; 1:32; 1:100; 1:320; 1:1000; 1:3200) 2; 0; 0; 0; 4; 0
IgG (1:10; 1:32; 1:100; 1:320; 1:1000; 1:3200) 0; 0; 1; 1; 1; 1 n/a
IgM (1:10; 1:32; 1:100; 1:320; 1:1000; 1:3200) 0; 0; 1; 1; 5; 1

Abbreviations: AB, autoantibodies; IG, immunoglobulin; n/a, not applicable; NMDAR1, N-methyl-D-aspartate-receptor subunit NR1. aChi-square test. bMann–
Whitney U-test. c‘Psychiatric conditions’ include two schizophrenia patients. d‘Other medical conditions’ include hypercholesterolemia, asthma bronchiale and
glaucoma. eNote that of the total sample N= 4 individuals were seropositive for both IgA and IgM.

Figure 1. NMDAR1 endocytosis in human induced pluripotent stem cell (IPSC)-derived cortical neurons after autoantibodies (AB) exposure. (a)
Reprogramming strategy: Human fibroblasts obtained from gingiva biopsies were transduced using a lentiviral system to simultaneously
integrate the transcription factors OCT4, KLF4, SOX2 and c-MYC. Transcription factor expression leads to cell reprogramming and colony
formation of IPSC, which are differentiated into cortical neurons using a dual SMAD inhibition strategy (selective blocking of TGF-β and BMP
pathways). Cells acquire neuronal identity forming a neural stem cell monolayer. Dissociation of the neuroepithelial sheath leads to
rearrangement of neural stem cells (SOX2+) in a rosette-like structure, further expanded by application of the mitogen FGF2. Immature
neurons (DCX+) emerge from these structures during the neurogenesis period to give rise mainly to MAP2+ cortical excitatory neurons. (b) At
day 70 of maturation, neurons are exposed to human sera. NMDAR1-AB binding to NMDAR1 (at 4 °C) leads to rapid endocytosis of the
receptor–antibody complex at 37 °C. The remaining cell-surface NMDAR1 is detected by combining mouse anti-NMDAR1-AB (step 1) and
secondary donkey anti-mouse Alexa 546-AB (step 2). Neurons are defined as NeuN+ cells. (c) Representative confocal images of neurons
exposed to an IgG seropositive sample are shown on the left. Both pictures are Z-projections of three consecutive focal planes 0.5 μm apart,
taken at × 100 magnification under confocal laser-scanning microscope. The upper picture depicts a neuron (NeuN+, labeled in green), kept at
4 °C (no endocytosis allowed—control condition) and the lower picture a neuron at 37 °C (endocytosis). For each serum sample, cell
membrane NMDAR1 (labeled in red; arrow heads) is quantified. Degree of internalization is expressed as ratio of fluorescence intensity
measured at both temperatures. Seropositive samples show reduced fluorescence intensity ratio (37 °C/4 °C) compared with seronegative
samples (graph on the left; unpaired Student’s t-test: t16= 11.16; Po0.001), consistent with a decrease in surface NMDAR1 after exposure to
NMDAR1-AB. Right graph: Fluorescence intensity ratio is lower for all seropositive samples (separate analyses shown for samples with only
IgG, IgM, IgA or IgM+IgA, in purple, orange, green and yellow columns, respectively) and the positive control (IgG M68-AB). One-way ANOVA:
F6,17= 70.59; Po0.001; multiple comparisons with Bonferroni’s post hoc correction, P-valueo0.05; results given as mean± s.e.m. BMP, bone
morphogenic pathway; c-MYC, avian myelocytomatosis virus oncogene cellular homolog; DAPI, 4',6-diamidino-2-phenylindole; DCX,
doublecortin; FGF2, fibroblast growth factor 2; KLF4, Krüppel-like factor 4; MAP2, microtubule-associated protein 2; NMDAR1, N-methyl-D-
aspartate-receptor subunit NR1; NeuN, neuronal nuclear antigen; OCT4, octamer-binding transcription factor 4; SOX2, sex determining region
Y-homeobox 2; STEMCCA, stem cell cassette; TGF-β, transforming growth factor-β.
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NMDAR1-AB titer determination
Recombinant immunofluorescence tests (Euroimmun, Lübeck, Germany),
clinical standard procedures, were used to detect NMDAR1-AB, based on
HEK293T cells transfected with NMDAR1,5,6 and secondary AB against human
IgG, IgM or IgA. Results were independently assessed by three investigators.

Dialysis of serum samples
Functional studies were conducted with sera following ammonium sulfate
precipitation of immunoglobulins18 and dialysis (Slide-A-Lyzer Mini-
Dialysis-Units, 10 000 MWCO Plus Float, Thermo Fisher Scientific, Rockford,
IL, USA).
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Reprogramming of human fibroblasts and differentiation into
neurons
Human fibroblasts from gingiva biopsies were reprogrammed using
STEMCCA system (Merck Millipore, Darmstadt, Germany) for introduction
of OCT4, SOX2, KLF4 and c-MYC.19 Clones were tested for pluripotency
markers following standard procedures.19 After reprogramming, IPSC was
adapted to feeder-free culture system (Matrigel matrix, Corning, Wiesba-
den, Germany) and TeSR™-E8™ medium (Stem Cell Technologies,
Cologne, Germany). Neural induction was based on dual SMAD inhibition
(Figure 1a).20

Endocytosis assay
Human IPSC-derived cortical neurons grown on coverslips, 70 days post
neural induction, were pre-cooled on ice (10 min), and washed 3× with
cold HBSS (Hank’s balanced salt solution; Life Technologies, Darmstadt,
Germany). Culture media were kept at 37 or 4 °C. Neurons were incubated
(30 min) in cold HBSS with 1:100 diluted sera (14 seropositive; 6
seronegative), control NMDAR1-AB (M68, mouse IgG, SYSY, Göttingen,
Germany) or HBSS alone (negative control). After three HBSS washes to
remove unbound AB, neurons were returned to their media and incubated
for 20 min at 37 °C (2 coverslips/sample, to allow endocytosis) or 4 °C
(1 coverslip/sample, endocytosis control). After ice-cold HBSS wash,
coverslips were kept on ice (5 min). Remaining surface NMDAR1 was
exposed to a mouse NMDAR1-AB (N-terminal; Abcam, Cambridge, UK,
1:100), 10 min on ice, followed (after ice-cold HBSS wash) by secondary
donkey anti-mouse IgG (Life Technologies, Alexa-Fluor546, 1:100) for
10 min on ice in dark, and finally three ice-cold HBSS washes to remove
unbound AB. Neurons were fixed with ice-cold 4% paraformaldehyde
(30 min) and washed 3× (5 min) with 0.1 M phosphate-buffered saline
(PBS). Then, cells were blocked and permeabilized for 1 h at RT (5% normal
goat, 5% normal horse, 5% fetal calf serum, 0.5% Triton X in PBS), double-
stained at 4 °C overnight with chicken anti-NeuN-AB (SYSY, 1:500) and
secondary donkey anti-chicken AB (Life Technologies, Alexa Fluor 488,
1:250) for 1 h at RT (all dark) (Figure 1b). Nuclei were visualized using DAPI
(Sigma-Aldrich, Munich, Germany, 0.01 μg ml− 1). After PBS wash, cover-
slips were mounted on Super-Frost slides with Mowiol-mounting-media
(Sigma-Aldrich). Confocal laser-scanning microscopy was used to quantify
cell-surface NMDAR1 density (×63 glycerol objective; TCS-SP5 Leica-
Microsystems, Mannheim, Germany). From each coverslip, Z-series of
optical sections (0.5 μm apart) covering the three-dimensional extension of
neurons were acquired (sequential scanning mode, identical acquisition
parameters). For analysis, 50 NeuN+ cells/coverslip were randomly selected
using FIJI-ImageJ software.21 Soma profile including NMDAR1 surface
expression was drawn and fluorescence intensity/cell surface area
(Alexa-Fluor546) automatically measured. Background was subtracted,
mean intensity for each coverslip determined and fluorescence intensity
ratio (37 ºC/4 ºC) calculated.

Oocyte preparation and injection
Xenopus laevis oocytes were prepared, injected and tested using standard
procedures. Briefly, ovaries were harvested from Xenopus females in deep
anesthesia by hypothermia (4 °C) and MS-222 (Sigma-Aldrich, 150 mg l− 1).
Animals were decapitated and pithed obeying animal rights (Geneva,
Switzerland). A small piece of ovary was isolated for immediate preparation
while the remaining part was placed at 4 °C in sterile Barth-solution
containing [mM]: NaCl 88, KCl 1, NaHCO3 2.4, HEPES 10, MgSO4.7H2O 0.82,
Ca(NO3)2.4H2O 0.33, CaCl2.6H2O 0.41, at pH 7.4, supplemented with
100 U ml− 1 penicillin/100 μg ml− 1 streptomycin (Life Technologies). Auto-
matic injection of mRNAs encoding for human NMDAR (NR1-1/NR2A) was
performed in batches of 95 oocytes using Roboinject22 (Multi Channel
Systems, Reutlingen, Germany) (Figure 2a). Optimal expression of NMDAR
was obtained with injection of 15 nl containing 0.2 μg μl− 1 of RNAs, ratio
NR1-1b:NR2A= 1:1; mRNA was prepared using mMessage mMachine SP6
transcription kit for NR1-1b and T7 for NR2A (Thermo Fisher Scientific).

Electrophysiological recordings and experimental protocol
NMDAR activity was validated 60 h after mRNA injection by 2-electrode
voltage clamp (Figure 2a). All electrophysiological recordings were
performed using an automated HiClamp system (Multi Channel Systems)
at 18 °C and with cells superfused with OR2 medium (mM: NaCl 88, KCl 2.5,
HEPES 5, CaCl2.2H2O 1.8, pH 7.85). To chelate zinc contaminant, 10 μM
EDTA was added to all solutions. Unless otherwise indicated, cells were

maintained at holding potential of − 80 mV and compounds/AB incuba-
tions conducted in 96-well-microtiter plates (Thermo Fisher Scientific). Only
cells displaying low leak current and responses 40.5 μA to a test pulse
containing 0.3 μM glutamate/10 μM glycine (Sigma-Aldrich) were retained
for successive testing (Figures 2a and b). Cells were then challenged with
pre-incubation of 120 s in control medium (OR2 medium) followed by brief
exposures to 0.3 μM glutamate/10 μM glycine (10 s) every 2 min for 10 min
(Figure 2b, steps 1 and 2). The last 4 min was considered as control
response-amplitude to glutamate (Figure 2c, right-side graphs, − 4–0 min).
Upon stabilization, cells were exposed for 16 min to dialyzed serum
samples (titer dilution for seropositive and 1:1000 for seronegative
samples) or to positive control (M68-AB, 1:1000). NMDAR activity was
tested by brief exposure to 0.3 μM glutamate/10 μM glycine (10 s) every
2 min for 16 min in presence of the dialyzed serum (Figure 2b, steps 3
and 4). To evaluate the cellular response, area-under-the-curve (AUC) for
each glutamate-evoked current was computed and normalized to AUC of
control responses (−4–0 min). Data were analyzed using custom-made
software (Matlab-Mathworks, Ismaning, Germany). For each sample, a
mean of ⩾ 3 oocytes was calculated (Figure 2c, left-side graphs).

Epitope mapping using NMDAR1 constructs
NMDAR1 constructs were generated based on the longest splice variant,
GluN1-1b (GenBank accession #U08263; Figures 3a and b). All cDNAs
(including GluN2A: #AF001423; GluN2B: #U11419) were cloned into
pcDNA4/TO/myc-HisA (Invitrogen, Carlsbad, CA, USA) such that the
encoded receptor had a myc-His-tag connected to its C-terminus by a
short peptide linker (SRGPF). Chimeras and mutants for epitope analysis
were constructed by overlap-extension-PCR using chimeric or mutagenic
primers.23,24 To transiently express glutamate receptor subunits,
HEK293T cells were cultured in high-glucose DMEM (Life Technologies).
On a 35-mm dish, 50 000 cells were plated, grown for 3 days, transfected
with receptor cDNA (3 μg) using Metafectene-Pro (Biontex, Munich,
Germany) and, 24 h after transfection, seeded onto poly-D-lysine-coated
coverslips (Sigma-Aldrich). At 2 days after transfection, cells were fixed with
5% paraformaldehyde (20 min), washed 5× with 0.1 M PBS, permeabilized
with 0.1% Triton X-100 (5 min), again washed 5× with PBS, blocked for 1 h
with 5% normal goat serum (Sigma-Aldrich). After 5 × PBS washes, cells
were incubated with serum (1:10–1:200) or monoclonal mouse anti-myc
antibody (transfection efficiency control; self-made, purified from mouse-
clone-9E10) for 1 h, washed 10 × with PBS, incubated for 1 h with Alexa
Fluor 488-labeled goat anti-human secondary AB (IgG: Southern Biotech,
Birmingham, AL, USA; IgA: Jackson ImmunoResearch, West Grove, PA, USA;
IgM: Thermo Fisher Scientific) or anti-mouse IgG (controls; Thermo Fisher
Scientific), washed 5× with PBS, incubated with TO-PRO-3 iodide nuclear-
stain (Molecular Probes, Eugene, OR, USA) (15 min), and washed 5× with
PBS. Cells were mounted in Fluoromount-G (Southern Biotech) and
analyzed by confocal microscopy (63 × oil objective, TCS SP2 AOBS, Leica-
Microsystems). All results are consensus judgements from at least four
independent investigators of two different laboratories.

Statistics
All statistical analyses were performed using SPSS for Windows version
17.0 (IBM-Deutschland, Munich, Germany). Group differences in categorical
and continuous variables were assessed using Chi-square and Mann–
Whitney U-test. One-way or repeated-measures ANOVA, followed by
multiple pair-wise comparisons with Bonferroni’s post hoc correction, was
employed to determine the significance of fluorescence intensity or AUC;
P-values o0.05 were considered as significant; data in figures are
mean± s.e.m.

RESULTS
In human IPSC-derived cortical neurons, exposure to all NMDAR1-
AB-positive sera tested, independent of Ig class and titer, led
to receptor endocytosis, reflected by decreased cell-surface
fluorescence intensity ratio 37 °C/4 °C (perikaryal labeling). Nega-
tive sera had no effect (unpaired Student’s t-test: t16 = 11.16;
Po0.001; seronegative samples: n= 6, neurons n= 900; seroposi-
tive samples: n = 14, neurons n= 2100) (Figure 1c). Analyzing the
impact of Ig classes separately, significant results remained for all
(one-way ANOVA: F6,17=70.59; Po0.001 with Bonferroni post hoc
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Figure 2. Decreased NMDAR activity after autoantibodies (AB) exposure. (a) NMDAR activity in Xenopus laevis oocytes expressing human
NR1-1b/NR2A is confirmed using 2-electrode voltage clamp recordings. (b) Control glutamate response of each oocyte is tested after 120 s
incubation in control medium followed by 10 s exposure to glutamate and glycine every 2 min for 10 min (steps 1 and 2). Cells are afterwards
exposed for 120 s to dialyzed serum samples or to positive control (M68-AB), followed by 10 s exposures to glutamate and glycine every 2 min
for 16 min (steps 3 and 4). (c) An increase in AUC of the glutamate-evoked response starting at 6 min and lasting for at least 16 min is
observed in seronegative but not in seropositive samples (left upper graph; one-way repeated-measures ANOVA: time× group interaction:
F7,189= 7.43, Po10− 6; Bonferroni’s post hoc correction for multiple comparison: only P-values o0.05 are shown). The left lower graph shows
curves for Ig classes separately which all are below the seronegative curve (one-way repeated-measures ANOVA: time ×group interaction:
F35,168= 1.98, P= 0.002). On the right side, five representative recordings of cells exposed to IgG, IgM and IgA seropositive samples, positive
control sample (M68-AB) and a seronegative sample are shown. The first two curves of every graph show the last 4 min of the control
response to glutamate (see Materials and methods for detailed information). AUC, area-under-the-curve; Glu, glutamate; Gly, glycine; GND,
signal ground; I, intensity; Ig, immunoglobulin; NMDAR, N-methyl-D-aspartate receptor; V, voltage.
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Figure 3. GluN1-1b constructs for epitope mapping of NMDAR1-AB. (a) Topology and domain structure of the GluN1-1b constructs used. The
scheme on the left side shows the membrane topology of the GluN1-1b subunit, with domains colored as in (b). Chimeras and mutagenic
constructs targeting the different domains of GluN1 are explained on the right (all residue numbers include the signal peptide; GluN1 and
GluN2B constructs were generated based on GenBank accession numbers U08263 and NM_012574, respectively). (b) Amino-acid sequence
and domains of GluN1-1b. The position marked in the sequence as G7 (glycosylation site 7) is the residue to which the oligosaccharide is
attached (N389). The recognition site for this type of glycosylation is N-X-S/T; therefore, mutation of T391 to A in the construct number 2
(GluN1-1b-ΔG7) prevents glycosylation 2 residues upstream of it (N389). (c) NTD/G7 epitopes recognized by serum NMDAR1-AB of different Ig
classes from seven female patients with diagnosed anti-NMDAR encephalitis. AB, antibodies; CTD, C-terminal domain; L1, intracellular loop 1;
L2, intracellular loop 2; LBD, ligand-binding domain; NMDAR1, N-methyl-D-aspartate-receptor subunit NR1; NTD, N-terminal domain; P, ion
channel pore; TMD, transmembrane domains; xlp, extra-large pore domain.
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test P-values: IgG: Po0.001; IgM: Po0.001; IgA: P=0.012 and IgM
+IgA: Po0.001).
To investigate the impact of NMDAR1-AB on activity, glutamate-

evoked responses were evaluated in Xenopus laevis oocytes co-
expressing human NR1-1/NR2A subunits. Only 6 min after
exposure of oocytes to human sera, the AUC of the glutamate-
evoked response was significantly lower in seropositive compared
with seronegative samples. This effect was sustained for at least
16 min (Figure 2c; one-way repeated-measures ANOVA: time×
group interaction: F7,189 = 7.431, Po10− 6; Bonferroni post hoc
correction for multiple comparison: only P-values o0.05 are
shown). Evaluating Ig classes separately, the significant global
effect remained (one-way repeated-measures ANOVA: time×
group interaction: F35,168 = 1.98; P= 0.002; Figure 2c, left lower
graph).
Epitope mapping using seven different NMDAR1 constructs

(Figures 3a and b) revealed recognition by the NMDAR1-AB-
positive sera of different epitopes, located in the extracellular
ligand-binding domain and N-terminal domain (NTD) as well as
the intracellular C-terminal domain (CTD) and extra-large pore
domain (xlp). NMDAR1-AB seropositivity was polyclonal/polyspe-
cific in 7/14 sera and likely mono- or oligoclonal/oligospecific
(mainly IgG) in 7/14. Whereas no GluN2B-AB (0/14) was found,

GluN2A-AB (9/14) was frequently detected in the NMDAR1-AB-
positive sera (Figure 4). Separate exploratory analyses of GluN2A-
AB carrier versus non-carrier sera regarding internalization assay
and electrophysiology results did not reveal differences. Overall,
no particular disease-related pattern appeared.
The G7 site of the NTD, an epitope believed to be crucial for

NMDAR1-AB found in encephalitis,25 was recognized in 2/10 sera
binding to NTD (Figure 4, negativity for construct 2). Since these
sera were from two anti-NMDAR encephalitis cases reported
previously (without epitope mapping),8 we tested another seven
sera from anti-NMDAR encephalitis patients specifically for this
epitope. All seven sera had NMDAR1-AB of two Ig classes. Epitope
location in NTD was seen in 5/7 sera for IgG, with 4/7 recognizing
G7. IgM and IgA recognized other epitopes, as did IgG in 2/7 sera
(not further determined due to lack of material) (Figure 3c).

DISCUSSION
The present paper systematically analyzed for the first time
NMDAR1-AB of three Ig classes (IgM, IgG and IgA), derived from
randomly selected individuals of different age, gender and
medical condition, regarding in vitro functionality and epitope
location. All NMDAR1-AB-positive sera tested led to NMDAR1

Figure 4. NMDAR1-AB recognize several GluN1-1b epitopes. The figure-table, summarizing the results of NMDAR1-AB epitope mapping,
includes only seropositive individuals. Upper left: Representative tilescan confocal images of HEK293T cells transfected with NMDAR1 as used
for serum testing are shown. NMDAR1-AB seropositivity (left) and seronegativity (right) is illustrated for IgM as example (anti-human IgM
FITC-labeled as secondary antibody). Insets are × 4 magnifications of the squared areas in their respective images. All images are Z-projections
of 10 consecutive focal planes located 0.5 μm apart and were taken under a confocal laser-scanning microscope using × 100 oil objective
(Leica TSC-SP5). Upper right: Schematic drawings of the different constructs used to transfect HEK293T cells (compare Figure 3). The first two
constructs represent the complete version of the GluN1-1b and GluN2B subunits of NMDAR. The next seven constructs present deletions,
mutations or replacements of defined regions, allowing identification of the epitopes recognized by NMDAR1-AB from healthy and ill
individuals. Positivity (+) or negativity (− ) for every construct in every sample is listed underneath. On the very right side, anti-GluN2A
seropositivity/Ig class is listed (anti-GluN2A titers range from 1:10 up to 1:200). AB, autoantibodies; CTD, C-terminal domain; Ig,
immunoglobulin; NMDAR1, N-methyl-D-aspartate-receptor subunit NR1; NTD, N-terminal domain.
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internalization in IPSC-derived human cortical neurons and to
reduced glutamate-evoked response in NR1-1b/NR2A-expressing
oocytes. Several different epitopes were identified, located in the
extracellular part of NMDAR1 (NTD, ligand-binding domain) or
intracellular, CTD and in the xlp, which were recognized by
NMDAR1-AB of the IgG, IgA and IgM class. Importantly, there was
no consistent functional or epitope pattern detectable regarding
Ig class or health/disease state.
In light of the comparable functionality of all NMDAR1-AB

tested here, the high seroprevalence (up to 420%) of NMDAR1-AB
is even more puzzling and may indicate a previously unknown
dimension of ‘physiological autoimmunity’ that increases with
age.9–13 But what are the inducers of such abundant formation of
NMDAR1-AB that potentially influence brain function? So far,
associations were found with certain forms of cancer, mainly
ovarian teratoma,5 influenza A and B,9–13 as well as with a
genome-wide significant marker on chromosome 1, rs524991,9

close to NFIA, a transcription factor mediating neuroprotective
effects of NMDAR.26 There are certainly more hitherto unknown
predisposing factors for carrying these AB. Broader significance of
NMDAR1-AB is underscored by their presence in mammalians
other than humans.27 This is less surprising in view of the
substantial seroprevalence also of other brain-directed AB in
species like rabbits, pigs and cows.28

While irrespective of the epitope, all 14 NMDAR1-AB-positive
sera investigated here (IgM, IgG, IgA) revealed similar AB
functionality (internalization, electrophysiology), the AB-inducing
factors may have determined the epitopes via mechanisms like
molecular mimicry.29,30 Published work on NMDAR1-AB epitopes
is scarce25,31,32 and focused on IgG recognizing NTD and the NTD-
G7 domain (N368/G369), probably because this region and Ig class
was first deemed pathognomonic for anti-NMDAR-encephalitis.5,25

Indeed, the sera investigated here of two young females with
diagnosed anti-NMDAR-encephalitis, originally reported within a
series of schizophrenia cases,8 also recognized this epitope,
however, without sticking out functionally (that is, regarding
internalization or electrophysiology). Therefore, we analyzed sera
of seven additional young female patients, diagnosed with anti-
NMDAR encephalitis (4/7 with ovarian teratoma), in an NTD-G7-
targeted epitope screen. Interestingly, all 7 subjects carried
NMDAR1-AB of 2 Ig classes, but only IgG recognized NTD or
NTD-G7 in 5/7 sera. Similarly, in a recent study on young females
with neuropsychiatric manifestation of systemic lupus erythema-
tosus, two epitopes in the NTD (outside G7) were recognized by
NMDAR1-AB (only IgG tested). Regrettably, NTD was the only
mapped region, functionality was not evaluated, and instead of a
cell-based assay, the accepted gold standard, an ELISA was used.32

Together, these data suggest that factors predisposing young
women to neuropsychiatric manifestations of NMDAR-associated
autoimmunity are connected with NTD or NTD-G7 epitopes. The
accentuated role of IgG in this context is still a matter of
speculation but may be related to inflammation-induced class-
switch in the brain.33 Regarding NMDAR1-AB of the IgA class, a
single study, mapping epitopes of two female patients, found in
one of them evidence of NTD/G7 as a target epitope (likely among
other epitopes).31 Interestingly, the significance of AB for brain
manifestation of lupus erythematosus seems still debatable. In a
recent study, lack of B cells and autoantibodies in a murine model
of systemic lupus did not prevent the development of key features
of neuropsychiatric lupus.34

To conclude, all naturally occurring serum NMDAR1-AB
obviously have pathogenic potential. For still unexplored reasons,
they are highly frequent and their prevalence increases with age.
NMDAR-AB seropositivity alone definitely does not justify
immunosuppressive treatment. Syndromal relevance of serum
NMDAR1-AB depends on accessibility to the brain, that is,
blood–brain–barrier permeability.9,11,13,15 This permeability might
differ regionally, thereby explaining individually variable

symptomatic consequences.2 Moreover, inflammation in the brain
likely has a crucial role in determining syndrome acuteness
and severity as contributed by circulating NMDAR1-AB and
respective plasma cells, including boost in AB titers (upon epitope
recognition) and class-switch to IgG.33 Especially in individuals
where an overt encephalitis diagnosis is unlikely, determination
of blood–brain–barrier disruption, for example, by a novel
magnetic resonance imaging method,35 may prove helpful for
estimating necessity and benefit of immunosuppressive therapeu-
tic interventions.
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4. PROJECT II – Uncoupling the widespread occurrence of anti-NMDAR1 

autoantibodies from neuropsychiatric disease in a novel autoimmune model 

 

Overview of Project II 

The crosstalk between the brain and the immune system is a dynamic process where 

molecules of both systems can influence each other. Although the synergy between both 

systems is undeniable, when it comes to autoimmune events involving the brain several 

questions remain unanswered. Presence of serum autoantibodies does not necessarily 

correlates with CNS disease, and pathogenicity relies on direct contact between the brain 

antigen and its autoantibody (Nagele et al. 2013). The BBB limits interactions between the 

CNS and the systemic immune system. During gestation, maternal IgG can cross the 

placenta, reach the fetal bloodstream and gain access to the brain parenchyma. In mouse, 

the BBB is permeable to IgG until E17.5 and a similar period of vulnerability to IgG is 

presumed for the developing human brain (Simister 2003, Braniste et al. 2014). After this 

developmental period, the BBB is responsible for an almost immunoglobulin free brain 

parenchyma (Brimberg et al. 2015). In the adult brain, the access of immunoglobulins is 

restricted to less than 1% of the circulating levels, with the expected transfer over an intact 

BBB of IgG being 1/500, of IgA 1/600, and of IgM 1/3000 of the serum concentration 

(Hammer et al. 2014, Crisp et al. 2016). 

To circumvent the protective effect of the BBB, the majority of rodent studies addressing the 

effects of NMDAR-AB in vivo employed brain injection of anti-NMDAR encephalitis patient-

derived IgG or CSF in Wistar rats or infusion into the ventricular system of mice (Manto et al. 

2010, 2011, Planaguma et al. 2015, Wright et al. 2015). Systemic injection of 

immunoglobulins (IgA, IgM and IgG) extracted from seropositive individuals in ApoE-/-, 

presenting a compromised BBB, has also been performed (Hammer et al. 2014). Altogether, 

these studies highlighted the in vivo functional outcomes of exposure to NMDAR-AB beyond 

receptor internalization. Increased levels of extra-synaptic glutamate, excitability of the motor 

cortex and higher seizure propensity to the pro-convulsant pentylenetetrazol emerged as 

direct consequences of exposure (Manto et al. 2011, Wright et al. 2015). Long-term effects 

included memory deficits and depressive-like behaviour (Planaguma et al. 2015). In vivo 

studies extending their focus beyond the IgG isotype, reported a hypersensitive response to 

MK-801 (Dizocilpine), a GluN1 antagonist, upon systemic application of NMDAR-AB in ApoE-

/- (Hammer et al. 2014). Additional experiments using ApoE-/- mice also demonstrated that 

circulating NMDAR-AB upon accessing the brain parenchyma bind to prefrontal cortex, 

hippocampus, cerebellum, brain stem and spinal cord and are not detected in the CSF 
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(Castillo-Gomez et al. 2016). Interestingly, several brain areas of wild type mice, with an 

intact BBB, were also positive for NMDAR-AB but at lower titres demonstrating that NMDAR-

AB can cross the BBB, possibly by one of the mechanisms mentioned in Figure 2 of the 

introduction (Castillo-Gomez et al. 2016).  

Determination of NMDAR-AB seroprevalence using large cohorts of healthy and diseased 

individuals pinpointed an increase in seroprevalence upon ageing in humans (Hammer et al. 

2014). The presence of natural autoantibodies has been previously described in other 

species (Marchalonis et al. 1993, Avrameas et al. 2007, DeMarshall et al. 2015, Pruss et al. 

2015). To further understand the role of NMDAR-AB, beyond pathogenicity, a systematic 

screening to determine for the first time its prevalence and age-dependence in dogs, rats, 

mice, cats, rhesus macaques and baboons has been conducted. Due to the lack of reliable 

secondary antibodies for some of the species tested, direct immunoglobulin labelling using 

fluorescein isothiocyanate (FITC) labelled Protein A (Protein A-FITC) was employed to 

screen cat, dog, rat and monkey sera (Pruss et al. 2015). Protein A is a bacterial Fc receptor 

present in Staphylococcus aureus and known to bind the Fc-portion of immunoglobulins of 

different species (Richman et al. 1982, Boyle et al. 1987). Mouse and human samples were 

screened using IgM, IgA and IgG species-specific secondary antibodies. This assay was 

cross validated using human serum samples in a two-step procedure: (1) screening with a 

commercial cell-based assay comprised of GluN1-tranfected HEK293 cells and anti-human 

isotype-specific secondary antibodies (Dalmau et al. 2008) and (2) immunoglobulin labelling 

with Protein A-FITC followed by screening with GluN1-tranfected HEK293 cells. Additionally, 

serum of both monkey species were tested in an independent lab using IgM species-specific 

secondary antibodies resulting in a 97% concordance of the results obtained in both 

laboratories. With this screening strategy seropositivity for NMDAR-AB in cats, dogs, rats, 

mice, rhesus macaques and baboons was detected, extending the list of species with 

reported NMDAR-AB seropositivity. Moreover, as described in humans, an age-dependent 

increase in seroprevalence for all species except for monkeys was found. Non-human 

primates kept in captivity are exposed to chronic life stress (Jacobson et al. 2016) and 

changes in serum immunoglobulins, particularly IgA, have been reported in individuals with 

high-stress perception when exposed to psychological stress (Maes et al. 1997). Hence, this 

inter-species difference might be related with an immunological response to captivity-related 

stress that leads to the presence of NMDAR-AB since young age in monkeys. Furthermore, 

in humans that underwent migration, a known stress factor, the previously reported age-

dependent increase in seroprevalence is lost. Migrants show an increased seroprevalence of 

NMDAR-AB at young age when compared to non-migrant individuals of the same age, with 

IgA being the most frequent isotype. 
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Due to the high amino acid sequence homology between the human GluN1 and the species 

included in this study, the endocytosis assay previously established (see Project I), was 

applied to test the functionality of these NMDAR-AB. In line with the results obtained for 

human seropositive samples (Castillo-Gomez&Oliveira et al. 2017), exposure to NMDAR-AB+ 

sera from all species mentioned above promoted reduction of surface NMDAR 

demonstrating their functionality. 

In anti-NMDAR encephalitis, the presence of NMDAR-AB and an inflammatory brain context 

mediate the pathophysiological events associated with the disease (Dalmau et al. 2008). 

Although some triggering events of NMDAR-AB production have been described, it is not 

clear if the production of these autoantibodies has a pro-inflammatory effect in the brain or if 

the encephalitic phenotype observed is the result of an additional pathological event 

(Ehrenreich 2017).  Hence, a direct link between NMDAR-AB and inflammation in the brain is 

missing. The presence of NMDAR-AB in healthy individuals has been previously reported, 

pointing to the importance of the BBB in preventing them from exerting their pathological 

effect (Hammer et al. 2014). To clarify the role of the BBB in this context ApoE-/- mice and 

wild type (ApoE+/+) littermates were immunized with a mixture of four peptide sequences of 

the extracellular part of GluN1, which included the glycosylation site G7. ApoE-/- mice have 

been previously described as having an open BBB and blood nerve barrier presenting 

extensive IgG extravasation in sciatic nerve, cerebellum, spinal cord and cortical and 

subcortical areas as the hippocampus (Fullerton et al. 2001). Here, the BBB integrity of 

ApoE-/- mice was reassessed using two fluorescent tracers with different molecular weights: 

Evans blue (EB: 960.81) and sodium fluorescein (NaFl: 376.28). Increased extravasation of 

both tracers was detected in ApoE-/- confirming the leakiness of the BBB in these mice. 

Increased permeability of the BBB does not seem to have an impact in anxiety levels, 

activity, exploratory behaviour, motor and sensory function, sensorimotor gating, pheromone-

based social preference and cognitive performance as determined in a comprehensive 

behavioural assessment of ApoE-/- and ApoE+/+. 

Reduced spontaneous activity in the open field and hyperlocomotion following application of 

the GluN1 antagonist MK-801 in ApoE-/- mice injected with human serum immunoglobulin 

extracts of seropositive patients has been previously reported (Hammer et al. 2014). Aiming 

at assessing the effects of NMDAR-AB in a more physiological context ApoE-/- and ApoE+/+ 

mice were immunized using a mixture of GluN1 peptides, ovalbumin and Freund’s Adjuvant 

or ovalbumin and Freund’s Adjuvant as immunization control. In a primary immune response 

naïve B cells and T cells are mobilized and antibody production peaks in 7 to 10 days upon 

contact with the antigen. Further B cell activation due to contact with the antigen stimulates 

naïve or memory B cells to proliferate and differentiate to antibody secreting plasma cells. 

Upon active immunization, the first antibody isotype produced by a developing B cell is IgM. 
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Mature B cells eventually go through class switch recombination events and produce IgA and 

IgG antibodies (Alberts et al. 2002). Endogenous NMDAR1-AB production was monitored 

overtime using an ELISA essay. Serum anti-ovalbumin and anti-GluN1 IgG antibodies were 

first detected between day 5 and 10 after immunization and were present until day 28. The 

lag phase of antibody production for ovalbumin and GluN1 antibodies was comparable 

between genotypes pointing to a primary immune response in both groups. This makes the 

presence of pre-existing memory B cells and a secondary immune response to ovalbumin 

and GluN1 antigens unlikely and corroborates the negative results for NMDAR-AB obtained 

with the serum tested prior immunization (pre-immune serum) (Pan&Oliveira et al. 2018).  

Immunized and immunization control mice of both genotypes were tested in the open field 

upon administration of MK-801, 27 days post immunization. MK-801 is a selective non-

competitive antagonist of NMDAR known to induce hyperlocomotion (Irifune et al. 1995). In 

mice, systemic application leads to reduction of NMDAR-mediated neurotransmission and 

increased extracellular glutamate levels in limbic brain regions. Enhanced non-NMDAR 

glutamatergic signalling in cortico-striatal circuitry in response to increased glutamate levels 

is one of the currently accepted explanations for this phenotype (Chartoff et al. 2005). While 

no changes were detected in baseline locomotion (pre- and post-immunization) between 

genotype or immunization groups, administration of MK-801 in GluN1 immunized ApoE-/- 

lead to hyperactive behaviour in the open field. This effect was not found in ApoE-/- 

immunized with ovalbumin or in ApoE+/+ of both immunization groups. Altogether, these 

results are in line with the effects of NMDAR-AB observed upon systemic injection in ApoE-/- 

and demonstrate that the behavioural effects of NMDAR-AB require diffusion of these 

antibodies to the brain parenchyma through a compromised BBB (Hammer et al. 2014). 

Thus, the increased hyperactive behaviour revealed in immunized ApoE-/- is a result of the 

combinatorial effect of NMDAR antagonism by MK-801 and lower NMDAR surface 

expression due to endocytosis by NMDAR-AB, only possible in the presence of a 

compromised BBB (Pan&Oliveira et al. 2018). 

An inflammatory milieu per se can be detrimental for brain function. To address a potential 

contribution of NMDAR-AB and an open BBB to the development of an inflammatory reaction 

in the brain and untangle NMDAR-AB’s contribution to the phenotype, immunohistochemical 

analysis was performed for both genotype and immunization groups. This analysis focused 

on the hippocampus as, despite the widespread expression of GluN1 in the CNS, a 

preferential binding of NMDAR-AB to hippocampal regions has been reported (Dalmau et al. 

2008, Hughes et al. 2010). Therefore, the number of Iba1+, CD68+, MHC-II+, CD3+ cells was 

quantified and a densitometric analysis of GFAP+ was performed in the hippocampus. No 

significant differences between groups was observed for all markers assessed, pointing to no 

effect of the immunization with NMDAR-AB or presence of a leaky BBB in microglial cell 
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numbers and activation status as well as T cells or development of astrogliosis. Additionally, 

no difference in brain’s water content between genotypes was observed, supporting the 

absence of inflammation in the presence of an open BBB. Altogether, this data suggests that 

the presence of these NMDAR1-AB alone does not trigger an inflammatory reaction and 

additional pro-inflammatory events are required to develop an encephalitic phenotype.  

To conclude, several mammal species were systematically screened for NMDAR-AB 

seropositivity and seroprevalence, in young and old age, and for NMDAR-AB functionality. 

The results of this project broadened the number of species with reported seropositivity for 

NMDAR-AB and confirmed an age-dependent increase in seroprevalence in cats, dogs, rats 

and mice not present in monkeys or humans that underwent migration. Furthermore, by 

establishing a new autoimmune mouse model, with endogenous production of NMDAR-AB, 

the importance of an intact BBB in preventing NMDAR-AB of exerting its effects in the brain 

was confirmed and the development of an inflammatory reaction was uncoupled from the 

effects of NMDAR-AB in brain.  
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Abstract
Autoantibodies of the IgG class against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB) were considered
pathognomonic for anti-NMDAR encephalitis. This view has been challenged by the age-dependent seroprevalence (up to
>20%) of functional NMDAR1-AB of all immunoglobulin classes found in >5000 individuals, healthy or affected by
different diseases. These findings question a merely encephalitogenic role of NMDAR1-AB. Here, we show that NMDAR1-
AB belong to the normal autoimmune repertoire of dogs, cats, rats, mice, baboons, and rhesus macaques, and are functional
in the NMDAR1 internalization assay based on human IPSC-derived cortical neurons. The age dependence of
seroprevalence is lost in nonhuman primates in captivity and in human migrants, raising the intriguing possibility that
chronic life stress may be related to NMDAR1-AB formation, predominantly of the IgA class. Active immunization of
ApoE−/− and ApoE+/+ mice against four peptides of the extracellular NMDAR1 domain or ovalbumin (control) leads to high
circulating levels of specific AB. After 4 weeks, the endogenously formed NMDAR1-AB (IgG) induce psychosis-like
symptoms upon MK-801 challenge in ApoE−/− mice, characterized by an open blood–brain barrier, but not in their ApoE+/+

littermates, which are indistinguishable from ovalbumin controls. Importantly, NMDAR1-AB do not induce any sign of
inflammation in the brain. Immunohistochemical staining for microglial activation markers and T lymphocytes in the
hippocampus yields comparable results in ApoE−/− and ApoE+/+ mice, irrespective of immunization against NMDAR1 or
ovalbumin. These data suggest that NMDAR1-AB of the IgG class shape behavioral phenotypes upon access to the brain but
do not cause brain inflammation on their own.

Introduction

Autoantibodies (AB) of the immunoglobulin G (IgG) class
against the N-methyl-D-aspartate-receptor subunit-NR1
(NMDAR1) were originally interpreted as pathognomonic
for a condition called “anti-NMDAR encephalitis”, char-
acterized by high serum and cerebrospinal fluid (CSF) titers

of these AB, as well as a variably favorable response to
immunosuppressive therapy. The reported syndrome,
reflecting typical NMDAR1 antagonistic actions, consisted of
psychosis, epileptic seizures, dyskinesia, cognitive decline,
reduced consciousness, and autonomic dysregulation [1–4].
However, work on >5000 individuals, healthy or affected by
different diseases, consistently revealed overall comparable
age-dependent seroprevalence of functional NMDAR1-AB
of all Ig classes, nurturing serious doubts regarding a purely
pathological role of NMDAR1-AB of any Ig class [5–10].

NMDAR1-AB apparently belong to a pre-existing
autoimmune repertoire [11–17], where Ig isotypes are
determined by extracellular vs. intracellular antigen location
[6]. This may explain the rarity of the IgG class among AB
directed against extracellular epitopes, e.g., NMDAR1,
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MOG, and CASPR2. In contrast, AB that recognize intra-
cellular antigens, e.g., amphiphysin, ARHGAP26, or
GAD65, show predominance of IgG [6]. Despite this
apparent “physiological autoimmunity”, no report exists that
systematically screened mammals other than humans for the
presence of NMDAR1-AB. In recent work, we found that
all naturally occurring NMDAR1-AB are functional and
thus have pathogenic potential irrespective of epitope and Ig
class [10]. Pathophysiological significance may emerge in
conditions of compromised blood–brain barrier (BBB), for
instance, upon injury, infection, inflammation, or genetic
predisposition (APOE4 haplotype), which then allows
substantial access of circulating NMDAR1-AB to the brain
where they act as NMDAR antagonists [5, 9, 18–20].
Alternatively, AB-specific plasma cells may reside or settle
in the brain and produce large amounts of AB intrathecally
[14, 21]. The question whether abundant endogenously
produced NMDAR1-AB of the IgG class can—upon access
to the brain—induce inflammation and thus “anti-NMDAR1
encephalitis” has never been experimentally addressed.

The present paper has therefore been designed to (i) sys-
tematically screen mammals other than humans for ser-
oprevalence of functional NMDAR1-AB and (ii) study mice
with open BBB behavioral and morphological consequences
of high circulating levels of endogenous NMDAR1-AB of
the IgG class formed in response to immunization.

Materials and methods

Ethical approvals

Ethics committees of Georg-August University, Göttingen,
and collaborating centers approved the Göttingen Research
Association for Schizophrenia (GRAS) data collection and
other studies “extended GRAS” acquiring human data,
serum samples, and IPSC [5, 6, 8, 9, 22, 23]. Hannover
Medical School Ethics Committee approved the neuro-
surgical specimen collection. Studies comply with Helsinki
Declaration. Patients gave written informed consent. Mouse
studies were approved by Animal Ethics (LAVES,
Oldenburg) following German Animal Protection Law.

Notes: All experiments were performed by researchers
unaware of group assignment. The new nomenclature
GluN1 for NMDAR1 is mostly disregarded here for con-
sistency with the respective literature.

Human samples

GRAS and “extended GRAS”

The GRAS [22, 23] subsample used here consists of deep-
phenotyped patients (N= 970; age 39.29± 0.40 years; 66.3%

men), diagnosed with schizophrenia or schizoaffective disorder
according to DSM-IV-TR [24]. Subjects of “extended GRAS”
(N= 4933; age 43.29± 0.24 years; 56.9% men) comprise
healthy individuals and patients with different neuropsychiatric
diagnoses, including schizophrenia, affective disorders, multi-
ple sclerosis, Parkinson, ALS, stroke, and personality disorders
(detailed description in [5, 6, 8, 9]). For this study, subjects are
dichotomously classified as nonmigrants or migrants compris-
ing first (patient migrated) and second generation (parents
migrated). Identified migrants (N= 301/N= 4933) are from
Europe (49.8%), Asia (36.9%), Africa (9%), North America
(2%), South America (0.7%), or mixed (1.6%).

Neurosurgical patients

A total of N= 72 paired samples of serum and ventricular CSF
were available from patients (N= 45 women; age 55.9± 2.2
years; N= 27 men; age 60.2± 2.7 years) undergoing neuro-
surgery for various reasons: meningiomas, metastases, and
other brain tumors (N= 25); intracerebral/subarachnoid
hemorrhages (N= 20); hydrocephalus (N= 12); arterial
aneurysms (N= 7); trigeminal neuralgia (N= 4); and others
(N= 4). Most pairs were taken simultaneously at the time point
of surgery, i.e., <5min (N= 64) or <30min (N= 8) apart.

Other mammals

Dogs and cats

Serum samples from dogs and cats of different breeds were
prospectively collected during routine (health check/vacci-
nation) or diagnostic (spectrum of different disorders)
workup of outpatients in the Small Animal Clinic, Uni-
versity of Veterinary Medicine, Hannover.

Monkeys

Serum samples from healthy baboons and rhesus macaques
were obtained through routine checkups at the Leibniz
Institute for Primate Research, Göttingen.

Rodents

Serum samples from healthy rats and mice were obtained at
the Max Planck Institute of Experimental Medicine and the
Institute for Multiple Sclerosis Research, Göttingen.

Serological analyses

NMDAR1-AB determination by clinical standard procedures

Human serum and ventricular CSF were tested for
NMDAR1-AB positivity using commercially available kits,
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based on HEK293T cells transfected with NMDAR1 and
secondary AB against human IgG, IgM, or IgA (Euro-
immun, Lübeck, Germany) [2, 25]. Mouse serum was
analyzed using the same assay with secondary AB against
mouse IgG, IgM, or IgA (M31001, A-31570, A-21042;
Thermo Fisher, Rockford, USA).

NMDAR1-AB IgM screening in monkey samples

HEK293T cells (50,000) cultured at 37 °C/8% CO2 in
DMEM (high glucose, Life Technologies, Carlsbad, USA)
were seeded on a 35 -mm dish, grown for 3 days, and
transfected with 3 µg of myc-His-tagged GluN1-1b cloned
into pcDNA4/TO/myc-His A (Invitrogen, Carlsbad, USA)
using Metafectene-Pro (Biontex, Munich, Germany) [10].
One day post transfection, cells were split onto five poly-D-
lysine-coated coverslips in a 35 -mm dish and 1 day later,
they were fixed with 5% paraformaldehyde (PFA) for 20
min, washed 5× (PBS), permeabilized with 0.1% Triton X-
100 for 5 min, again washed 5× (PBS), and blocked with
5% normal goat serum (NGS; Sigma-Aldrich, Munich,
Germany) for 1 h. After five PBS washes, cells were incu-
bated with serum and monoclonal mouse anti-myc IgG
(clone 9E10, Hollmann-Lab, Bochum) for 1 h, washed
with 10× (PBS), incubated for 1 h with fluorescein-labeled
goat anti-monkey IgM (072-11-031; KPL, Gaithersburg,
USA) and AlexaFluor®594-labeled goat anti-mouse
IgG (A11005; Thermo Fisher) secondary AB, and PBS
washed 5×. Cells were mounted in Fluoromount-G
(Southern Biotech, Birmingham, USA) and analyzed
via TCS-SP2-AOBS confocal microscope (63× oil
immersion objective; Leica-Microsystems, Wetzlar,
Germany). The results were independently assessed by
three investigators.

Protein-A assay

Human serum (for cross-validating clinical standard pro-
cedure and protein-A method), as well as dog, cat, rat, and
monkey serum were labeled with protein-A from Staphy-
lococcus aureus, binding the Fc portion of immunoglobu-
lins of different species [26]. Plasma (50 μl) and 25 μg of
FITC-conjugated protein-A (Sigma-Aldrich) were incu-
bated for 2 h in the dark at room temperature (RT). The
mixture was then diluted to 250 μl (PBS) and unbound
FITC–Protein-A was removed using 100- kDa Amicon filter
units (Sartorius, Göttingen, Germany), reconcentrating to
~50 μl [27]. NMDAR1-AB seropositivity was determined
using Euroimmun assay combined with commercial
monoclonal mouse NMDAR1-AB (114011; M68, SYSY,
Göttingen, Germany). Samples showing distinct double
labeling were rated “positive” (>98% consensus of three
investigators).

Endocytosis assay

Functional studies were conducted with sera following
ammonium-sulfate precipitation of immunoglobulins [28]
and dialysis (Slide-A-Lyzer® Mini Dialysis Units, 10,000
MWCO Plus Float, Thermo Fisher). To assess AB func-
tionality, human IPSC-derived neurons were exposed to
dialyzed serum [10]. For each species, arbitrarily selected
seronegative (N= 1) and seropositive samples (N= 2–3)
were analyzed. Briefly, cells were precooled on ice and
washed prior to incubation in cold HBSS with 1:50 diluted
dialyzed sera, control NMDAR1-AB (M68-SYSY), or
HBSS alone (negative control) for 30 min/4 oC. After
washing to remove unbound AB, neurons were returned to
their media and incubated for 20 min at 37 oC (three cov-
erslips/sample, endocytosis) or 4 °C (one coverslip/sample,
endocytosis control). The remaining surface NMDAR1 was
exposed to mouse anti-human NMDAR1-AB (N-terminal;
ab134308; Abcam, Cambridge, UK, 1:100), followed by
labeling with secondary donkey anti-mouse IgG (A10036;
Life Technologies, AlexaFluor®546, 1:100). Neurons were
fixed with ice-cold 4% PFA and double stained with
chicken anti-NeuN-AB (266006; SYSY, 1:500) and sec-
ondary donkey anti-chicken AB (703-546-155; Life Tech-
nologies, AlexaFluor®488, 1:250). Nuclei were visualized
using DAPI (Sigma-Aldrich, 0.01 µg/ml). After PBS wash,
coverslips were mounted on SuperFrost®-Plus slides with
Mowiol mounting media (Sigma-Aldrich). Confocal laser-
scanning microscopy was used to quantify NMDAR1
density at the membrane (63× glycerol objective; TCS-SP5
Leica-Microsystems, Mannheim, Germany). From each
coverslip, Z series of optical sections (0.5 μm apart) cov-
ering the three-dimensional extension of neurons were
acquired (sequential scanning mode, identical acquisition
parameters). FIJI-ImageJ software [29] was used to ran-
domly select NeuN+ cells and determine soma profile.
Fluorescence intensity/cell surface area (AlexaFluor546)
was automatically measured as readout of
NMDAR1 surface expression. After background subtrac-
tion, the mean intensity for each coverslip was determined
and fluorescence intensity ratio (37/4 °C) was calculated.

BBB-integrity testing

BBB integrity of 12-month-old ApoE−/− (N= 5) and
ApoE+/+ (N= 5) mice was determined using two different
fluorescent tracers, Evans blue (50 mg/g body weight) [30]
and sodium fluorescein (200 mg/g body weight). A detailed
description of this method will be published elsewhere [31].
Briefly, for tracer quantification in the brain at 4 h after
intravenous injection in the tail vein, animals were PBS
perfused to remove the circulating tracer. Brains were dis-
sected, immediately frozen on dry ice, weighed, and stored

Anti-NMDAR1 autoantibodies across mammals

Oliveira
Schreibmaschinentext
PROJECT II

Oliveira
Schreibmaschinentext
71



at −80 °C. Tissue was lyophilized at −56 °C for 24 h under
vacuum of 0.2 mBar (Christ LMC-1-BETA-1-16, Osterode,
Germany). For tracer extraction, hemispheres were incu-
bated with shaking in 10 ml formamide/mg brain at 57 °C
for 24 h. Integrated density of tracer fluorescence was
determined in triplicates on a fluorescent microscope
(Observer Z2, Zeiss, Germany), equipped with Axio-
CamMRc3, 1×Camera-Adapter, and ZEN2012 blue-edition
software, recorded at 10× magnification (Plan-Apochromat
10×/0.45M27). Tracer concentration was calculated using a
standard curve and normalized to controls (set to 1).

Mouse immunization

Mice (12-month-old C57BL/6 littermates: ApoE−/−N= 20
and ApoE+/+N= 23; genders balanced) were immunized
with a mixture of GluN1 extracellular peptides and/or
chicken ovalbumin (Sigma-Aldrich), and emulsified in
equal volume of complete Freund’s Adjuvant (Myco-
bacterium tuberculosis H37RA plus incomplete Freund’s
Adjuvant; Becton-Dickinson, Sparks, USA) at a final con-
centration of 1 mg/ml [32]. At the tail base, 50 μg of GluN1
peptides and/or 20 μg of ovalbumin were injected sub-
cutaneously (each side one).

Enzyme-linked immunosorbent assay (ELISA)

Orbital sinus blood of immunized mice was stored as EDTA
plasma at −80 °C. ELISA plates (96 well) were coated with
0.5 μg of GluN1 peptide mixture or 0.2 μg of chicken
ovalbumin in 50 μl PBS/well overnight at 4 °C and blocked
with 5% BSA/PBS (Carl Roth, Karlsruhe, Germany).
Mouse plasma (1:1000 or 1:50,000 5% BSA/PBS
50 μl/well) was added for 2 h at RT. The signal was
amplified with horseradish peroxidase-linked anti-IgG
(Sigma-Aldrich), and 3,3′,5,5′-Tetramethylbenzidine as
colorimetric substrate (BD Biosciences, San Jose, USA).
Absorbance at 450 nm was measured by microplate reader
(Tecan-Trading AG, Männedorf, Switzerland).

Basic behavioral screening

The behavioral test battery was performed as described
previously [33–36]. Starting at age 5 months, experi-
mentally naïve ApoE−/− and ApoE+/+ littermates under-
went (during light phase) tests of anxiety, activity and
exploratory behavior (elevated plus-maze, open field,
hole-board), motor (rotarod, grip strength) and sensory
function (visual cliff, olfaction, hearing, hot plate),
sensorimotor gating (prepulse inhibition), pheromone-
based social preference, and cognitive performance
(IntelliCage place/reversal learning). Males and females
were tested separately.

Baseline and post MK-801 locomotion in the open
field

The open-field apparatus consisted of a gray circular
Perspex-arena (120 cm diameter; wall height 25 cm).
Indirect white light illumination ensured constant light
intensity of 120 lux in the center. Locomotion was mea-
sured using automated tracking software (Viewer2-Biob-
serve, Bonn, Germany). ApoE−/− and ApoE+/+ littermates
received four baseline measurements preimmunization and
post immunization (15 min each), the last followed by
intraperitoneal MK-801 (Dizocilpine-[5S,10R]-(+)-5-
methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-
imine hydrogen maleate; 0.3 μg/10 μl PBS/g Sigma-
Aldrich). MK-801 is a noncompetitive NMDAR antagonist,
acting as a use-dependent ion-channel blocker, and known
to induce psychosis-like hyperactivity in the open field (loss
of inhibition) [37]. Directly post injection, locomotor
activity in open field was analyzed (4 min intervals), with
the first 4 min defined as reference locomotion to express
changes over 120 min as % reference.

Immunohistochemistry

Mice were anesthetized with Avertin (2,2,2-
Tribromoethanol, Sigma-Aldrich), and transcardially per-
fused with 4% PFA/Ringer solution (Braun-Melsungen,
Germany). Brains were removed, postfixed in 4% PFA
overnight at 4 °C, and incubated in 30% sucrose/PBS for
2 days at 4 °C. Brains were cryosectioned coronally into
30 µm slices and stored in 25% ethylene glycol and 25%
glycerol/PBS at −20 °C. Frozen sections (three/mouse;
rostral hippocampus), mounted on SuperFrost®-Plus slides
(Thermo Fisher, Waltham, USA), were used for cell quan-
tification. For CD3 staining, sections were microwaved 3×
for 4 min in citrate buffer (1 mM, pH 6) and blocked with
5% normal horse serum (NHS), and 0.5% Triton X-100/
PBS for 1 h at RT. Incubation with rat anti-mouse CD3
(MCA1477; BioRad, Hercules, USA; 1:100) diluted in 5%
NHS, and 0.5% Triton X-100/PBS was performed for two
nights/4 °C, followed by incubation with goat anti-rat
AlexaFluor®647 (A-21247; Thermo Fisher, Schwerte,
Germany; 1:1000) diluted in 5% NHS, and 0.5% Triton X-
100/PBS for 2 h at RT. For Iba1, GFAP, CD68, and MHC-
II staining, sections were blocked with 5% NGS and/or 5%
NHS in 0.5% Triton X-100/PBS for 1 h at RT. Incubation
with rabbit anti-mouse Iba1 (019-19741; Wako-Chemicals
GmbH, Neuss, Germany; 1:1000), or mouse anti-mouse
GFAP (NCL-GFAP-GA5; Novocastra-Leica, Newcastle
upon Tyne, UK; 1:500), diluted in 3% NGS or 3% NHS,
and 0.5% Triton X-100/PBS, was performed overnight, and
incubation with rat anti-mouse CD68 (MCA1957GA;
BioRad GmbH, München, Germany, 1:400) and rat
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anti-mouse MHC-II (14-5321; eBioscience, San Diego,
USA, 1:100) diluted in 3% NGS and 3% NHS, and 0.5%
Triton X-100/PBS, was performed over two nights, all at 4 °
C. Incubation with secondary antibodies was performed
with goat anti-rabbit AlexaFluor®555 (A-21428; Thermo
Fisher; 1:500) diluted in 3% NGS, 0.5% Triton X-100/PBS,
or donkey anti-rabbit AlexaFluor®488 (A-21206; Thermo
Fisher, 1:500) or donkey anti-mouse AlexaFluor488
(A21202; Thermo Fisher, 1:500) or goat anti-rat Alexa-
Fluor®647 (A-21247; Thermo Fisher, 1:500), diluted in
3% NGS or 3% NHS, and 0.5% Triton X-100/PBS for
1.5 h at RT. Nuclei were counterstained with DAPI (Sigma-
Aldrich, 0.01 µg/ml) and sections were mounted using
Aqua-Poly/Mount (Polysciences, Warrington, USA).
Tile scans of hippocampus were acquired using Leica-
DMI6000 epifluorescence microscope (20× objective;
Leica) and Iba1+ and CD3+ cells were counted using
cell counter plug-in of FIJI-ImageJ software [29].
GFAP+ cells in the hippocampus were quantified densito-
metrically upon uniform thresholding (expressed as %
respective area).

Statistical analyses

Statistical analyses were performed using SPSSv.17 (IBM-
Deutschland-GmbH, Munich, Germany) or Prism4
(GraphPad Software, San Diego, California, USA). Group
differences in categorical and continuous variables were
assessed using χ2, Mann–Whitney U, or Student's t-tests
depending on data distribution/variance homogeneity.
ANOVA was employed as indicated in display item
legends. All p-values are two tailed; significance is set to p
< 0.05; data are presented as mean ± S.E.M.

Results

Cross-validation of NMDAR1-AB detection methods

To determine NMDAR1-AB seropositivity in mammals
other than humans, we had to validate the protein-A
detection method [27]. For that, N= 72 paired human
serum and ventricular CSF samples, prospectively collected
from random neurosurgical patients, were analyzed by the
usual cell-based assay, employing specific secondary AB
for all Ig classes. A total of N= 5 sera turned out
NMDAR1-AB positive (titers ≤ 1:100; 3× IgM; 2× IgA;
0× IgG). Ventricular CSF samples were all negative. For
cross-validation of NMDAR1-AB of the IgG class, we used
serum of a seropositive stroke patient [8]. Application of
protein-A method combined with double labeling for
NMDAR1-AB M68 confirmed positive and negative
results (Fig. 1a).

High seroprevalence of NMDAR1-AB across
mammalian species

We next analyzed by protein-A method serum samples of
dogs, cats, rats, baboons, and rhesus macaques. Strikingly,
all mammalian species, independent of their respective life
expectancy, show high NMDAR1-AB seropositivity
(Fig. 1b). Mouse samples were analyzed using specific AB
against murine IgA, IgM, and IgG. As known for humans
[6], NMDAR1-AB of the IgG class were the rarest. For
another cross-validation, all monkey samples (N= 100)
were analyzed in blinded fashion by an independent lab
(Bochum; using specific anti-monkey IgM). IgM-positive
results coincided with the protein-A positivity by >97%
(76 of 78). The fraction of protein-A positive but IgM-
negative monkey samples (total 22%) likely presents
NMDAR1-AB of IgA class and IgG class where specific
AB were not available.

Age-dependent NMDAR1-AB seroprevalence except
for nonhuman primates and human migrants

All species revealed age dependence of NMDAR1-AB
seroprevalence (χ2 test; dogs: χ2(1)= 11.5, p= 0.01; cats:
χ2(1)= 4.8, p= 0.03; rats: χ2(1)= 9.5, p= 0.002; and mice:
Fisher’s exact test p= 0.032) as for humans [5, 8] with the
exception of baboons (χ2(1)= 1.0, p= 0.3), where already
>50% of young animals were seropositive. This surprising
result made us investigate another monkey species, rhesus
macaques, showing again high seroprevalence in old and
young animals (χ2(1)= 0.2, p= 0.6) (Fig. 1b). We won-
dered what the difference between humans, dogs, cats,
mice, and rats, on one hand, and monkeys, on the other
hand, could be, leading to loss of the usual age pattern
regarding seroprevalence. Postulating that captivity/non-
domestication of young monkeys might induce chronic life
stress due to maladaptation to the environment, we inves-
tigated in a hypothesis-driven way whether young human
migrants would display a similar increase in NMDAR1-AB
seropositivity. Of the GRAS data collection, detailed
information on migration was available in a subsample of N
= 970 individuals. While nonmigrants show the typical age
association of NMDAR1-AB seroprevalence (χ2(1)= 10.7,
p= 0.001), migrants do not (χ2(1)= 0.6, p= 0.4) (Fig. 1c).
Seroprevalence in young migrants is significantly higher as
compared to young nonmigrants (χ2(1)= 5.381, p= 0.020).
In both monkey species and migrants, the IgM fraction still
follows the expected age trend, while IgA seems to account
for the early increase in NMDAR1-AB seroprevalence
(Fig. 1c). Presentation of NMDAR1-AB by Ig class in the
extended GRAS sample (N= 4933), with
N= 4632 of likely nonmigrants (available information less
detailed) and N= 301 known migrants, illustrates the

Anti-NMDAR1 autoantibodies across mammals

Oliveira
Schreibmaschinentext
PROJECT II

Oliveira
Schreibmaschinentext
73



abnormal course of IgA vs. IgM/IgG seroprevalence over
age in migrants (Fig. 1d).

Functionality of NMDAR1-AB from different
mammalian species

To assess whether NMDAR1-AB of the tested species are
functional, our endocytosis assay using IPSC-derived
human cortical neurons [10] was employed. All positive

sera provoked NMDAR1 internalization, verifying func-
tionality (Mann–Whitney U; all p< 0.001) (Fig. 1e).

BBB dysfunction but normal behavior of
ApoE−/− mice

We next induced endogenous NMDAR1-AB formation in a
mouse model of BBB dysfunction, ApoE−/− mice vs. WT
littermates, ApoE+/+. Before that, we confirmed in 12-
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Fig. 1 NMDAR1-AB seropositivity and functionality across mam-
malian species. a Cross-validation of assays: paired serum and intra-
ventricular CSF samples from neurosurgical patients were tested using
a HEK293T cell-based clinical standard assay for NMDAR1-AB
seropositivity (Euroimmun biochip). For step 1, fluorescently labeled
IgA-specific, IgM-specific, and IgG-specific secondary AB were used;
for method cross-validation (step 2), NMDAR1-AB seropositive and
seronegative samples of each Ig class from step 1 were labeled with
protein-A–FITC conjugate and tested for colocalization (yellow) of
protein-A–FITC+ (green) and M68+ (monoclonal mouse NMDAR1-
AB followed by Alexa555 donkey anti-mouse IgG red). Representa-
tive pictures of both methods using the same seropositive samples
(IgA, IgM, and IgG) are displayed on the right: upper row step 1/lower
row step 2. b NMDAR-AB seropositivity (%) of young and old

mammals for all Ig classes combined (#protein-A–FITC/Euroimmun)
or for individual classes (+Euroimmun; *protein-A–FITC/Euroimmun
and cross-validation with Euroimmun/monkey IgM) presented in the
bars; color codes used for consistency and kept also in c and d; age
given in months (m) or years (y); χ2 or Fisher’s exact test. c NMDAR-
AB seropositivity of subjects with migration (first and second gen-
eration) vs. nonmigration history (GRAS data collection); all Ig classes
presented; age split at 35 years; χ2 test. d NMDAR1-AB course by Ig
classes in serum over age groups in migrants vs. nonmigrants of the
extended GRAS data collection. Note the different course particularly
for IgA. eFunctionality testing of NMDAR1-AB in human IPSC-
derived cortical neurons: degree of internalization expressed as a ratio
of fluorescence intensity measured at 37 and 4 °C; number of neurons
and sera (N) given; Mann–Whitney U test
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Fig. 2 Behavioral and morphological effects of endogenous NMDAR1-
AB of the IgG class in a mouse model with open BBB. a Demonstration
of BBB leakiness in ApoE−/− mice using an intravenously injected
mixture of Evans blue (EB) and sodium fluorescein (NaFl): After brain
cryopreservation/lyophilization, tracers were extracted with formamide
and quantified; Student’s t-test; b Experimental outline; c Immunization:
Left: GluN1 peptides (P1–P4) located in the extracellular part of the
receptor were used for immunization (compare Fig. 3); middle and right:
Time course of anti-ovalbumin and anti-GluN1-AB (IgG) upon
immunization in ApoE−/− and ApoE+/+ mice; optical density at dilution
1:1000 shown; titers after day 10 reach up to 1:50,000; d Effect of MK-

801 injection on activity in the open field; results presented as % change
from baseline (first 4 min post MK-801 set to 100%); no difference in
MK-801-induced hyperactivity between genotypes after ovalbumin
immunization (one-way repeated measures ANOVA: treatment× group
interaction: F(1,17)= 0.2; p= 0.7); increase in hyperactivity (during rise,
plateau, decline, and after-effect phases) upon MK-801 in ApoE−/− but
not ApoE+/+ mice immunized against GluN1 (one-way repeated mea-
sures ANOVA: treatment× group interaction: F(1,22)= 5.6; p= 0.028).
e Quantification of Iba1+ and CD3+ cells in the hippocampus to assess
inflammation in the brain; one-way ANOVA; representative pictures of
Iba1 (left) and CD3 (right) stainings in the middle
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month-old mice (age of immunization) BBB leakiness using
two fluorescent tracers. While brain water content was
similar in both genotypes, pointing against inflammation,
ApoE−/− mice showed increased tracer extravasation, con-
firming BBB dysfunction (Student’s t-test: EB: t(8)=

−10.66, p< 0.001; NaFl: t(8)=−8.97, p< 0.001)
(Fig. 2a). We wondered whether this compromised
BBB would by itself lead to behavioral abnormalities in
ApoE−/− mice. A comprehensive behavioral battery,
including tests for anxiety, activity, exploratory behavior,

Table 1 Basic behavioral screening of male and female ApoE+/+ and ApoE-/- mice

Males Females

Behavioral paradigms Age
(month)

ApoE+/+

(N)
ApoE–/–

(N)
p-value Age

(month)
ApoE+/+

(N)
ApoE–/–

(N)
p-value

Anxiety and activity

Elevated plus-maze
(time open [%])

5 12.6±3.2
(10)

19.5±4.0
(10)

p=0.14
U=30.0

5 17.5±2.9
(13)

14.8±1.3
(11)

p=0.98
U=71.0

Exploratory behavior

Hole-board (holes visited [#]) 5 15.2±2.3
(10)

11.9±1.9
(10)

p=0.30
t(18)=1.07

5 15.5±1.8
(13)

15.6±2.9
(13)

p=0.96
t(22)=0.96

Open-field

Locomotion [m] 5 31.8±1.7
(10)

32.7±1.5
(10)

p=0.70
t(18)=0.39

5 42.7±1.3
(13)

43.7±3.2
(13)

p=0.76
t(22)=0.31

Motor learning and coordination

Rotarod day 1 (latency to
fall [s])

6 89.3±11.6
(10)

130.0±15.3
(10)

p=0.06
t(18)=2.01

5 130.9±14.0
(13)

133.3±16.0
(11)

p=0.91
t(22)=0.11

Rotarod day 2 (latency to
fall [s])

6 140.3±9.4
(10)

145.6±17.8
(10)

p=0.81
t(18)=0.25

5 179.0±16.8
(13)

160.5±19.9
(11)

p=0.5
t(22)=0.69

Muscle strength

Grip-strength [au] 6 110.2±5.4
(10)

122.0±5.0
(10)

p=0.15
t(18)=1.52

6 108.8±3.0
(13)

115.1±4.4
(11)

p=0.26
t(22)=1.16

Heat/pain perception

Hot-plate (latency to lick [s]) 5 12.8±0.4
(10)

11.9±0.7
(10)

p=0.22
t(18)=1.26

5 13.7±0.5
(12)

12.4±0.5
(10)

p=0.15
t(20)=1.5

Vision

Visual-cliff (time on
"air" side [%])

5 26.5±7.2
(10)

22.0±5.6
(10)

p=0.85
U=47.0

5 21.7±5.1
(13)

29.0±3.9
(11)

p=0.13
U=45.0

Olfaction

Buried food-test (latency to find
cookie [s])

5 59.4±9.2
(10)

50.6±8.5 (9) p=0.52
t(17)=0.66

5 47.8±12.9
(12)

50.7±10.7
(11)

p=0.87
t(21)=0.16

Hearing

Acoustic startle at 65dB [AU] 6 0.5±0.04
(10)

0.5±0.04
(10)

p=0.53
F(1,18)=0.42

8 0.4±0.1
(13)

0.5±0.04
(11)

p=0.19
F(1,22)=1.82

Acoustic startle at 120dB [AU] 4.5±1.0 (10) 4.8±1.0 (10) 3.3±0.5
(13)

4.2±0.6
(11)

Sensorimotor gating

Mean pre-pulse inhibition [%] 6 44.8±6.7
(10)

40.6±7.4
(10)

p=0.69
F(1,18)=0.16

8 57.7±4.1
(13)

50.4±6.3
(11)

p=0.35
F(1,22)=0.91

Pheromone-based social preference

Time spent in pheromone
box [s]

15 1213±50.8
(12)

1115±83.7
(12)

p=0.33
t(22)=1.0

Time spent in control box [s] 780.5±75.4
(12)

751.1±83.5
(12)

p=0.84
t(22)=0.21

Cognitive performance in IntelliCage

Place-learning [% target corner
visits]a

15 34.2±1.3
(12)

34.2±1.8
(13)

p=0.76
U=72.0

Reversal-learning [% target
corner visits]a

34.2±1.3
(12)

34.2±1.8
(13)

p=0.17
U=52.0

aas previously described in Netrakanti et al. 2015

Note: All data in the table are mean± S.E.M.
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motor and sensory function, sensorimotor gating,
pheromone-based social preference, and cognitive perfor-
mance did not reveal any differences between genotypes
(Table 1).

Immunization of ApoE−/− and ApoE+/+ mice against
NMDAR1-peptides

To explore whether endogenously formed NMDAR1-AB
would lead to measurable behavioral and morphological
effects, we immunized 12-month-old ApoE−/− and ApoE+/+

littermates against four peptides of the extracellular
NMDAR1/GluN1-domain (including NTD-G7; N368/
G369) and ovalbumin or against ovalbumin alone as
immunization control (Fig. 2b–c). GluN1 shows >99%
sequence homology among all here-tested mammalian
species, with immunizing peptides being 100% homologous
(Fig. 3). Immunization led to high circulating levels of
specific IgG (titers up to 1:50,000). Efficacy of immuniza-
tion and time course of IgG appearance as determined by
ELISA were comparable for NMDAR1-peptides and oval-
bumin across genotypes, making a simple boosting effect of
NMDAR1-peptides on pre-existing NMDAR1-specific B
cell clones rather improbable (Fig. 2c).

Psychosis-related behavior of ApoE−/− mice upon
MK-801 challenge

Open-field tests measuring baseline preimmunization and
postimmunization locomotion did not reveal any differences
between genotypes and/or immunization groups (Fig. 2b;
not shown). After 4 weeks, the endogenously formed
NMDAR1-AB of the IgG class induced strong hyper-
activity (psychosis-like symptoms [37]) upon MK-801
challenge in ApoE−/− mice only. In contrast, ApoE+/+

mice behaved comparably to ovalbumin-only immunized
mice of both genotypes (Fig. 2d; all p> 0.5). Thus, an open
BBB together with sufficiently high titers of AB (to reach a
threshold loss of NMDAR1 surface expression) is a pre-
requisite for the observed behavioral perturbation upon
MK-801.

No inflammation in hippocampus of immunized
ApoE−/− and ApoE+/+ mice

Immunohistochemistry did not show any evidence of
inflammation in either genotype and/or immunization
group. Numbers of Iba1+ and CD3+ cells as markers of
microglia and T cells, respectively, were comparable for
total hippocampus (one-way ANOVA: Iba1: F(3,18)= 0.3;
p= 0.8; CD3: F(3,18)= 0.4; p= 0.8) (Fig. 2e) and for all
hippocampal subfields separately (all p-values > 0.2; not
shown). Also, staining for microglial activity markers,

CD68 and MHCII, was essentially negative and identical
across groups. Moreover, staining for GFAP did not
reveal any appreciable density increase in the
hippocampus, and thus no sign of astrogliosis (data not
shown).

Discussion

The present work demonstrates high seroprevalence of
functional NMDAR1-AB of all Ig classes across mammals,
indicating that these AB are part of a pre-existing auto-
immune repertoire [11–17]. As in humans, NMDAR1-AB
of the IgG class are the least frequent [6, 20]. The age
related up to >50% NMDAR1-AB seropositivity is inde-
pendent of the respective species’ life expectancy, indicating
that the aging process itself rather than years of exposure to
a certain environment triggers NMDAR1-AB formation.
However, our knowledge on predisposing factors and
inducing mechanisms is limited. Specific autoimmune-
reactive B cells may get repeatedly boosted by, e.g.,
infections, neoplasms, or the microbiome, and less effi-
ciently suppressed over a lifespan likely owing to a gradual
loss of immune tolerance upon aging [14].

Unexpectedly, we find the age-dependence lost in non-
human primates and in human migrants that all display an
early-life rise in NMDAR1-AB seropositivity, mainly of
IgA. The intriguing possibility that chronic life stress,
known to be present in human migrants [38] and animals in
captivity [39], acts as a trigger of early NMDAR1-AB
formation is worth pursuing experimentally in the future. A
large proportion of migrants in our human samples are
suffering from neuropsychiatric illness. This may addi-
tionally support our chronic stress hypothesis since migra-
tion is recognized as an environmental stressor predisposing
to mental disease [40]. Further studies should screen wild-
life monkeys and species in zoos for NMDAR1-AB.
Experimental confirmation of our findings provided,
NMDAR1-AB (IgA) may even serve as stress markers. In
fact, earlier reports show that total serum-Ig of all classes,
most prominently IgA, respond to psychological stress [41].
NMDAR1-AB might thus belong to a set of stress-boosted
AB. Interestingly, we also find accumulated seroprevalence
of 23 other brain-directed AB [6] in young migrants vs.
nonmigrants increased (data not shown), suggesting a glo-
bal inducer role of chronic stress in humoral autoimmunity.

Earlier work has shown that AB against brain antigens in
general are common among mammals [42], but no study
has so far systematically screened nonhuman mammals for
NMDAR1-AB. As an exception, a recent report described
“anti-NMDAR1 encephalitis” in the young polar bear Knut
[27]. Based on the present findings, Knut may have
belonged to those nondomesticated species in captivity—
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Fig. 3 Alignment of GluN1-1b receptor amino acid sequence across all
mammalian species tested. Regions containing the four peptide
sequences (peptides 1–4: P1: AA35–53, P2: AA361–376, P3:
AA385–399, and P4: AA660–811) used in the immunization experi-
ment are highlighted in yellow and light brown (compare three-

dimensional presentation in Fig. 2c) and nonhomologous amino acids
in pink. SP signal peptide, S1, S2 segments of the ligand-binding
domain, TMD A transmembrane domain A, TMD B transmembrane
domain B, TMD C transmembrane domain C
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comparable to monkey species investigated here—that are
affected by chronic early-life stress, inducing NMDAR1-
AB seropositivity. Pre-existing NMDAR1-AB of this bear
may have ultimately shaped the clinical picture of an
encephalitis of unexplained origin (likely infectious
according to the zoo’s pathology reports) where an epileptic
seizure led to drowning [27].

This interpretation is supported by our novel auto-
immune model, namely, mice immunized against
NMDAR1-peptides. Even high titers of endogenously
formed NMDAR1-AB (IgG; up to 1:50,000) that induce
psychosis-like behavior upon MK-801 challenge in
ApoE−/− mice, with here-confirmed open BBB, do not lead
to any appreciable signs of encephalitis. This dissociation of
behavioral/symptomatic consequences and inflammation in
the brain is of major importance for clinicians [14]. For
instance, earlier studies reported an influence of NMDAR1-
AB infusions into the hippocampus on learning and mem-
ory in mice [43], and others found increased NMDAR1-AB
seroprevalence in patients with mild cognitive impairment
and Alzheimer's disease [44, 45]. However, while all natu-
rally occurring NMDAR1-AB that have pathogenic potential
irrespective of epitope and Ig class [10], and upon entry to
the brain (or via intrathecal production) can shape brain
functions in the sense of NMDAR antagonism, only a frac-
tion of individuals happens to have underlying encephalitis
of various etiologies, which is then called anti-NMDAR
encephalitis. The highly variable neuropathology and
response to immunosuppression of this condition [2, 3, 46]
may point to a broad range of possible encephalitogenic
mechanisms (from infection to oncology or genetics) which
need to be diagnosed and specifically treated [14].

Even though it is unclear how NMDAR1-AB are
generated by chronic stress, it should be considered that
NMDAR1 are not only expressed in the brain but also by
peripheral organs and tissues, including adrenal glands
and gut [47] which may be involved in triggering
NMDAR1-AB formation but may also be functionally
modulated by them. Since NMDAR antagonists are
increasingly recognized as antidepressant, anxiolytic, and
anti-inflammatory agents [48–52], we speculate that
stress-induced NMDAR1-AB could serve as endogenous
stress protectants. Remarkably, also in stroke, NMDAR1-
AB can be protective [8].

In conclusion, the widespread occurrence of NMDAR1-
AB across mammals, as well as the failure of even high
titers of endogenously formed NMDAR1-AB of the IgG
class to induce any signs of brain inflammation should lead
to rethinking current concepts that link NMDAR1-AB to
neuropsychiatric disease including encephalitis.
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5. PROJECT III – Excitation-inhibition dysbalance as predictor of autistic phenotypes 

 

Overview of Project III 

The phenotypic variability observed in autism defines it as a spectrum disorder with three 

main groups: autism, Asperger’s syndrome and pervasive developmental disorder not 

otherwise specified, with all of them sharing deficits in social communication/interaction, 

restricted interests and stereotypic/repetitive behavior (Buxbaum et al. 2013). However, 

autistic phenotypes transcend diagnostic categories. Schizophrenia is among the many 

neurodevelopmental diseases with autistic symptoms contributing to disease severity 

(Kastner et al. 2015, Stepniak et al. 2015). Additionally, subthreshold deficits of the core 

phenotypic domains of autism spectrum disorders (ASD) can be found in the general 

population in different levels, supporting the continuous nature of autistic behaviors (Jones et 

al. 2013, Kastner et al. 2015). 

Involvement of synaptic and synapse regulating genes is a constant observation across ASD 

genomic screenings as well as in monogenic forms of autism. This suggests a central role for 

defects in synaptic structure and function in the pathogenesis of ASD. Additionally, it has 

been postulated that hyperexcitability of cortical circuits, due to an increased ratio between 

excitation and inhibition (E/I), might be associated with ASD. This imbalance in E/I can be 

related with increased excitatory glutamatergic signalling, or with reduction in inhibition due 

to a reduction in GABAergic signalling (Rubenstein et al. 2003, Nelson et al. 2015). 

Furthermore, evidence of a reduced E/I ratio, as consequence of a shifted E/I ratio favouring 

inhibition over excitation, has also been reported in both mouse and in vitro human IPS 

neurons (Dani et al. 2005, Marchetto et al. 2010). Altogether, several genetic mouse models 

of ASD point to altered E/I ratio as a neural mechanism underlying the pathophysiology of 

ASD. Human studies also support the notion that an imbalanced E/I ratio represents a 

convergence point for many of the genetic causes associated with ASD. In fact, cellular 

abnormalities involving neural transmission might be associated with neurotransmitter 

generation, release, reception and re-uptake. Quantification of neurotransmitter levels 

provided some suggestive evidence supporting the involvement of altered E/I in ASD. 

Increased serum levels of glutamate and GABA have been reported in ASD when compared 

to neurotypical individuals. Magnetic resonance spectroscopy studies provided additional 

information by measuring the brain levels of GABA, glutamate and the glutamate precursor 

glutamine. Nevertheless, the results are very heterogeneous across studies and do not allow 

firm conclusions. Indirect evidence for imbalanced E/I ratio has been provided by 
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electroencephalography and magnetoencephalography data. However, they do not point a 

clear direction of such imbalance (Dickinson et al. 2016). 

Considering the transcending nature of autistic phenotypes, the severity of autistic traits in a 

population of schizophrenic patients was evaluated. To cover the ASD diagnostic domains of 

difficulties in social interaction, communication, and repetitive and stereotypic behaviour in 

the GRAS population, an autism severity score (PAUSS) based on specific items of the 

Positive and Negative Syndrome Scale (PANSS) was employed. The PANSS is a 

standardized clinical observation tool, applied to assess positive, negative and 

psychopathology symptom severity in schizophrenia (Kay et al. 1987, Kastner et al. 2015). 

By ranking individuals according to their PAUSS score it was possible to categorize them in 

two main groups: low and high PAUSS, in which higher scores represent a higher severity of 

autistic traits.  

Male individuals of both groups were then selected and matched for age, handedness and 

antipsychotic medication to access their E/I ratio using TMS. Non-invasive brain stimulation 

techniques as TMS allow probing cortical excitability in vivo (Hallett 2007). An input-output 

(I/O) curve to assess excitability and a paired-pulse TMS protocol to monitor intracortical 

inhibition and facilitation were applied in schizophrenic patients presenting contrasting 

PAUSS scores. Threshold or suprathreshold stimulation of the motor cortex with TMS 

activates cortical neurons via the induction of electric currents, generating motor evoked 

potentials (MEP) in the respective target muscle. MEP amplitude serves as a measure of 

cortical excitability. Therefore, the minimum TMS intensity to elicit an MEP (motor threshold) 

and the I/O curve, in which the MEP response due to increasing stimulation intensity is 

monitored, are the global measures of corticospinal excitability. These readouts depend 

largely on the activation of voltage-gated ion channels, with the probable exception of MEPs 

resulting from high TMS intensities, in which the glutamatergic system is also involved 

(Paulus et al. 2008). In contrast, paired-pulse TMS protocols allow the relative specific 

determination of intracortical excitability. Here, a first sub-threshold TMS stimulus, which 

does not elicit an MEP and whose effects are consequently intracortical, is followed by a 

suprathreshold stimulus. The alteration of the MEP amplitude elicited by the second stimulus 

depends on the interstimulus interval and could serve as index of intracortical excitability. 

Short latency intracortical inhibition probes primarily inhibitory GABAergic interneurons, 

whereas intracortical facilitation probes glutamatergic excitatory connections (Kujirai et al. 

1993, Paulus et al. 2008). While no differences in resting or active motor thresholds were 

observed between the two phenotypic groups, the group of schizophrenic patients with more 

severe autistic features showed higher cortico-spinal excitability and higher intracortical 

inhibition compared to the group with low autistic features. In contrast, intracortical facilitation 
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did not differ between groups. Additionally, the E/I ratio and the severity of autistic traits were 

positively correlated. 

Our results suggest that the severity of autistic traits in these patients couples with altered 

GABAergic neurotransmission and activity of voltage-gated ion channels, with no clear 

changes in glutamatergic neurotransmission. Enhanced corticospinal excitability could have 

been driven by altered voltage-gated ion channel activity or glutamate signalling, particularly 

at high TMS intensities (Paulus et al. 2008). Since glutamate-driven intracortical facilitation 

did not differ between groups, a predominant impact on voltage-gated ion channels is more 

likely. Overall, the results of this study support the concept of a disturbed E/I balance in 

subjects with autistic features, which is based on altered GABAergic and voltage-gated ion 

channel functions. 

These findings support the pathophysiological continuum of autistic traits and the 

convergence of the associated phenotypic and functional aspects in a common pathway that 

transcends diagnostic criteria.  
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6. SUMMARY AND CONCLUSIONS 

 

The complexity of neuropsychiatric conditions reflects the heterogeneity of their etiological 

factors, in which a combination of genetic and environmental risk factors shapes phenotypes. 

However, one must dissect single contributors to disease and health status having in mind 

the possibility of overlapping phenotypes across diseases, and that an individual’s biological 

repertoire influences their response to environmental triggers. The present thesis focused on 

the molecular and functional characterization of autoantibodies targeting the NMDAR and 

their role beyond its pathognomonic association with anti-NMDAR encephalitis (Project I and 

II); and how the severity of autistic traits in schizophrenic patients relates with imbalances in 

excitation and inhibition (Project III). 

The nervous and immune systems integrate environmental cues that shape their function 

and influence the dynamic interaction between both systems. Alterations in this delicate 

balance are emerging as strong contributors to brain disease. Autoantibodies reactive with 

several brain expressed proteins have been associated with neurological conditions, either 

as an etiological factor or by contributing to disease severity (Crisp et al. 2016). The 

presence of different NMDAR-AB isotypes has been previously described in healthy 

individuals and individuals suffering from other conditions that do not include anti-NMDAR 

encephalitis (Dahm et al. 2014, Finke et al. 2017). However, the functional and molecular 

properties of these autoantibodies remained to be characterized. Projects I and II focused on 

understanding the molecular and functional underpinnings of NMDAR-AB and the role of the 

BBB in preventing the antagonizing effects of these autoantibodies in the brain. 

In project I, a detailed characterization of different NMDAR-AB isotypes, that included IgM, 

IgA and IgG provided information regarding their functional effect on NMDAR cellular location 

and glutamate evoked-responses. Furthermore, a systematic mapping of the NMDAR 

epitopes recognized by these autoantibodies was performed. Altogether, this information 

broadened the spectrum of action of these autoantibodies. Anti-NMDAR encephalitis 

research has been focusing mainly on the effects of NMDAR-AB of IgG isotypes (Dalmau et 

al. 2008, Gleichman et al. 2012, Moscato et al. 2014). This work demonstrated that other 

isotypes can antagonize NMDAR activity and potentially impact brain function upon access 

to the brain. Beyond the pathogenic context of anti-NMDAR encephalitis, these NMDAR-AB 

can induce NMDAR antagonism and consequently alter glutamatergic signalling. In vivo, 

exposure to NMDAR-AB leads to extracellular accumulation of glutamate and the 

consequent hyperglutamatergic state might dysregulate the excitability of neuronal networks 

via excitotoxic neuronal dysfunction (Manto et al. 2010).  Post mortem studies of anti-
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NMDAR encephalitis patients did not reveal any pathological evidence of neuro-axonal injury 

(Bien et al. 2012).  Thus, it is plausible to think that the NMDAR-AB glutamate-mediated 

excitotoxicity does not reach the necessary threshold to induce neurodegeneration but it is 

enough to alter glutamatergic neurotransmission. Indeed, in rat hippocampal neurons 

NMDAR-AB (IgG) from CSF of schizophrenic patients alter the surface dynamics and 

nanoscale organization of synaptic NMDAR, preventing long-term potentiation at 

glutamatergic synapses (Jezequel et al. 2017). The polyspecificity and polyclonality, of 

several of these NMDAR-AB, along with their functionality, contrasts with the relevance 

credited exclusively to one epitope (G7 site of the NTD) in the context of anti-NMDAR 

encephalitis and suggests a more diverse interaction of these autoantibodies with NMDAR.  

Project II demonstrated that NMDAR-AB are also present in other mammal species and, as 

in humans, its seroprevalence increases with age (Hammer et al. 2014). However, of all the 

species tested two monkey species presented high seroprevalence in young age. This was 

also observed in humans that underwent migration. Altogether, this data broadened the 

number of species with reported seropositivity for NMDAR-AB and raised some interesting 

questions about the environmental triggers of antibody production such as chronic life stress, 

that warrant further clarification. Furthermore, using a novel autoimmune mouse model, with 

endogenous production of NMDAR-AB, the BBB emerged as a central player in avoiding the 

antagonizing effects of these autoantibodies in the brain. For the first time, in physiological 

conditions of NMDAR-AB production, it was shown that the BBB has a protective effect 

regarding the antagonizing action of these autoantibodies in the brain. NMDAR-AB are able 

to bind to several brain areas (Castillo-Gomez et al. 2016). An intact BBB prevents NMDAR-

AB from reaching the brain parenchyma by restricting immunoglobulins influx and performing 

active efflux of the low levels of immunoglobulins that cross the BBB in physiological 

conditions. Additionally, it tightly controls the transendothelial migration of B cells, which once 

in the brain parenchyma could contact with NMDAR and, in the case of a secondary antigen 

encounter, be boosted to produce NMDAR-AB intrathecally (Diamond et al. 2009). In the 

presence of a compromised BBB, such as in ApoE-/- mice, endogenous production of 

NMDAR-AB leads to an increased sensitivity to MK-801 treatment translated to an 

exaggerated hyperactive behaviour in the open field due to a cumulative antagonizing effect 

of these autoantibodies and MK-801. Moreover, the presence of NMDAR-AB in the brain per 

se does not trigger an inflammatory reaction which points to the necessity of other 

contributors for the development of an encephalitogenic phenotype. 

The data gathered in Project I and II broadens the spectrum of action of these autoantibodies 

by attributing functional roles to other isotypes, and consolidates the protective role of the 

BBB in seropositive individuals. NMDAR-AB emerge as components of the immune 

repertoire with the potential to shape brain function and possibly contribute to psychiatric 
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phenotypes (Jezequel et al. 2017). It provides relevant information for the clinical 

management of asymptomatic individuals seropositive for NMDAR-AB and the importance of 

monitoring BBB integrity in these individuals (Ehrenreich 2017).  

Project III addresses the continuous nature of autistic phenotypes in a sample of 

schizophrenic male individuals and demonstrates how imbalances in excitation and inhibition 

can correlate with the severity of autistic traits. By combining readouts of sociability, 

communication and stereotypic behaviour, in a single dimension, it was possible to classify 

schizophrenic patients regarding the severity of their autistic traits. Furthermore, non-invasive 

assessment of cortico-spinal excitability and intracortical inhibition using TMS provided 

information on excitation and inhibition levels in these individuals. The results of this project 

suggest a positive correlation between the severity of autistic traits and imbalances in E/I 

ratio in schizophrenic patients, mainly mediated by altered GABAergic and voltage-gated ion 

channel functions. It supports previous reports of altered GABAergic neurotransmission in 

schizophrenia, adding a new correlation with phenotypic readouts (Wobrock et al. 2008). 

To conclude, this thesis comprises translational work in clinical neuroscience. It broadens the 

current knowledge on neuro-immune interactions, focusing on NMDAR-AB 

(patho)physiology, and on functional readouts associated with phenotypic differences within 

schizophrenia. Ultimately, it can contribute to improve clinical practices for diagnostics and 

disease management.  
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Pursuing functional 
connectivity in NMDAR1 
autoantibody carriers

We read with interest the article by 
Michael Peer and colleagues.1 The 
authors investigated by resting-state 
functional MRI (fMRI) a reasonable 
number of patients (n=43; 24 of 
which were reported previously) who 
were diagnosed earlier with so-called 
anti-NMDAR encephalitis (treatment 
regimens were not mentioned). It 
is acknowledged that a collection of 
patients with encephalitis who are 
also NMDAR1 autoantibody-positive 
is not easy to obtain. Of this collection, 
a large proportion had, on the day of 
fMRI, negative NMDAR1 autoantibody 
titres. In fact, only 17 of 43 patients 
were CSF positive and 27 of 43 were 
seropositive, if we consider a titre of 
1:10 as a reasonable cut-off. Resting-
state fMRI was done at highly variable 
timepoints after the initial diagnosis 
and led to the authors’ conclusion of a 
“characteristic pattern of whole-brain 
functional connectivity alterations in 
anti-NMDAR encephalitis that is well 
suited to explain the major clinical 
symptoms of the disorder”. 

Undoubtedly, a sexy new method 
was applied to a hot topic. However, 

any conclusion linking the described 
connectivity disturbance to NMDAR1 
autoantibodies is difficult based on 
these data which lack the adequate 
control. Only a well-matched control 
group of patients with encephalitis 
without history of NMDAR1 
autoantibody positivity could allow any 
speculation in this direction. Healthy 
individuals are not a proper control. 
Although information on functional 
connectivity in age-matched and 
gender-matched healthy individuals 
provides some baseline for comparison, 
they do not allow dissecting the 
effects of NMDAR1 autoantibodies 
on brain connectivity. A proper 
control population would require the 
underlying inflammatory context of 
an encephalitic brain without NMDAR1 
autoantibodies. A dysconnectivity 
syndrome can be expected in any kind of 
encephalitis.2–4 In addition, the absence 
of NMDAR1 autoantibodies at the 
time of fMRI in a considerable number 
of individuals questions an ongoing 
influence of them on functional 
connectivity. Long-term persisting 
effects of NMDAR1 autoantibodies 
in their absence (ie, once they are 
eliminated by immunosuppression, 
plasmapheresis, or other means) have 
not yet been documented anywhere. 
They would also be difficult to prove 
non-experimentally. On a side note, 
catatonia is still classified as a positive 
symptom. 

Future studies evaluating the 
importance of autoantibodies for brain 
functions should employ resting-state 
fMRI for standardised comparative 
assessment of different forms of acute 
and chronic encephalitides, including 
encephalitis with autoantibodies 
directed against brain epitopes, like 
NMDAR1 autoantibodies. In addition, 
NMDAR1 autoantibody carriers (all Ig 
classes)5 with a compromised blood–
brain barrier should be investigated 
using this method.
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a gambling disorder is confronted with 
EGMs. A more detailed understanding 
of the interactions between these 
machine design features and 
aspects of human decision-making 
and behaviours, including their 
interactions within vulnerable 
groups (adolescents, those with a 
mental illness, or under substantial 
psychosocial distress), will provide 
valuable insights for producing safer 
gambling products. The use of virtual 
reality and computational or decision 
neuroscience approaches can provide 
ecologically valid and real-time 
investigations of affective, cognitive, 
and physiological changes while 
gambling. 

Urgent reform of EGM regulations 
to limit the impact of structural 
characteristics on gambling-related 
harm is needed. Opportunities abound 
for regulatory attention to reduce the 
prevalence and harm of gambling, 
including venue and machine 
accessibility, modification of EGM 
structural characteristics, enhanced 
user understanding and information, 
and use of systems to assist users to 
make and observe limits to gambling.2 
The time has come to prevent further 
damage associated with gambling and 
protect our communities.
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Authors’ reply
We thank Bárbara Oliveira and 
Hannelore Ehrenreich for their 
comments on our work.1 Resting-
state functional MRI (fMRI) is indeed 
a promising new imaging tool 
that already provided substantial 
insight into the pathophysiology of 
several neuropsychiatric disorders, 
including major depressive disorder, 
schizophrenia, and Alzheimer’s 
disease. 2,3 Using resting-state 
fMRI, we identified a characteristic 
pattern of functional connectivity 
alterations in the largest cohort of 
anti-NMDA receptor encephalitis 
examined with MRI so far. These 
connectivity disturbances correlated 
with symptoms of psychosis and 
memory impairment and extend 
recent observations of hippocampal 
damage and white matter alterations.4 

Additionally, machine learning 
analyses based on resting-state fMRI 
data reliably distinguished patients 
from controls. 

Notably, 86% of our patients were 
positive for IgG NMDAR antibodies at 
the time of imaging and all patients 
had CSF IgG NMDAR antibodies 
at diagnosis, the well-accepted 
hallmark of anti-NMDAR encephalitis. 
The significant resting-state fMRI 
connectivity disturbances, irrespective 
of antibody persistence or disease 
duration, indicate that the observed 
changes reflect long-term effects on 
brain activity. Long-term persisting 
deficits in meanwhile antibody-
negative NMDAR encephalitis are 
rather the well-documented rule than 
the exception in the literature5 and 
our clinical experience.

We respectfully disagree that 
healthy controls are not an adequate 
control group. A comparison with 
carefully matched healthy individuals 
is not only common practice 
in computational neuropsychiatry 
and functional neuroimaging, it is 
essential to identify disturbances of 
brain activity. Other autoimmune 
CNS disorders differ in their level of 
inflammation, the pathophysiological 
mechanisms, and affected brain 
regions, and therefore cannot provide 
a meaningful “inflammatory baseline”. 
By contrast, preliminary analyses show 
that resting-state fMRI can distinguish 
characteristic connectivity alterations 
between anti-NMDAR encephalitis 
and other autoimmune encephalitides 
such as anti-LGI1 encephalitis. We 
therefore believe that resting-state 
fMRI can become a highly useful tool 
in the work-up of neuropsychiatric 
patients, potentially able to 
facilitate the differential diagnosis, 

treatment response, and follow-up. 
Indeed, this should include NMDAR 
antibody carriers of IgG, IgA, and IgM 
antibodies, given their association 
with cognitive impairments.6
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Sexual dimorphism of AMBRA1-related autistic features in
human and mouse
M Mitjans1,2,14, M Begemann1,2,3,14, A Ju1,14, E Dere1,2, L Wüstefeld1, S Hofer4, I Hassouna1, J Balkenhol5, B Oliveira1, S van der Auwera6,
R Tammer4, K Hammerschmidt7, H Völzke8, G Homuth9, F Cecconi10,11, K Chowdhury12, H Grabe6, J Frahm4, S Boretius13,
T Dandekar5 and H Ehrenreich1,2

Ambra1 is linked to autophagy and neurodevelopment. Heterozygous Ambra1 deficiency induces autism-like behavior in a sexually
dimorphic manner. Extraordinarily, autistic features are seen in female mice only, combined with stronger Ambra1 protein
reduction in brain compared to males. However, significance of AMBRA1 for autistic phenotypes in humans and, apart from
behavior, for other autism-typical features, namely early brain enlargement or increased seizure propensity, has remained
unexplored. Here we show in two independent human samples that a single normal AMBRA1 genotype, the intronic SNP
rs3802890-AA, is associated with autistic features in women, who also display lower AMBRA1 mRNA expression in peripheral blood
mononuclear cells relative to female GG carriers. Located within a non-coding RNA, likely relevant for mRNA and protein interaction,
rs3802890 (A versus G allele) may affect its stability through modification of folding, as predicted by in silico analysis. Searching for
further autism-relevant characteristics in Ambra1+/− mice, we observe reduced interest of female but not male mutants regarding
pheromone signals of the respective other gender in the social intellicage set-up. Moreover, altered pentylentetrazol-induced
seizure propensity, an in vivo readout of neuronal excitation–inhibition dysbalance, becomes obvious exclusively in female mutants.
Magnetic resonance imaging reveals mild prepubertal brain enlargement in both genders, uncoupling enhanced brain dimensions
from the primarily female expression of all other autistic phenotypes investigated here. These data support a role of AMBRA1/
Ambra1 partial loss-of-function genotypes for female autistic traits. Moreover, they suggest Ambra1 heterozygous mice as a novel
multifaceted and construct-valid genetic mouse model for female autism.

Translational Psychiatry (2017) 7, e1247; doi:10.1038/tp.2017.213; published online 10 October 2017

INTRODUCTION
Autism spectrum disorders (ASD) are extremely heterogeneous
neurodevelopmental conditions, affecting ~ 1% of the population.
Typical, shared symptoms range from social communication and
interaction deficits, including decreased attraction by and
compromised reading of social signals, restricted interests,
repetitive behaviors or pronounced routines, to reduced cognitive
flexibility.1–4 Early brain enlargement5–8 and predisposition to
epileptic seizures9,10 are among the reported non-behavioral
characteristics found in this disorder category. Causes likely
converge at the synapse, as indicated by mutations of synaptic
genes or by mutations causing quantitative alterations in synaptic
protein expression, half-life or degradation, and are reflected by a
virtually autism-pathognomonic neuronal excitation–inhibition
dysbalance.4,11–15 Neuroligin-4 mutations, for instance, belong to
the most common causes of monogenetic heritable autism.16

Construct-valid and face-valid mouse models of autism, building

on monogenetic grounds, have helped in approaching the
underlying common biology.17,18

The estimated heritability of autism approximates 90%. We
note, however, that monogenetic forms including copy number
variations altogether account for o20%, leaving ~ 80% of cases
unexplained, which also enter the final common pathway of
disease expression.1–3 Importantly, normal genetic variants, mainly
single nucleotide polymorphisms (SNPs), likely contribute to the
manifestation of autistic phenotypes. This is indicated by the
results of genome-wide association (GWAS) and respective
polygenic-risk studies on autism,2,19,20 but even more so by
phenotype-based genetic association studies (PGAS), reporting an
accumulation of ‘unfortunate’ normal variants, so-called pro-
autistic genotypes, to be associated with increasing severity of
autistic traits.21–23 In fact, phenotypical continua of autistic
features from health to disease suggest underlying mechanisms
of quantitative rather than qualitative nature.21,24 Genetic
modifiers, like protective genes and environmental (co-)factors,
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mainly those acting during uterine and early postnatal develop-
ment may also modulate autism severity.25,26

ASD has an overall gender distribution of ~ 4:1 males/
females.1,2,27 Remarkably, little research has focused on the
reasons for this disparity. Better understanding of this difference,
however, could lead to major advancements in the prevention or
treatment of ASD in both genders.28 We previously reported that
an Ambra1 (activating molecule in Beclin1-regulated autophagy)
partial loss-of-function genotype is associated with the autism-like
behavior in female mice. The restriction to the female gender of
autism generation by a defined genetic trait has thus far remained
unique.29 Ambra1 is a positive regulator of a principal player in
autophagosome formation, Beclin1. Importantly, autophagy has
already been linked to autism in recent work.30,31 Moreover,
Ambra1 is involved in other developmentally relevant processes in
the nervous system and in neuronal function.32,33 Although
homozygosity of the Ambra1 null mutation causes embryonic
lethality, heterozygous mice with reduced Ambra1 expression
appear completely normal at first view.33 Only upon comprehen-
sive behavioral characterization, a striking autism-like phenotype
of Ambra1+/− females emerges. This trait is quantifiable by the
autism severity composite score, which even allows a behavior-
based genotype predictability of 490%.29,34 As first mechanistic
hint explaining the prominent gender difference, stronger
reduction of Ambra1 protein in the cortex of Ambra1+/− females
was found.29

Until now, no association of AMBRA1 genotypes with autistic
features has been described in humans, therefore still questioning
the construct-validity of our mouse model.29 However, a recent
GWAS on schizophrenia identified a genetic risk variation on
chromosome 11 (11p11.2) in a region containing AMBRA1.35

Schizophrenia and ASD show considerable syndromic overlap,
including deficits in social cognition and communication,24,36 and
at least a subgroup of schizophrenia is also regarded as a disorder
of the synapse.37

The present study has therefore been designed to explore
whether any autism-relevant phenotype association with normal
AMBRA1 genotypes would emerge in humans, thereby supporting
the construct-validity of our Ambra1+/− mouse model. In addition,
we aimed at defining potential further characteristics of ASD in
Ambra1+/− mice, namely (1) decreased interest in social odors, as
highly relevant social signals in mice, (2) increased epileptic
predisposition as in vivo readout of neuronal excitation–inhibition
dysbalance and (3) early brain enlargement, as recognized in
human autism. Indeed, we show here that also in humans, an
AMBRA1 genotype, the intronic SNP rs3802890-AA, located in a
long non-coding (lnc) RNA, is linked to autistic features and
characterized by partial loss-of-function in females. Moreover, we
demonstrate in Ambra1+/− mice prepubertal brain enlargement.
Only in female mutants, we see loss of interest in sex pheromones
and altered seizure propensity.

MATERIALS AND METHODS
In all experiments, the experimenters were unaware of genotypes (‘fully
blinded’).

Human studies
Discovery: schizophrenia subjects and healthy controls (GRAS). The Göttin-
gen Research Association for Schizophrenia (GRAS) data collection consists
of 41200 deep-phenotyped patients, diagnosed with schizophrenia or
schizoaffective disorder (DSMIV-TR38), recruited across Germany since
2005.39,40 Diagnosis is based on a comprehensive examination, lasting for
at least 4 h (the examination often took much longer, with breaks in
between, dependent on the patient’s condition). It is guided by the GRAS
manual, which contains standardized interviews, psychopathology and
neuropsychology testing. Moreover, careful study of all the medical
discharge letters and charts of every single individual aids in assessing

longitudinal aspects of the diagnosis as well.39,40 GRAS, complying with
Helsinki Declaration, was approved by Ethics Committees of Georg-August-
University, Göttingen, Germany, and participating centers. All study
participants (European-Caucasian 95.6%; other 1.8%; unknown 2.6%) and,
if applicable, legal representatives gave written informed consent. Of the
1105 successfully genotyped patients, 66.7% were male (N=737), 33.3%
female (N= 368), aged 39.46 ± 12.58 years (range: 17–79). For genetic case–
control analysis, healthy GRAS blood donors were employed,39 in total
N=1258 (European-Caucasian 97.8%; other 2%; unknown 0.2%), 61.6%
male (N= 775), 38.4% female (N= 483), aged 37.45 ± 13.21 (range: 18–69)
years. Voluntary blood donors widely fulfill health criteria according
to the national guidelines for blood donation, ensured by a broad pre-
donation screening process containing standardized questionnaires,
interviews, hemoglobin, blood pressure, pulse and body temperature
determinations.39

Replication: population-based cohort (SHIP-O). The general population
sample comprises N=2359 homozygous subjects, mean age 49.8 ± 16
(range= 20–81) years, N=1144 males, N= 1215 females, from baseline
examinations of Study of Health in Pomerania (SHIP), approved by the
Ethics Committee, University Greifswald, and conducted in North-East
Germany.41

Phenotyping. For quantification of autistic phenotypes, we used the
Positive and Negative Syndrome Scale (PANSS)42-based autism severity
score (PAUSS)24 with slight modifications (Figure 1a), available for 1067
patients. For the replication sample, the Instrumental Support Index (ISI)
was taken as proxy, indicating quality of instrumental and emotional
support,43 expected to be low in autistic individuals.23 It was cross-
validated with PAUSS in GRAS subjects, with social support operationalized
as self-reported number of individuals a person can rely on in case of
emergency.23 For both measures of social support (intercorrelation 0.77),
higher score values (z-transformed; range: 1.5–9) represent higher social
support, that is, lower autistic features.

Genotyping. GRAS subjects were genotyped using semi-custom Axiom
MyDesign Genotyping Array (Affymetrix, Santa Clara, CA, USA), based on a
CEU (Caucasian residents of European ancestry from UT, USA) marker
backbone, including 518 722 SNPs, plus custom marker-set of 102 537
SNPs. Genotyping was performed by Affymetrix on a GeneTitan platform
with high quality (SNP call rate 497%, Fisher’s linear-discriminant,
heterozygous cluster-strength offset, homozygote-ratio offset).23,44,45

Markers were selected according to our SOP for PGAS23 using following
selection criteria: (1) SNPs in Hardy–Weinberg equilibrium; (2) SNPs with
minor allele frequency (MAF⩾ 0.2) allowing for statistical analyses; (3) SNPs
not in high linkage disequilibrium (LD) with other selected SNPs (r2o0.8).
Based hereon, only rs3802890-A/G remained for analysis.
SHIP-0 subjects were genotyped using Affymetrix Genome-Wide SNP

Array-6.0 (genotyping efficiency 98.6%). Imputation of genotypes was
performed with software IMPUTE v0.5.046 against 1000-Genomes (pha-
se1v3) reference-panel using 869 224 genotyped SNPs.41 Rs3802890 was
imputed with IQ= 1.

In silico analyses. Genome sequences were established according to latest
available releases (human-genome vs32–2015; mouse-genome 2016).
Iterative sensitive sequence comparisons were conducted47 and evaluated
including detailed genome and transcriptome mapping. Expression of the
rs3802890-containing RNA region was derived from latest largest
collection of ESTs available at NIH.48 LncRNA matches were also
established according to latest human lncRNA release at NCBI. RNA
folding used RNAfold.49 For demonstrating rs3802890-A/G differences,
thermodynamic ensemble structures drawing encoded base-pair prob-
abilities were used. Protein binding regions were calculated using
RNAanalyzer50 and CatRapid,51 coding potential was calculated using
Genscan.52

AMBRA1 and EST TCAAP2E6309 mRNA expression. Peripheral blood
mononuclear cells (PBMC) were isolated from morning blood, obtained
via phlebotomy into CPDA-vials (Citrate-Phosphate-Dextrose-Adenine,
Sarstedt, Germany), applying standard Ficoll-Paque-Plus isolation proce-
dure (GE-Healthcare, Munich, Germany). Total RNA extraction was done
using miRNeasy Mini-kit (Qiagen, Hilden, Germany). For reverse transcrip-
tion, 1 μg of cDNA was applied using a mixture of oligo(dT)/hexamers,
dNTPs, DTT and 200U SuperscriptIII (Life Technologies, Darmstadt,
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Germany). AMBRA1 RNA expression was measured using quantitative real-
time PCR. The cDNA was diluted 1:25 in 10 μl reaction-mix, containing 5 μl
of SYBR-green (Life Technologies) and 1pmol/primer:
AMBRA1-Fw: 5′-GACCACCCAATTTACCCAGA-3′
AMBRA1-Rv: 5′-GATCATCCTCTGGGCGTAGTA-3′
GAPDH-Fw: 5′-CTGACTTCAACAGCGACACC-3′
GAPDH-Rv: 5′-TGCTGTAGCCAAATTCGTTGT-3′
Technical triplicates were run on LightCycler480 (Roche-Diagnostics,

Mannheim, Germany). Relative AMBRA1 expression was calculated using
the threshold-cycle method (LightCycler480 Software1.5.0SP3-Roche) and
normalization to GAPDH. EST TCAAP2E6309 RNA expression was measured
using traditional PCR. Extracted RNA, cDNA synthesized with oligo-dT
primers with/without hexamers, or genomic DNA were used as template
with the following primers:
EST TCAAP2E6309-Fw: 5′-GGCAGAGCAGAATGGATAGACA-3′
EST TCAAP2E6309-Rv: 5′-AACGCCTGTTATCTGGGATCA-3′

Mouse studies
Investigations were carried out in agreement with guidelines for welfare of
experimental animals, issued by the Federal Government of Germany and
Max Planck Society, approved by local animal care and use committee
(Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsi-
cherheit, Oldenburg, Germany).

Mouse line and housing. Ambra1 mutation in mice is caused by a
truncated, non-functional Ambra1 protein via insertion of a gene-trapping
vector into the murine Ambra1 gene.33 Ambra1 wild-type (WT, Ambra1+/+)
and heterozygous (Ambra1+/− ) littermates of both genders with 499%
C57BL/6 N background were used (male Ambra1+/− × female WT-C57BL/
6N). Genotyping was performed as described.29 Males and females were
kept in separate ventilated cabinets (Scantainers; Scanbur Karlslunde,
Denmark), group-housed, with woodchip bedding and nesting material,
12 h-light-dark cycle, 20–22 °C, food/water ad libitum.

Social intellicage paradigm. For pheromone-based social preference test,
Ambra1+/+ and Ambra1+/− mice were separately group-housed in large
type4 cages after weaning until age 8 weeks. After transponder
implantation, they were put into intellicages (IntelliCage; TSE-Systems,
Bad Homburg, Germany), placed inside standard laboratory rodent cages
(height 20.5 cm, length 55 cm, width 38.5 cm; Techniplast-Model-2000,
Germany) with floor covered by sawdust bedding.53 Each intellicage
contains four housing shelters beneath the food hopper. Left and right of
the intellicage, two social boxes are connected via plastic tubes, each
equipped with two ring RFID-antennas to track individual mice. IntelliCage
software records time spent in social boxes. Experiments are performed
during the light phase. After habituation for 1 h to social boxes containing
fresh bedding, mice undergo the pheromone-based social preference test:
for 1 h they can freely choose between a social box with used bedding of

Figure 1. Human AMBRA1-rs3802890 G/A: association with autistic features. (a) Quantification of autistic symptoms using PAUSS (PANSS Autism
Severity Score.24 Note the high intercorrelation of PAUSS items and the high internal consistency of the scale (Spearman rank correlation
coefficients; Cronbach’s α). (b) PGAS using AMBRA1-rs3802890 and PAUSS score: female AA subjects display a higher PAUSS score than GG
subjects in the discovery sample; mean± s.e.m.; two-tailed Mann–Whitney U-test (data-corrected by linear regression analysis for age). (c)
Trends of positive association between rs3802890-AA genotype and sub-items of PAUSS, more pronounced in females; mean± s.e.m.; two-
tailed Mann–Whitney U-test. (d) The highly significant correlation of PAUSS and social support underlines the validity of social support as an
autism proxy phenotype; mean± s.e.m. (e) Genotype effect of AMBRA1-rs3802890 on degree of social support in the discovery sample, again
significant in females; mean± s.e.m.; Mann–Whitney U-test. (f) Replication of the genotype and gender effect of AMBRA1-rs3802890 using
social support as proxy in the general population; linear regression analyses (bootstrap; data-corrected for age); mean± s.e.m. (g) Relative
AMBRA1 mRNA expression in peripheral blood mononuclear cells (PBMC) is reduced in female AA (risk SNP) carriers: shown is the AMBRA1
mRNA expression in AA carriers, given as mean Δ-value compared to GG carriers (GG males N= 33; GG females, N= 14). Values of individual AA
males (N= 35) and AA females (N= 33) are expressed in %GG (mean) of the respective gender. The Δ-value is calculated as: Δ=%GG–100%;
mean± s.e.m.; two-tailed Mann–Whitney U-test.
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C3H mice of opposite gender and another box with only fresh bedding. WT
mice typically prefer used bedding containing pheromones.

Magnetic resonance imaging for morphometry. Mice were anesthetized
(5% isoflurane), intubated and kept at 1.75% isoflurane/5% oxygen by
active ventilation with constant respiratory frequency (85 breaths per
minute; Animal-Respirator-Advanced, TSE-Systems). Magnetic resonance
imaging (MRI) was performed at 7 and 9.4T (Bruker Biospin MRI, Ettlingen,
Germany). Radiofrequency excitation and signal reception were accom-
plished with use of a birdcage resonator (inner diameter, 72 mm) and a
four-channel phased-array surface-coil, respectively. T2-weighted MRI data
were acquired with three-dimensional fast spin-echo MRI sequence
(repetition-time TR = 3.5 s, effective echo-time TEeff = 55 ms, 12 differently
phase-encoded echoes, 56 min measuring time) at isotropic spatial
resolution of 100 μm. From these datasets, polygonal surface models
of selected brain structures were generated by importing DICOM
images into AMIRA (Visage-Imaging, Berlin, Germany). Structures of
interest (whole brain, hippocampus, cerebellum, olfactory bulb, ventricles)
were manually and semi-automatically labeled with segmentation editor
on three-dimensional label fields (80 horizontal, 192 coronal, 144 sagittal
slices).

Pentylentetrazol-induced seizures. Mouse groups were tested during the
light phase at postnatal day 23 or at 13 months. Seizures were induced by
single intraperitoneal injection of pentylentetrazol (PTZ) (50 mg kg− 1;
Sigma-Aldrich, Taufkirchen, Germany). After injection, mice are observed
for 30 min in their home cage.54 Response to PTZ injection is quantified: (1)
hypoactivity: decrease in mobility until rest in crouched or prone position,
abdomen at bottom; (2) partial clonus (PC): clonic seizure in face, head or
forelimbs; (3) generalized clonus (GC): sudden loss of upright posture,
whole-body clonus including all limbs and tail, rearing and autonomic
signs; and (4) tonic-clonic seizure (TC): generalized seizure up to tonic hind-
limb extension and death. Latencies to (2)–(4) are used to calculate
individual seizure scores (ISS), where factors weight relative severity:
ISS = 1000/(0.2 × PC-latency+0.3 ×GC-latency+0.5 × TC-latency).55–57

Statistical methods
Case-control analysis and test for deviation from Hardy–Weinberg
equilibrium was performed using PLINK1.07.58 Statistics for human
phenotype–genotype associations and mouse studies were conducted
with SPSS v.17.0 (IBM-Deutschland, Munich, Germany), STATA MP-v.13.1
(StataCorp, College Station, TX, USA) and Prism4 (GraphPad-Software,
San Diego, CA, USA). Statistical tests used are always given in figure
legends. Data are presented as mean± s.e.m., statistical significance was
set to P=0.05.

RESULTS
A normal AMBRA1 genotype, rs3802890-AA, is associated with
autistic traits predominantly in female schizophrenic individuals
Only one directly genotyped and—according to our PGAS SOP23

—suitable SNP, AMBRA1-rs3802890-A/G, was available in our array.
Case–control analysis (1105 schizophrenic versus 1258 healthy
GRAS subjects) yielded comparable genotypic and allelic chi-
square comparison (MAF= 0.31; controls: AA= 607, AG= 532,
GG= 119; cases: AA= 507, AG= 505, GG= 93; genotypic:
χ2 = 2.974, df = 2, P= 0.226; allelic: χ2 = 0.242, df = 1, P= 0.623).
Thus, rs3802890 is not associated with the schizophrenia
diagnosis.
Next, PGAS was performed with rs3802890-AA/-GG and

PAUSS24 as quantitative measure of autistic traits (Figure 1a). In
previous work, we have demonstrated that autistic features cross
diagnostic borders and can be quantified not only in ASD, but also
in schizophrenia and other diseases as well as in healthy
individuals.21,23,24 For quantification, we developed the PAUSS, a
dimensional instrument based on PANSS,42 capturing the
continuous nature of autistic behaviors.24 PGAS revealed an
association: AA carriers display higher PAUSS scores than GG
subjects (P= 0.039). Interestingly, when separating genders, the
PAUSS association remains significant only for females and,

likewise, most PAUSS sub-items show this trend in females but
not males (Figures 1b and c).

A role of AMBRA1-rs3802890-AA for female autistic features is
confirmed in a general population sample
Even though this highly targeted approach to an association of
only one available AMBRA1 SNP with autistic traits in schizophrenic
individuals was already encouraging, we aimed at replication of
this finding in a general population sample. For this, a social
support score, derived from ISI,43 was used as proxy phenotype,
expected to be low in individuals with autistic features.23 Cross-
validation of social support (operationalized as the self-reported
number of individuals a person can rely on in case of emergency)
with PAUSS in the discovery sample (GRAS) yielded a high
negative Spearman rank correlation (Figure 1d), underlining the
relevance of this proxy for autistic features. Again, the social
support score disclosed a genotype effect (rs3802890-AA/-GG) in
both discovery and replication sample, more pronounced in
females (Figures 1e and f). Thus, in two independent human
cohorts, a single normal variant in the AMBRA1 gene, rs3802890, is
associated with autism-related behaviors predominantly in
females.

Consequence of AMBRA1-rs3802890-A versus G on mRNA
expression in human PBMC and in silico prediction of potential
underlying mechanisms
In some subjects, PBMCs were available for AMBRA1 mRNA
analysis. Although female GG (N= 14) versus male GG (N= 33)
carriers had higher expression levels (0.0059 versus 0.0045
AMBRA1/GAPDH; P= 0.05), AA carriers of both genders (males
N= 35; females N= 33) did not differ in their level (males 0.0049;
females 0.0046; P= 0.62), which was comparable to that of male
GG carriers. Comparing both genders, AMBRA1 mRNA expression
in PBMC of AA (risk SNP) relative to GG carriers is reduced in
females but not males (P= 0.017; Figure 1g), possibly indicating
partial loss-of-function of AMBRA1 in AA females. This relative
reduction found in PBMC of women resembles the situation in
cortex of female mice: normal WT females have higher Ambra1
expression than WT males, whereas Ambra1+/− females show
stronger relative Ambra1 reduction compared to Ambra1+/−

males.29

A detailed map of human AMBRA1 gene is explained in
Figure 2a. Exploring the location of the intronic rs3802890, a
similarity to expressed sequence tags (EST) from NCBI database
arises (Figure 2a). The predicted RNA folding of the transcribed
EST TCAAP2E6309, covering the SNP region, is remarkably
influenced by the presence in rs3802890 of G versus A
(Figure 2b). As we find EST TCAAP2E6309 RNA expressed in PBMC
and other human tissues (Figure 2c), relevance of this lncRNA for
AMBRA1 mRNA or protein levels may be assumed.
Together, these data suggest that AMBRA1 likely shapes autistic

behavior also in humans in a sexually dimorphic way. This across-
species unique female autism generation by a defined genetic
trait that appears to cause partial loss-of-function encouraged us
to continue searching for further autism-specific readouts in our
Ambra1+/− mouse model.

Pheromone-based social preference is reduced in Ambra1+/−

females
Sex pheromones have an important role in social behavior
throughout the animal kingdom.59–62 Mice typically favor a social
context that contains pheromones of the opposite gender. In
autistic phenotypes, social interest, approach and communication
as well as understanding of social signals are compromised.1–4,62

We therefore designed a novel intellicage set-up to test
pheromone preference as potential autism-relevant readout in
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Ambra1+/− mice. Upon free choice between a social box contain-
ing used bedding from mice of the opposite gender and another
social box with fresh bedding only, WT male and female and
Ambra1+/− male mice behave as expected, namely choose to stay
longer in the respective ‘pheromone box’. In contrast, Ambra1+/−

females fail to show this preference (Figure 3).

MRI analysis reveals brain enlargement in Ambra1+/− mice
Brain enlargement has been described both in children and adults
with ASD.5–8 Recently, brain volume overgrowth in children was
linked to the emergence and severity of autistic social deficits.7 We
measured by high-resolution MRI (T2-weighted) brain dimensions
in Ambra1+/− versus WT mice. Whole brain and hippocampus
were enlarged in male and female mutants at postnatal day 23
(around puberty). Cerebellum was increased in female Ambra1+/−

mice only (Figure 4). Sizes of olfactory bulb and ventricles in
Ambra1+/− mice were similar to WT. Repeated examination of
females at age 13 months revealed persistence of the increased
brain dimensions (Figure 5a). We note that Ambra1+/− mice are
the first autism model showing autism-typical brain enlargement.
Regarding this particular readout, genders were comparable,
uncoupling in this model autism-like behavior (only females) from
brain dimensions.

Female Ambra1+/− mice show altered seizure propensity
Another frequently observed trait, connected with autistic
behaviors, not only in syndromic forms of autism, is epileptic
seizures.9,10 Most likely, seizure predisposition reflects the autism-
pathognomonic neuronal excitation–inhibition dysbalance.4,11–15

In our Ambra1+/− model, prepubertal female mutants displayed
reduced response to PTZ, namely longer latency to the first whole-
body seizure and decreased seizure score compared to female WT
(Figure 5b). This early resistance turned into the opposite response
at older age: Number of tonic-clonic seizures and duration of
whole-body seizures were enhanced in 3-months (data not
shown) and 13-months-old Ambra1+/− females versus WT, also
resulting in reduced survival (Figures 5c and d). Male mutants did
not differ from WT at any time point investigated. Together, these
data support Ambra1+/−mice as multidimensional model of
human autism.

DISCUSSION
We previously reported in female Ambra1+/− mice a discrete
behavioral trait, reminiscent of human ASD.29 In the present study,
we extend this finding, showing for we believe the first time
that AMBRA1 may—in likewise sexually dimorphic manner—be
relevant also in humans for the expression of a female autistic

a

b c

Figure 2. AMBRA1-rs3802890 G/A: in silico approach to mechanistic insight. (a) Detailed map showing the human AMBRA1 gene (NCBI-
accession: 55626; chromosomal location: Chr.11: 46 396 412–46 594 069). The AMBRA1mRNA (21 exons) is mapped at the bottom. The location
of AMBRA1-rs3802890 is indicated by a red asterisk. The region shared between all chromosomes (nucleotides from around 9530 to 11 030 on
AMBRA1; red arrow) is indicated. Similar to man, the murine Ambra1 gene region matches on all chromosomes (nucleotides from around
68 110–69 940 on murine Ambra1). However, the chromosomal match region of AMBRA1/Ambra1 is different between both species. Both
match regions show similarities to expressed sequence tags (EST) from NCBI database (best match EST gi|22688027 in human and gi|44663783
in mice; both with full-length alignment) and to specific lncRNAs in Refseq database (best match human: Refseq Accession NR_126435.1
named LINC00504; best match in mice: Refseq Accession NR_131899.1 named Mrqpra6). (b) RNA folding of human AMBRA1 transcribed EST
comparing the G allele with the A allele. The presentation of thermodynamic ensemble folding stresses differences in the obtained structure.
The color code indicates pairing propensities. The fold is further supported by reoccurring similar differences comparing several foldings and
also lengths using software mFold. As template for folding, the full RNA sequence of EST from myelogenous leukemia cells (496 nucleotides
long, 98% identity; full-length alignment; genbank accession BM149074.1; pediatric acute myelogenous leukemia cell (FAB M1) EST
TCAAP2E6309) is shown. This RNA encodes no protein, has no introns/exons and has no complementary match in any other chromosomal
region. (c) EST TCAAP2E6309 expression in all tested tissues: RNA was isolated from peripheral blood mononuclear cells (PBMC), human
glioblastoma tissue (GB), and human placenta (PL). PCR was performed from cDNA. To exclude false positive results by genomic DNA
contamination, several controls were performed (DNase digestion; respective RNA amplification). Genomic DNA from whole blood was used
as positive control (+) and ddH2O as negative control (− ).
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Figure 4. Brain enlargement in prepubertal Ambra1 mutants of both genders. Shown are results of high-resolution magnetic resonance
imaging (MRI) (T2-weighted). Brain regions of interest (whole brain, hippocampus, cerebellum, olfactory bulb, ventricles) in 23day-old female
(upper row) and male (lower row) mice of both genotypes are presented; mean± s.e.m.; two-tailed unpaired t-tests. Right side: Representative
pictures of 3D-reconstructed brains of both genotypes illustrate brain enlargement in mutants.

Figure 3. Impaired pheromone preference in female Ambra1 mutants. (a) Intellicage apparatus with connected social boxes. (b) Time spent in
social boxes with used or fresh bedding or delta difference scores for the indicated genotypes. Upper row females; lower row males; mean± s.
e.m. presented. Within-group comparisons performed with paired t-tests, between-group with Mann–Whitney U-tests; all tests two-tailed.
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phenotype. The female preponderance, unique thus far in autism
genetics, may even help illuminating some general molecular
underpinnings of gender susceptibility to brain disease. Remark-
ably, in a highly targeted association approach, using the only
AMBRA1 SNP available for analysis, rs3802890-A/G, we find in two
independent populations, the GRAS sample of schizophrenic
individuals and the SHIP sample of general population subjects,
relevance for this marker regarding autistic traits in women. Partial
loss-of-function, reflected by a relative decrease in AMBRA1 mRNA
levels in PBMC of female risk genotype (AA) carriers, may suggest
an underlying autism-causing mechanism similar to that in
heterozygous mice where Ambra1 reduction was stronger in
female than male mutant cortex.29

The question of how AMBRA1/Ambra1 reduction may influence
synaptic function, thereby causing the autism-pathognomonic
neuronal excitation–inhibition dysbalance,4,11–15 still remains
unanswered. We may, however, speculate that reduced autop-
hagy at synaptic terminals,30,31,63 likely more pronounced in
Ambra1+/− females,29 influences synaptic protein turnover and
function in a gender-specific manner. In fact, females may be
particularly sensitive to reduced autophagy as suggested also by a
recent paper reporting higher basal autophagy activity in the

brain of neonatal female as compared to male rats.64 In this sense,
AMBRA1/Ambra1 adds to the number of proteins shown to
underlie sexually dimorphic effects on the brain.65,66

In a first in silico search for mechanisms, we saw that the
lncRNA, covering the SNP region, shows highly diverse folding
upon presence of G versus A allele. This pronounced structural
effect may influence AMBRA1 mRNA and/or protein stability and
will be subject for further investigation.
Returning to the Ambra1+/− mouse model, we extend our

earlier findings29 to crucial, additional autistic features, so far not
systematically addressed in genetic models of autism, namely
early brain enlargement, altered propensity towards epileptic
seizures and reduced pheromone preference.
Brain enlargement is a consistently reported feature in human

autism, both in adults and children.5–8 Already upon first
description of autism, increased size of the head was observed
in affected children.67 The substrate underlying the enlarged brain
has remained obscure, and the Ambra1+/− mouse model may
now help to approach this question. Interestingly, we found
Ambra1+/− -associated brain enlargement in both genders, thus
uncoupled from the predominantly female behavioral phenotype.
This finding may be important in connection with recent

Figure 5. Persistent brain enlargement and altered pentylentetrazol (PTZ)-induced seizure propensity in female Ambra1 mutants. (a) Brain
regions of interest (whole brain, hippocampus, cerebellum, olfactory bulb, ventricles) were analyzed by high-resolution magnetic resonance
imaging (MRI) in 13-months-old female Ambra1+/− and WTmice; mean± s.e.m.; two-tailed unpaired t-tests. (b) PTZ-induced seizure propensity
(intraperitoneal injection of 50 mg kg−1) in 23-day-old WT and Ambra1+/− mice of both genders; mean± s.e.m. presented; two-tailed unpaired
t-tests. (c) PTZ-induced seizure propensity (intraperitoneal injection of 50 mg kg− 1) in 13-months-old female WT and Ambra1+/− mice;
mean± s.e.m. presented; two-tailed unpaired t-tests. (d) Survival of PTZ-induced seizures (intraperitoneal injection of 50 mg kg− 1) in 13-
months-old female WT and Ambra1+/− mice; Kaplan–Meier survival analysis.
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suggestions, based on genetically undefined autistic children,
where brain volume overgrowth was linked to the emergence and
severity of autistic social deficits, predicting a later autism
diagnosis based on MRI deep-learning algorithms.7 This obvious
discrepancy should stimulate further investigations considering
gender, genetics and biological ASD subgroups.
Epileptic seizures are frequently observed, not only in syndromic

autism, where they are often intractable,9,10 and mirror neuronal
excitation/inhibition dysbalance.4,11–15 Also here, Ambra1+/− mice
revealed a striking sexual dimorphism and may serve as future
model to study and treat autism-associated epilepsy.
Olfactory deficits in human autism have been reported, even

though the literature is scarce, heterogeneous and inconsistent,
likely reflecting subject selection and assessment biases or other
methodological limitations, including statistical power issues.68

We note, however, that compared to humans, pheromone
preference in mice represents a more prominent component of
their social behavioral repertoire, thus more vulnerable to be
disturbed in autism-like phenotypes of this species.
To conclude, our data suggest a fascinating sexual dimorphism

regarding the role of the autosomal AMBRA1/Ambra1 gene for
autistic traits across species. In humans, it will for instance be
interesting to systematically screen ASD patients for AMBRA1
mutations, particularly female autists. Ambra1+/− mice may serve
as a novel multilayered construct-valid genetic model of human
autistic phenotypes.
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needed to ameliorate inflammatory pathology caused by bacterial
infections of the CNS. MicroRNA (miR) are short, non-coding RNA
that regulate inflammation in bone marrow (BM)-derived myeloid
cells as well as in brain parenchymal cells, e.g. microglia. Among
these, miR-155 is an important regulator of brain inflammation in
autoimmune conditions but little is known about its expression
and role during bacterial infection. Experiments presented here
analyzed expression and function of miR-155 in the brain during
experimental Listeria monocytogenes (Lm) infection of mice.
Infection of C57BL/6 mice with of 2-5LD50 Lm upregulated miR-
155 measured in whole brain by 24 h following i.p. injection.
Similarly, using a model in which lethally infected mice were
rescued with antibiotics given 48 h post-infection (PI), miR-155
expression increased at day 3PI, peaked at day 7PI, then declined
slowly despite brain infection being eliminated by day 7 PI.
Analysis of mRNA expression in antibiotic treated mice showed
maximal expression of Il1b and Tnfa coincided with maximal miR-
155 expression. In isolated CD11bpos brain cells, miR-155
expression increased at day 7PI but not at day 3 PI suggesting it
may have a measurable role regulating inflammatory responses in
microglia at that time point. Functional studies measured cytokine
expression in brain cells isolated from C57BL/6 and miR-155�/�

mice after overnight culture with heat-killed Lm. Cells from miR-
155�/� mice isolated at day 6 & 7PI produced greater concentra-
tions of IL-1a, IL-1b, TNF-a, CCL3, and CCL4 than did cells from
normal mice. Similarly, a higher percentage of TNF-apos microglia
was found by intracellular flow cytometry in miR-155�/� mice
compared with normal animals. In contrast, cytokine production
and intracellular TNF-a expression in microglia did not differ
between genotypes at steady state or day 3PI. These data suggest
miR-155 upregulated in the brain by Lm infection dampens
inflammatory responses in microglia. Thus, enhancing its expres-
sion could be a novel form of adjunctive therapy during bacterial
meningitis.

http://dx.doi.org/10.1016/j.npbr.2015.12.018

Two different immune pathogeneses models for
bipolar disorder and major depressive disorder

Hemmo A. Drexhageon behalf of all MOODINFLAM,
PSYCHAID investigators

Erasmus MC, Dr. Molewaterplein 50, Rotterdam, The Netherlands

Two integrated models 2015 for the immune pathogenesis of
the two severe mood disorders are proposed. These models are
bases on the observations of a dynamic course of T cell and
monocyte abnormalities in patients with either bipolar disorder or
major depression as obtained in the MOODINFLAME and
PSYCHAID EU projects. The observations are:

For bipolar disorder (BD)

1. In ‘‘early’’ pre-stages of bipolar disorder (prior to symptoms, i.e.
in adolescent children of a bipolar parent) partial T cell defects
are observed in FACS analysis, i.e. slightly lower numbers of
circulating CD3+ and/or CD4+ T cells. These T cell defects do in
particular involve CD4+ CD25+ FoxP3+ T regulatory cells. In
bipolar twin studies these CD4+ CD25+ FoxP3+ T regulatory cell
defects were almost entirely determined by the genetic back
ground of the individual.

2. Lymphoid and myeloid growth factors are increased in serum of
pre-stage bipolar disorder and also in established bipolar
disorder, such as increases in IL-7, IGF-BP2, sCD25 and SCF.

3. In established bipolar disorder (and also in older children of a
bipolar parent) defects in T regulatory cells do not determine the

picture anymore, but T regulatory cells are normalized or
increased and inflammatory type T helper subsets (Th1 and
Th17 cells) increased.

4. In stages of T regulatory T cell defects, i.e. in early pre-stage
bipolar disorder (adolescent children of a bipolar parent) the
expression of inflammatory genes is enhanced in circulating
monocytes. This is also the case in active disease in later stages
of bipolar disorder.

For major depressive disorder (MDD):
5. In all stages of major depressive disorder partial T cell defects

are observed in FACS analysis, i.e. slightly lower numbers of
circulating CD3+ and/or CD4+ T cells. These T cell defects again
involve in particular CD4+ CD25+ FoxP3+ T regulatory cells and
are most prominent in MDD of over 28 years.

6. Lymphoid and myeloid growth factors are decreased in the
serum of MDD cases.

7. In MDD patients of <28 years there is a reduced expression of
immune activation genes in monocytes

8. In late stage MDD (> 28 years) the expression of inflammatory
and immune activation genes is enhanced in circulating
monocytes. This enhanced expression correlates to the T
regulatory cell defects occurring at that time. A course of 7
weeks anti-depressive drug treatment increases the number of
circulating CD4+ CD25+ FoxP3+ T regulatory cells almost two
fold, but does not (yet) have significant effects on inflammatory
gene expression in monocytes.

In summary:
Major depressive disorder is characterized by defects in lymphoid

and myeloid growth factors, relatively low numbers of T regulator
and effector T helper cells, and a reduced monocyte function, apart
from a high inflammatory function of monocytes at older age (i.e.
>28 years).

Bipolar disorder is characterized by increases in lymphoid and
myeloid growth factors (compensating initial T cell and myeloid
cell defects?), and in later stages of the disease normal T regulatory
cells, relatively high numbers of effector T helper cells and a high
inflammatory function of monocytes related to the activity of the
disease.

http://dx.doi.org/10.1016/j.npbr.2015.12.019

Circulating NMDAR1 autoantibodies of different
immunoglobulin classes modulate evolution of
lesion size in acute ischemic stroke

Hannelore Ehrenreich 1,*, Esther Castillo-Gomez 1,
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Karin Weissenborn 3

1 Clinical Neuroscience, Max Planck Institute of Experimental Medi-

cine, and DFG Research Center for Nanoscale Microscopy & Molecular
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2 Department of Psychiatry, University of Magdeburg, Magdeburg,
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*Corresponding author.

Building on the high seroprevalence of autoantibodies (AB)
directed against the N-methyl-D-aspartate-receptor subunit NR1
(NMDAR1) across health and disease, we provide here examples
where circulating NMDAR1-AB may be of (patho) physiological
relevance. Dependent on acute or chronic dysfunction of the blood-
brain-barrier (BBB), they may play the role of a ‘double-edged
sword’. We further report that NMDAR1-AB not only bind to
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neurons, but also to other cell types in the brain, and that their
immunoglobulin class does not seem to affect their function in an
internalization assay using human cortical neurons or in modu-
lating stroke outcome of human patients.

We previously reported high seroprevalence (age-dependent
up to >20%) of N-methyl-D-aspartate-receptor subunit NR1
(NMDAR1) autoantibodies (AB) in healthy and neuropsychiatrical-
ly ill subjects (N = 4236) (Dahm et al., 2014). Neuropsychiatric
syndrome relevance was restricted to individuals with compro-
mised blood-brain-barrier (BBB), e.g. APOE4 carrier status, both
clinically and experimentally (Hammer et al., 2013; Hammer et al.,
2014). Considering earlier data in rats (During et al., 2000), and the
fact that excessive NMDAR-stimulation is regarded as a lead
mechanism mediating stroke-associated brain damage, we hy-
pothesized that NMDAR1-AB may modulate stroke outcome. We
further hypothesized that in ischemic stroke patients the Ig class of
serum NMDAR1-AB would not matter regarding their effects on
stroke outcome. This latter hypothesis was based on our previous
studies, using IgG, IgA and IgM NMDAR1-AB derived from human
serum in the ApoE�/� mouse model of BBB dysfunction with
comparable behavioral consequences (Hammer et al., 2014).

Patients with acute ischemic stroke in the middle cerebral
artery territory (N = 464) were prospectively enrolled for a
biomarker study with treatment as usual. Blood for NMDAR1-AB
measurements was collected within 3-5 hours after stroke. APOE4

carrier status was determined as indicator of a pre-existing leaky
BBB. Evolution of lesion size (delta day7-1) in diffusion weighted
magnetic resonance imaging (MRI) was primary outcome param-
eter. In subgroups, NMDAR1-AB measurements were repeated on
days 2 and 7 (Zerche, Weissenborn, & Ott, 2015). For further
mechanistic insight, wildtype and transgenic mouse brain sections,
ApoE�/� mice and human IPS-derived cortical neurons were
employed.

Of 464 patients (mean age 68 years), 21.6% were NMDAR1-AB
positive (IgM, A, or G), 21% were APOE4 carriers. Patients with MRI
data available on days1 and 7 were divided into 4 groups: (1) AB�/
APOE4� (N = 236); (2) AB+/APOE4� (N = 64); (3) AB�/APOE4+
(N = 64) and (4) AB+/APOE4+ (N = 20). Groups were comparable in
stroke-relevant presenting characteristics. The AB+/APOE4� group
had a smaller mean delta lesion size, compared to the AB�/
APOE4� group, suggesting a protective effect of circulating
NMDAR1-AB. Conversely, the AB+/APOE4+ group had the largest
mean delta lesion area, indicating a damaging influence of
NMDAR1-AB in APOE4 carriers. Hence, dependent on BBB integrity
before an acute ischemic stroke, pre-existing NMDAR1-AB appear
to be beneficial or detrimental. NMDAR1-AB effects on outcome
were comparable in carriers of all 3 Ig classes (Zerche et al., 2015).

NMDAR1-AB titers in serum dropped on day2 and remounted
by day7 after stroke (Zerche et al., 2015), consistent with the brain
acting as immunoprecipitating trap for brain antigen-directed AB
in conditions of BBB breakdown, later followed by boosting of AB
production by plasma cells. This boosting likely occurs as a
consequence of the abrupt exposure of the immune system to
brain antigens upon major BBB disruption. The serum titer drop
observed after stroke was reproducible in the ApoE�/� mouse
model of BBB disturbance (still unpublished). Since in the stroke
study we had essentially comparable results for carriers of IgM, IgA
and IgG (5), we employed human IPS-derived cortical neurons to
compare Ig class effects in vitro using a receptor internalization
assay (3). We found comparable internalization of NMDAR1 by all
NMDAR1-AB isotypes (still unpublished).

Many NMDAR1 expressing cell types in the brain apart from
neurons likely contribute to short-term and/or long-term outcome
after stroke and may be functionally modulated by circulating
NMDAR1-AB that suddenly gain access to the brain in larger
amounts. In fact, endothelial cells, oligodendrocytes and astrocytes

express NMDAR1 which may influence their neuron/axon support-
ing, detoxifying, metabolic and protection/defense properties.
Blocking these NMDAR1 functions by AB might variably contribute
to the modulation of brain functions in these conditions and
ultimately co-determine stroke outcome.

To substantiate these considerations, we provide here a first
composite figure of our work in progress which illustrates scattered
binding of a human NMDAR1-AB (IgG; 1:1000) positive serum of a
stroke patient to endothelial cells (CD13), NG2 cells and astrocytes
(GFAP), but not to microglia (Iba1) in healthy mouse hippocampus.
Expectedly, also neurons are specifically labeled by this human AB
(data not shown). In conditions of hypoxia/ischemia, inflamma-
tion, demyelination or degeneration, but also during normal pre-
and postnatal development, aging, and perhaps even during
learning processes, binding of NMDAR1-AB to the different cell
types may be increased or altered (Fig. 1).

In conclusion, much more work will have to go into
understanding consequences of circulating NMDAR1-AB in disease
states with accompanying BBB breakdown, where these AB may
possibly play the role of a double-edged sword. Reduction of lesion
size during acute ischemia may be followed by an increased risk of
cognitive decline, epilepsy or psychosis upon extended AB
exposure of the brain, due to a lastingly compromised BBB after
stroke (5). Further studies will be necessary to evaluate potential
benefits of passive (rather than active) immunization under
carefully controlled conditions.

Fig. 1. Representative tilescan confocal images showing a panoramic view of the

hippocampus of 4-week old mice, immunostained with dialyzed serum of a stroke

patient, seropositive (IgG) for NMDAR1-AB (secondary AB: goat anti-human IgG-

Cy3 = red, Jackson Immuno Research; A–D). Nuclei in all images are stained with

DAPI (blue). Endothelial cells (green; A), astrocytes (green, B) and microglia (green;

C) are stained with commercial primary AB [rat anti-CD13, BD Biosciences; mouse

anti-GFAP, Boehringer Mannheim; rabbit anti-Iba1, WaKo], followed by the

respective secondary AB, in a wild-type mouse hippocampus. D: NG2-GFP positive

cells (green) in the brain of an NG2-CreERT2 transgenic mouse (tamoxifen

injections at postnatal days 26 and 27). Scale bar: 250 mm (left panel), 25 mm

(middle panel), 65 mm (right panel).
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Prenatal immune challenge induces changes of
microglial surface markers in an animal model
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Epidemiological studies indicate that maternal infection
during pregnancy is associated with a higher incidence of
schizophrenia in the offspring. It is hypothesized that an
inflammatory immune response interferes with normal fetal
brain development. Long-lasting changes of this developmental
disruption might provide a neural basis for enhanced vulnerabili-
ty which might manifest in schizophrenia in the adult descen-
dants. We suggest microglia as possible initiator for this enhanced
vulnerability. In previous studies we showed a significant
alteration of microglial cell numbers in the adolescent offspring
of Poly(I:C) injected mice compared to controls. Here we suggest a
long term effect on microglia properties manifested in an altered
expression pattern of pro- and anti-inflammatory surface markers
due to prenatal immune challenge.

We used the Poly(I:C) mouse model of maternal immune
activation to analyze pro- and anti-inflammatory surface
markers on microglia of descendants from Poly(I:C) vs. saline
exposed BALB/c mice at postnatal days 30 (puberty) and 100
(adulthood) by flow cytometric analysis. Analysis showed clear
sex dependent differences in microglia surface marker expres-
sion between treatment groups. At day 30, female offspring from
Poly(I:C) exposed mice showed significant microglia activation
by up-regulation of M1 related activation markers and down-
regulation of M2 associated markers. Microglia activation
was not detected in adult female mice. In contrast, male
descendants did not show signs of activation neither in puberty
nor in adulthood. The alteration of microglia surface marker
expression corresponds with our prior study, in which we
showed an increased microglial cell number in the brains of the
adolescent offspring from Poly(I:C) exposed mice. Here we show

significant changes in M1 and M2 associated surface markers
which indicate modified activation patterns of microglia
populations based on prenatal infection. The shift towards a
M1 phenotype of the microglial cells of Poly(I:C) descendants
points to the significance of immunological processes in
schizophrenia.
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Anti-inflammatory characteristics of
acetylcholine esterase inhibitor Physostigmine
and its potential role in preventing
postoperative cognitive dysfunction
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Postoperative cognitive dysfunction (POCD) is a complication
affecting cognitive and locomotor functions in patients suffering
from brain trauma as well as severe sepsis and intensive care
treatment. Symptoms include clouding of consciousness and
memory loss as well as impairment of attention, language and
locomotor abilities.

Various possible pathologic causes for POCD have been proposed,
but the most popular hypothesis is a central cholinergic deficiency
caused by dysregulation of cholinergic anti-inflammatory pathways,
leading to increased and chronic inflammation. Acetylcholine, the
main mediator of the cholinergic anti-inflammatory pathway,
suppresses NF-kB activation and inhibits the release of pro-
inflammatory cytokines (e.g. tumor necrosis factor, interleukin
(IL)-1b, IL-6, and IL-18) by macrophages. The anti-inflammatory
properties of acetylcholine are mediated through the nicotinic
acetylcholine receptors, especially the alpha-7 subunit is crucial for
the anti-inflammatory effect. Available acetylcholine is degraded by
acetylcholinesterase. As pretested with healthy donors, we are going
establish whole blood assays to determine the acetylcholine and
buturylesterase activities from of patients treated by intensive care
and a high risk to manifest POCD. So far, ex vivo whole blood
stimulation assays have were applied to test whether inflammation
and or/enzyme activities can be modulated by exogenous Physostig-
mine.

Physostigmine is a reversible acetylcholinesterase inhibitor and
therefore a cholinergic stimulant.

We hypothesize that Physostigmine can activate the choliner-
gic anti-inflammatory pathway and prevent the activation of
macrophages via stimulation of the alpha-subunit of the nicotinic
acetylcholine receptor.

Blood samples from volunteer donors and from ICU patients
will be collected into the TruCulture whole blood culture system.
As a stimulant, LPS will be added to mimic postoperative infection.
The anti-inflammatory properties of Physostigmine will be
determined by flow cytometry and cytokine quantification using
the. Immulite 1000 ELISA.

We expect that the application of Physostigmine significantly
reduces the amount of activated macrophages and cytokines. Our
results will contribute to our understanding of the complex
molecular pathology in POCD.
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INTRODUCTION
The growth factor erythropoietin

(EPO) was named based on its first dis-
covered effects on cells of the hematopoi-
etic system. For >20 years it has been
shown to act on other tissues, including
the brain (1–5). Its remarkable neuropro-
tective, neuroregenerative and procogni-

tive effects make EPO an attractive can-
didate for treating human brain disease
(6–7), and an important target of neuro-
science research. In 1989, the EPO recep-
tor (EpoR) was first cloned in mice (8),
soon followed by cloning and characteri-
zation of the human EPOR gene (9–10).
A single EPO molecule binds to two spe-

cific cytokine-type-1 transmembrane re-
ceptor molecules, each with a calculated
molecular mass of 59 kDa, that together
form the classical homodimeric EPOR
(2,11). Binding of EPO to its receptor in-
duces a conformational change, initiating
EPOR-associated JAK2 transphosphory-
lation and multiple, cell-type-specific,
downstream signal transduction cas-
cades. These cascades include signal
transducers and activators of transcrip-
tion (STATs), phosphatidylinositol-3 ki-
nase (PI3K)/AKT, RAS/extracellular
 signal-regulated kinase (ERK1/2), nu-
clear factor κB (NF-κB). Activation of
these signaling cascades leads to further
activation of antiapoptotic factors and
pathways, stimulation of cell differentia-
tion, including induction of cellular
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Widespread Expression of Erythropoietin Receptor in Brain
and Its Induction by Injury
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Erythropoietin (EPO) exerts potent neuroprotective, neuroregenerative and procognitive functions. However, unequivocal dem-
onstration of erythropoietin receptor (EPOR) expression in brain cells has remained difficult since previously available anti-EPOR
antibodies (EPOR-AB) were unspecific. We report here a new, highly specific, polyclonal rabbit EPOR-AB directed against different
epitopes in the cytoplasmic tail of human and murine EPOR and its characterization by mass spectrometric analysis of immuno-
precipitated endogenous EPOR, Western blotting, immunostaining and flow cytometry. Among others, we applied genetic strat-
egies including overexpression, Lentivirus-mediated conditional knockout of EpoR and tagged proteins, both on cultured cells
and tissue sections, as well as intracortical implantation of EPOR-transduced cells to verify specificity. We show examples of EPOR
expression in neurons, oligodendroglia, astrocytes and microglia. Employing this new EPOR-AB with double-labeling strategies, we
demonstrate membrane expression of EPOR as well as its localization in intracellular compartments such as the Golgi apparatus.
Moreover, we show injury-induced expression of EPOR. In mice, a stereotactically applied stab wound to the motor cortex leads
to distinct EpoR expression by reactive GFAP-expressing cells in the lesion vicinity. In a patient suffering from epilepsy, neurons and
oligodendrocytes of the hippocampus strongly express EPOR. To conclude, this new analytical tool will allow neuroscientists to pin-
point EPOR expression in cells of the nervous system and to better understand its role in healthy conditions, including brain de-
velopment, as well as under pathological circumstances, such as upregulation upon distress and injury.
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shape-change and growth, or modula-
tion of plasticity, in a cell-type and stim-
ulation-dependent manner (5,12–13).

Antibodies against EPOR (EPOR-AB)
have been widely used to characterize
EPOR expression and localization, but
cell surface EPOR expression is low, even
in stimulated states, and, most impor-
tantly, all commercially available 
EPOR-AB have been hampered by non-
specific cross-reactivities, calling into
question the literature based exclusively
on them. This, in turn, raised discussions
within the scientific community, ques-
tioning the expression of EPOR in extra-
hematopoietic tissues (14–16). These dis-
cussions were likely nurtured by
conflicts of interest, trying to restrict the
effects of EPO, a highly attractive com-
pound commercially for the anemia mar-
ket, to hematopoiesis. Nevertheless, they
made it very obvious that the existing
EPOR-AB were essentially unreliable,
and that the production and thorough
characterization of new and more spe-
cific EPOR-AB had to be seen as a major
challenge for the future (14,17–18).

Independent of work based on EPOR-
AB, genetically altered mice helped to
demonstrate that EPOR signaling is nec-
essary for normal brain development (19)
and that it has a distinct function in neu-
rogenesis (20). In addition, EPO and
EPOR mRNA are expressed in brain tis-
sue (21), and specific binding sites for
EPO in the brain have been demonstrated
in mouse and humans by means of radio-
labeled EPO (22–23). In cell culture,
mRNA expression combined with func-
tional assays, for example, altered phos-
phorylation of second messenger path-
ways induced by EPO in microglia,
served to prove specific EPOR expression
in the absence of reliable EPOR-AB (24).

The fact that cellular EPOR protein ex-
pression has been difficult to assess
strongly limited the in-depth investiga-
tion of the EPO/EPOR system. Particu-
larly in the human brain, the study of its
(patho-) physiological role has been
highly constrained since additional means
of verification as used in experimental an-
imals and cell cultures are naturally ex-

cluded. Recognizing this critical issue in
EPO/EPOR research, we aimed at gener-
ating reliable EPOR-AB. We present here
the comprehensive characterization of a
novel, highly specific EPOR-AB, using an
array of state-of-the-art technologies. This
new AB tool may help overcome the de-
scribed obstacles and lead to revisiting
some of the reported data.

MATERIALS AND METHODS

Generation of EPOR-AB
Polyclonal AB. Two rabbits were im-

munized with a purified recombinant
protein corresponding to amino acids
(AA) 273-508 (intracellular C-terminus)
of the unprocessed human EPOR. The
coding sequence was generated by gene
synthesis (Geneart, Regensburg, Ger-
many) and ligated via EcoRI and HindIII
into the bacterial expression vector
pASK-IBA37+ (IBA-Lifescience, Göttingen,
Germany). The recombinant His-Tag fu-
sion protein was expressed and purified
by Ni-NTA affinity chromatography ac-
cording to the manufacturer’s manual.
Crude antiserum SA7378 was affinity pu-
rified with the immunogen coupled to
CNBr Sepharose (GE-Healthcare,
Freiburg, Germany). The AB is called
“ctEPOR-AB” in this article.

Monoclonal AB. AB producing hy-
bridomas were generated by Synaptic
Systems (Göttingen, Germany; see also
http://sysy.com/services/index.php) 
as follows: Three 8–10 wks old BALB/c
female mice were subcutaneously immu-
nized with a synthetic peptide corre-
sponding to AA 25-39 (extracellular 
N-terminus) of unprocessed human
EPOR precursor coupled to KLH via a 
C-terminal cysteine over a period of 75 d.
Cells from the knee lymph nodes were
fused with the mouse myeloma cell line
P3X63Ag8.653 (ATCC CRL-1580). Result-
ing hybridomas were screened by direct
enzyme-linked immunosorbent assay
(ELISA) against the immunogen and im-
munofluorescence on 3T3 NIH fibrob-
lasts overexpressing full-length human
EPOR. Clone 45A3, used in this study,
was recloned two times by limiting dilu-

tion and the immunoglobulin subclass
was determined (IgG2b). The AB is
called “ntEPOR-AB” in this article.

Cell Culture
Cell lines. The following human cell

lines were used: The EPO-dependent
megakaryoblastic leukemia UT-7 cell
line, the erythroleukemia cell line
OCIM-1, the mouse microglia cell line
EOC-20 and HEK293 FT cells. The EPO-
dependent megakaryoblastic leukemia
UT-7 cell line was from Drorit Neumann
of Tel Aviv University in Israel. This cell
line was cultured in IMDM with 1%
GlutaMAX supplement (Invitrogen,
Darmstadt, Germany), 10% FBS,
100 U/mL penicillin and 100 μg/mL
streptomycin (all Life Technologies
GmbH, Darmstadt, Germany) and
2 IU/mL EPO (NeoRecormon, Roche,
Welwyn Garden City, UK). The erythro -
leukemia cell line OCIM-1 (DSMZ
GmbH, Braunschweig, Germany) was
cultured in IMDM with 1% GlutaMAX
supplement, 10% FBS and 100 U/mL
penicillin and 100 μg/mL streptomycin
(all Life Technologies GmbH).

The mouse microglia cell line EOC-20
(ATTC LGC Standards, Wesel, Germany)
was cultured in DMEM with 1 mmol/L
sodium pyruvate, 0.15%sodium bicar-
bonate, 10% FBS, 100 U/mL penicillin,
100 μg/mL streptomycin (all Life Tech-
nologies GmbH) and 0.01 μg/mL murine
M-CSF (PAN-Biotech, Aidenbach, Ger-
many). HEK293 FT cells (Sigma-Aldrich,
Taufkirchen, Germany) were cultured in
DMEM with 5% FBS and 100 U/mL pen-
icillin and 100 μg/mL streptomycin (all
Life Technologies GmbH).

Human IPS cells. Human material was
used in accordance with ethical guidelines
and the Helsinki Declaration. Subjects
gave informed consent regarding genera-
tion and use of IPS cells or scientific in-
vestigation of brain samples. Human fi-
broblasts were reprogrammed using a
nonintegrative RNA-based virus to in-
duce the expression of four reprogram-
ming factors: OCT4, SOX2, KLF4 and c-
MYC (CytoTune-iPS 2.0 Sendai
Reprogramming Kit, Life Technologies
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GmbH). After transduction, IPS cells
(clones isAu1-3; isAu3-2) were adapted to
a feeder-free culture system (Matrigel ma-
trix, Corning, Wiesbaden, Germany) and
cultured in TeSR-E8 medium (STEMCELL
Technologies SARL, Cologne, Germany).

Primary mouse cell culture. The prepa-
ration and culture conditions of primary
mouse oligodendrocytes and microglia
are described in detail elsewhere (24–25).
In brief, oligodendrocytes were prepared
from the forebrains of newborn P1-2
NMRI mice. After differentiation, oligo-
dendrocyte precursors were shaken off
from a bottom layer of astrocytes and
seeded in Super-Sato medium (DMEM
with high glucose supplemented with
B-27 supplement, 2 mmol/L GlutaMAX,
1 mmol/L sodium pyruvate, 1% horse
serum [HS], 50 U/mL penicillin and 
50 μg/mL streptomycin [all from Life
Technologies GmbH] and 0.5 mmol/L tri-
iodothyronine, and 0.52 mmol/L 
L-thyroxine [both Merck, Darmstadt, Ger-
many]). For primary microglia, newborn
C57BL6 mice (P0-P1) were used. The cell
suspension derived from their forebrains
was seeded in high glucose DMEM me-
dium with 10% HS, 1% GlutaMAX supple-
ment, 50 U/mL penicillin and 50 μg/mL
streptomycin (all from Life Technologies
GmbH). Half of the microglia-conditioned
medium was exchanged by fresh medium
3–4 d later, and at d 7 the medium was
partially replaced by L929-conditioned
medium. Primary microglia were de-
tached by shaking of flasks and seeded in
serum-free microglial growth medium
(high glucose DMEM with 1 mmol/L
sodium pyruvate, 1.5 g/L sodium bicar-
bonate, 100 U/mL penicillin and
100 μg/mL streptomycin [all from Life
Technologies GmbH]).

Lentiviral Transduction of Primary
Cells

EpoR conditional mouse mutants with
floxed exons 3-6 were generated on 
the C57BL/6 background by standard
procedures using mutant ES cells
(EPD0316_5_A03) from the International
Mouse Phenotyping Consortium. Details
will be published elsewhere and are

available upon request. Primary mouse
astrocytes prepared from P0-2 forebrains
of EpoR-fl/fl mice were used. The prepa-
ration and culture conditions of these
cells are described in detail elsewhere
(26). The cells were infected with
lentiviruses at d 1 in vitro. The viral con-
structs contained either a cassette for
GFP-only (control) or a cassette for GFP
and Cre-recombinase. Protein was ex-
tracted on d 10 in vitro.

EOC-20 Cell Transduction
For viral transduction, 100,000 EOC-20

cells were seeded in 12-well plates
overnight. The next day, the medium
was partially exchanged by DMEM (Life
Technologies GmbH) containing viral su-
pernatant and 8 μg/mL polybrene
(Sigma-Aldrich). The ecotropic virus par-
ticles used were derived from a pMOWS
vector encoding N-terminally HA-tagged
full-length human EPOR and
puromycin-resistant cassette (gift from
Ursula Klingmüller, DKFZ Heidelberg,
Germany) (27). Next, the 12-well plates
were centrifuged for 3 h at 330g at room
temperature. The medium was ex-
changed again to DMEM with 1 mmol/L
sodium pyruvate, 0.15% sodium bicar-
bonate, 10% FBS, 100 U/mL penicillin,
100 μg/mL streptomycin (all Life Tech-
nologies GmbH) and 0.01 μg/mL murine
M-CSF (PAN-Biotech). The medium was
supplemented 1 d later with 6 μg/mL
puromycin (Sigma-Aldrich) for selection
of successfully transduced EOC-20 cells.
After successful transduction, cells were
constantly cultured in the presence of 
6 μg/mL puromycin.

HEK293 FT Cell Transfection
HEK293 FT cells were transfected with

Lipofectamine 2000 reagent (Life Tech-
nologies GmbH) according to the 
manufacturer’s instructions. The 
pEuExpress-hEPOR vector (Synaptic Sys-
tems, Göttingen, Germany) was used to
transfect the cells with full-length human
EPOR (~60 kDa), full-length murine
EpoR (~60 kDa), an N-terminally HA-
tagged and C-terminally truncated
human EPOR (lacks the intracellular do-

main, ~40 kDa) and an anchored human
EPOR (lacks the N-terminus and the C-
terminus, ~12 kDa).

STAT5 Phosphorylation Assay
This assay is described in detail else-

where (17). In brief, UT-7 or OCIM-1 cells
were serum- and EPO-deprived overnight
(1% FBS in IMDM, both Life Technologies
GmbH). On the next day, they were incu-
bated with different concentrations of 
recombinant human EPO (rhEPO, 
NeoRecormon, Roche) or control solution
for 15 min, followed by protein extraction
for Western blotting. Immunodetection
was done with antiphosphorylated STAT5
(1:500, Cell Signaling, Danvers, MA, USA)
and GAPDH (1:5000, Enzo Life Sciences,
Farmingdale, NY, USA); 20 μg of protein
was loaded for SDS-PAGE.

MAPK Phosphorylation Assay
Transduced EOC-20 cells were kept in

serum-free DMEM (Life Technologies
GmbH) overnight. Then, cells were incu-
bated with different concentrations of
rhEPO (NeoRecormon, Roche) or the re-
spective control solution for 10 min, fol-
lowed by protein extraction for Western
blotting. Immunodetection was done
with antiphosphorylated MAPK (1:1000),
anti-MAPK (1:5000) and anti-α-tubulin
(1:5000, all Sigma-Aldrich); 15 μg of pro-
tein was loaded for SDS-PAGE.

Animal Experiments
All experiments were approved by and

conducted in accordance with the regula-
tions of the local Animal Care and Use
Committee (Niedersächsisches Lan-
desamt für Verbraucherschutz und
Lebensmittelsicherheit [LAVES]).

Stereotactic cell implantation. Male
C57BL/6N mice, 8 wks old, were used.
Animals were injected intraperitoneally
(i.p.) with carprofen (5 mg/kg Rimadyl,
Pfizer, Berlin, Germany) 2 h before sur-
gery. Under anesthesia (0.276 mg/g tri-
bromoethanol, Sigma-Aldrich, St. Louis,
MO, USA), mice were positioned in a
stereotactic frame and a small, midline
scalp incision was made. A hole was
drilled over the left cranial hemisphere at
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a position 1.5 mm anterior and 1.0 mm
lateral to the bregma. Using a sterile 
10-mL Hamilton syringe with a 26-gauge
needle, 15,000 transduced EOC-20 cells
(description see above) or medium only
(DMEM without phenol-red, Life Tech-
nologies GmbH) were slowly (over
2 min) implanted 2 mm deep into the left
M2 motor cortex. After implantation, the
needle was left in place for 2 min, then
slowly withdrawn from the brain and
the skin incision closed with sterile su-
ture. Directly after the skin incision was
closed, the animals received carprofen
i.p. for pain treatment, which was re-
peated every 6-8 h (5 mg/kg Rimadyl,
Pfizer). At 24 h after surgery, animals
were anesthetized i.p. (0.276 mg/g tribro-
moethanol, Sigma-Aldrich) and perfused
transcardially with 0.9% saline followed
by 4% formaldehyde in PBS.

Labeling of oligodendrocyte precursor
cells in vivo. For induction of CreERT2-
activity in NG2-Cre-ERT2:R26R-td-
tomato-mEGFP mice (28–29), 100 mg/kg
tamoxifen (dissolved in corn oil; Sigma-
Aldrich, Taufkirchen, Germany) was in-
jected i.p. at postnatal d 26 and 27. Ani-
mals were anesthetized i.p. (0.276 mg/g
tribromoethanol, Sigma-Aldrich) 72 h
later and perfused transcardially with
0.9% saline followed by 4% formaldehyde
in PBS.

Detection of EPOR
Immunoprecipitation (IP). UT-7 protein

lysates were obtained using an IP buffer
(150 mmol/L NaCl, 20 mmol/L Tris, 1
mmol/L EDTA, 10% glycerol, pH = 7.4)
containing 1% Triton X-100. Before IP,
lysates were diluted 1:1 with IP buffer to
obtain 0.5% Triton X-100. For the EPOR IP,
protein-G sepharose beads were cova-
lently linked to ctEPOR-AB (Synaptic Sys-
tems) with 40 mmol/L dimethyl-pimelim-
idate (Sigma-Aldrich). Bead slurry 
(200 μL; Thermo Scientific, Waltham, MA,
USA) was cross-linked with 400 μg
ctEPOR-AB or 400 μg of the IgG fraction
from the same rabbit before immuniza-
tion. For EPOR IP from UT-7 protein
lysates, 9 μg of ctEPOR-AB coupled to
protein-G sepharose per 1 mg protein

lysate were incubated for 2 h at 4°C. Af-
terward, beads were centrifuged and
washed. For immunoblot analysis, EPOR
was eluted from the beads by repeated
boiling in Laemmli buffer at 95°C. For
mass spectrometric protein identification,
EPOR was eluted as before but with a
nonreducing SDS-buffer (without 
β-mercaptoethanol) to prevent masking of
the EPOR by excess AB heavy chains in
the subsequent gel electrophoresis. To in-
crease the efficiency of EPOR capture
from UT-7 protein lysates, two consecu-
tive IPs with fresh beads were performed
in a way that the flow-through of the first
IP was used as input for the second.
Eluted proteins were precipitated by
methanol/chloroform treatment (30). Pel-
lets were solubilized in reducing sample
buffer and pooled prior to electrophoresis.
As starting material for mass spectrome-
try, 4 mg protein lysate from UT-7 cells
was used.

SDS-PAGE and Western blots. SDS-
PAGE was performed with self-made
10% SDS-polyacrylamide gels. As a pro-
tein ladder we used PageRuler Plus
prestained and SeeBlue Plus2 prestained
in this gel system (both Life Technologies
GmbH). For all Western blotting, the fol-
lowing protein amounts were loaded: 
15 μg for lysates derived from cell lines;
20 μg for lysates derived from primary
cultures; 50 μg for lysates derived from
tissue. Afterward, proteins were trans-
ferred to a nitrocellulose membrane and
blocked with 4% milk powder and 4%
HS in Tris buffered saline with 0.05%
Tween 20. Membranes were incubated
with ctEPOR-AB (1:2000, Synaptic Sys-
tems) at 4°C overnight. For all EPOR im-
munoblots, membranes were washed,
blocked again and incubated with don-
key anti-rabbit IRDye 800 AB (1:10000,
Rockland, Limerick, PA, USA) for 1 h at
room temperature. Primary mouse AB
were detected with donkey anti-mouse
IRDye 800 AB (1:10000, Rockland) for 1 h
at room temperature. After washing, the
membranes were scanned with Odyssey
imager (LI-COR Biosciences, Lincoln, NE,
USA) and analyzed with the Image Stu-
dio software. Gel electrophoresis for mass

spectrometric protein identification were
performed in parallel on precast Nu-
PAGE 4% to 12% Bis-Tris gradient gels
using a 3-(N- morpholino)propanesulfonic
acid (MOPS) buffer system according to
the manufacturer (Invitrogen). As a pro-
tein ladder we used SeeBlue Plus2
prestained in this gel system (Life Tech-
nologies GmbH). Proteins were either vi-
sualized by colloidal Coomassie staining
(gel 1) or transferred on PVDF mem-
branes and immunodetected as described
above (gel 2).

Protein identification. Gel regions of
interest were identified by overlaying
images from colloidal Coomassie stain-
ing and immunodetection in the Delta
2D image analysis software (Decodon,
Greifswald, Germany). Gel bands were
excised manually and subjected to auto-
mated in-gel digestion with trypsin as
described previously (31). Tryptic pep-
tides were dried down in a vacuum cen-
trifuge, redissolved 0.1% trifluoro-acetic
acid and spiked with 2.5 fmol/μL of
yeast enolase1 tryptic digest standard
(Waters Corporation, Milford, MA, USA)
for quantification purposes (32).
Nanoscale reversed-phase UPLC separa-
tion of tryptic peptides was performed
with a nanoAcquity UPLC system
equipped with a Symmetry C18 trap col-
umn (5 μm, 180 μm × 20 mm) and a BEH
C18 analytical column (1.7 μm, 75 μm ×
100 mm) (Waters Corporation). Peptides
were separated over 60 min at a flow
rate of 300 nL/min with a linear gradient
of 1% to 45% mobile phase B (acetonitrile
containing 0.1% formic acid) while mo-
bile phase A was water containing 0.1%
formic acid. Mass spectrometric analysis
of tryptic peptides was performed using
a Synapt G2-S quadrupole time-of-flight
mass spectrometer equipped with ion
mobility option (Waters Corporation).
Positive ions in the mass range m/z 50 to
2000 were acquired with a typical resolu-
tion of at least 20,000 FWHM (full width
at half maximum) and data were lock
mass corrected after acquisition. With the
aim of increasing the sequence coverage
of the identified proteins, analyses were
performed in the ion  mobility-enhanced
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data-independent acquisition mode
(33–34) with drift time–specific collision
energies (35). For protein identification,
continuum LC-MS data were processed
and searched using Waters ProteinLynx
Global Server version 3.0.2 (36). A cus-
tom database was compiled by adding
the sequence information for yeast eno-
lase 1 and porcine trypsin to the 
UniProtKB/Swiss-Prot human proteome
(UniProtKB release 2015_06, 20,206 en-
tries) and by appending the reversed se-
quence of each entry to enable the deter-
mination of false discovery rate (FDR).
Precursor and fragment ion mass toler-
ances were automatically determined by
PLGS 3.0.2 and were typically below 
5 ppm for precursor ions and below 
10 ppm (root mean square) for fragment
ions. Carbamidomethylation of cysteine
was specified as fixed and oxidation of
methionine as variable modification. One
missed trypsin cleavage was allowed.
The FDR for protein identification was
set to 1% threshold.

Flow cytometry. UT-7 cells were fixed
with 4% Histofix solution (Carl Roth,
Karlsruhe, Germany). For EPOR staining,
cells were blocked, permeabilized with
5% normal horse serum (NHS) and 0.5%
Triton X-100, and incubated with
ctEPOR-AB (1:500, Synaptic Systems) and
Hoechst (5 μg/mL Invitrogen) or for con-
trol only Hoechst for 30 min on ice. After
washing, cell suspensions were incubated
with Alexa Fluor 488 donkey anti-rabbit
(1:250, Life Technologies GmbH) for 30
min on ice, followed by FACS analysis
(FACSAria III, BD Biosciences, Heidel-
berg, Germany).

Immunocytochemistry. Cells were
fixed with 4% formaldehyde in PBS for 20
min, permeabilized and blocked in 0.2%
Triton X-100 with 10% NHS in PBS for 20
min. After washing with 1% NHS in PBS,
cells were incubated overnight at 4°C
with the primary AB in 0.2% Triton X-100
with 1% NHS in PBS. The following pri-
mary AB were used: rabbit ctEPOR-AB
(1:1000, Synaptic Systems), mouse
ntEPOR-AB (1:1000, Synaptic Systems),
mouse anti-HA (1:500, Covance Inc.,
Princeton, NJ, USA), mouse anti-GM130

(1:100, BD Biosciences, Heidelberg, Ger-
many), rat anti-NG2 (1:250, gift from
Jacqueline Trotter, University of Mainz,
Germany), goat anti-human Oct-3/4 (1:40,
R&D Systems, Minneapolis, MN, USA).
After washing, cells were incubated with
the following secondary AB in 0.2% Triton
X-100 with 1% NHS in PBS for 1 h at
room temperature: donkey anti-rabbit
Alexa Fluor 488 and anti-goat Alexa Fluor
488, donkey anti-mouse Alexa Fluor 568,
donkey anti-rabbit Alexa Fluor 594 (all
1:500, Life Technologies GmbH) and goat
anti-rat Alexa Fluor 488 (1:250, Jackson
ImmunoResearch, West Grove, PA, USA).
Primary microglia were counterstained
with tomato lectin Alexa Fluor 488 (1:250,
Vector Laboratories, Burlingame, CA,
USA). Cell nuclei were visualized with
DAPI dissolved in H20 (0.01 μg/mL,
Sigma-Aldrich). Afterward, the coverslips
were dried and mounted with Aqua-
Poly/Mount (Polysciences, Warrington,
PA, USA). All stainings were scanned by
confocal microscopy (TCS SP5-II, Leica,
Wetzlar, Germany). Illustration was done
using Imaris 7.5.1 (www.bitplane.com
[Bitplane AG, Zurich, Switzerland]).

Immunohistochemistry on frozen
mouse sections. C57BL/6N mice, 5 wks
old, were anesthetized by i.p. injection
(0.276 mg/g tribromoethanol, Sigma-
Aldrich) and perfused transcardially with
0.9% saline followed by 4% formaldehyde
in PBS. Brains were removed, postfixed
overnight at 4°C with 4% formaldehyde
in PBS and placed in 30% sucrose in PBS
for cryoprotection and stored at –20°C.
Whole mouse brains were cut into 30 μm-
thick coronal sections on a cryostat
(Leica). Frozen sections were permeabi-
lized and blocked with 0.5% Triton X-100
and 5% NHS in PBS for 1 h at room tem-
perature. Then, sections were incubated
with the following primary AB in 3%
NHS, 0.5% Triton X-100 in PBS for 48 h at
4°C: Rabbit ctEPOR-AB (1:200), chicken
anti-NeuN (266 006; 1:500), guinea pig
anti-GFAP (173 004; 1:500, all Synaptic
Systems) and mouse anti-APC (clone CC-
1, 1:100, Merck). After washing in PBS,
sections were incubated with the follow-
ing secondary AB in 3% NHS, 0.5% Triton

X-100 in PBS for 1.5 h at room tempera-
ture: donkey anti-rabbit Alexa Fluor 594,
donkey anti-mouse Alexa Fluor 488 (both
1:500; Life Technologies GmbH), donkey
anti-chicken Alexa Fluor 488 (1:250), goat
anti-guinea pig Cy5 (1:300, both Jackson
ImmunoResearch). Cell nuclei were visu-
alized with DAPI dissolved in H2O
(0.01 μg/mL, Sigma-Aldrich). After wash-
ing in PBS, sections were mounted on
Super Frost microscopic slides, dried and
covered with Aqua-Poly/Mount (Poly-
sciences). All stainings were scanned by
confocal microscopy (TCS SP5-II, Leica).
Illustration was done using Imaris 7.5.1
(www.bitplane.com [Bitplane AG, Zurich,
Switzerland]).

Immunohistochemistry on paraffin-
embedded human brain sections. Brain
slices of 1–3 μm thickness from formalin-
fixed and paraffin-embedded tissue
blocks were deparaffinized. Endogenous
peroxidases were blocked with 3% H2O2

in PBS for 20 min followed by epitope
blocking with 0.02% casein in PBS for 15
min. Immunoreaction was performed by
incubation with ctEPOR-AB (1:500,
Synaptic Systems) overnight at room
temperature, followed by the addition of
the secondary biotinylated donkey anti-
rabbit AB (1:500; Amersham Biosciences,
Freiburg, Germany) and an extravidin-
peroxidase enzyme complex (1:1000;
Sigma-Aldrich), each for 1 h at room tem-
perature. The AB reaction was visualized
with the chromogen AEC: 4 mL 4% 3-
amino-9- ethylcarbazole (Sigma-Aldrich)
in N,N-dimethylformamide (Merck) were
dissolved in 56 mL 0.1 mol/L sodium-
 acetate buffer adjusted to pH 5.2 with
acetic acid and 1% H2O2. The brain slices
were counterstained with hemalum. Cov-
erslips were mounted with Aquatex
(Merck).

RESULTS

Generation of EPOR-AB
The aim of this work was to generate

specific and sensitive EPOR-AB and to
investigate EPOR expression in the cen-
tral nervous system (CNS). Therefore,
polyclonal rabbit EPOR-AB and mono-
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clonal mouse EPOR-AB were produced
and tested. After extensive characteriza-
tion of a whole panel of AB (data not
shown), two highly promising candi-
dates were selected and validated for
several research purposes: The poly-
clonal rabbit EPOR-AB SA7378, directed
against the C-terminus (here always
called “ctEPOR-AB”) and the mono-
clonal mouse EPOR-AB 45A3, directed
against the N-terminus (here called
“ntEPOR-AB”). The present study is
mainly built on ctEPOR-AB because of
its high specificity and broad spectrum
of applications in human and mouse.

Functional EPOR Validation in the Test
Systems

As a prerequisite of testing EPOR-AB
in the cell lines used here, we function-
ally validated their EPOR expression. In
the EPO-dependent megakaryoblastic
leukemia cell line UT-7, incubation with
different concentrations of rhEPO led to
STAT-5 phosphorylation (Figure 1A).
Also, in the erythroleukemia cell line
OCIM-1, incubation with rhEPO induced
STAT-5 phosphorylation (Figure 1B). 
UT-7 cells only proliferated and survived
in the presence of rhEPO in the medium
(Figures 1C, D). In the mouse microglia
cell line EOC-20, stably transduced with
N-terminally HA-tagged human EPOR,
rhEPO administration activated MAPK
phosphorylation in a concentration-de-
pendent manner (Figure 1E). We also
confirmed EPOR mRNA expression in all
of these cell lines by qPCR (normalized
to GAPDH as housekeeping gene, data
not shown).

Detection of EPOR/EpoR by Western
Blotting

To confirm reliable detection of EPOR
by Western blotting, we transfected
HEK293 FT cells with different EPOR
expression vectors. The polyclonal rab-
bit ctEPOR-AB detected full-length
human EPOR and its degradation prod-
uct specifically while the C-terminally
truncated mutant of EPOR was not de-
tected by this AB (Figures 1F, G). Im-
munoblots of lysates from transduced

EOC-20 cells (N-terminally HA-tagged
human EPOR) and respective controls
showed specific detection of full-length
human EPOR by ctEPOR-AB (Figure 1H).
This was validated with an HA im-
munoblot of the same lysates (Figure 1I).
In protein lysates from UT-7 and 
OCIM-1 cells, ctEPOR-AB detected
bands of the same molecular weight (Fig-
ure 1J). As shown in Figures 1F and J, in
UT-7 cells and HEK293 FT cells (only
when transfected with the full length
human EPOR) a specific degradation
product was additionally detected at
~40kDa by the ctEPOR-AB. This degra-
dation product of EPOR has been de-
scribed earlier (11). Fixed UT-7 cells
were successfully used for flow cyto-
metric analysis after staining with
ctEPOR-AB (Figure 1K). EPOR was fur-
ther recognized by ctEPOR-AB in
human placenta and fetal brain extracts
(Figure 1L). In addition to human
EPOR, ctEPOR-AB detected murine
EpoR in transfected HEK293 FT cells,
mouse fetal liver and lysates from cul-
tured primary mouse oligodendrocytes
(Figure 1M). To validate the specificity
of murine EpoR detection, EpoR was
knocked out in primary astrocytes de-
rived from EpoR-fl/fl mice. In fact,
ctEPOR-AB recognized a doublet of
bands (EPOR with or without 
N-glycosylation, resulting in a differ-
ence of ~3kDa) with a molecular weight
of around 65 kDa (Figure 1N, control
transduction). Shown is a clear reduction
upon expression of Cre-recombinase. The
residual expression of the protein is
likely due to a slow turnover of EpoR,
slow kinetics of Cre-recombination of the
floxed EpoR allele or incomplete infec-
tion of the lentivirus. In any case, Cre-
dependent reduction of the signal led us
to conclude that ctEPOR-AB specifically
detects EpoR. Together, these results in-
dicate specific EPOR/EpoR detection
with ctEPOR-AB in human and murine
cell and tissue extracts.

EPOR Protein Identification
To test whether the specific band de-

tected in Western blots is indeed EPOR,

we performed IPs from UT-7 lysates and
subsequent mass spectrometric protein
identification. We used covalently immo-
bilized ctEPOR-AB in combination with
nonreducing elution conditions to mini-
mize the masking effect of excess anti-
body heavy chains, which have an appar-
ent electrophoretic mobility similar to the
EPOR. After IP with ctEPOR-AB, eluted
proteins from ctEPOR-AB protein-G
sepharose beads and respective control
beads were separated by SDS-PAGE and
visualized by colloidal Coomassie stain-
ing or immunoblotting. The overlay of
the two gel images (Figure 2A) was used
to identify the region of the Coomassie-
stained gel potentially containing the
EPOR protein. Identical gel regions from
ctEPOR-AB IP and the control IP were ex-
cised and subjected to tryptic digestion
followed by liquid chromatography cou-
pled to mass spectrometry (LC-MS).
Against a common background mainly
consisting of chaperone proteins, human
EPOR protein was detected in eluates
from ctEPOR-AB beads, but not from
control beads. The identification of 11
EPOR-derived peptides with high mass
accuracy at both precursor and fragment
ion level resulted in sequence coverage of
22.6% (Figures 2B, C), basically in line
with recent LC-MS data on EPOR im-
munoprecipitates (37). Taken together,
our results show that ctEPOR-AB indeed
binds specifically to full-length EPOR.
Also, in reducing conditions we could ef-
fectively elute EPOR after IP (Figure 2D).
Noteworthy, we detected the EPOR pro-
tein in Western blots between 59 and 68
kDa, depending on the gel system and
protein molecular weight marker used
(Figures 1, 2A, D; also see Materials and
Methods).

EPOR/EpoR Detection by
Immunocytochemistry

To validate the specificity of ctEPOR-
AB on formaldehyde fixed cells, we
stained the same antigen with AB di-
rected against different epitopes (38). 
In EOC-20 cells transduced with an 
N-terminally HA-tagged human EPOR,
anti-HA and ctEPOR-AB double-staining
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Figure 1. Functional EPOR validation and EPOR/EpoR detection using ctEPOR-AB in Western blots. (A) Incubation of EPO-dependent UT-7
cells (after 12 h of EPO deprivation) for 15 min with increasing EPO concentrations inducing STAT5 phosphorylation. (B) Incubation of
OCIM-1 cells for 15 min with increasing EPO concentrations inducing STAT5 phosphorylation. (C) Cell counts of EPO-dependent UT-7 cul-
tures 72 h after seeding in the presence and absence of EPO (n = 6, mean ± SEM; p < 0.0001). (D) Cell death in EPO-dependent UT-7 cul-
tures 72 h after seeding in presence and absence of EPO (n = 5, mean ± SEM; p < 0.03). (E) Incubation of EOC-20 cells transduced with
HA-tagged human EPOR for 10 min with increasing EPO concentrations inducing MAPK phosphorylation. (F) EPOR Western blot using
ctEPOR-AB on transfected HEK293 FT cell lysates (truncated HA-EPOR: human EPOR lacking the C-terminus, HA-tag at the N-terminus;
control vector: anchored human EPOR without N-terminus and C-terminus). (G) HA Western blot of the same transfected HEK293 FT cell
lysates used in (F). (H) EPOR Western blot using ctEPOR-AB on EOC-20 cell lysates transduced with N-terminally HA-tagged human EPOR
and respective controls. (I) HA Western blot of the same EOC-20 cell lysates used in (H). (J) EPOR Western blot using ctEPOR-AB on UT-7
and OCIM-1 cell lysates. (K) Flow cytometry of fixed UT-7 cells stained with ctEPOR-AB and Alexa Fluor 488 donkey anti-rabbit secondary
AB; as control secondary AB only. (L) EPOR detection in human placenta and human fetal brain using ctEPOR-AB. (M) Detection of murine
EpoR in transfected HEK293 FT cells overexpressing murine EpoR, mouse fetal liver and mouse primary oligodendrocytes using ctEPOR-AB.
(N) Lentivirus-mediated conditional EpoR knockout in primary EpoR-fl/fl mouse astrocytes; anti-α tubulin as stably expressed comparator.
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Figure 2. EPOR IP using ctEPOR-AB and protein identification by mass spectrometry. 
Continued on next page
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showed almost complete colocalization
with most of the signal located intracel-
lularly (Figure 3A). Control EOC-20 cells
were negative (Figure 3A). In UT-7 cells,
ctEPOR-AB revealed a similar staining
pattern (Figure 3B). EPOR staining was
colocalized with Golgi staining, indicat-
ing detection of a membrane protein
(Figure 3C). In addition, ntEPOR-AB
and ctEPOR-AB double-stained EPOR in
UT-7 cells (Figure 3D). In OCIM-1 cells,
ctEPOR-AB also yielded intracellular
staining, even though less pronounced
compared with UT-7 cells (Figure 3E).
Using ctEPOR-AB, we also detected
EPOR in human IPS cells (Figure 3F).
Moreover, ctEPOR-AB specifically
stained HEK293 FT cells transfected
with full-length murine EpoR (Figure
3G). When tested on cultured primary
murine brain cells, ctEPOR-AB stained
oligodendrocyte precursor cells (Figure
3H), oligodendrocytes (Figure 3I) and
microglia (Figure 3J). These results indi-
cate specific staining of human and
mouse EPOR/EpoR by the ctEPOR-AB
in cell lines and primary cells.

EpoR Detection in the Brain of Healthy
Mice

Using ctEPOR-AB on frozen brain sec-
tions of healthy young mice, we found
EpoR expression mainly in a subpopula-
tion of cells of the oligodendrocyte line-
age (Figure 4A). To get better insight at
which stages cells of the oligodendrocyte
lineage express EpoR, we labeled oligo-
dendrocyte precursor cells by tamoxifen

injections in NG2-CreERT2 mice (28). At
72 h after the second tamoxifen injection,
we identified precursors double-stained
for GFP and ctEPOR-AB (GFP+/EpoR+),
as well as GFP+/EpoR+ cells with clear
morphology (processes with parallel
myelin bundles) of already differentiated
oligodendrocytes (Figures 4B–B’’). More-
over, GFAP+/EpoR+ cells were seen in
postnatal neurogenesis areas such as den-
tate gyrus (Figure 4C) or subventricular
zone (data not shown). These results indi-
cate EpoR expression in differentiating
oligodendrocytes and stem cells in the
adult neurogenic niches of healthy young
mice.

EPOR/EpoR Detection in the Injured
CNS of Mice

Next, we stereotactically injected
EPOR-transduced EOC-20 cells or me-
dium only (stab wound analogue) in the
motor cortex of adult mice (Figure 4D).
This experiment served two purposes: to
recover defined cells that carry human
EPOR in brain sections and to confirm 
injury-induced endogenous EpoR expres-
sion, since in earlier work, we had pro-
posed upregulation of EPOR upon injury
(6). At 24 h after injection of medium
only (stab wound), we saw cells with
strong ctEPOR-AB signal near the injec-
tion site (Figure 4E). Many of these cells
were GFAP+/EpoR+ (Figure 4F). On the
contralateral site, no GFAP+/EpoR+ cells
were seen (Figure 4G). In the motor cor-
tex of mice injected with transduced
EOC-20 cells (murine microglia cell line),

double labeling with HA-AB and
ctEPOR-AB confirmed specific recovery
of these cells in frozen sections of
paraformaldehyde-perfused mice. Also in
this condition, endogenous cells with
high EpoR expression were observed in
close proximity of the injection site (Fig-
ures 4H–H”). These results confirm the
pronounced upregulation of EpoR in cells
reacting to injury, provoked here by an
experimental stab wound.

Upregulation of EPOR in the
Hippocampal Formation of a Patient
Suffering from Temporomesial
Complex-Focal Epilepsy

Formalin-fixed, paraffin-embedded tis-
sue from a patient who underwent selec-
tive unilateral hippocampectomy, was
used for immunohistochemical detection
of EPOR upregulation under these condi-
tions (Figure 5A). The patient had been
suffering from pharmacoresistant
 complex-focal seizures of temporomesial
origin for more than 10 years. Neu-
ropathological analysis of the surgery
material revealed hippocampal sclerosis
stage Wyler III. EPOR was upregulated
in several but not all remaining neurons
of CA1 (Figure 5B), of CA4 (Figure 5C)
and of the dentate gyrus (Figure 5D), as
well as in oligodendrocytes and endothe-
lial cells of capillaries in the adjacent
white matter (Figure 5E). Without pri-
mary AB, no staining could be detected
(Figure 5F). This suggests upregulation
of EPOR upon severe chronic distress in
different cell types of the human CNS.
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Figure 2. Continued. (A) Colloidal Coomassie staining and immunoblot of the same EPOR IP using ctEPOR-AB from UT-7 protein lysates. The
overlay was used to determine the region to be excised from the Coomassie gel for subsequent mass spectrometric protein identification
(area indicated by rectangles; abbreviations: FT = flow-through, IP = immunoprecipitation). (B) Amino acid sequence of EPOR
(UniProtKB/Swiss-Prot P19235). Peptides identified by mass spectrometry are indicated in red. Note that large parts of the EPOR precursor se-
quence (indicated in italics) cannot be covered in a standard proteomic experiment with tryptic cleavage as they are either modified
(amino acids 1–34, signal peptide; 57–89, N-glycosylation site), attached to the transmembrane domain (224–275) or too large (>5 kDa) to re-
veal useful information by mass spectrometric sequencing (379–453, 454–508). (C) Table with details on peptide identification. Columns show
from left to right: numbering of tryptic peptides; numbering of amino acids according to the sequence in B; peptide sequence (c, carbox-
amidomethyl-Cys); observed and calculated mass of the singly protonated peptide; peptide mass deviation in ppm; PLGS score; number of
b–y fragment ions; root mean square fragment mass deviation in ppm. (D) Immunoblot of EPOR IP using ctEPOR-AB from UT-7 lysates. In con-
trast to the IP used for mass spectrometry, EPOR was eluted from the beads in reducing conditions (Laemmli buffer with β-mercaptoethanol;
abbreviations: FT = flow-through, IP = immunoprecipitation, Ig HC = immunoglobulin heavy chains, Ig LC = immunoglobulin light chains). The
prominent band at around 40 kDa in both IP conditions has to be an immunoglobulin fragment eluted from the beads in the reducing con-
dition only, since it was not eluted without β-mercaptoethanol (see subpanel 2A immunoblot).
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Figure 3. Detection of EPOR by immunocytochemistry: (A) EPOR detection using ctEPOR-AB and monoclonal HA-AB on transduced (N-
terminally HA-tagged human EPOR, upper row) and control (lower row) EOC-20 cells. (B) EPOR staining with ctEPOR-AB on EPO-depen-
dent UT-7 cells. (C) Double-immunostaining of UT-7 cells with anti-GM130 AB as marker for the Golgi apparatus and ctEPOR-AB. (D) EPOR
double staining of UT-7 cells with ntEPOR AB and ctEPOR-AB. (E) EPOR staining with ctEPOR-AB on OCIM-1 cells. (F) Distinct EPOR staining
in human Oct-4 + IPS cells using ctEPOR-AB. (G) EpoR staining with ctEPOR-AB of HEK293 FT cells transfected with full-length murine EpoR.
Neighboring nontransfected cells show no immunofluorescence. (H) EpoR and NG2 double-staining with ctEPOR-AB in primary mouse
oligodendrocyte precursor cells. (I) EpoR and CC-1 double-staining of primary mouse oligodendrocytes with ctEPOR-AB. (J) Detection of
EpoR in primary mouse microglia using ctEPOR-AB and lectin as counterstain.

Oliveira
Schreibmaschinentext
APPENDIX - Manuscript 4

Oliveira
Schreibmaschinentext
140



DISCUSSION
In the present work, we took the chal-

lenge requested for a long time by the
scientific community (14,17–18) to gener-
ate a specific AB for valid detection of
EPOR in human and murine cells and
tissues, with particular focus on the
brain. We present here a highly specific

polyclonal rabbit AB directed against the
intracellular C-terminus of the human
EPOR. This AB, referred to as “ctEPOR-
AB,” specifically recognizes EPOR, as
proven by mass spectrometry, and has a
broad range of documented applications
in both human and murine cells and tis-
sues, ranging from Western blotting,

flow cytometry and IP to immunocyto-
chemistry and immunohistochemistry on
frozen as well as paraffin-embedded sec-
tions. Importantly, by employing this AB,
we were able to confirm expression of
EPOR in brain cells and its upregulation
upon injury (39). Our comprehensive in
vitro and in vivo data clearly reject earlier
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Figure 4. EPOR detection using ctEPOR-AB in healthy and injured mouse brain by immunohistochemistry: (A) EpoR staining in a subpopula-
tion of CC-1 positive mature oligodendrocytes in the neocortex of a 5-wk-old healthy mouse. (B, B’, B’’) EpoR staining in the hippocampus
of a 5-wk-old NG2-CreERT2:R26-td-tomato-mEGFP mouse. Some oligodendrocyte precursor cells (arrow head) and newly differentiated
oligodendrocytes (arrow) express EpoR. Both cell types are endogenously labeled with membrane-tagged EGFP. (C) EpoR staining of
GFAP+ cellular processes in the dentate gyrus of a 5-wk-old mouse (arrow heads). (D) Overview of the injection site in the motor cortex of
an 8-wk-old mouse injected with medium only (stab wound analogue). The section was stained for neuronal nuclei with NeuN and for
EpoR with ctEPOR-AB. (E) Close-up of the white-rectangle region in (D) shows reactive cells with upregulated EpoR expression. (F) Many of
the cells at the injection site with upregulated EpoR expression are GFAP+ (arrow heads). (G) Contralateral to the injection site, GFAP+ cells
show no EpoR expression at 24 h after lesion. (H, H’, H’’) Shown is EPOR and HA double-labeling of injected EOC-20 microglial cells trans-
duced with an HA-tagged human EPOR. In addition, HA-negative cells at the injection site show strong EpoR expression (arrow heads).
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claims, solely based on in vitro studies,
that EPOR expression and EPO function
outside the hematopoietic system does
not exist (15).

The great need for specific EPOR-AB
in the field is also reflected by a very re-
cent study of Drorit Neumann and col-
leagues (37). This group of authors pub-
lished specific mouse and rat
monoclonal EPOR-AB that detect EPOR
expression in human cancer cells and tis-
sues (37). Complementary to this ap-
proach and with particular focus on the
brain, we have developed a highly spe-
cific and sensitive polyclonal rabbit AB,
ctEPOR-AB, suitable for applications not
only in human but also in murine mate-
rial. Since the polyclonal nature of this
AB has limitations, not only due to the
restricted lifetime of a rabbit, we are cur-
rently working on further exploitation of
the herewith acquired knowledge. Pre-
liminary results of epitope mapping
with this polyclonal ctEPOR-AB re-
vealed only few strongly recognized epi-
topes. These epitopes are presently used

for generating specific mouse mono-
clonal AB. They will be tested alone or
in the form of potentially more sensitive
cocktails, with collective properties simi-
lar to ctEPOR-AB.

With the examples of EPOR expression
in the brain shown here, we confirmed
earlier work of our own and of others,
which in the past needed additional
methods for validation and still left
doubts in the scientific community due to
the nonspecificity of previous EPOR-AB.
For instance, GFAP-positive stem cells in
the adult neurogenic niches showed
EpoR immunoreactivity here, which is in
line with reports demonstrating distinct
effects of EPO on adult neural stem cells
(40–41). Also, studies identifying EPO as
an inducer of oligodendrocyte precursor
cell differentiation (42–43) are now fur-
ther supported by the detection of spe-
cific EPOR-binding sites in culture and
brain sections. Importantly, the role of the
EPO/EPOR system in response to brain
injury (5–6) is confirmed with our stab
wound approach.

CONCLUSION
On the basis of the novel tool re-

ported here, it will now be possible to
investigate the role of EPOR in the in-
tact and injured human and murine
brain in more detail. This, in turn, will
facilitate the development of EPO for
therapeutic use outside the hematopoi-
etic system.
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Abstract  
 

Autistic traits are normally distributed across health and disease, with autism spectrum 
disorders (ASD) at the extreme end. As we learned from mutations of synaptic or 
synapse regulating genes, leading to monogenetic forms of autism, the heterogeneous 
etiologies of ASD converge at the synapse. They result in a mild synaptic dysfunction as 
the final common pathway, also addressed as synaptopathy. Based on genetic rodent 
models and EEG/MEG findings in autists, a neuronal excitation-inhibition dysbalance is 
considered autism-pathognomonic. We hypothesized that this objectively measurable 
consequence is not restricted to the diagnosis of ASD but transcends disease borders 
and is of quantitative rather than qualitative nature. For proof-of-principle, we conducted 
a transcranial magnetic stimulation (TMS) study, monitoring corticospinal excitability 
and intracortical inhibition of the motor cortex. Employing the GRAS data collection of 
N>1800 deep-phenotyped schizophrenic subjects, we had the chance to select for this 
study N=20 perfectly matched men. They differed only by autistic trait severity, as 
assessed using PANSS autism severity score (PAUSS), capturing the continuum of 
autistic behaviors. Applying TMS to these men, we provide intriguing hints of a positive 
correlation of autistic phenotype severity with functional cortical correlates, mainly 
alterations in GABAergic system and ion channels. This ‘dose-response relationship’ 
between severity of autistic traits and excitation-inhibition ratio in non-ASD subjects 
underlines the biological basis of this continuous trait. Based on these data, TMS may 
serve as new add-on biomarker of autistic traits across disease groups. Moreover, 
potential common treatment strategies targeting the excitation-inhibition dysbalance in 
humans may now evolve. 
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Introduction 

Most neuropsychiatric disease-relevant behavioral phenotypes are continua, with a 
certain severity threshold defining the starting point of a clinical diagnosis. As typical 
example, autistic traits are normally distributed across health and disease, including at 
the extreme end autism spectrum disorders (ASD). Shared features are variably 
pronounced deficits in social communication, reading of social signals, theory-of-mind 
abilities, and cognitive flexibility, typically together with restricted interests, repetitive 
behaviors and prominent routines (Mitjans et al., 2017; Stepniak et al., 2015). 

Causes of autistic phenotypes likely converge at the synapse, as indicated by mutations 
of genes influencing synaptic function, and are reflected by circuit-level disturbances, 
aberrant synaptic plasticity, and a virtually autism-pathognomonic neuronal excitation-
inhibition dysbalance (Mitjans et al., 2017; Mullins et al., 2016; Nelson and Valakh, 
2015; Ramocki and Zoghbi, 2008; Sudhof, 2008; Uhlhaas and Singer, 2006; Uzunova et 
al., 2016). This dysbalance was consolidated experimentally using construct-valid 
genetic rodent models and has likewise been suspected in humans, mainly based on 
EEG and MEG findings, including the frequently seen predisposition to epileptic 
seizures. Importantly, not only mutations, but normal genetic variants contribute to the 
manifestation of autistic traits as indicated by genome-wide association studies 
(GWAS), but even more so by phenotype-based genetic association studies (PGAS), 
finding an accumulation of ‘unfortunate’ normal variants associated with increasing 
severity of autistic phenotypes (Ehrenreich et al., 2016; Stepniak et al., 2015). 

We hypothesize that measurable consequences of the heterogeneous causes 
underlying autistic traits, which characterize the final common pathway to the 
phenotype, are of quantitative rather than qualitative nature. Thus, we wondered 
whether very well-matched individuals, differing only with regard to the clinical severity 
of autistic features, would show respective differences in excitation-inhibition as an 
overarching functional consequence of diverse causalities. To address this question in 
humans, we applied transcranial magnetic stimulation (TMS) (Nitsche et al., 2005). 
TMS, presently discussed as ASD biomarker tool, allows noninvasive focal brain 
stimulation, where localized intracranial electrical currents, large enough to depolarize a 
small population of neurons, are generated by extracranial magnetic fields (Oberman et 
al., 2016). Translating this paradigm to the autistic continuum, we provide intriguing 
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evidence of a connection between phenotype severity and functional cortical correlates 
in humans.  

 

Materials and methods  

Subjects  

For proof-of-principle, carefully selected male schizophrenic subjects (N=20) of the 
GRAS (Göttingen Research Association for Schizophrenia) data collection agreed to 
participate in a TMS study, approved by the Ethical Committee of the University of 
Göttingen, Germany. Subjects were matched for age, handedness and medication and 
asked not to smoke or drink coffee prior to TMS (Table1). For comparing deeply 
phenotyped schizophrenic individuals, based on autistic trait severity, we used the 
PANSS autism severity score (PAUSS), capturing the continuum of autistic behaviors.12  

 

Transcranial magnetic stimulation (TMS) protocol 

Motor cortex excitability measures 

Motor cortical excitability was monitored by generating motor evoked potentials (MEP) 
via TMS applied with a figure-of-eight coil (diameter of one winding: 70mm; peak 
magnetic field: 2.2Tesla) connected to a Magstim-200 magnetic stimulator (Magstim, 
Whiteland, Dyfed, UK). The coil was held with the handle pointing backwards and 
laterally at 45°. Surface electromyography (EMG) was recorded from the right first 
dorsal interosseous (FDI) muscle by Ag/AgCl electrodes in a belly tendon montage. The 
signals were filtered with a low-pass filter of 2.0kHz, then digitized at an analogue-to-
digital rate of 5kHz and further relayed into a laboratory computer using the Signal 
software and CED1401 hardware (Cambridge Electronic Design, Cambridge, UK). 

Motor threshold 

The resting motor threshold (RMT) was defined as the minimum TMS intensity which 
elicited a peak-to-peak MEP amplitude of 50µV or larger in the resting FDI in at least 3 
out of 6 measurements. The active motor threshold (AMT) was the minimum intensity 
eliciting a MEP of a superior size compared to moderate spontaneous muscular 
background activity (∼15% of the maximum muscle strength) in at least 3 out of 6 trials.  
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Input-output (I/O) curve 

The recruitment curve was generated with TMS-intensities of 100, 110, 130, and 150% 
RMT; 15 stimuli were obtained for each intensity. TMS stimuli were applied with a 
frequency of 0.25Hz. 

Intracortical inhibition and facilitation 

Intracortical inhibition and facilitation were obtained by a paired-pulse TMS protocol 
(Kujirai et al., 1993), with a test pulse eliciting MEP amplitude of about 1mV. MEP was 
preceded by a subthreshold (70% AMT) conditioning stimulus with inter-stimuli-intervals 
(ISI) of 2, 3, 5, 10, and 15ms. The first three ISIs monitor intracortical inhibition and the 
last two monitor facilitation. The protocol consisted of 15 blocks, where each block 
contained the 5 pairs of different ISIs together with a single test pulse applied in 
randomized order. TMS stimuli were applied with an interval of 4 seconds. 

Experimental procedures 

Subjects were seated in a reclining chair with head and arm rests to guarantee optimal 
relaxation. After mounting the EMG electrodes, the TMS coil position over the left motor 
cortex resulting consistently in the largest MEP in the right FDI was identified and 
marked to keep constant coil position throughout the course of the experiment. The 
intensity of the TMS stimulus was adjusted to elicit MEPs with a peak-to-peak amplitude 
of average 1 mV. RMT and AMT were then determined accordingly, followed by a 5-min 
break to allow muscle relaxation after the AMT determination procedure. Afterwards, the 
I/O curve, and intracortical inhibition/facilitation were obtained as outlined above. The 
duration of this experimental block was about 60 minutes per individual. 

 

Results  

RMT and AMT did not differ between groups (low PAUSS: 42.50±5.33 versus high 
PAUSS: 44.00±9.16; p=0.909 and low PAUSS: 32.90±4.43 versus high PAUSS: 
34.90±7.38; p=0.622, respectively; Mann-Whitney test, two-tailed). Individual excitation 
and inhibition curves are presented in Fig 1A-B. The group of schizophrenic men with 
more severe autistic features (PAUSS≥20) showed higher cortico-spinal excitability and 
higher intracortical inhibition compared to the group with low autistic features 
(PAUSS<20). In contrast, intracortical facilitation did not differ between groups (Fig 1A-
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B; Table1). Importantly, the ratio between excitation and inhibition (each calculated as 
area under the curve for each individual) correlated positively with the severity of autistic 
traits (r=0.511, p=0.021; Pearson’s Correlation, two-tailed) (Fig 1C).   
 

Discussion 

Even though only 20 male schizophrenic subjects with different PAUSS scores were 
included, we obtained a surprisingly clear separation of TMS-derived individual 
excitation and inhibition readouts based on PAUSS and, importantly, a positive 
correlation of the E/I ratio with PAUSS. These findings provide for the first time a ‘dose-
response relationship’ between severity of autistic traits and degree of excitation-
inhibition dysbalance. The clarity of these results is certainly owed to an optimal 
matching of deep-phenotyped individuals regarding all main clinical characteristics, 
based on selection from the large GRAS data collection, which allows widely excluding 
potential confounders (Oberman et al., 2016).  

We interpret these data as indication of effects on GABAergic transmission and ion 
channels, and no clear effect on glutamate, since intracortical inhibition is primarily 
driven by GABA (Paulus et al., 2008). The enhanced corticospinal excitability shown in 
the group with high autistic features could principally have been driven by an impact on 
ion channels, but also by glutamate, especially for the high TMS intensities (Paulus et 
al., 2008). Since glutamate-driven intracortical facilitation did, however, not differ 
between groups, a predominant impact on ion channels is more probable. Taken 
together, the results of this study support the concept of a disturbed excitation-inhibition 
balance in subjects with autistic features, which is based on altered GABAergic and ion 
channel functions.  

These findings support the disease-independent pathophysiological continuum of 
autistic traits and the etiology-independent final common pathway leading to an autistic 
phenotype. Not only the diagnostic use of TMS as a new add-on biomarker of autistic 
traits across disease groups, but also potential common treatment strategies targeting 
the E/I ratio in humans should now be encouraged. 
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Figure Legend 
Excitation and inhibition dysbalance dependent on autistic phenotype severity 
(A) Input-output curves as a readout of cortico-spinal excitability are presented for each 

individual, obtained with TMS-intensities of 100, 110, 130, and 150% RMT (15 stimuli 

for each intensity with a frequency of 0.25Hz). The severity of autistic traits determined 

by PAUSS is dichotomously classified for illustration in the figure. (B) Individual 

intracortical inhibition curves presented analogously to (A). Intracortical inhibition was 

obtained by a paired-pulse TMS protocol, MEP was preceded by a subthreshold (70% 

AMT) conditioning stimulus with ISI of 2, 3 and 5ms. (C) Individual E or I values were 

determined as areas under the curve (of individual data shown in A and B) and used to 

calculate the individual excitation/inhibition (E/I) ratios. Dysbalance is visualized in 

individuals with higher PAUSS scores. TMS, Transcranial Magnetic Stimulation; RMT, 

Resting Motor Threshold; MEP, Motor-Evoked Potential; AMT, Active Motor Threshold; 

ISI, Inter-Stimuli-Intervals; PAUSS, PANSS autism severity score (Mitjans et al., 2017; 

Stepniak et al., 2015); AU, Arbitrary Units; Pearson’s correlation, two-tailed p-value 

(SPSS version-17.0 IBM-Deutschland GmbH, Munich, Germany). 
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List of abbreviations 

 

Abbreviation  Extended name 

AMPA 

APC  

ApoE  

ASD 

BBB  

BCR 

BMP 

Caspr2 

CCL-2   

c-MYC  

CNS 

CSF 

CTD 

CXCR4 

DAPT  

DCX+  

DNA 

EMX1  

E/I  

Fc 

FGF2  

FGF8 

FITC 

FoxA2   

GABA 

GABAAR 

GABABR 

GRAS 

HLA  

Ig 

IgG 

IL-1β  

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  

Antigen Presenting Cells  

Apolipoprotein E  

Autism Spectrum Disorders  

Blood Brain Barrier  

B Cell Receptor  

Bone Morphogenic Protein       

Anti-Contactin-Associated Protein-like 2  

CC-chemokine Ligand  

MYC Proto-oncogene 

Central Nervous System     

Cerebrospinal Fluid    

Carboxy-Terminal Domain   

C-X-C Chemokine Receptor Type 4              

N-[N-3,5-Difluorophenacetyl-L-alanyl]-S-phenylglycine t-butyl ester 

Doublecortin         

Deoxyribonucleic Acid         

Empty Spiracles Homeobox 1       

Excitation/Inhibition         

Fragment Crystallisable          

Fibroblast Growth Factor 2      

Fibroblast Growth Factor 8       

Fluorescein Isothiocyanate      

Forkhead Box Protein A2             

γ-Aminobutyric Acid         

GABA Type A Receptor      

GABA Type B Receptor  

Göttingen Research Association for Schizophrenia  

Human Leukocyte Antigen  

Immunoglobulins  

Immunoglobulin G  

Interleukin-1β  
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IL-17A  

IPS 

KA 

KLF4 

LBD 

LIN28 

LIM1  

MEP 

mGluR  

MHC 

MK-801  

NFIA 

NMDA 

NMDAR 

NMDAR-AB  

NTD 

OTX1 

OCT4 

PANSS 

PAUSS 

PAX6 

qPCR 

RNA 

SDF-1  

SeV 

SSEA4  

SOX2 

TCR 

TGF-β  

TLR4 

TMD 

TMS 

TNF-α  

Interleukin-17A  

Induced Pluripotent Stem Cell  

Kainate  

Kruppel-Like Factor 4  

Ligand-Binding Domain  

Zinc Finger CCHC Domain-containing Protein 1  

LIM homeobox 1       

Motor Evoked Potentials  

Metabotropic Glutamate Receptors  

Histocompatibility Complex  

Dizocilpine 

Nuclear Factor I A  

N-methyl-D-aspartate  

NMDA Receptors  

NMDA Receptors Autoantibodies  

Amino-Terminal Domain  

Orthodenticle Homeobox 1  

Octamer-binding Transcription Factor 4  

Positive and Negative Syndrome Scale  

PANSS Autism Severity Score  

Paired Box 6  

Quantitative Real Time Polymerase Chain Reaction  

Ribonucleic Acid  

Stromal Cell-derived Factor 1  

Sendai Virus 

Stage-Specific Embryonic Antigen-4  

Sex Determining Region Y-box 2  

T Cell Receptors  

Transforming Growth Factor β  

Toll-like Receptor 4  

Transmembrane Domain  

Transcranial Magnetic Stimulation  

Tumour Necrosis Factor α        
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