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We theoretically investigate the role of intraband transitions in laser-induced carrier generation for different
photon energy regimes: (i) strongly off resonant, (ii) multiphoton resonant, and (iii) resonant conditions. Based
on the analysis for the strongly off resonant and multiphoton resonant cases, we find that intraband transitions
strongly enhance photocarrier generation in both multiphoton absorption and tunneling excitation regimes, and
thus, they are indispensable for describing the nonlinear photocarrier generation processes. Furthermore, we
find that intraband transitions enhance photocarrier generation even in the resonant condition, opening additional
multiphoton excitation channels once the laser irradiation becomes sufficiently strong. The above findings suggest
a potential for efficient control of photocarrier generation via multicolor laser pulses through optimization of the
contributions from intraband transitions.
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I. INTRODUCTION

Thanks to the technological advances in the generation
of ultrashort laser pulses over the past few decades, time-
domain electron dynamics in atoms and molecules has become
accessible [1–5]. Recently, the time-domain observation tech-
nique was further applied to solid-state materials, and laser-
induced ultrafast electron dynamics in solids was intensively
investigated [6–8]. One of the most characteristic features of
solid-state systems, compared with atoms and molecules, is the
formation of continuum energy bands due to the large number
of electrons in the systems. The continuum energy bands enable
transitions within each band in addition to transitions among
different bands. The first one is called intraband transition,
while the latter one is called interband transition. The impor-
tance of intraband transitions under intense laser fields has been
extensively discussed in the context of high-order-harmonic
generation from solids [9–13]. However, their role is still un-
clear and under debate. Furthermore, it has been demonstrated
that intraband processes play a significant role in the ultrafast
modification of optical properties of dielectrics under intense
laser fields in various conditions [7,14]. Recently, the pivotal
role of intraband transitions in photocarrier generation of GaAs
was pointed out by Schlaepfer et al. [15].

Photocarrier generation is one of the most fundamental
processes in laser-solid interaction as it triggers various phe-
nomena such as band-gap renormalization [16,17], formation
of electron-hole plasmas [18], and laser ablation [19,20]. The
theoretical description of photocarrier generation under strong
fields has been studied for a long time [21–25]. One of the
most successful approaches is the Keldysh theory [21], which
finds application in many fields [26–28]. The Keldysh theory
and its modifications properly capture the effect of intraband

transitions and succeed in describing the photocarrier injection
rate fairly well. However, the role of intraband transitions in
the photocarrier generation process has still remained unclear.
Therefore, further understanding of intraband transitions is
important for finding a way to enhance or suppress photocarrier
generation under rather complex conditions such as compli-
cated materials and multicolor laser fields, which are out of
the scope of the Keldysh theory. Recently, the role of intraband
transitions in the strong-field resonant regime was investigated,
and the strong coupling between Rabi flopping and intraband
transitions was predicted for few-cycle pulses [29].

In this work, we theoretically investigate the role of intra-
band transitions in photocarrier generation with a parabolic
two-band model, which is the simplest model to describe
semiconductors and insulators. The model has been suc-
cessfully applied to investigate static as well as dynamical
optical properties [30–32]. To explore the carrier-generation
processes, we calculate the number of laser-induced carriers
with the two-band model in three photon-energy regimes:
(i) strongly off resonant, (ii) multiphoton resonant, and (iii)
resonant excitation. In each regime, we analyze the effects of
intraband transitions on photocarrier generation by artificially
suppressing intraband transitions in the two-band model. As a
result of the analysis, the impact of intraband transitions will
be isolated for each regime.

This paper is organized as follows: In Sec. II we first
describe the parabolic two-band model, which will be used
in our analysis. Then, we demonstrate the accuracy of the
model by comparing it with Kane’s band model [33] as well
as ab initio simulations. In Sec. III we investigate the role of
intraband transitions in photocarrier generation, computing the
electron dynamics under laser fields with the two-band model.
Finally, our findings are summarized in Sec. IV.
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II. THEORETICAL MODEL

In this section, we briefly introduce the parabolic two-band
model that will be used in this work. Then, we demonstrate
the accuracy of the model for the nonlinear electron dynamics
under strong fields by comparing it with the nonparabolic
Kane’s band model [33] and ab initio calculations based on
the time-dependent density functional theory (TDDFT) [34].

A. Parabolic two-band model

To construct the parabolic two-band model, we start from
the following one-body nonrelativistic Schrödinger equation
in the dipole approximation:

ih̄
∂

∂t
ub�k(�r,t) =

[
1

2me

{
�p + h̄�k + e

c
�A(t)

}2
+ v(�r)

]
ub�k(�r,t)

= ĥ �K(t)ub�k(�r,t), (1)

where me is the electron mass, ub�k(�r,t) is a time-dependent
Bloch state, and v(�r) is a one-body potential that has the same
periodicity as the crystal. Here, b denotes a band index, and �k
denotes the Bloch wave number. For the two-band model, we
do not explicitly define an analytical form of the one-body
potential v(�r). Instead, we will directly define eigenvalues
and matrix elements of the eigenstates of the Hamiltonian
in Eq. (1). We note that the crystal momentum is shifted
by the vector potential as �K(t) = �k + e �A(t)/h̄c based on the
acceleration theorem.

Then, we introduce the Houston state [35,36] as

uH

b�k(�r,t) = exp

[
− i

h̄

∫ t

dt ′εb �K(t ′)

]
uS

b �K(t)
(�r), (2)

where εb �K(t) and uS

b �K(t)
(�r) are an eigenvalue and the eigenstate

of the instantaneous Hamiltonian ĥ �K(t), respectively;

ĥ �K(t)u
S

b �K(t)
(�r) = εb �K(t)u

S

b �K(t)
(�r). (3)

To construct a two-band model, we assume that the wave
function at each k point can be expanded by only two Houston
states: one representing a valence and the other representing a
conduction state:

u�k(�r,t) = cv�k(t)uH

v�k(�r,t) + cc�k(t)uH

c�k(�r,t). (4)

Inserting Eq. (4) into Eq. (1), we can derive an equation of
motion for the coefficients cv�k(t) and cc�k(t),

ih̄
d

dt

(
cv�k(t)
cc�k(t)

)
=

(
0 hvc,�k(t)

h∗
vc,�k(t) 0

)(
cv�k(t)
cc�k(t)

)
, (5)

where the off-diagonal matrix element is given by

hvc,�k(t) = − i �pvc, �K(t) · �E(t)

εv, �K(t) − εc, �K(t)

eh̄

m
e

1
ih̄

∫ t
dt ′{εc, �K(t ′)−εv, �K(t ′)} (6)

and

�pvc, �K(t) =
∫

�

d�ruS,∗
v �K(t)

(�r) �puS

c �K(t)
(�r), (7)

where � is the volume of the unit cell. Note that Eq. (5) is
nothing but the Houston state expansion of the Schrödinger
equation [35,36] with only two Houston states.

To further simplify the model, we apply two approxima-
tions: (i) a parabolic band approximation and (ii) a uniform
matrix-element approximation. The parabolic band approxi-
mation allows us to describe the electronic structure by the
following quadratic forms:

εv,�k = − h̄2�k2

2mv

, (8)

εc,�k = εg + h̄2�k2

2mc

, (9)

where εg is the band gap and mv and mc are the effective
masses for valence and conduction bands, respectively. The
uniform matrix-element approximation allows us to ignore the
k dependence of the matrix element,

�pvc, �K(t) = �pvc. (10)

Note that the uniformity of the matrix elements has been
confirmed by ab initio simulations for several semiconduc-
tors [37].

The derived parabolic two-band model is the simplest model
for semiconductors and insulators. The accuracy of this model
in the context of carrier generation under strong fields will be
evaluated in the following section.

B. Comparison with other models

To demonstrate the accuracy of the parabolic two-band
model, we compare it with the nonparabolic Kane’s band
model [33] and first-principles calculations based on the
TDDFT.

In this work, we consider the laser-induced electronic ex-
citation in α-quartz. To describe α-quartz, we set the effective
mass mr = 1/(m−1

v + m−1
c ) to 0.4me and the band gap εg to

9.0 eV according to Ref. [38]. The transition momentum matrix
pvc is evaluated by Kane’s formula [39],

pvc = 1

2

√
εg

mr

. (11)

The laser-induced electronic excitation energy Eex for the two-
band model is given by

Eex = 2nc

(2π )3

∫
d�k(εc�k − εv�k)|cc�k(tf )|2, (12)

where tf is the time at which the laser irradiation ends. Here,
we introduced a dimensionless factor nc so that the two-band
model reproduces the first-principles calculation (see Fig. 1).
Since the electronic structure of the material is approximated
by only the two bands, the effective electron density that
contributes to the response may not be well described. Thus,
the factor nc can be understood as a correction for the effective
electron density. In this work, we set nc to 20.

For the nonparabolic band model, we employ the following
Kane’s band [33] instead of the parabolic band:

εc�k − εv�k = εg

(
1 + h̄2k2

mrεg

)1/2

. (13)

We note that the Keldysh formula is derived based on this
Kane’s band model [21].
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FIG. 1. Laser-induced electronic excitation energy in α-quartz
after the laser irradiation. The dots represent the results of the TDDFT
calculation (red dots and solid line), the parabolic two-band model
(green dots and solid line), and the nonparabolic two-band model
(blue dots and dashed line).

For the ab initio modeling, we employ real-time real-space
TDDFT calculations with a norm-conserving pseudopoten-
tial [40]. For the exchange-correlation potentials, the Becke-
Johnson exchange [41] and Perdew-Wang correlation [42]
are employed. For practical simulations, we employed a
TDDFT code, the ab initio real-time electron dynamics sim-
ulator [43,44]. Technical details of the real-time, real-space
TDDFT calculations are explained elsewhere [45,46]. Here,
we describe only the numerical parameters for the TDDFT
calculation in this work: we employ a rectangular unit cell
which contains 6 silicon atoms and 12 oxygen atoms. The unit
cell is discretized into a Cartesian 20 × 36 × 50 grid. For the
Brillouin zone sampling, we employ 43 k points.

In this work, the applied electric field is described by the
following vector potential:

�A(t) = −�ec

E0

ω
sin4

(
π

t − T
2

T

)
sin

[
ω

(
t − T

2

)]
(14)

in the domain 0 < t < T and zero outside of it. Here, �ec is
the unit vector for the c axis of α-quartz, E0 is the maximum
electric field strength, T is the full pulse duration, and ω is the
mean frequency.

Here, we set the mean frequency ω to 1.55 eV/h̄ and the
full duration T to 30 fs. We note that the corresponding full
width at half maximum duration of the laser intensity profile
is about 7.8 fs. By changing the maximum field strength E0,
we compute the laser-induced electronic excitation energy.

Figure 1 shows the laser-induced electronic excitation
energy calculated with TDDFT (red), the parabolic two-band
model (green), and the nonparabolic two-band model (blue).
The black horizontal line indicates the cohesive energy of
α-quartz, 6.4 eV/atom [47], which is regarded as a reference
for the laser-ablation threshold [48]. We can see that the
parabolic two-band model provides almost the same result
as the nonparabolic Kane’s band model. This fact indicates
that the anharmonicity of the band structure does not have

ygren
E

Bloch wave-vector,

Conduction band

Valence band

Interband transition

Intraband transition

Intraband transition

FIG. 2. Schematic picture of intraband transitions (red) and inter-
band transitions (blue) in the parabolic two-band model.

significant effects on photocarrier generation in the present
conditions.

Furthermore, we emphasize that both the parabolic and
nonparabolic two-band models show reasonable agreement
with the first-principles results for the full intensity range stud-
ied here. Therefore, the accuracy of this simplified parabolic
two-band model for the analysis of the laser-induced electronic
excitation is demonstrated. Note that the real-time, real-space
TDDFT calculation adequately captures the full band struc-
ture of solids and well describes the motion of electrons
in the Brillouin zone, including Bloch oscillations. Therefore,
the agreement between the two-band model and the TDDFT
calculation indicates a low significance of the Bloch oscillation
for photocarrier generation in the present regime.

We note that, while the parabolic two-band model shows
nice agreement with the TDDFT calculation in the strongly off
resonant condition, it may show deviations in other conditions
due to a multiband effect. Although the multiband effect is
important to describe realistic systems, we completely omit
it in the present work in order to clearly understand the role
of intraband transitions. The multiband effect and its coupling
with intraband transitions will be investigated in future work
based on this work.

III. EFFECTS OF INTRABAND TRANSITIONS

In this section, we investigate the impact of intraband
transitions on photocarrier generation, employing the parabolic
two-band model described in the previous section. Figure 2
shows a schematic picture of intraband and interband transi-
tions; intraband transitions correspond to the horizontal motion
in the k space, while interband transitions correspond to the
vertical transition.

In the two-band model, intraband transitions are described
by the shift of the crystal momentum �K(t) in the instantaneous
eigenstates in Eq. (4), while interband transitions are described
by transitions between the valence and the conduction Houston
states via the off-diagonal elements of the Hamiltonian matrix.
Therefore, we can omit intraband transitions from the model
by neglecting the crystal momentum shift due to the vector
potential: �K(t) = �k + e �A(t)/h̄c → �k. In order to investigate
the impact of intraband transitions, we compare the parabolic
two-band model with (i) both intra- and interband transitions
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FIG. 3. Number of excited electron-hole pairs after the laser
irradiation in the strongly off resonant regime, computed using
Eq. (16). The dots represent the result of the full model (red dots
and solid line), and the pure interband model (blue dots and dashed
line). A polynomial fitting by aE2

0 + bE14
0 is also shown as a green

short-dashed line.

enabled and (ii) only interband transitions. We call the first one
the full model and the latter the pure interband model. A similar
analysis has been done by Golde et al. for high-order-harmonic
generation in a semiconductor using the semiconductor Bloch
equations [49].

A. Strongly off resonant condition: h̄ω/εg ∼ 0.17

First, we investigate the effect of intraband transitions in the
strongly off resonant regime, where the mean photon energy,
h̄ω = 1.55 eV, is much smaller than the band gap, εg = 9 eV.
The full pulse duration is set to T = 30 fs. The corresponding
bandwidth of the laser pulse is about 0.5 eV. It is well known
that photocarrier generation in such a strongly off resonant
regime is well described by Keldysh’s formula [21] with the
so-called Keldysh parameter,

γ = ω
√

mrεg

eE0
= 1

2

√
εg

Up

, (15)

where Up is the ponderomotive energy, Up = e2E2
0/4mrω

2.
The Keldysh parameter is commonly used to determine the
excitation regime [50]: a large value (γ � 1) indicates that
multiphoton absorption dominates the excitation mechanism,
while a small value (γ < 0.5) indicates that the tunnel mecha-
nism dominates. We may expect that intraband transitions play
a significant role in photocarrier generation in the strongly off
resonant regime since the ponderomotive energy Up, which
originates from the quiver motion of the crystal momentum
�K(t) due to intraband transitions, is linked to the excitation

rate through γ in the Keldysh theory [21].
Figure 3 shows the number of excited electrons after laser

irradiation, computed by the following formula:

nex = 2nc

(2π )3

∫
d�k|cc�k(tf )|2. (16)

This expression corresponds to the population in the conduc-
tion band computed by the projection onto the conduction
Houston states uH

c�k(�r,t).
In Fig. 3, the red points show the result of the full model,

and the blue points show that of the pure interband model. As
expected, we see that photocarrier generation is significantly
affected by the omission of intraband transitions in the whole
investigated intensity region, and as a consequence, photocar-
rier generation is strongly suppressed in the pure interband
case.

Here, we find that the number of photoexcited carriers of the
pure interband model can be well described by a simple polyno-
mial as a function of the field strength nex(E0) = αE2

0 + βE14
0

even in the high-intensity region. The first term corresponds to
photocarrier generation by single-photon absorption due to the
high-energy tail of the pulse spectrum, while the second term
corresponds to the absorption of seven photons. Note that, since
even-number multiphoton absorption processes are forbidden
in the pure interband model, the seven-photon absorption
process is the lowest-order nonlinear excitation process even
though the energy of six photons exceeds the gap.

This fact indicates that photocarrier generation without
intraband transitions is dominated by the multiphoton ab-
sorption process even at high intensities, where the Keldysh
parameter γ is of the order of 1 or less. Note that the Keldysh
parameter γ becomes 1 when the maximum field E0 is about
1010 V/m in the present conditions (see the secondary x

axis in Fig. 3). We can understand the predominance of the
multiphoton absorption process in the pure interband model
based on the ponderomotive energy. As mentioned above, the
ponderomotive energy originates from the quiver motion due to
intraband motion. Thus, the omission of intraband transitions
corresponds to setting the ponderomotive energy Up to zero,
and the Keldysh parameter γ becomes infinity. Therefore, we
expect the excitation process to be dominated by multiphoton
absorption once intraband transitions are neglected.

To obtain further insight into the role of intraband tran-
sitions, we calculate the energy distribution of electron-hole
(e-h) pairs at each e-h excitation energy ne−h(Ee−h). Since we
consider the two-band model in this work, the distribution of
e-h pairs at each e-h excitation energy Ee−h can be evaluated
by

ne−h(Ee−h) = 2nc

(2π )3

∫
d�k|cc�k(tf )|2δ(εc�k − εv�k − Ee−h).

(17)

Figure 4 shows the distribution of e-h pairs as a function
of the e-h energy after laser irradiation with a field strength
of E0 = 2.74 × 1010 V/m, which is marked with the black
dashed vertical line in Fig. 3. The red solid line shows the
result of the full model, while the blue dashed line shows that
of the pure interband model. We see that the e-h distribution
of the pure interband model shows a single peak. As discussed
above, the carrier injection in the pure interband model at
the present field strength is dominated by the seven-photon
absorption process. This is also reflected in the position of the
single peak of the pure interband model, which corresponds
to the energy of the seven absorbed photons (1.55 eV × 7 =
10.85 eV). In contrast, the e-h distribution of the full model
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FIG. 4. Distribution of photoinduced electron-hole pairs in the
strongly off resonant condition (h̄ω = 1.55 eV) with the field strength
of 2.74 × 1010 V/m. The results of the full model (red solid line) and
the pure interband model (blue dashed line) are shown.

shows multiple peaks that are distributed over a broad energy
range. Furthermore, we may see a plateau around 25–30 eV.
Such a multipeak structure with a plateau region can also
be found in above-threshold-ionization (ATI) photoelectron
spectra of atoms [51–53]. The plateau structure of the ATI
spectra is formed by the scattering of ionized electrons from
parent ions under laser fields [54]. This indicates that the
plateau structure in the e-h distribution of Fig. 4 is also formed
by some scattering process driven by the strong electric fields.

The cutoff energy of the plateau structure of the ATI
spectra and the high-order-harmonic generation from atoms
are well understood based on semiclassical models [54–56].
Recently, the semiclassical model for high-order-harmonic
generation was extended to solid-state systems [57]. Likewise,
constructing a classical analog to correctly understand the
plateau structure in Fig. 4 as well as to develop an intuitive
description of photocarrier injection under strong fields is
important. However, since a detailed analysis of the plateau
structure based on a semiclassical treatment is beyond the
scope of the present work, this aspect will be investigated in
future work.

We note that the detailed structure of the e-h distribu-
tion must be immediately smeared out by electron-electron,
electron-phonon, and electron-impurity scattering processes in
a realistic system. Therefore, it would be hard to experimen-
tally observe the e-h distribution shown in Fig. 4.

B. Multiphoton resonant condition: h̄ω/εg = 1/3

Next, we investigate the effect of intraband transitions in
the multiphoton resonant condition. For this purpose, we set
the mean photon energy of the laser pulse h̄ω to 3 eV, which is
identical to one third of the band gap εg . As a result, resonant
excitation is obtained by absorbing three photons. The full
pulse duration is set to T = 30 fs.

Figure 5 shows the injected carrier population as a function
of the laser field strength E0 in the three-photon resonant
condition. The sixth power of the field strength E6
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FIG. 5. Number of excited electron-hole pairs after the laser
irradiation in the three-photon resonant regime. The dots represent
the result of the full model (red dots and solid line) and the pure
interband model (blue dots and dashed line). A polynomial fitting by
aE6

0 is also shown as a green short-dashed line.

shown by a green short-dashed line. As seen from Fig. 5,
the population of both the full model and the pure interband
model is proportional to the sixth power of the field strength
in the weak-field region, indicating that photocarrier injection
is dominated by three-photon absorption. Although the three-
photon absorption process dominates the carrier injection
in both models, the full model shows an about 300 times
higher injected population than the pure interband model.
This fact means that intraband transitions strongly enhance
the multiphoton excitation process.

Since intraband transitions cannot directly inject any car-
riers by themselves, the enhancement can be understood as
photoassisted carrier injection via additional excitation paths
opened by intraband transitions. Note that if intraband tran-
sitions are induced by a static electric field and interband
transitions are induced by an optical field, carrier injection
by optical absorption corresponds to photoassisted tunneling,
which is also known as the Franz-Keldysh effect [58,59].

Figure 6 shows the distribution of e-h pairs after laser
irradiation with a field strength of E0 = 0.274 × 1010 V/m,
which is marked by the black dashed vertical line in Fig. 5.
The red solid line shows the result of the full model, while the
blue dashed line shows that of the pure interband model. As
seen from Fig. 6, the first peak at around 9 eV dominates the
total population in both models. This fact is consistent with
the above finding that the photocarrier injection is dominated
by the three-photon absorption process. Furthermore, the first
peak is strongly enhanced by intraband transitions. Therefore,
we can clearly conclude that intraband transitions strongly
assist the lowest-order multiphoton absorption process and
largely enhance photocarrier injection.

In Fig. 6, we see that intraband transitions induce additional
peaks in the higher-energy region. For the present field strength
E0 = 0.274 × 1010 V/m, contributions from these additional
peaks are rather small compared with the primary peak at
around 9 eV. However, once the field strength becomes large
enough and the corresponding Keldysh parameter becomes
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FIG. 6. Distribution of photoinduced electron-hole pairs in the
three-photon resonant condition with a field strength of 0.274 ×
1010 V/m. The results of the full model (red solid line) and the pure
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small enough, these additional peaks are important, as dis-
cussed in Sec. III A.

To obtain further insight into the carrier-injection enhance-
ment by intraband transitions, we analytically study photocar-
rier generation based on perturbation theory. For simplicity,
we consider the carrier injection only at the � point (�k = 0),
assuming that the laser pulse has a rectangular envelope with
duration T . Based on the third-order perturbation theory, the
injected population of the pure interband model is given by

n
pure−inter
� =

∣∣∣∣∣1

8

(
�pvc · �E0

εg

eh̄

m

)
15

16

1

h̄2ω
�ST

∣∣∣∣∣
2

, (18)

where �S is the cycle-averaged Stark shift induced by inter-
band transitions,

�S =
(

�pvc · �E0

εg

eh̄

m

)2
1

εg

. (19)

In the full model, intraband transitions open an additional
excitation path. The injected population via the additional path
can be evaluated by

nintra−assisted
� =

∣∣∣∣∣1

8

(
�pvc · �E0

εg

eh̄

m

)
1

h̄2ω
UpT

∣∣∣∣∣
2

. (20)

A detailed derivation of Eqs. (18) and (20) will be described
in Appendix A.

With the present parametrization, the injected carrier pop-
ulation via the additional path nintra−assisted

� is about 100 times
larger than that of the pure interband path npure−inter. This fact is
consistent with the above enhancement by intraband transitions
in the numerical simulations.

Comparing Eqs. (18) and (20), we see that the ratio of
the injected population via two different excitation paths
can be well approximated by the square of the ratio of the
ponderomotive energy and the Stark shift:

nintra−assisted
� /n

pure−inter
� ≈ |Up/�S |2. (21)
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FIG. 7. Number of excited electron-hole pairs after the laser
irradiation in the resonant regime. The dots represent the result of
the full model (red dots and solid line), and the pure interband model
(blue dots and dashed line). The square of the field strength, E2

0 , is
also shown as the green short-dashed line.

Since only the ponderomotive energy depends on the photon
energy of laser fields, Eq. (21) indicates that the additional
excitation path, which is opened by intraband transitions,
becomes significant in the strongly off resonant regime, where
the photon energy becomes small. Furthermore, in higher-
order nonlinear responses, the higher-order ratio (Up/�S)n is
expected to be a characteristic parameter instead of Eq. (21).
Therefore, once the ponderomotive energy becomes sub-
stantially large, the higher-order nonlinear responses can be
strongly suppressed by the omission of intraband transitions. In
fact, these expectations are consistent with the above findings
from the numerical simulations: the omission of intraband
transitions strongly suppresses photocarrier generation in the
off-resonant condition, as seen from Fig. 3. Moreover, the
higher-order multiphoton peaks are strongly suppressed by the
omission of intraband transitions, as seen from Figs. 4 and 6.

Combining the findings in this section with those in
Sec. III A, we can conclude that intraband transitions play
a crucial role in nonlinear photocarrier injection in both
multiphoton and tunneling regimes.

C. Resonant condition: h̄ω/εg = 1

Finally, we investigate the effect of intraband transitions
in the resonant case. For the sake of the investigation, we
set the mean photon energy of the laser pulse h̄ω to 9 eV,
which is identical to the band gap εg . Therefore, single-photon
absorption dominates the carrier generation in the weak-field
regime. The full pulse duration is set to T = 30 fs.

Figure 7 shows the carrier population as a function of
the laser field strength. We see that the result of the full
model coincides with that of the pure interband model in the
weak-field region. This fact means that intraband transitions
do not play any role in the weak-field resonant condition.
Around a field strength of 0.3 × 1010 V/m, the number of
excited electrons decreases as the intensity increases. This
feature indicates depopulation of excited electrons through
the onset of Rabi flopping. In the high-intensity region, the
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ω
ω

FIG. 8. Distribution of photoinduced electron-hole pairs in the
resonant condition. (a) The result of the full model and (b) that of the
pure interband model.

two models show different behaviors: While the population
of the pure interband model shows oscillations and does not
increase much, that of the full model monotonically increases.
The oscillating behavior in the pure interband model can be
explained by the population and depopulation dynamics of
the Rabi flopping. The monotonic increase in the full model
means that intraband transitions strongly enhance photocarrier
generation and overcome the depopulation mechanism of Rabi
flopping.

In order to elucidate the microscopic origin of the en-
hancement of carrier injection in the resonant condition, we
investigate the e-h pair distribution after the laser irradiation.
Figure 8 shows the e-h pair distribution as a function of
the e-h excitation energy Ee−h and the field strength E0.
Figure 8(a) shows the result of the full model, and Fig. 8(b)
shows that of the pure interband model. As seen from Fig. 8(b),
the e-h pairs are created at around the photon energy of
the laser field (Ee−h ∼ h̄ω) in the entire investigated field
strength range. Therefore, photocarrier injection is always
dominated by single-photon absorption in the pure interband
model. Furthermore, we may see that the population of e-h
pairs at around the photon energy, Ee−h ∼ h̄ω, in the pure
interband model shows an oscillating behavior with increasing
field strength E0. This oscillating behavior corresponds to the
oscillations observed in Fig. 7, and it originates from Rabi
flopping. In Fig. 8(a), a similar structure can be found at
the photon energy of the laser field, Ee−h = h̄ω. This fact
indicates that intraband transitions do not directly affect the
Rabi flopping dynamics and the single-photon absorption. We
see that intraband transitions induce additional large numbers
of e-h pairs at around Ee−h = 2h̄ω. This fact indicates that
intraband transitions open a multiphoton excitation channel
and strongly enhance the carrier injection once the field
strength becomes strong enough.

IV. SUMMARY

In this work, we investigated the role of intraband tran-
sitions in photocarrier generation in semiconductors and in-
sulators based on the parabolic two-band model. The accu-
racy of the model was demonstrated by comparing it with
the nonparabolic Kane’s band model and ab initio TDDFT
simulations.

We first studied the photocarrier generation under the off-
resonant condition, where the mean photon energy h̄ω is
much smaller than the band gap εg . We found that, in this
off-resonant regime, intraband transitions are indispensable
for the description of photocarrier generation. Furthermore, if
intraband transitions are not taken into account, the injection
mechanism is dominated by multiphoton absorption even
for high laser intensities. This fact can be understood based
on the Keldysh parameter γ = √

ε/4Up: the ponderomotive
energy Up is induced by the quiver motion in the momentum
space, which is an intraband mechanism. Once intraband
transitions are ignored, the effective ponderomotive energy
vanishes, and the Keldysh parameter becomes infinity. Thus,
the excitation mechanism is dominated by the multiphoton
process if intraband transitions are ignored. Moreover, we
investigated the e-h pair distribution as a function of the e-h
excitation energy. As a result, we found that the e-h pair
distribution under a strong field shows a multipeak structure
with a plateau region (see Fig. 4). A similar feature has been
found in ATI photoelectron spectra of atoms. The origin of
the plateau of the ATI spectra has been understood as the
scattering of ionized electrons from the parent ion based on
the semiclassical model [54]. Therefore, the formation of the
plateau in the e-h pair distribution might also be explained by
a semiclassical description.

We then investigated photocarrier generation in the three-
photon resonant condition, where the mean photon energy is
identical to one third of the band gap. We found that intraband
transitions largely enhance the three-photon absorption pro-
cess. To clarify the origin of the enhancement, we analytically
studied the three-photon absorption based on the perturbation
theory. As a result, we found that intraband transitions open
additional excitation paths that generate photocarriers much
more efficiently than the pure interband excitation path. We
note that if intraband transitions are induced by a static electric
field, the mechanism corresponds to photoassisted tunneling,
or the so-called Franz-Keldysh effect [58,59].

We then investigated the carrier-injection in the resonant
condition, where the mean photon energy of the laser field
is identical to the band gap. When the field is weak enough,
the carrier injection is dominated by single-photon absorption,
and intraband transitions do not play any role. In contrast,
once the field becomes strong enough, intraband transitions
significantly enhance the photocarrier generation. Based on the
energy-resolved e-h distribution analysis, we clarified that the
enhancement of the photocarrier generation originates from
additional multiphoton excitation paths opened by intraband
transitions.

Starting from the above analysis, we can conclude that
intraband transitions largely enhance the carrier injection once
nonlinear effects become substantial. This finding indicates
a potential to control photocarrier injection by employing
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multicolor laser pulses: some of the pulses mainly induce the
carrier injection via interband transitions, while the others
assist it by opening efficient excitation paths via intraband
transitions. Here, in addition to the photon energy of each
pulse, the pulse width, the relative time delay, and the rel-
ative carrier-envelope phase can be optimizable parameters.
Efficient enhancement or suppression of the carrier injection
by optical laser pulses will be important for technological
applications such as light-driven control of material properties
as well as for fundamental investigations of electron dynamics
in solids.
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APPENDIX: PERTURBATION ANALYSIS FOR
THREE-PHOTON ABSORPTION PROCESS

Here, we describe the detailed derivation of Eqs. (18)
and (20), analyzing the tree-photon absorption process with
the perturbation theory. First, we analyze the pure interband
model, ignoring intraband transitions. At the � point (�k = 0),
the Schrödinger equation (5) of the pure interband model can
be described as

ih̄ċ(t) = Hinter(t)c(t), (A1)

Hinter(t) =
(

0 hinter(t)
h∗

inter(t) 0

)
, (A2)

and

hinter(t) = i
�pvc · �E(t)

εg

eh̄

m
e

1
ih̄

εg t , (A3)

where c(t) is a two-dimensional column vector.
Since Hinter(t) contains only the first-order term of �E0, we

can simply consider the following perturbation expansion:

c(t) = c(0)(t) + c(1)(t) + c(2)(t) + c(3)(t) + · · · . (A4)

Inserting Eq. (A4) into Eq. (A1), each perturbation order can
be evaluated recursively:

c(1)(t) = 1

ih̄

∫ t

0
dt ′Hinter(t

′)c(0)(t ′), (A5)

c(2)(t) = 1

ih̄

∫ t

0
dt ′Hinter(t

′)c(1)(t ′), (A6)

c(3)(t) = 1

ih̄

∫ t

0
dt ′Hinter(t

′)c(2)(t ′), (A7)

and so on.
To simply evaluate the above perturbation expansion, we

assume the three-photon resonant condition (3h̄ω = εg) and

a rectangular envelope with duration T for the applied laser
field. Thus, the electric field can be described by

�E(t) = �E0 cos(ωt) (A8)

in the domain 0 < t < T and zero outside of it. Further
assuming that the wave function is initially set to the ground
state, the third-order coefficient after the laser irradiation can
be evaluated as

c(3)(t > T ) = 1

(ih̄)3

∫ T

0
dt ′

∫ t ′

0
dt ′′

∫ t ′′

0
dt ′′′Hinter(t

′)

×Hinter(t
′′)Hinter(t

′′′)
(

1
0

)
. (A9)

Ignoring oscillatory integrands for t ′, the conduction-band
component of c(3)(t > T ) can be simply expressed as

c(3)
c (t > T ) = −1

8

(
�pvc · �E0

εg

eh̄

m

)3
5

16h̄3ω2
T

= −1

8

(
�pvc · �E0

εg

eh̄

m

)
15

16h̄2ω
�ST , (A10)

where �S is the cycle-averaged Stark shift defined in Eq. (19).
In the last line, we employed the three-photon resonant condi-
tion, 3h̄ω = εg . Finally, the injected population is given by

n
pure−inter
� = |cc(t > T )|2

=
∣∣∣∣∣1

8

(
�pvc · �E0

εg

eh̄

m

)
15

16

1

h̄2ω
�ST

∣∣∣∣∣
2

. (A11)

Note that the first- and the second-order contributions, c(1)(t)
and c(2)(t), become zero after the laser irradiation in the pure
interband model.

Then, we investigate the effect of intraband transitions.
Although the Hamiltonian of the pure interband model Hinter

contains only the first-order perturbation, that of the full
model may contain higher-order perturbations due to intraband
transitions. Therefore, intraband transitions open additional
excitation paths.

To take intraband transitions into account, we replace the
Hamiltonian Hinter by

H (t) =
(

0 h(t)
h∗(t) 0

)
(A12)

and

h(t) = i
�pvc · �E(t)

εg

eh̄

m
e

1
ih̄

εg t+ 1
ih̄

∫ t

0 dt ′ e2A2(t ′ )
2mr c2 . (A13)

Here, the effect of intraband transitions is included via the
vector potential A(t). We note that we simply ignored the time
dependence of the denominator in h(t). According to Eq. (A8),
the vector potential has the following form:

�A(t) = −c
�E0

ω
sin(ωt) (A14)

in the domain 0 < t < T and zero outside of it.
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Assuming a small amplitude for the electric field �E0, the
off-diagonal element of Eq. (A13) can be approximated by

h(t) = i
�pvc · �E(t)

εg

eh̄

m
e

1
ih̄

εg t

(
1 + 1

ih̄

∫ t

0
dt ′

e2A2(t ′)
2mrc2

)
.

(A15)

Then, we evaluate Eq. (A5) by replacing Hinter(t) with H (t).
Although c(1)(t) became zero after the laser irradiation in the
pure interband model, here, it can be nonzero due to the higher-
order contribution in Eq. (A15). Ignoring oscillatory integrands
in Eq. (A5), we can easily evaluate the conduction component

of c(1)(t) with H (t) as

c(1)
c (t > T ) = −1

8

(
�pvc · �E0

εg

eh̄

m

)
1

h̄2ω
UpT , (A16)

and hence,

nintra−assisted
� = |c(1)

c (t > T )|2

=
∣∣∣∣∣1

8

(
�pvc · �E0

εg

eh̄

m

)
1

h̄2ω
UpT

∣∣∣∣∣
2

. (A17)
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