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Abstract

We estimate lexical Concreteness for millions of words
across 77 languages. Using a simple regression framework,
we combine vector-based models of lexical semantics with
experimental norms of Concreteness in English and Dutch.
By applying techniques to align vector-based semantics across
distinct languages, we compute and release Concreteness esti-
mates at scale in numerous languages for which experimental
norms are not currently available. This paper lays out the
technique and its efficacy. Although this is a difficult dataset
to evaluate immediately, Concreteness estimates computed
from English correlate with Dutch experimental norms at ρ

= .75 in the vocabulary at large, increasing to ρ = .8 among
Nouns. Our predictions also recapitulate attested relationships
with word frequency. The approach we describe can be readily
applied to numerous lexical measures beyond Concreteness.

Keywords: word2vec; Concreteness; multilingual; skipgram;
norms

Introduction
What does a chocolate cake have in common with deodor-
ant, and with jumping? Each of these words is, according to
human raters, highly Concrete in the sense that these words
represent phenomena that can be readily pointed to or en-
acted (Brysbaert, Warriner, & Kuperman, 2014). Spirtuality,
on the other hand, like inwardness and fun are all abstract
words the meanings of which are derived largely from lan-
guage (Brysbaert, Warriner, & Kuperman, 2014; Brysbaert,
Stevens, De Deyne, Voorspoels, & Storms, 2014). This di-
mension of Concreteness turns out to be one of the princi-
pal organizing dimensions of natural language vocabularies
(Vankrunkelsven, Verheyen, De Deyne, & Storms, 2015).

Lexical norms represent normative judgments of the char-
acter of a word along an affective (e.g. emotional arousal), se-
mantic (e.g. Concreteness), or social (e.g. usage frequency)
dimension of interest. Analogous sets of lexical norms ex-
ist for a growing range of constructs: Valence, Arousal, and
Dominance have been heavily studied (Warriner, Kuperman,
& Brysbaert, 2013; Hollis, Westbury, & Lefsrud, 2017; Rec-
chia & Louwerse, 2015a), for example, while more recent
norm sets characterise constructs like Humour (Engelthaler
& Hills, 2017), Iconicity (Winter, Perlman, Perry, & Lupyan,
2017), and Aversion (Thibodeau, 2016). Lexical norms sup-
port numerous research streams in the cognitive (e.g. (Larsen,
Mercer, & Balota, 2006; Võ et al., 2009; Lodge & Taber,
2005; Kousta, Vigliocco, Vinson, Andrews, & Del Campo,
2011)) and computational (e.g. (Staiano & Guerini, 2014;
Esuli & Sebastiani, 2007)) sciences, but can be resource-
intensive to collect experimentally (Hollis et al., 2017; Man-
dera, Keuleers, & Brysbaert, 2015), and are generally re-

stricted to just one or several languages. Are there computa-
tional procedures that allow us to generalise experimental re-
sults beyond the relatively small vocabularies they often char-
acterise? A number of researchers have begun pursuing this
possibility, with promising results (Bestgen & Vincze, 2012;
Hollis et al., 2017; Mandera et al., 2015; Recchia & Louw-
erse, 2015b, 2015a; Turney & Littman, 2003; Vankrunk-
elsven et al., 2015; Westbury et al., 2013; Bestgen, 2008;
Feng, Cai, Crossley, & McNamara, 2011; Turney & Littman,
2002). Mandera et al. (2015) provides a recent overview and
discussion of these techniques and their merits.

So far, this endeavor has largely focused on generalisation
of experimental norms to larger vocabularies within a sin-
gle language, such that the goal has been to incrementally
increase predictive accuracy (and to evaluate alternative ap-
proaches to judging accuracy) on held-out experimental data
with improved inferential techniques. These advances are re-
viewed in the next section. In this paper, we extend this enter-
prise to generalisation across languages. We show how it is
possible to swap lexical norms between languages without the
need to translate an entire vocabulary. This extension is made
possible by the availability of semantic embeddings models in
languages beyond English, and of techniques to align distinct
embeddings spaces by translating a relatively small subset of
their vocabularies. We combine these data and techniques
with a variant of the most recent and powerful approach to
norm-generalisation within languages. Doing so allows us
to estimate lexical Concreteness in 77 languages. Although
Concreteness is our focus, these relatively simple techniques
are not limited to any particular lexical norm. As a result, we
hope that the present work can function not only as a first-pass
at estimating Concreteness cross-linguistically, but also as a
demonstration of a technique that other researchers can ap-
ply to norm sets beyond Concreteness. All of our results and
Python code to generate these and new predictions are availi-
ble at github.com/billdthompson/cogsci-auto-norm.

Previous Approaches to Norm Generalisation
In principle, estimating lexical norms for new vocabulary re-
quires three ingredients: 1) a dataset of experimentally ob-
tained lexical norms; 2) a machine-readable representation
of relationships between words (this resource must cover at
least some of the words that have been normed experimen-
tally, plus a further set of words that have not been normed
experimentally); and 3) an inferential procedure that facili-
tates norm prediction on the basis of 1) and 2). Thorough
reviews of existing approaches to this task can be found in
e.g. (Mandera et al., 2015; Hollis et al., 2017). Our method
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also has close parallells in the computational linguistics liter-
ature, where norms of abstraction and imageability have been
estimated via similar procedures and deployed in service of
methaphor-detection accross langauges (Tsvetkov, Boytsov,
Gershman, Nyberg, & Dyer, 2014)1.

Corpora-based Approaches
Early approaches (Esuli & Sebastiani, 2007; Kim & Hovy,
2004) relied on linguistic resources such as WordNet (Miller,
1995), extrapolating norms to new words via synonymy re-
lationships with already normed words. These approaches
have been largely superseded by methods that make use of
larger-scale text corpora (Turney & Littman, 2003; Bestgen,
2008; Bestgen & Vincze, 2012; Westbury et al., 2013; Rec-
chia & Louwerse, 2015b), exploiting techniques such as La-
tent Semantic Analysis (LSA) (Deerwester, Dumais, Furnas,
Landauer, & Harshman, 1990), the Hyperspace Analogue to
Language model (HAL) (Lund & Burgess, 1996), and the
High Dimensional Explorer model (HiDEx) (Shaoul & West-
bury, 2010, 2006) to estimate word similarities. Similarities
derived from these models can then be used to bootstrap pre-
diction of norms for new words, as a function of similarity to
already-normed words (and sometimes of additional lexical
properties too (Feng et al., 2011; Mandera et al., 2015)).

Recent Approaches
Mandera et al. (2015) provides perhaps the most systematic
comparison between existing approaches. These authors con-
sider four models from which relationships between words
can be constructed: LSA (Deerwester et al., 1990), HAL
(Lund & Burgess, 1996), topic modeling (Blei, Ng, & Jor-
dan, 2003), and the recent Skipgram vector-embedding model
(Mikolov, Chen, Corrado, & Dean, 2013). Two techniques
for norm-generalisation were tested on each of these models:
the k-nearest neighbors algorithm (Cover & Hart, 1967), and
a random forests ensemble (Breiman, 2001). These results
show that the best performing procedure is a combination of
the Skipgram vector-embeddings model and a variant of the
k-nearest neighbor algorithm.

Most recently, Hollis et al. (2017) extended the results from
Mandera et al. (2015) by showing that the Skipgram based
model performs even better when combined with a step-wise
regression algorithm for inference. At the time of writing,
Hollis et al. (2017)’s results represent the state of the art.
By regressing experimental norms onto Skipgram-trained se-
mantic vectors, and using the inferred regression coefficients
to predict synthetic norms for newly observed vectors, Hollis
and coleagues are able to make highly accurate predictions
for Concreteness, arousal, and valence, among other norms
(as established through cross-validation on held-out experi-
mentally normed words). Among these norm sets, estimated
norms of Concreteness in particular gain some of the highest
correlations with held-out experimental data, on the order of
ρ = .86. There has been some discussion of the bias imposed

1We thank reviewer 3 for directing us to this literature.

by this procedure. In particular, it has been noted that this
procedure makes disproportionately more errors towards the
extremes of human judgments (Hollis et al., 2017; Mandera
et al., 2015). It has also been suggested that global correlation
with human judgments alone, in papering over biases in es-
timation such as this, can profitably be accompanied by tests
of agreement with independent lexical properties.

Generalising Across Languages
The techniques outlined in the previous section show how it is
possible to take a set of experimental norms, a computational
models of semantics, and learn a mapping between these re-
sources such that if the latter covers a larger set of words than
the former, predictions can be made that exceed experimental
vocabularies. In principle, the extension we outline amounts
to observing that if the computational model of lexical se-
mantics can include vocabulary from an additional language,
then this same procedure can be used to estimate norms in
the new language as well. Our approach in this paper should
be understood as focusing on increasing the scale and appli-
cability of these techniques, rather than on improving their
accuracy.

We demonstrate our imputation procedure on Concreteness
norms. Among lexical norm sets, Concreteness norms exist
for an impresive number of words and have been colleceted in
the same manner in two languages: English and Dutch. This
facilitates cross-linguistic validation for at least this one case.
Moreover, Concreteness is proving to be one of the principal
organizing dimensions of vocabularies.

Methods
Training a Regression Model on Semantic Vectors
Suppose we have a set of empirically obtained point estimates
(e.g. mean ratings) yφ = (yφ

1, . . . ,y
φ

k) on a dimension of inter-
est φ (e.g. Concreteness) for a vocabulary v = (v1, . . . ,vk)

of size k, such that yφ

i is the experimental norm for vocabu-
lary item vi, for i = 1, . . . ,k. We obtain semantic embeddings
~x = (x1, . . . ,xk) for each of these vocabulary items, such that
xi is the d-dimensional semantic vector for vocabulary item
vi. We train a simple regression model

yφ

i = xi ·βφ + εi (1)

that relates yφ and ~x through a noisy linear transforma-
tion (εi is isotropic Gaussian noise). After estimating β̂φ =

(β̂
φ

1, . . . , β̂
φ

d), we can generate predictions, or synthetic norm
estimates along the dimension φ, with

zφ =~x · β̂φ . (2)

To extend these predictions to new words, we simply perform
this transformations on a new set of word embeddings~x∗.

Aligning Semantic Spaces
To make predictions about words in additional languages, we
must be able to align embeddings vectors from multiple lan-
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guages into the same semantic space, such that ~x∗ is multi-
lingual. Typically, vector embeddings models only contain
words in a single language. However, (Smith, Turban, Ham-
blin, & Hammerla, 2017) recently demonstrated that vector
embeddings models for different languages can be aligned
into a single underlying semantic space whenever it is pos-
sible to identify a subset of vocabulary items that represent
equivelant points in space (translation equivalents). This gen-
eral idea has recieved attention in the computational litera-
ture: see e.g. Ruder (2017).

Formally the procedure is as follows (see Smith et al.
(2017) for full details). Let ~x1 be a set of semantic vectors
in English, for example, and~x2 be the set of semantic vectors
for translation equivalents in Dutch (in the same order, so x2

i
is the vector for the Dutch translation of the English word
with vector x1

i ). If m is the matrix product of~x1 and~x2, and

u ·σ ·v = m (3)

represents a singular value decomposition of m, then a trans-
form to align the two semantic spaces can be obtained with
t = u · v. Alignment is achieved through the product of any
set of vectors in Dutch (or whichever language the transform
has been trained on) and t. This simple procedure allows us
to align the semantics of any two languages for which we are
able to obtain equivalent-dimensional word embeddings and
a small set of translation equivalents. Following Smith et al.
(2017), we take English to be the target language, and align
other languages into this semantic space. After performing
this transformation procedure on the word vectors for a new
language, we can apply the generalisation procedure outlined
in the previous section to word vectors in the new language
(because~x∗ now contains word vectors for words in the new
language), even though the training set of vectors ~x did not
contain experimentally normed words in this language.

Embeddings Models
Our semantic models are based on the Facebook Artificial
Intelligence Research (FAIR) release of embedding models.
These models were each trained on Wikipedia data in the rel-
evant language using the Skipgram technique. The quality of
these models varies by language, reflecting in large part the
size and variety of the available Wikipedia data for a given
language. These are the resources we use as semantic mod-
els. We compute Concreteness estimates for a subset of these
languages (77) based on the availability of comparable align-
ment transforms.

Alignment Transforms
Smith et al. (2017) recently released pre-computed alignment
transforms t which position the vocabularies of a large subset
of the FAIR languages into the same semantic space as
the English model. These transforms were computed using
Google-translate-obtained translations into English of the
10,000 most frequent lexical items in a given language. We
tested alignment transforms that we computed ourselves

in a handful of these languages using alternative, smaller
sets of translation equivalents and found these to be equally
effective in the main, but here we use the transforms released
by Smith et al. (2017) throughout for consistency across
languages, and because they are easily accessible.

Results
Concreteness in English and Dutch
Overall Agreement Applying our procedure2 to Concrete-
ness norms in English yields a correlation with English norms
of ρ = .86, training on the full dataset of 33,286 (of 40,000)
words for which we had both empirically collected data
(Brysbaert, Warriner, & Kuperman, 2014) and we could ob-
tain semantic vectors. This naturally aligns very closely with
previously reported figures on related within-language pre-
diction of English Concreteness (Hollis et al., 2017). Our
predictions recapitulate the earlier finding that this procedure
is biased to underestimate the extremes of human judgments
(Mandera et al., 2015; Hollis et al., 2017). We also tested
the same within-language procedure on Dutch experimental
norms of Concreteness. We have not seen this case in the
literature previously. We obtained Dutch vectors for 27772
(of 30,000) experimentally normed (Brysbaert, Stevens, et al.,
2014) words. The correlation in this case is on the same order
as predicting English: ρ = .8, and also demonstrates errors
at the range extremes (this is inherent to the assumption of
linearity in this particular technique). Most importantly, we
trained the model on Concreteness norms in English, and ap-
plied the cross-linguistic generalisation procedure to predict
Concreteness norms in Dutch. In this case, predictions corre-
late with Dutch norms at ρ = .76. Note also that in this case,
these test data include held-out datapoints – datapoints not
used to train the model - whereas in the within-language case,
the correlations we report are best-possible-performance cor-
relations (i.e. testing the model’s predictions against the data
on which it was trained). Given this distinction, and the fact
that these cross-linguistic predictions were generated from
experimental data collected among speakers of English, not
Dutch, we view a correlation of ρ = .76 as constituting im-
pressively high agreement.

Translation Equivelants & Lexical Properties In addi-
tion to these overall correlations, we explored the relationship
between our predictions and experimental norms among a set
of roughly 800 English-Dutch translation equivalents. We ob-
tained these translations from the NORTHEURALEX dataset
(Dellert & Jäger, 2017). This permits: 1) tests of language-
specific prediction accuracy and 2) tests of language specific
relationships with additional lexical properties. Figure 1 lays
out the relationships among these variables. In this figure,
each point represents a translation pair between English and
Dutch, color coded for part of speech (Noun, Verb, or Ad-

2After applying the procedure, we rescale predictions into the
legal range of the norms, i.e. 1 - 5 in the case of Concreteness.
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Figure 1: The relationships between experimental norms, estimated norms, and word frequency, across English and Dutch,
among word pairs known to be translation equivalents, broken down by word class (N = Nouns, A = Adjectives, V = verbs).
POS-specific Pearson correlation coefficients are given above each off-diagonal facet. Diagonal shows kernel density estimates.
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Language H L

Catalan mocador (4.90) elogiar (2.18)
Czech prkno (4.01) velice (1.55)
Danish spand (4.78) aldrig (1.56)
Dutch deksel (4.17) nooit (2.03)
English shoe (4.02) urge (2.70)
Finnish pussi (4.66) vahva (1.58)
French chaussure (4.60) sembler (2.89)
German backen (3.78) niemals (1.91)
Hungarian haj (4.68) nevez (2.15)
Italian coltello (4.51) lodare (2.44)
Polish torba (4.22) bliski (1.84)
Portuguese toalha (4.61) alheio (2.17)
Romanian os (3.22) ceai (1.61)
Spanish almohada (4.52) sensato (2.29)
Swedish ugn (4.14) aldrig (2.07)
Turkish kova (4.63) zor (1.88)

Table 1: Words with high (H) and low (L) estimated Con-
creteness in 16 languages.

jective). The properties we explore are (log) word frequency
(wf-log-zipf in figure 1) and part of speech (pos in figure 1).
Although the figure contains numerous subtleties, here are a
few key insights. First, Dutch Concreteness estimates (made
on the basis of English norms) predict Dutch norms better
than do estimates of English Concreteness (except among ad-
jectives). The same is true in the other direction: estimates
for English predict English norms better than do estimates
for Dutch. These findings show the language-specificity of
our prediction. Second, in both English and Dutch, Nouns
tend to be more concrete than Verbs and Adjectives. This is
true in our predicted ratings as well. Third, in both English
and Dutch, more frequent Nouns and Verbs are less concrete.
In Dutch, this also holds true for Adjectives, but the pattern
is absent among English adjectives. Our predictions recapit-
ulate these results as well.

Concreteness in 77 Languages

Although similar validation of imputed Concreteness values
for all languages is, at this point, not possible, we release
estimates of Concreteness in 77 languages. We expect the
quality to vary by language. Since the model was trained
on English norms, and the vector semantics aligned into En-
glish space, we expect the quality of the estimates to be bet-
ter for languages more similar to English. Moreover, the vo-
cabularies over which our estimates are computed are drawn
from the Skipgram model vocabularies. Being scraped from
the Internet, these vocabularies do contain errors. Neverthe-
less, we release these initial estimates in the hope that others
with access to native speakers of these languages can estab-
lish some benchmarks, or explore the data computationally.
Table 1 shows a sample of the most and least concrete words,
as judged by our model in 16 languages.

Discussion & Conclusion
We showed how it is possible to swap lexical norms between
languages. Our technique integrates existing techniques for
estimating a relationship between distributional semantics
models and experimental lexical norms, and using this re-
lationship to estimate qualities of new words. Our princi-
pal contribution is to show how, when combined with meth-
ods for aligning vector spaces among distinct languages, and
with contemporary embeddings models of distributional se-
mantics in languages other than English, these techniques can
be used to characterise vocabularies in new languages with-
out the need for exhaustive translation. Though our valida-
tion capabilities are currently very limited, we showed that
our predictions correlate with experimental observations in
at least one other language, Dutch, and that we can recapit-
ulate empirically observed relationships between Concrete-
ness, word frequency, and word class, from our imputed val-
ues. We aim to test these predictions experimentally in future
work, and hope that other researchers with access to speakers
of these languages will be able to do the same. More gen-
erally, we hope that the technique laid out here may be of
use to researchers beyond the example of Concreteness with
which it has been illustrated. We see promise for this line of
work in new methods for aligning vector spaces, and in im-
proved computational procedures for distilling lexical norms
into computational models.
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