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ABSTRACT

To study regional-scale carbon dioxide (CO2) transport, temporal variability, and budget over the Southern

California Air Basin (SoCAB) during the California Research at the Nexus of Air Quality and Climate

Change (CalNex) 2010 campaign period, amodel that couples theWeather Research and Forecasting (WRF)

Model with the Vegetation Photosynthesis and Respiration Model (VPRM) has been used. Our numerical

simulations use anthropogenic CO2 emissions of the Hestia Project 2010 fossil-fuel CO2 emissions data

products along with optimized VPRM parameters at ‘‘FLUXNET’’ sites, for biospheric CO2 fluxes over

SoCAB. The simulated meteorological conditions have been validated with ground and aircraft observations,

as well as with background CO2 concentrations from the coastal Palos Verdes site. The model captures the

temporal pattern of CO2 concentrations at the ground site at the California Institute of Technology in

Pasadena, but it overestimates themagnitude in early daytime. Analysis of CO2 bywind directions reveals the

overestimate is due to advection from the south and southwest, where downtown Los Angeles is located. The

model also captures the vertical profile of CO2 concentrations along with the flight tracks. The optimized

VPRM parameters have significantly improved simulated net ecosystem exchange at each vegetation-class

site and thus the regional CO2 budget. The total biospheric contribution ranges approximately from 224%

to 220% (daytime) of the total anthropogenic CO2 emissions during the study period.

1. Introduction

It is well known that carbon-induced global warming

by human activities that use fossil-fuel combustion

has become a serious issue for climate change. About

30%–40% of anthropogenic greenhouse gases (GHGs)

are emitted from urban areas (Seto et al. 2014), and

these emissions are associated with an increase of av-

erage temperature, higher intensity and occurrence of

severe weather, and an increase and/or decrease of

precipitation (IPCC et al. 2013). Given its high con-

centration and emissions, carbon dioxide (CO2) is the

GHG most in need of monitoring, despite its lower

global warming potential (GWP) relative to some other

GHGs (e.g., methane, nitrous oxide, and sulfur hexa-

fluoride respectively have 25, 298, and 22 800 times
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the GWP of CO2 over a 100-yr time horizon; Forster

et al. 2007).

To understand better the effect of all emissions of

CO2 on the atmospheric carbon cycle, a wide variety of

studies have been carried out using both bottom-up and

top-down approaches. In the bottom-up approach, in-

ventory statistics of fossil-fuel consumption from each

source sector, including the residential, commercial,

industrial, and transportation sectors, are combined

with estimates of CO2 emissions with carbon contents

of each fuel type. From this approach, estimated CO2

emissions showed an uncertainty of approximately65%

uncertainty at the global scale (LeQuere et al. 2014) and

50%–200% at the urban scale (Turnbull et al. 2011;

Asefi-Najafabady et al. 2014). In contrast, the top-down

approach includes atmospheric flux measurements and

inversion modeling. Microscale flux-measurement stud-

ies have been conducted in vegetation-dominated areas

for decades to quantify and understand the interactions

between the surface and the atmosphere in the carbon

budget, mainly focusing on the net ecosystem exchange

(NEE) of CO2; these studies include ‘‘AmeriFlux’’ and

‘‘FLUXNET’’ (Baldocchi et al. 2001). The accuracy of

the flux measurements is generally limited by the local

features of land use, emission sources, and climate,

however. Global-scale inverse modeling has been car-

ried out to retrieve NEE from observed concentrations

(Gurney et al. 2009; Peylin et al. 2005; Tans et al. 1990).

In addition to the fact that the lack of spatially explicit a

priori flux estimates can cause large uncertainties in this

approach, however, the resolution of global inverse

modeling is too coarse to capture the spatiotemporal

resolution of microscale flux measurements. Several

studies have been conducted to diagnose the mismatch

between global-scale models and flux measurements

(Gerbig et al. 2003; Pérez-Landa et al. 2007; van der

Molen and Dolman 2007).

To fill the scale gap between the global inverse mod-

eling and the microscale measurements, we require

modeling of regional-scale CO2 transport with finer

spatiotemporal resolution. Accurate simulations of

mesoscale transport are important to estimate the CO2

transport, variability, and budget, which can only be

established with high-resolution mesoscale models that

include the transport of CO2 and the CO2 exchange flux

between the biosphere and the atmosphere. Ahmadov

et al. (2007, 2009) coupled a meteorological model, the

Weather Research and Forecasting (WRF) Model, with

the Vegetation Photosynthesis and Respiration Model

(VPRM) and conducted CO2 modeling over Europe.

The results showed significant improvement in captur-

ing mesoscale circulations and observed CO2 spatio-

temporal variation, which had not been represented

well in global models. Pillai et al. (2011) also validated

the coupled model over mountain terrain by comparing

it with tall-tower measurements at Mount Ochsenkopf

in Germany. Jamroensan (2013) conducted VPRM pa-

rameter optimization for the newly added vegetation

classes over the U.S. Midwest and estimated the inter-

actions between the areas growing soybeans and the

atmosphere. These previous studies have been mostly

conducted over vegetation-dominated and relatively

heterogeneous areas. In urban areas, anthropogenic

emission sources and vegetation sinks of CO2 are com-

plexly mixed. Despite the difficulties encountered in

setting up flux-measurement platforms in city areas,

urban flux-measurement studies have recently been

conducted that focus on the CO2 cycle, driven by both

anthropogenic emission sources and biospheric uptake

(Park and Schade 2016; Velasco et al. 2013; Kotthaus

and Grimmond 2012).

In the United States, urban areas have been devel-

oping rapidly by population increase and land-use

modification during the last five decades (Auch et al.

2004). The main anthropogenic CO2 emission sources

are land-use changes affecting interactions between the

surface and the atmosphere and fossil-fuel combustion

for energy, transportation, and industrial processes, as

reported in the U.S. GHG inventory report of the

Environmental ProtectionAgency (http://www.epa.gov/

climatechange/ghgemissions/usinventoryreport.html).

Carbon dioxide emissions account for approximately

82% of all U.S. GHG emissions from human activity

(National Research Council 2010). California is one of

themost significant carbon emitters in theUnited States,

and there have been many efforts (including Assembly

Bill 32: the ‘‘Global Warming Solutions Act of 2006’’)

and reports addressing reduction of carbon emissions.

The main sources of CO2 in California are the trans-

portation (;39%), industrial (;23%), electric-power

(;19%), agricultural (;8%), residential (;6%), and

commercial (;5%) sectors, according to the 2015 state

energy-related CO2-emission report of the Energy In-

formation Administration (EIA; https://www.arb.ca.gov/

cc/inventory/data/data.htm).

The Southern California Air Basin (SoCAB), desig-

nated by the state government of California in 1969 for

the purpose of air-quality management in Southern

California, includes all of Orange County and the non-

desert regions of Los Angeles (LA), Riverside, and San

Bernardino Counties. This region is bounded on the

south and the west by the Pacific Ocean, on the north by

the San Gabriel (3068m) and San Bernardino (3505m)

Mountains, on the northwest by Mount Santa Susana

(1142m) and the Simi Hills (652m), and on the east by

Mount San Jacinto (3302m) and Mount Santa Rosa
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(2657m). This topography causes unique meteorologi-

cal flows in SoCAB, combining with the sea breeze that

is linked with ‘‘Catalina’’ eddies. When low pressure

forms over the desert in southern California and Arizona

and high pressure builds over the Pacific Ocean off the

coast at the same time during spring, northerlies flow

down to the California coast, turning toward the coast

of Southern California, interacting with the islands and

the shape of the coast, and forming a center of eddies

near Catalina Island, the so-called Catalina eddies. The

swirling winds off the coast of Southern California

transport large amounts of polluting emissions and fi-

nally accumulate them within SoCAB because the moun-

tains block ventilation out of the basin. Thus, SoCAB

shows relatively higher concentration of tracers when

compared with areas outside SoCAB (Ryerson et al.

2013; Conil and Hall 2006; Ulrickson andMass 1990). In

2010, therefore, the California Research at the Nexus of

Air Quality and Climate Change (CalNex) campaign

was conducted in and over LA and Sacramento to re-

search issues related to air quality and climate change

(Angevine et al. 2012).

Brioude et al. (2013) recently performed inverse

modeling over SoCAB for the CalNex 2010 campaign

and showed 31%–44% higher CO2 emissions in 2010 as

posterior than in 2002. Newman et al. (2013) used CO2

ground measurements during the same study period and

estimated that local fossil-fuel combustion contributed

up to ;50% overnight and ;100% near midday. Feng

et al. (2016) more recently conducted sensitivity studies

in terms of the impact of the model frame and the fossil-

fuel CO2 emissions priors’ spatial resolution [emissions

from the ‘‘Vulcan’’ database at 10-km resolution vs LA

emissions from the Hestia Project (Hestia-LA) at

1.3 km] on the simulated CO2 concentration using the

WRF Model coupled with a chemistry model (WRF-

Chem) over the LA megacity during the CalNex 2010

period. They concluded that the higher-resolution sim-

ulation better resolved the vertical gradient of meteo-

rological variables and that higher resolution of the

fossil-fuel CO2 emission data produced a more im-

proved CO2 simulation.

In this study, the method for the modeling system is

similar to the study described by Feng et al. (2016), but

our motivation and approach are different. First, we

applied the newly updated Hestia-LA emissions data

(version 2.1) combined with the Fossil Fuel Data As-

similation System (FFDAS) data and the National

Oceanic and Atmospheric Administration (NOAA)

CarbonTracker CO2 mole fraction data from the

‘‘CT2015’’ release. Second, because of the significance

of the parameters of photosynthesis and respiration in

estimating biogenic contributions in specific regions,

we optimized the VPRM parameters with flux mea-

surements at each representative vegetation site of

FLUXNET. Third, we evaluated the model’s perfor-

mance by comparing with aircraft measurements as well

as ground observations. Last, we estimated the regional

CO2 budget over SoCAB.

2. WRF-VPRM model

a. WRF modeling system

A diagnostic vegetation model that computes bio-

spheric CO2 fluxes (VPRM) is coupled to WRF-Chem

(version 3.8.1) and is hereinafter referred to as WRF-

VPRM. It has been described by Ahmadov et al. (2007)

andMahadevan et al. (2008).We set up and ranWRF by

two-way nesting at 36-, 12-, and 4-km resolution on three

nested grids (Fig. 1) and 38 vertical layers (with 12 layers

below 1.5 km) extending up to 100hPa, where the lowest

scalar-level height was ;27m. Initial and boundary

conditions for meteorological fields and soil initializa-

tion fields for the WRF modeling were taken from the

3-h North American Regional Reanalysis dataset with

32-km spatial resolution (Mesinger et al. 2006). For sea

surface temperature (SST) fields, the 6-h National

Centers for Environmental Prediction SST dataset

with 8-km horizontal resolution (ftp://polar.ncep.noaa.

gov/pub/history/sst/ophi) was used. The WRF single-

moment three-class microphysics scheme, the newGrell

cumulus scheme (only for coarse domains), and the

Rapid Radiative Transfer Model for GCMs (RRTMG)

short- and longwave radiation schemes were used. For

planetary boundary layer (PBL) diagnosis, we used the

nonlocal PBL parameterization scheme of Yonsei Uni-

versity (Hong et al. 2006) with the ‘‘topo_wind’’ option,

after conducting sensitivity tests of PBL schemes (for

details, see the online supplementary material that

accompanies this paper). This option was adopted to

reduce overestimations of wind speeds, which have of-

ten appeared in previous studies (e.g., Bernardet et al.

2008; Angevine et al. 2012) and are due mainly to the

unresolved orographic features producing less drag in

WRF (Jimenez and Dudhia 2012). The model ran for

33 days from 0000 UTC 14 May to 0000 UTC 16 June,

and each run was done for 30 h after each reinitializa-

tion, following the setup of Ahmadov et al. (2007, 2009),

starting at 0000 UTC on the day, where the first 6 h were

used for spinup.

b. Vegetation Photosynthesis and Respiration Model

VPRM is a simple diagnostic biospheric CO2 flux

parameterization that uses high-resolution land-use and

satellite data along with simulated radiation and air
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temperature by the WRF Model (Mahadevan et al.

2008). This enables simulation of biospheric CO2 uptake

and release fluxes at high spatiotemporal resolution. In

several studies (Ahmadov et al. 2007, 2009; Pillai et al.

2011; Feng et al. 2016), the VPRMparameterization was

successfully applied to different ecosystems.

VPRM derives biospheric CO2 fluxes using flux-

measurement data and MODIS (http://modis.gsfc.nasa.

gov/) satellite indices, including an enhanced vegetation

index and land surface water index obtained at 500-m

spatial resolution with 8-day frequency. VPRM uses

eight land-use categories, including evergreen forest,

deciduous broadleaf forest, mixed forest, shrubland,

savanna, cropland, grassland, and urban or snow/ice, that

were classified on the basis of the 1-km global Synergetic

Land Cover Product (SYNMAP; Jung et al. 2006). Each

vegetation category has its own parameters—so-called

VPRM parameters—that should be optimized on the

basis of local CO2 flux measurements for each repre-

sentative land-use category.

The gross ecosystem exchange (GEE) is controlled by

light, temperature, humidity, CO2 concentration, soil

moisture, nutrient availability, and seasonal leaf foliage,

and the respiration is determined by autotrophs (vege-

tation) and heterotrophs (symbiotic microorganisms in

soil) (Bowden et al. 1993; Ryan and Law 2005). In

VPRM, GEE was calculated using the shortwave radi-

ation (SWDOWN) generated by WRF combined with

VPRM parameters that include the product of the

maximum quantum yield l and the half-saturation value

of photosynthetically active radiation PAR0. The res-

piration rate was calculated from the model’s 2-m air

temperature along with first-order linear parameters

including a slope a and an intercept b (Jamroensan

2013). VPRM parameters were first optimized by

Mahadevan et al. (2008) through nonlinear least squares

with the U.S. 1-km International Geosphere–Biosphere

Programme classification (Belward et al. 1999), and then

the NOAA WRF-Chem group released optimized

values for U.S. vegetation as the ‘‘default’’ to the

model’s source code (Table 1). The optimization is to

minimize the sum of squares of error between predicted

NEEs and measured NEEs. First, the measured NEE

under the condition of friction velocity u* # 0.1m s21

was removed. Then, the growing-season nighttime

NEE was used to optimize a, and a was used to obtain

the respiration. The measured GEE was calculated by

subtracting the respiration rate from the measured

NEE, and the measured GEE was used to optimize

l and PAR0. In this approach, the intercept b is set

to 0. Further details of the optimization method can

be found in Mahadevan et al. (2008) and Jamroensan

(2013).

c. CO2 input data

For lateral boundary conditions and initial conditions

for CO2 concentration, we used the CT2015 dataset

(ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/CT2015/

molefractions/), representing the study year 2010. The

CT2015 data include global background, photosynthesis/

respiration by the biosphere, fires, combustion of fossil

fuels, and air–sea exchange, with 18 3 18 spatial resolu-
tion over all of North America up to the tropopause,

with 3-h temporal resolution (Peters et al. 2007). The

FIG. 1. (left) Domains forWRF-VPRMmodeling, and (right) land-use distributions for the finest domain, with the locations of CIT (red

dot), PV (orange dot), and the FLUXNET sites including coastal sage (dark-blue triangle), grassland (green triangle), and oak/pine forest

(light-blue triangle). The border of SoCAB is indicated by the black boundary line. The solid blue line indicates the cross-sectional path

for Fig. 4.
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pressure-interfaced CT2015 pressure level was cor-

rected to WRF pressure levels by linear interpolation,

and its maximum offset was 3 hPa at ground level.

In addition to the CT2015 data, hourly fossil-fuel CO2

emissions from the Hestia Project (version 2.1) gridded

at 1.0 km for 2010 (Gurney et al. 2012; http://hestia.

project.asu.edu/) were used for parallel sets of numerical

experiments to feed surface boundary conditions. Be-

cause the Hestia emissions only cover SoCAB areas,

emissions from outside the Hestia domain were derived

from the total anthropogenic emissions from FFDAS

(Asefi-Najafabady et al. 2014) and shipping and aviation

emissions taken from the Emission Database for Global

Atmospheric Research (EDGAR; Petrescu et al. 2012)

for all three domains.

In this study, to improve performance and reduce

simulation uncertainties induced by VPRM parameters,

we optimized VPRM parameters for each vegetation

type over Southern California, using CO2 flux mea-

surements at FLUXNET sites (http://www.ess.uci.edu/

;california/). The sites used were the oak/pine forest

site (3384802900N, 11684601900W) for evergreen forest, the

pine/juniper site (3383601800N, 11682701800W) for mixed

forest, the coastal sage site (3384400200N, 11784104600W)

for shrubland, the desert chaparral site (3383603600N,

11682700000W) for savanna, and the grassland site

(3384401300N, 11784104200W) for grassland. For the other

vegetation classes notmeasured by FLUXNET sites, the

default values were used as in the setup of Feng et al.

(2016). Table 1 reports our optimized (posterior) and

the default (prior) VPRM parameters.

3. Observation data

To address research issues related to air quality and

climate change, the CalNex campaign was conducted in

and over Los Angeles, Bakersfield, and Sacramento

during May–June 2010; specific information about

CalNex 2010 has been published byRyerson et al. (2013)

and posted online by NOAA (http://www.esrl.noaa.gov/

csd/calnex/). In situ continuous ground measurements

were conducted on a 10-m tower at the California

Institute of Technology campus (CIT; 3480801200N,

11880703900W) in Pasadena, California (Fig. 1). Meteo-

rological variables were measured by various sensors,

and the planetary boundary layer heights (PBLH) were

retrieved by aVaisala, Inc., Ceilometer CL31model [the

methods are described in Haman et al. (2012)]. Along

with the measurements of chemical compounds such as

aerosols and gases, CO2 wasmeasured by a Picarro, Inc.,

model G1101-i isotopic CO2 analyzer (cavity ring-down

spectroscopy). The 10-min averages of meteorological

variables and the 15-min averages of PBLH measure-

ments were integrated into the hourly averaged time

series for comparison with the WRF-VPRM modeling

results at each hour.

The NOAA P-3 aircraft was also instrumented to

make vertical profiles of meteorological variables and

chemical species. Measurement accuracies were esti-

mated at 0.58C for temperature, 5% for water vapor, 58
for wind direction, 1m s21 for wind speed, and 0.2 ppm

for CO2 concentration (Peischl et al. 2012).

4. Results and discussion

The WRF-VPRM model’s results have been evalu-

ated by comparison with observations during the period

from 14 May to 15 June 2010. ‘‘Daytime’’ and ‘‘night-

time’’ are defined as hours from 0600 to 1900 LST and

from 2000 to 0500 LST of the next day, respectively.

Basic statistical measures used here are the root-mean-

square error (RMSE), the mean bias (MB; simulations

minus observations), and the index of agreement (IOA;

Willmott 1982), and their equations can be expressed as

RMSE5

"
�
N

i51

(M
i
2O

i
)2

N

#1/2

,

TABLE 1. Optimized and default VPRM parameters under the condition of u* . 0.1m s21 for this study.

Posterior (optimized) Prior (default)

Vegetation class PAR0 l a b PAR0 l a b

Evergreen 1267.0 20.0351 0.0380 0.0 261.0 20.2492 0.3301 0.0

Deciduousa — — — — 324.0 20.1729 0.3258 0.0

Mixed forest 501.7 20.0732 0.0703 0.0 206.0 20.2555 0.3422 0.0

Shrubland 595.9 20.1319 20.0534 0.0 363.0 20.0874 0.0239 0.0

Savanna 1297.0 20.0301 20.0012 0.0 682.0 20.1141 0.0049 0.0

Croplanda — — — — 757.0 20.1533 0.2680 0.0

Grassland 541.2 20.0959 0.0378 0.0 157.0 20.1335 0.0269 0.0

Urban area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a Case in which the default parameters were used when the FLUXNET site was unavailable for the vegetation class.
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Here, Mi and Oi indicate modeling results and obser-

vations, respectively, at each grid point i.

a. Meteorological evaluation

The simulated meteorological results were compared

with four groundmeasurements including CIT and three

FLUXNET sites (Fig. 1), and their statistics are re-

ported in Table 2. Themodeling results captured day-to-

day hourly variations of meteorological observations

including 2-m temperature and relatively humidity

(RH), 10-m winds, and surface SWDOWN at CIT (not

shown). WRF-VPRM overestimated temperature by

approximately 1.08C, and themodel underestimatedRH

by approximately 11%. The model overestimated wind

speeds by approximately 0.3m s21. Wind directions

ranged from 1208 to 2408: the south and southwest di-

rections were dominant during day- and nighttime, re-

spectively, which are associated with the Catalina eddies

off the coast and the topography of Southern California,

as described in section 1. Besides temperature, RH, and

winds, the agreement of SWDOWN is also critical for

calculating NEE. SWDOWN is very closely correlated

with photosynthesis active radiation (PAR); PAR ’
1.98 3 SWDOWN (Mahadevan et al. 2008) and is used

to compute GEE over vegetation areas. SWDOWN

showed clear diurnal variations, starting from sunrise

(0500 LST) and ending at sunset (1900 LST), with a

midday peak around 1200 LST (not shown). Overall,

the model overestimated SWDOWN by 85Wm22 on

average.

The volume of the PBL basically determines the

concentration of species such as CO2 and is funda-

mentally controlled by solar radiation, heating of the

ground, and developing atmospheric turbulence within

the PBL. The simulated PBLH started to increase

around 0500 LST, reached a peak around 1200 LST, and

then continually decreased until 2200–2300 LST. By

comparing with the measured cloud-base heights, it was

determined that the simulated PBLHs were over- and

underestimated by approximately 56 and 128m with

IOAs of 0.68 and 0.55, respectively, during the day- and

nighttime. Note that uncertainties may occur when di-

rectly comparing the simulated PBLHs with the cloud-

base heights measured by the ceilometer, because 1) the

model’s coarser resolution often cannot resolve clouds

that appear on the subgrid scale and can be detected

by the ceilometer and 2) the simulated PBLH is sensitive

to the model’s PBL schemes, making it often hard to

capture the measured PBLHs. To investigate the un-

certainty of simulated PBLH, we estimated PBLH using

the vertical profile of potential temperature measured

by the NOAA P-3 aircraft during midday on 14, 16,

and 19 May, when the aircraft flew spirals over CIT

during daytime. The bias of modeled PBLH ranged

approximately from 10 to 380m (Fig. S2 in the online

TABLE 2. Statistics of meteorological variables at CIT and some FLUXNET sites, including oak/pine forest, coastal sage, and grassland

sites. Temperature and RH at 2m and winds at 10m above ground level are compared.

Mean

Site Variable Model Obs RMSE MB IOA N

CIT Temperature (8C) 18.8 17.7 1.7 1.0 0.96 768

RH (%) 59.2 70.5 14.5 211.2 0.84 768

Wind speed; m s21) 1.1 0.8 0.7 0.3 0.68 767

SWDOWN (Wm22) 354.1 267.7 173.8 85.3 0.94 768

Oak/pine forest Temperature (8C) 13.5 14.0 2.3 0.0 0.96 726

RH (%) 53.6 47.0 17.0 4.6 0.83 726

Wind speed (m s21) 4.3 1.5 3.6 2.8 0.21 679

SWDOWN (Wm22) 369.4.4 322.5 141.0 47.1 0.97 750

Coastal sage Temperature (8C) 16.6 15.3 2.2 1.4 0.94 750

RH (%) 70.7 70.7 10.8 212.1 0.91 750

Wind speed (m s21) 1.9 1.6 1.0 0.4 0.67 750

SWDOWN (Wm22) 338.7 287.2 158.3 55.3 0.96 750

Grassland Temperature (8C) 17.4 14.8 3.3 2.6 0.86 750

RH (%) 70.0 75.4 14.2 25.1 0.85 750

Wind speed (m s21) 2.3 1.8 1.0 0.5 0.80 719

SWDOWN (Wm22) 335.6 290.8 146.0 45.2 0.96 750
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supplemental material). This bias unfortunately cannot

be directly compared with the ground ceilometer mea-

surements because of the fact that there were no avail-

able measured values at the same time as the aircraft

measurements.

The modeling results were also compared with

NOAA P-3 aircraft observations. Among 18 days in

total of the NOAA P-3 flights during CalNex 2010, we

chose the days of 14, 16, 19, and 21 May for daytime and

29 and 30 May and 2 and 3 June for nighttime, when the

aircraft flew over SoCAB. Each day’s vertical profile of

potential temperature and wind speed is displayed in

Fig. 2. WRF-VPRM results showed good agreement

with observed potential temperature along flight alti-

tudes; they underestimated potential temperature by

0.18C in daytime and overestimated by 1.48C in night-

time. The model also captured the vertical wind profile,

except at higher altitude (.3 km) on 19 May; it under-

estimated wind by 0.6m s21 (IOA 5 0.89; RMSE 5
3.3m s21) during daytime and 0.2m s21 (IOA 5 0.68;

RMSE 5 2.6m s21) during nighttime.

b. CO2 concentration

1) BACKGROUND CO2 CONCENTRATIONS

To investigate the performance of the model’s back-

ground CO2 concentration, we used observational data

measured at the Palos Verdes site (PV; 3384208800N,

11881807000W) in Fig. 1. This site is located at the south-

ern end of SoCAB, on a steep hillside near the Pacific

Ocean ;0.3 km above sea level, at which the concen-

trations of tracers transported by sea breezes to SoCAB

can be monitored. Newman et al. (2013) measured CO2

concentration and assumed the daily minimum hourly

values at PV to be a constant background concentra-

tion of 393.1 ppm. We also assumed that the measured

concentrations at this site can represent the ‘‘local’’

background concentration for SoCAB. Other CO2

monitoring sites were not known to us during the study

period. Our simulated result was close to the mea-

sured background concentration value with the offset

of 0.1 6 2.4 ppm.

FIG. 2. Vertical profiles of (top) potential temperature and (bottom) wind speed for each of the eight flights during the study period. Red

and black lines indicate WRF-VPRM results and NOAA P-3 aircraft observations, respectively.
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2) SPATIAL DISTRIBUTIONS

The horizontal and vertical distributions of CO2

concentration are associated with the diurnal variation

of the sea breeze, emissions, and PBLHs along with the

topographical features of SoCAB—21May was selected

as an example of a typical day. Its diurnal pattern of CO2

concentrations on horizontal and vertical cross-sectional

distributions is displayed in Figs. 3 and 4, respectively.

At 0600 LST in the early morning, the highest CO2

concentration appeared to be due mainly to the com-

bination of the smallest volume of PBL and the begin-

ning of morning rush-hour vehicle CO2 emissions. The

heights of surrounding mountains are much higher than

the average PBLH most of the time, preventing venti-

lation. Around 1200–1400 LST when the PBLH grew

and the vegetation uptake increased, the sea breeze

pushed the tracers over the mountains, and the concen-

tration remained low until late afternoon (;1800 LST).

After this time, CO2 concentration started to increase

again as a result of the evening rush-hour emissions

along with the gradually decreasing PBLH and the in-

creasing vegetation respiratory contribution, and high

concentrations were maintained through the night until

early the next morning. This typical diurnal pattern of

tracers for SoCAB agrees well with the results of other

previous pollution studies (e.g., Chen et al. 2013).

3) COMPARISON WITH CIT GROUND

OBSERVATIONS

The time series of the hourly variation of CO2 con-

centration at CIT during the whole study period is

shown in Fig. 5. WRF-VPRM captured the variation

of CO2 concentrations. The model overestimated by

9.2 ppm with IOA5 0.53 and RMSE5 17.0 ppm during

daytime, and it overestimated by 1.6 ppm with IOA 5
0.49 and RMSE 5 1.8 ppm during nighttime.

To facilitate discussion of the variation of CO2 con-

centrations together with emissions, the averaged diur-

nal variation of CO2 emissions and concentrations at

CIT and over SoCAB is displayed in Fig. 6, together

with that of PBLHs. Over SoCAB, the anthropogenic

CO2 emissions increased during the morning rush hour

(from 0500 to 0900 LST) and then increased again after

1300 LST until 1700 LST, showing a daily maximum

FIG. 3. Horizontal distribution of CO2 concentrations (ppm) of the finest-scale domain (d03) on 21 May, displayed in 6-h intervals.
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peak. The larger second rush-hour peak was a typical

emission pattern in metropolitan areas, such as in

Houston, Texas (e.g., Park et al. 2010). The daytime

emissions at CIT were about 2 times those averaged

over SoCAB.

The averaged CO2 concentrations at CIT were ap-

proximately 9 ppm higher than those over SoCAB, as

expected. The CO2 concentrations at CIT began to in-

crease at 0500 LST and continued to rise until 0800 LST

when the dominant morning rush hour ended, and

values remained high until noon. In the afternoon, the

concentrations decreased until 1600–1700 LST, associ-

ated with the highest PBLH and biospheric contribu-

tion, and then gradually increased again through the night

until early the next morning as the PBLH decreased and

the plant respiratory contribution increased.

During the early daytime (0600–1300 LST),

WRF-VPRM overestimated the CO2 concentrations

FIG. 4. Vertical cross section of CO2 concentrations along the line indicated in Fig. 1 for 21 May, displayed in 6-h intervals.

FIG. 5. Time series of CO2 concentrations from simulations (red line) and ground observations

(black dots) at CIT.
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by;14ppm on average (Fig. 6). The uncertainties of the

model can be due to vertical mixing, advection, emis-

sions, initial fields, and VPRM parameters, as described

in previous studies (Ahmadov et al. 2007; Pillai et al.

2011). The overestimate of daytime CO2 concentrations

may be caused by overestimates either of the first peak

of emissions at CIT or of the advection from CO2 source

areas to CIT. To examine daytime emission sources af-

fecting CIT by advection from specific wind directions,

frequency of counts by wind direction of CO2 concen-

tration was compiled. The results are represented in

Fig. 7. This exercise revealed that south and southwest,

where downtown LA is located, were dominant daytime

CO2 source directions. The averaged simulated daytime

CO2 concentration in the dominant wind directions

(1508–2408) was 421.8 ppm, which is comparable to the

observed mean values of 411.9 6 8.3 ppm. The Hestia

emissions data used in this study are considered to be the

‘‘climatology’’ of emissions rather than the ‘‘weather’’ of

emissions. This means that the emissions data would not

represent ‘‘true’’ day-to-day hourly-basis variations in

real environments. From the relatively low bias of the

meteorological conditions, the uncertainties of emis-

sions data in or around downtown LA may cause the

overestimate of the simulated CO2 concentrations dur-

ing daytime. We still need comparisons at multiple

measurement points for further investigation, however.

To extract anthropogenic and biospheric signals from

the total CO2 concentrations, two isotopic tracer ra-

diocarbon (D14C) measurements were conducted at CIT

during the study period by Newman et al. (2013), re-

sulting in a finding that ;100% and ;50% of emissions

were from fossil-fuel combustion during day- and

nighttime, respectively. We compared the measured

signals with ‘‘tagged’’ tracers built into WRF-VPRM,

which can identify the contribution of different CO2

sources between anthropogenic and biospheric signals

(Ahmadov et al. 2009; Pillai et al. 2011). The simulated

results showed positive values most of the time with a

range of ,2 ppm (Fig. S3 in the online supplemental

FIG. 6. Averaged diurnal variation of anthropogenic CO2 emis-

sions, concentrations, and PBLH at CIT and over SoCAB during

the study period. Gray bars indicate 1 std dev for the observations.

FIG. 7. Frequency of counts by wind direction (%) of simulated CO2 concentration at CIT.

1346 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



material), which implied that our model successfully

showed that the influence of fossil-fuel combustion was

significant near CIT. Our model failed to capture the

negative trend during the first half of the study period

and underestimated the positive values by a factor of 3–5

during the second half period. This discrepancy may not

be decreased simply by making model resolutions

higher, as shown in the sensitivity tests in Feng et al.

(2016). It seems that further investigation for both in-

tensive measurements and improving models is needed

in future studies.

4) COMPARISON WITH AIRCRAFT OBSERVATIONS

Here, we discuss the comparison of the model results

with aircraft observations, which was missing in the

previous study of Feng et al. (2016). The observed and

simulated CO2 vertical profiles and time series for all

eight flights are displayed in Figs. 8 and 9, respectively,

and each flight’s statistics are reported in Table 3. The

model captured the vertical gradient of CO2 concen-

trations, except at lower altitudes (,1 km) on 19 May

and 3 June, on which days it significantly overestimated

and underestimated the concentrations, respectively

(Fig. 8). The relatively large discrepancies on the two

noted days were not directly caused by the model’s

meteorological-simulation performance (Fig. 4). No clear

correlation with wind directions was found (not shown).

The aircraft moved in and out of the PBL, flying over

various land-cover types (Fig. 9). Overall, lower concen-

trations appeared over the ocean and above the PBL and

higher concentrations occurred over the urban area and

within the PBL. The model underestimated concentra-

tion by 1.8ppm, with IOA5 0.81 and RMSE5 6.1ppm,

and by 0.3ppm, with IOA 5 0.74 and RMSE5 6.7ppm,

FIG. 8. As in Fig. 2, but for CO2 concentrations.
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during day- and nighttime flight days, respectively. Dur-

ing daytime, CO2 concentrations within the PBL were

;7ppm higher than those above the PBL, on average,

without regard to land cover. The model’s results

showed a better agreement with observations above the

PBLH, where there are fewer direct effects of heteroge-

neous emission sources. During nighttime, it appears that

the aircraft moved above the nighttime PBL most of the

time. High concentrations (.400 ppm) appeared at

lower altitudes (,1 km) even above the nighttime

PBLHs in both observations and simulations. This

phenomenon could be due either to CO2 concentrations

in residual layers or to advection at high altitudes. For

further investigations of the uncertainties at higher al-

titudes, inverse modeling as in the work of Brioude et al.

(2013) can be used in future studies.

c. CO2 fluxes

On the basis of the vegetation fraction retrieved by

SYNMAP, the total vegetation area over SoCAB was

estimated to be approximately 77%, mostly in the

mountains, of which shrubland was the most dominant

vegetation class (;62%) followed by evergreen forest

(;33%), grassland (;4%), and savanna (;1%). To see

by how much the simulated NEE was improved by op-

timization of VPRM parameters at each corresponding

vegetation class site, we compared the averaged diurnal

variations of simulated NEE and observed CO2 flux,

assuming that the simulated NEE is equal to the mea-

sured CO2 flux. The results are displayed in Fig. 10. In

comparing with the results from the prior VPRM

parameters, it is seen that the statistics with posterior

parameters were much improved.

Errors of simulated NEEs are likely attributed to the

calculation of respiration by 2-m air temperature, as

described by Ahmadov et al. (2009) and Pillai et al.

(2011), and to the optimization approaches (Jamroensan

2013). In comparing with the results from prior VPRM

parameters, it is seen that the model with the posterior

parameters reduced the bias of simulated NEE by 40%,

48%, and 34% during daytime and 94%, 41%, and 26%

during nighttime, at the oak/pine forest, coastal sage,

and grassland sites, respectively. Note that the direct

comparison ofNEEswith fluxes of CO2measured by the

FIG. 9. Time series of CO2 concentrations from simulations (red line) and aircraft observations (black dots), along with time series of

aircraft altitudes (black dashed line) and simulated PBLHs (blue thick line). Land-cover types at the aircraft locations are represented by

color codes as in Fig. 1.
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eddy covariance method can naturally include uncer-

tainties, because the fluxes include a CO2 storage term

within the canopy (Aubinet et al. 2012). In this study,

however, we kept our assumption because of the facts that

there is lack of storage-term information in FLUXNET

data and that estimates of the storage term are outside the

bounds of this study. Overall, the posterior VPRM pa-

rameters played an important role in improving the sim-

ulation results of NEE, and therefore we conclude that

the optimization of VPRM parameters is essential for re-

gional CO2 modeling. Thus, the optimization can improve

the estimate of the CO2 budget over SoCAB (section 4d),

in which multiple vegetation types are mixed.

d. Estimate of CO2 budget

An estimate of the CO2 budget is important for

corrections to or updates of current environmental

policy in relation to reductions in fossil-fuel carbon

emissions that are mandated by California state law

(Assembly Bill 32). In this section, we estimated the

CO2 budget over SoCAB during the CalNex 2010

period. Here we define the CO2 budget over the whole

area of SoCAB (Fig. 1) as the ratio of the total simu-

lated NEEs to the total Hestia 2010 anthropogenic

CO2 emissions at all surface grid points. The amount of

biospheric contribution was estimated at approximately

223% (daytime) and approximately19% (nighttime) of

the total anthropogenic CO2 emissions during the study

period. This vegetation contribution rate is higher than the

value calculated with the prior VPRM parameters by

approximately a factor of 2.Note that the study periodwas

part of the vegetation growing season, and therefore a

further long-term (;1yr) simulation study, taking into

account the seasonal leaf foliage, should be followed to

assess the annual CO2 budget.

During the process of optimization, another uncer-

tainty from the VPRM parameters could emerge from

a cutoff criterion of the u* threshold value for the

neighborhood-scale flux measurements. The u* thresh-

old value varies from site to site and from season to

season, and it is critical to filter underestimated mea-

sured CO2 fluxes, especially during transition and

nighttime. To evaluate the effects of the threshold value,

we carried out sensitivity tests with additional cutoff

criteria of u*, 0.2 and u*, 0.0m s21. These two values

are widely used ranges in the micrometeorology litera-

ture. Results showed that the biospheric contribution

relative to the anthropogenic emissions over SoCAB

during the CalNex 2010 period is estimated to be in

the range from 224% to 220% during daytime and

from 18% to 19% during nighttime, in consider-

ation of the uncertainty from cutoff criteria. On the

basis of the land-cover distribution, it appears that

the biospheric CO2 uptake mainly occurred in the

vegetation-dominated mountain regions in SoCAB.

5. Summary and conclusions

In this study, a coupled WRF-VPRM model was ap-

plied over the anthropogenic-CO2-emission-rich region

of SoCAB during the CalNex 2010 period, in contrast

to most previous studies, which were mainly focused

on vegetation-dominated areas. Discriminating from a

similar previous study of Feng et al. (2016), here 1)

VPRM parameters were optimized for better perfor-

mance of the biospheric module and 2) the newly

updated version of Hestia-LA combined with the

FFDAS anthropogenic CO2 emission data and the

CT2015 CO2 mole-fraction data was used. We reported

the performance of WRF-VPRM for CO2 transport and

temporal variability in comparison with the observa-

tions and also discussed the model’s improvement from

the VPRM parameter optimization. Last, we presented

the estimated CO2 budget over SoCAB.

The WRF-VPRM successfully recreated the meteo-

rological variables for both ground- and aircraft-based

measurements. The model also captured the diurnal

variation of CO2 concentrations at the ground sites but

slightly overestimated daytime CO2 concentrations. The

analysis of daytime CO2 concentrations by wind di-

rection implied that the uncertainty of local emission

sources located in the south and southwest directions,

where downtown LA is located, affected the model

overestimation of CO2 concentrations at the ground

measurement site. The model also matched the vertical

profile and times series of CO2 concentrations, in com-

parison with the NOAA P-3 aircraft measurements,

but the modeled CO2 concentrations were over- and

underestimated at lower altitudes on 19May and 3 June,

respectively.

After validating the improvement of NEE calculation

with posterior VPRM parameters, the total biospheric

contribution rate was calculated over SoCAB, resulting

TABLE 3. Statistics for CO2 concentrations between modeling

results and aircraft observations.

Mean

Date Model Obs RMSE MB IOA N

14 May 398.3 396.1 7.5 2.6 0.78 48

16 May 397.0 394.6 4.5 1.9 0.80 61

19 May 397.0 398.9 4.5 1.9 0.80 61

21 May 394.6 395.5 1.5 21.0 0.82 57

29 May 398.9 396.9 4.6 2.0 0.80 67

30 May 402.2 399.8 6.8 2.4 0.81 63

2 Jun 398.0 398.0 4.6 0.1 0.75 59

3 Jun 399.0 402.5 9.4 23.3 0.61 65
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FIG. 10. Averaged diurnal variation and scatterplots of simulated NEEs and observed CO2 fluxes at three FLUXNET sites, including

oak/pine forest, coastal sage, and grassland. NEE and ‘‘NEE-default’’ are the simulated result with posterior and priorVPRMparameters,

respectively. The black dashed line indicates a 1-to-1 line, and the red line indicates the linear-regression line for daytime only (black dots).

Nighttime data (gray circles) are excluded from statistics.
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in a range from 224% to 220% (in daytime) and

from 18% to 19% (in nighttime) of the total anthro-

pogenic CO2 emissions. The uncertainty of the CO2

budget was reduced by approximately a factor of 2 rel-

ative to the results from the prior VPRM parameters.

Overall, SoCAB played a role as a net emission source

of CO2 during the study period.

The output of this modeling study can be used to

validate remote sensing instruments and as the priori for

regional inverse modeling, as well as to support envi-

ronmental policy in relation not only to emission control

of fossil-fuel carbon but also to vegetation management

in the state of California. As the first goal of the study,

the slant column concentration of CO2, the total number

of absorbing molecules per unit area along the sun–

Earth–instrument optical path, over LA can also be

compared with and used to calibrate the California

Laboratory for Atmospheric Remote Sensing facility

currently set up on Mount Wilson for the continuous

monitoring of air pollution and greenhouse gases in

SoCAB (Wong et al. 2015). The study’s total column

concentrations from WRF-VPRM results can be com-

pared with data from theOrbiting Carbon Observatory-2

(OCO-2; Eldering et al. 2017) or the Japanese Green-

house Gas Observing Satellite (GOSAT), as in the work

of Hedelius et al. (2017).
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