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Photoexcited states in correlated band insulators
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We study the photoexcitation dynamics of correlated band insulators, using nonequilibrium dynamical mean-
field theory for the ionic Hubbard model. We find two distinct behaviors, depending on the ratio of the on-site
interaction U and the bare band gap �. For small interactions, the relaxation is characterized by intraband carrier
scattering in relatively rigid bands, leading to a nonthermal intermediate state with separate thermal distributions
of electrons and holes. This behavior can be viewed as typical for a band insulator with weak interactions. For
larger interaction, on the other hand, we observe a strong modification of the electronic spectrum and a filling-in
of the gap after photoexcitation, along with a rapid thermalization of the system. The two behaviors therefore
provide a dynamical distinction of a correlated band insulator and a band insulator, which can differ even when the
spectra of the two systems are similar in equilibrium. The crossover happens when the interaction U is comparable
to �.
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I. INTRODUCTION

The possibility to switch quantum states through ultrafast
nonthermal pathways has made nonequilibrium studies of
quantum many-body systems attractive to the condensed-
matter community [1]. Using laser photoexcitation or exter-
nal electric fields, one can induce transient states on short
timescales and, in some cases, even long-lived hidden quantum
states with electronic properties which are entirely different
from equilibrium [2–5].

A rich variety of novel phases in nonequilibrium can be
expected for strongly correlated systems. Electronic correla-
tions are predominantly studied in systems which are metallic
in the noninteracting limit. In these systems, correlations
result in phenomena like the Mott transition, high-temperature
superconductivity, and non-Fermi-liquid behavior. In band in-
sulators, in contrast, one may naively expect that the existence
of the band gap and the absence of low-energy quasiparticles
reduces the importance of electronic correlations. However,
this turns out to be not true. The role of electronic correlations
in band insulators has been studied in various models, including
the ionic Hubbard model [6–20], a two-orbital Hubbard model
with crystal-field splitting [21], a two-sublattice model with
interorbital hybridization [22,23], and a bilayer model with
two identical Hubbard planes [24–28]. In general, at weak
coupling the competition between the local Coulomb interac-
tion and the noninteracting band gap results in a correlated
band insulator with a renormalized gap. Further increasing
the interaction strength can even close the gap and lead to an
interaction-driven metal or bond-ordered state in the strong-
coupling limit [13,14,22]. The renormalized band gaps and
the difference in charge and spin gaps distinguishes correlated
band insulators from noninteracting band insulators [9,10,22].
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Correlated band insulators provide a paradigm example for
systems with competing ground-state interactions and hence
are good candidates to explore hidden quantum states through
nonthermal pathways.

In a band insulator, photoexcitation will promptly lead
to a partial occupation of the conduction band. At weak
coupling, one may expect the dynamics of such systems to be
similar to semiconductors: Interactions provide a mechanism
for electron-electron scattering, while the bands are almost
rigid apart from some photoinduced screening of the gap which
is largely included in a Hartree shift of the bands. This leads to
a state in which electrons and holes are separately thermalized
in the conduction and valence bands. On longer timescales, the
system would establish a common temperature and chemical
potential, and the energy would be passed to the lattice. Such
processes in semiconductors are well described using quantum
Boltzmann equations [29]. In this paper, we explore how this
picture is modified at larger interaction and whether there is a
distinct dynamical behavior of band insulators and correlated
band insulators. How is the gap renormalized or even filled
due to local correlations after photoexcitations? What is the
role of these correlations in the thermalization process: Does
the filling in of the gap lead to a speedup of thermalization,
and is there room for nonthermal metallic states?

The theoretical study of such systems out of equilibrium
is challenging. The dynamics of interacting quantum systems
often can be described using quantum kinetic equations [29].
However, this approach assumes the existence of well-defined
quasiparticles which change their distribution in a rigid band
due to collisions. The rigid-band assumption can break down
in correlated systems because the local Coulomb interactions
can strongly renormalize the electronic spectrum. The quantum
kinetic equation approach fails to describe a change in the
electronic band structure due to local correlations, while it
can describe the relaxation towards a thermal state on the
long timescale [30]. In the past few years, nonequilibrium
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dynamical mean-field theory (DMFT) has been widely applied
to study the photoexcitation and quench dynamics of correlated
electronic systems [31]. In this work, we study the dynamics
of correlated band insulators by means of nonequilibrium
DMFT, using iterative perturbation theory (IPT) as an impurity
solver. We find a crossover between two different behaviors
when the local Coulomb interaction becomes comparable to
the noninteracting band gap. The typical behavior of a band
insulator with two separate subsystems of thermalized holes
and electrons persists only for the smaller interaction.

This paper is organized as follows. In Sec. II, we present
the model and method used to study the photoexcitation of
correlated band insulators and briefly discuss the equilibrium
properties of the model. In Sec. III we present the numerical
results, and Sec. IV contains an analysis and discussion.

II. MODEL AND METHOD

A. Ionic Hubbard model and DMFT

Correlated band insulators are well described by the ionic
Hubbard model (IHM) on a bipartite lattice with two sublat-
tices, A and B. The Hamiltonian is given by

H = −J (t)
∑

〈i,j〉,σ
[c†i,σ cj,σ + H.c.] + �

∑
i∈A

ni − �
∑
i∈B

ni

+U
∑

i

ni↑ni↓ − μ
∑

i

ni, (1)

where J is the nearest-neighbor hopping amplitude and U is
the on-site Coulomb interaction. The staggered ionic potential
� is the origin of the noninteracting band gap. We choose the
chemical potential μ such that total filling of the system is fixed
at half filling (

∑
σ [nA,σ + nB,σ ] = 2). At half filling, the above

Hamiltonian describes a band insulator and a Mott insulator in
the limits (U = 0, � �= 0) and (U = ∞, � = 0), respectively.
Nontrivial states arise when both � and U are nonzero and
finite.

To study the photoexcitation dynamics of correlated band
insulators we employ the nonequilibrium DMFT formalism
[31], which is exact in the limit of the infinite-coordination
number Z with hopping J (t) = J ∗/

√
Z. We choose a non-

interacting dispersion of bands on a bipartite lattice, with a
semielliptical density of states ρ(ε) = 1

πJ ∗

√
4J ∗2 − ε2. We set

the half bandwidth 2J ∗ = 1 as an energy unit, and the unit of
time is h̄

2J ∗ . The DMFT formalism makes a local approximation
for the self-energy, i.e., �ij (t,t ′) ≈ �ii(t,t ′), which allows us
to map the lattice problem (1) to an effective quantum impurity
problem with a self-consistently determined bath �(t,t ′). The
impurity action for sublattice α ∈ {A,B} is given by

Sα =
∫

C

dt Hα
loc(t) +

∑
σ

∫
C

dtdt ′ c†σα(t)�α(t,t ′)cσα(t). (2)

Here C is the Keldysh time contour (for an introduction to the
Keldysh formalism, see, e.g., Ref. [31]), and

Hα
loc = Unα

↑nα
↓ + [�α − μ](nα

↑ + nα
↓) (3)

is the local Hamiltonian on the impurity, with �A = �

and �B = −�. The semielliptical density of states yields a
closed-form expression for the self-consistency relation, which

is given by �α(t,t ′) = J ∗(t)Gα(t,t ′)J ∗(t ′), where Gα(t,t ′) =
−i〈TCcα(t)c†α(t ′)〉Sα

is the local Green’s function defined on
the Keldysh contour (α = B for α = A and vice versa). For a
given sublattice hybridization �α , the local Green’s functions
Gα can be determined from the Dyson equation,

[i∂t + μ + �α − �α − �α]Gα = 1, (4)

where �α is the local self-energy which is calculated from
the effective impurity problem. We use the real-time iterative
perturbation theory as an impurity solver to calculate the local
self-energy. The diagrammatic expression for the IPT ansatz
is given by

�α(t,t ′) =
√

Aα(t)Aα(t ′)U (t)U (t ′)

×GH
α (t,t ′)GH

α (t,t ′)GH
α (t ′,t), (5)

where GH
α is the Hartree-corrected bath propagator, which is

given by the Dyson equation[
i∂t + μ − �α − �α

H − �α

]
GH

α = 1, (6)

with the Hartree self-energy �α
H (t,t ′) = Unα(t)δc(t,t ′). Fol-

lowing Ref. [13], the factors Aα in Eq. (5) are chosen such
that in equilibrium the ansatz is exact in the weak-coupling
limit (U/t 
 1) and it has the exact short-time behavior for all
values of U/t , which imposes various exact sum rules. The cor-
responding expression for Aα(t) is nα(t)[1 − nα(t)]/n0

α(t)[1 −
n0

α(t)], where n0
α(t) is the impurity occupancy, which is calcu-

lated from GH
α . Writing the A-factor in the symmetrized form√

Aα(t)Aα(t ′) guarantees that the self-energy equation (5) is
Hermitian, while the expression reduces to the conventional
form

√
Aα(t)Aα(t ′) = Aα at equilibrium, when Aα is time

independent.
Nonequilibrium DMFT measures the local Green’s function

for each sublattice. The sublattice occupancy is obtained from
the equal-time lesser component of the Green’s function,
m(t) = nA(t) − nB(t) = −iG<

A(t,t) + iG<
B (t,t). To find the

effective temperature of the photoexcited system we need to
calculate the total energy of the system, which is the sum
of kinetic energy, interaction energy, and lattice potential
energy. The kinetic energy of a photoexcited system is given
by the equal-time contour convolution of the hybridization
function with the local Green’s function, Ekin = −i

∑
α[�α ∗

Gα]<(t,t), and the interaction energy is the equal-time contour
convolution of the local self-energy with the local Green’s
function, Eint = i

∑
α[�α ∗ Gα]<(t,t) [31]. The lattice poten-

tial energy is E�(t) = �[nA(t) − nB(t)]. The double occu-
pancy dα(t) = 〈nα

↑nα
↓〉 is obtained from the interaction energy.

One of the issues with IPT is the nonconserving nature of the
self-energy in the sense of Baym-Kadanoff. A violation of the
energy conservation can be identified when there is a drift of
the total energy with time even though the Hamiltonian is time
independent. In previous nonequilibrium DMFT calculations
for interaction quenches in a single-band Hubbard model it was
found that IPT conserves the total energy very accurately up
to all accessible simulation times in the weak-to-intermediate-
coupling regime, while with increasing U there is a relatively
sharp crossover after which only the short-time dynamics is
correctly captured [32]. In this work we focus on relatively
weak coupling, and we have confirmed that an unphysical
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short-time increase of the energy as observed in Ref. [32] does
not occur.

B. Equilibrium DMFT study of the IHM

A first understanding of the equilibrium states of the IHM
can be obtained from the atomic limit J/U = 0 at total filling
equal to 1. In this trivially soluble limit, the ground state
for U < 2� has two electrons on sublattice B and zero on
sublattice A, resulting in a band insulator with a band gap
� − U/2. In the opposite limit (U > 2�) each sublattice is
occupied by one electron, and we get a Mott insulator with a
gap U . In the atomic limit, the system is gapless at U = 2�.
An interesting question therefore is whether local correlations
broaden this metallic point into a metallic phase when J is
nonzero.

Equilibrium studies of the IHM at zero temperature using
DMFT with an IPT impurity solver find that electronic corre-
lations strongly renormalize the noninteracting band gap for
small values of U . The gap in the spectral function vanishes
at a critical interaction Uc, and the system is metallic for a
finite range of interactions [13,15]. As we further increase
U > Uc, the system becomes Mott insulating; that is, the gap
in the spectral function opens again and increases with U .
The crossover from a correlated band insulator to a metal
has been observed experimentally in photoemission spectra
of SrRu1−xTixO3 [33].

IPT studies of the IHM find the metallic phase only up to
intermediate values of �, while for large values of the ionic
potential there is a direct transition from a band insulator to
a Mott insulator [13,15]. A recent study of the IHM at finite
temperature using a continuous-time quantum Monte Carlo
(CTQMC) impurity solver obtained a phase diagram similar
to IPT for intermediate values of �, but in contrast to IPT
the intermediate metallic phase persists to even larger values
of � [18]. An open issue is the nature of the intermediate
metallic phase [15]. Two-dimensional cluster extensions of
DMFT find a bond-ordered phase as an intermediate metallic
phase [14], while single-site DMFT using CTQMC suggests
that the intermediate metallic phase is a Fermi liquid [18].

C. Photodoping

Photodoping changes the electron-hole concentration by
irradiating light on the sample. Experimentally, laser photoex-
citation not only changes the carrier concentration of the bands
at the Fermi level but can also excite electrons from bands far
below the Fermi level into the conduction band and electrons
from the valence band to other bands far above the Fermi level.
In our work, we employ this setup to induce the photoexcited
state. To mimic such an experimental situation theoretically,
one can couple two additional wideband particle reservoirs to
the system. One reservoir is entirely filled and will therefore
inject particles into the empty states of the system, while the
other one is empty and can take out electrons from occupied
states. The additional fermionic baths are noninteracting and
can be integrated out exactly. The resulting DMFT action is
the same as Eq. (2), but the hybridization function is modified
to

�′
α(t,t ′) = �α(t,t ′) + �filled(t,t ′) + �empty(t,t ′). (7)

Here the first term corresponds to the self-consistent hy-
bridization of the ionic Hubbard model, and the last two
terms correspond to the hybridization of the filled and empty
reservoirs. The latter are given by

�filled/empty(t,t ′) = h(t)Gfilled/empty(t,t ′)h(t ′), (8)

where Gfilled/empty is the Green’s function of the reservoir and
h(t) is the time profile of the coupling between the IHM and
the reservoirs, for which we take the form

h(t) = h0 sin(πt/tpulse) (9)

for t � tpulse and h(t) = 0 for t > tpulse. Throughout this work
we fix tpulse = 3.0, and h0 is chosen to control the excitation
density. The density of states corresponding to Gfilled/empty(t,t ′)
is a Lorentzian of width 8J ∗.

III. RESULTS

We start the analysis of relaxation after photoexcitation
with an investigation of the time-dependent double occupancy
and the sublattice occupation (Secs. III A and III B) and then
proceed to analyze spectral functions and the occupation
function (Sec. III C). To know whether the photoexcited system
thermalizes after the pulse, we need to find the effective
temperature Teff of the time-evolved state [34]. For this pur-
pose, we determine a thermal equilibrium state which has
the same energy as the time-evolved state. The corresponding
temperature of the equilibrium state then defines Teff. (In
practice, we choose the excitation density in order to fix a
given effective temperature, Teff = 1 or Teff = 0.3.) With this
we can compare time-dependent expectation values of various
observables O(t) to corresponding expectation values Oth ≡
O(Teff) = Tr[exp−H/Teff O]/Z. Throughout the paper we fix a
low initial temperature T by β = 1/T = 32.

A. Thermalization of the metal (� = 0)

When the ionic potential is zero, the IHM reduces to a
simple one-band Hubbard model with intraorbital interaction
U , which is metallic at small values of U . In order to later
contrast the results to the correlated band insulator, we first
investigate the thermalization of this metallic phase within our
formalism. In Fig. 1(a), we plot the time-dependent double oc-
cupancyd(t) = 〈n↑n↓〉of the photoexcited system for different
values of U . We fit the time-dependent double occupancy to a
single exponential function d(t) = dt=∞ + b exp(−t/τd ) and
extract the extrapolated value dt=∞ of d(t) in the long-time
limit and the corresponding relaxation times τd . The thermal
values dth of the double occupancy, obtained from equilibrium
simulations at the corresponding effective temperature, are
shown by arrows in Fig. 1(a). The difference |dth − dt=∞| is
plotted in Fig. 1(b). One can see that the time-dependent double
occupancy approachesdth in the long-time limit for all values of
U within our numerical accuracy, which implies thermalization
of the weakly correlated metal. The relaxation times τd are
plotted in Fig. 1(c). The thermalization times can be fit well
with a power law τd ∼ 1/U 2. This behavior is consistent with
a quasiparticle picture: In the different calculations we have
chosen the excitation such that the effective temperature is
fixed to Teff = 1, so that the phase space for scattering is fixed,
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FIG. 1. (a) Double occupancy of the photoexcited system for
different values of U . The excitation density is chosen such that
Teff = 1. Solid curves show the numerical data, and red dashed lines
show exponential fits. Small arrows indicate the double occupancy
in thermal equilibrium. Zero time (t = 0) is the starting time of
simulations. (b) Difference of the double occupancy in equilibrium at
temperature T = Teff and in the photoexcited system. (c) Relaxation
time of the double occupancy for different values of U . The dashed
curve is a fit to the relaxation times with the relation a

U2 .

and the scattering rate is given by the scattering matrix element,
which is proportional to U 2.

B. Correlated band insulator: Relaxation of the double
occupancy and the sublattice occupation

To study the relaxation dynamics of the correlated band
insulator, we analyze the relaxation dynamics of the time-
dependent double occupancy dA(t) (measured at the A sub-
lattice without loss of generality). Like in the previous section,
we extract the value of the double occupancy at infinite time

dA
t=∞ and the relaxation time τA

d from an exponential fit
dA(t) = dA

t=∞ + b exp(−t/τA
d ). In the top panels of Fig. 2, we

plot the difference of dA
th from the time-evolved value dA

t=∞
for different values of the ionic potential. In contrast to the
metal, |dA

th − dA
t=∞| approaches zero only when U/� � 1. This

implies that for smaller interactions, the observed relaxation
on the timescale of our simulation is towards a nonthermal
state, while the behavior at large interactions is consistent
with thermalization. The crossover from nonthermal to thermal
behavior occurs roughly when U is of the order of �, but
it also depends on the excitation density (i.e., the effective
temperature of the final state). In the bottom panels of Fig. 2, we
plot the relaxation times τA

d obtained from the exponential fits.
In the regime where the system thermalizes (U/� � 1), the
relaxation times decrease with U , like in the metal. In the oppo-
site limit, the relaxation depends onU in a nonmonotonous way
and reaches a maximum value around U/� ≈ 0.6 for � = 0.4.
As we increase �, the maximum in the relaxation time shifts
gradually towards higher values of U/�. As observed for
|dA

th − dA
t=∞|, this maximum also depends on the excitation

density. The maximum in the relaxation time corresponds
to a value of U where the intraband relaxation within the
bands and the relaxation towards a thermal state happens at
similar timescales. Therefore a fit at the single exponential
becomes less reliable, which makes a quantitative discussion
of the crossover between the thermal and nonthermal regimes
difficult.

The sublattice occupancy m(t) = nA(t) − nB(t) exhibits a
behavior similar to that observed for the double occupancy.
For this purpose, we again analyze m(t) by means of an
exponential fit, m(t) = mt=∞ + b exp(−t/τm). The top panels
of Fig. 3 show the difference between mth and mt=∞ for
the same parameters as in Fig. 2. Similar to the double
occupancy, the sublattice occupation m(t) displays a crossover
from nonthermal to thermal behavior when U is comparable to
the ionic potential, with the same trend in the relaxation times
τm (bottom panel of Fig. 3).

FIG. 2. Top: Difference of the double occupancy in thermal equilibrium at temperature T = Teff and in the time-evolved state for different
values of the ionic potential: (a) � = 0.2, (b) � = 0.4, (c) � = 0.6, and (d) � = 0.8. The excitation density is chosen such that Teff = 0.3
(black circles) or Teff = 1.0 (red squares). Bottom: Relaxation times of the double occupancy.
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FIG. 3. Top: Difference of the sublattice occupancy in thermal equilibrium (mth) at temperature T = Teff and in the time-evolved state
(mt=∞) for different values of the ionic potential: (a) � = 0.2, (b) � = 0.4, (c) � = 0.6, and (d) � = 0.8. The excitation density is chosen
such that Teff = 0.3 (black circles) or Teff = 1.0 (red squares). Bottom: Relaxation times of the sublattice occupancy.

C. Relaxation of the spectral function

The observed crossover from nonthermal to thermal be-
havior can be further analyzed by looking at the spectral
functions and the occupation function. The analysis of the
spectral function furthermore allows us to access the possible
transient metallicity of the photodoped state. To identify any
such metallic states we calculate the single-particle spectral
function AR(ω,t) and the occupied density of states A<(ω,t)
from a Fourier transform,

Aγ (t,ω) = ∓ 1

π
Im

∫ t

0
dseiωsGγ (t,t − s). (10)

Here the upper and lower signs correspond to the spectral
function (γ = R) and the occupied density of states (γ =<),
respectively. The occupied density of states is closely related
to the intensity in time-dependent photoemission spectroscopy
[35]. Note that in nonequilibrium, we can define the Fourier
transform of a function G(t,t ′) with respect to the time
difference in forward (t ′ > t), backward (t ′ < t), or symmetric
fashion. Since we analyze spectra at the largest time when the
system is almost in a steady state, the differences are minor,
and we have chosen the backward form (10) unless stated
otherwise.

In the left panels of Figs. 4(a) and 4(b), we compare
the time-dependent spectral function in the photodoped state
(green solid lines) and in the equilibrium state (magenta dashed
lines) for � = 0.4 [Fig. 4(a)] and � = 0.6 [Fig. 4(b)] and
different values of U . The corresponding occupation functions
are shown in the right panels. In the thermal spectra, we find
a well-defined gap at small values of U . The gap is robust
even though the temperature is larger than U and �; that
is, the main effect of the temperature is the occupation of
states in the upper band, as seen from the occupied density
of states in the right panel. Increasing values of U lead to a
renormalization of the gap and a broadening of the square-root
singularity at the gap edge. When U is of the order of the ionic
potential, the gap in the spectral function starts to fills, until it is

completely melted for large U . Hubbard bands would emerge
only at larger values of U . Like for the double occupancy,
a significant difference between thermal and photoexcited
systems in A<(ω) is apparent only for U � �, confirming
the nonthermal nature of the photoexcited state in this regime.
Interestingly, the difference between thermal and photoexcited
states is almost invisible for the retarded spectral function on
the energy scale plotted in the left panels of Figs. 4(a) and 4(b),
which will be discussed below (Sec. IV A).

The thermalization can be further verified by check-
ing whether the electronic Green’s functions satisfy the
fluctuation-dissipation theorem (FDT). In equilibrium, the
FDT implies a ratio A<(ω)/A>(ω) = e−β(ω−μ) between
the occupied density of states A<(ω) = −iG<(ω) and the un-
occupied density of states A>(ω) = iG>(ω) or, equivalently, a
ratio A<(ω)/AR(ω) = 1/(1 + eβ(ω−μ)) between the occupied
density of states and the spectral function. To test whether the
photodoped state is in a quasiequilibrium state, we therefore
calculate the partial Fourier transform A<,>(t,ω) as in Eq. (10)
and evaluate the quantity

FA(t,ω) = ln

(
A<(t,ω)

A>(t,ω)

)
, (11)

which reduces to −(ω − μ)/Teff in a quasiequilibrium state.
In Fig. 5, we plot FA(t,ω) for a given � and different values of
U . The FDT is satisfied when the local Coulomb interaction
is greater than the ionic potential U > �, which confirms that
the photoexcited electrons have reached an equilibrium state.
Furthermore, in this limit the effective temperature obtained
from the FDT analysis accurately matches the value Teff = 1
obtained from the total energy.

For U � �, however, the electronic distribution functions
are highly nonthermal. Nevertheless, FA(t,ω) takes a linear
form (a + bω) in the spectral region outside the gap (|ω| �
0.3). The linear form of FA(t,ω) directly implies that the
electronic distribution functions are Fermi-Dirac. In general,
we can decompose the occupied and nonoccupied densities of
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FIG. 4. (a) Left: Spectral function AR(t = 180,ω) for different
values of U and � = 0.4. Right: The corresponding occupied density
of states A<(t = 180,ω) above the Fermi level. The green and pink
curves correspond to the spectral functions of the excited system (Exc)
and the system in thermal equilibrium (Thermal), respectively. The
black dashed lines indicate the Hartree-Fock spectral function (see
text). (b) Same as (a), but for � = 0.6. The excitation density is chosen
such that Teff = 1.

states as G<
A = 2πiA(ω)f (ω) and G>

A = 2πiA(ω)[1 − f (ω)]
in terms of spectrum A(ω) and a distribution function f (ω).
The relation ln(FA) = ln(G<

A/G>
A) = −(ω − μ)/Teff thus di-

rectly implies f (ω) = 1
e(ω−μ)βeff +1 . We find such a linear form

for the function FA in the spectral region outside the gap for
positive and negative frequencies. It can be interpreted in the
form of two distinct Fermi functions with the same effective
temperature Teff but with different chemical potentials in the
upper and lower bands, respectively. This signals thermaliza-
tion of electrons and holes as two separate subsystems due
to intraband scattering. The effective temperatures of such
photodoped states are very large (the distribution functions are
almost flat) or even negative, corresponding to a population
inversion. In photodoped Mott insulators with long-range
Coulomb interactions, self-sustained population inversions
have been found in the photodoped state [36]. In the present

FIG. 5. Electronic distribution functions FA(t = 180,ω)
[Eq. (11)] for different values of U and ionic potential � = 0.4 (top
panel) and � = 0.6 (bottom panel).

case, however, the effective temperature is mainly governed by
the carrier distribution during the photodoping process.

IV. DISCUSSION

A. Crossover from a band insulator to a correlated
band insulator

Summarizing the previous section, we can say that the
behavior of the system for U � � is well described by the
expectation for a band insulator, which is characterized by
the following features:

(i) At temperatures of interest for photoexcitation, the
(retarded) spectral function is relatively rigid. Up to a trivial
Hartree shift, which depends only on the thermal or pho-
toinduced sublattice occupation, it is barely influenced by
increasing the temperature or photodoping. This is seen by
a comparison of thermal, photoexcited, and Hartree spectra in
Fig. 4. The fact that the spectra only weakly depend on the
occupation also explains why the difference between thermal
and photoexcited spectra is small in this regime.

(ii) The main relaxation mechanism is intraband relaxation,
i.e., scattering between electrons and holes. Only a few
scattering processes lead to a redistribution of carriers across
the gap. This is consistent with the establishment of separate
thermalized distributions in the region of the upper and lower
bands, as shown in Fig. 5. The absence of a global thermal
state with a common chemical potential also explains the
nonthermal behavior observed in the double occupancy and
the sublattice occupation, which are quantities that involve
both valence- and conduction-band states and thus can indicate
global thermalization.

Above the crossover U ≈ �, the behavior of the system
changes drastically. In this regime, photoexcitation leads to a
partial filling in or closing of the gap and rapid thermalization.
As the system thermalizes in the correlated-band-insulating
regime, it is interesting to compare the thermalization times
from Figs. 2 and 3 with those observed in the metal (Fig. 1).
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FIG. 6. Relaxation times of the double occupancy for different
values of � and U > �. The dashed curves indicate power-law fits.

In Fig. 6, we plot the thermalization times of the double
occupancy for different values of the ionic potential and U >

�. We find that the decrease of the thermalization time with U

in the correlated band insulator is faster compared than in the
metal. The thermalization timescale is rather well described
with the behavior 1/Un with n > 2 (n = 2 for the metal), and
the value of n increases rapidly with the ionic potential. The
large value of n signifies that the thermalization dynamics of
correlated band insulators is different from that of metals.

In Fig. 7 we show the spectrum AR(0) at the Fermi level as
a function of U/� for different values of �. For small �, it
becomes increasingly difficult to resolve the gap and density of
states at the Fermi energy from a Fourier transform of real-time
data because longer simulation times are needed. We have
introduced an additional Gaussian kernel exp(−s2κ) in the
partial Fourier transform of the density of states in Eq. (10)
to reduce the Fourier oscillations in a controlled way [32]. In

FIG. 7. The value of the retarded spectral function at ω = 0 for
large time t = 180 in the photoexcited state (excitation density such
that Teff = 1).

Fig. 7, we choose κ = 0.0005, and we have verified that the
results shown do not depend on the cutoff within the size of
the data symbol. A nonzero density of states at the Fermi level
gives a finite phase-space volume for photodoped carriers to
exchange the energy and thus can lead to fast thermalization of
the photoexcited system. For U � �, the weight at the Fermi
level increases strongly with U/�. The larger exponent n in
Fig. 6 is therefore a consequence of the combined increase in
the interaction U and the spectral weight.

B. Role of impact ionization

Recently, it was shown that impact ionization processes can
play an important role in the thermalization and relaxation of
photoexcited Mott insulators [37]. Impact ionization occurs
if the kinetic energy of charge carriers is larger than the size
of the Mott gap, so that it is energetically allowed to create
an additional doublon-hole pair via two-particle scattering.
Impact ionization can be identified by the following charac-
teristic signatures in the occupation function: (i) An impact
ionization process decreases the occupied density of states at
high energies and increases it at energies which are lower by
at least the size of the gap. (ii) Impact ionization processes
increase the density of mobile carriers and hence increase of
integrated spectral weight above the gap.

To see whether impact ionization processes are important
in the thermalization of correlated band insulators, we plot
the time-dependent lesser spectral function for three different
ratios of U/� = 0.5, 1.0, and 1.375 (see Fig. 8). For U/� =
0.5 [Fig. 8(a)], the photoexcited system is not yet thermalized,
and there is a well-defined gap in the retarded spectral function.
In this regime the weight of the occupied density of states de-
creases at the lower edge of the conduction band, but the weight
at the upper edge of the conduction band does not change at
all, which is inconsistent with impact ionization. In the inset of
Fig. 8(a), we show the total occupation above the Fermi level as
a function of time. After photoexcitation, the integrated spec-
tral weight decreases rapidly with time and reaches saturation
at short timescales. We do not observe an increase at later times,
which shows that impact ionization processes are not relevant
on the timescale of our simulation when the local Coulomb
interaction is smaller than the ionic potential.

In Fig. 8(b), we consider the case where the ionic potential
is comparable to the Coulomb interaction (U/� = 1.0). In this
case, there is already some spectral weight at the Fermi level.
One can observe that the occupied density of states increases

at the lower band edge of the conduction band and decreases at
the upper band edge, and the overall integrated spectral weight
above ω = 0 increases at later times (insets in Fig. 8). Both
signatures indicate impact ionization processes take place in
this regime. Similarly, we can also identify signatures of the
impact ionization process when U is greater than the ionic
potential, as shown in Fig. 8(c).

The precise time-dependent change in the occupied density
of states can be used to quantify the significance of the impact
ionization process at later times in the relaxation process. In
Fig. 9, we show the difference in A<(t,ω) between large times
and some initial time t = 18 for U/� = 1.0 and t = 24 for
U/� = 1.375. The time-dependent change in the occupied
density of states is positive for frequencies below ω ∼ 0.625
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FIG. 8. Occupied density of states above the Fermi level at different times for � = 0.4 and Teff = 1.0. Insets: Integrated weight of the
occupied density of states, W (t) = ∫ ∞

0 A<(t,ω)dω, above the Fermi level.

and negative above 0.625. The ratio of the increase of the
weight below ω = 0.625 to the decrease of weight above
ω = 0.625 can therefore give an estimate of the number
of mobile carriers produced in impact ionization processes.
We find that this ratio is roughly 1.4 for U/� = 1.0 and
1.25 for U/� = 1.375, whereas relaxation only via impact
ionization would suggest a ratio of 3 [37]. This implies that
impact ionization processes are less significant in correlated
band insulators than in small-gap Mott insulators. Probably,
multiparticle-scattering mechanisms are also significant in the
rapid thermalization of correlated band insulators.

V. CONCLUSION

In conclusion, we have studied the photoexcitation dynam-
ics of correlated band insulators in the ionic Hubbard model.

FIG. 9. Time-dependent change in the occupied density of states
for excitation density corresponding to Teff = 1.0, � = 0.4, and (a)
U/� = 1.0 or (b) U/� = 1.375. The up (down) arrows indicate
frequencies at which a rapid increase (decrease) is observed more
strongly during the relaxation.

Depending on the ratio of the interaction U and the ionic
potential �, we observe a qualitatively different behavior:
For U � �, the spectrum itself is weakly influenced by the
excitation (apart from a slight photoinduced screening of the
gap, which is described by the Hartree shift of the bands).
The relaxation of the system in this regime is characterized
by intraband carrier scattering, leading to a nonthermal inter-
mediate state with separate thermal distributions of electrons
and holes. Above a crossover U ≈ �, the behavior changes.
Photoexcitation can lead to a rapid renormalization of the
spectrum, a filling in of the gap, and fast thermalization. This
rapid thermalization of a small-gap insulator is reminiscent
of the thermalization of small-gap Mott insulators [34], but
in contrast to Mott insulators impact ionization processes
[37] are less significant. The strong renormalization of the
spectral function indicates that the dynamics of the correlated
band insulator in this regime is no longer well described by
mere quasiparticle scattering in rigid bands, which would be
captured by kinetic equations.

In equilibrium, two systems with an identical gap in the
spectral function can have very different ratios U/�. For
example, an insulator with U/� � 1 and a gap �∗ can be
compared to an ideal band insulator with ionic potential �∗ and
U 
 �∗. The present analysis shows how these two systems
with very similar equilibrium single-particle properties can be
distinguished by their dynamical behavior. This may be used to
classify weakly interacting insulators as either band insulators
or correlated band insulators. In equilibrium, a qualitative
distinction of correlated band insulators and band insulators
may be based on different behaviors of spin and charge gaps
[9,10,22], and it will be interesting to see whether these
pictures can be linked to the dynamical behavior. An important
question is the role of spatial fluctuations for the thermalization
dynamics, which are neglected in DMFT. For Mott insulators
both short-range spin fluctuations [38] and charge fluctuations
[36] can act as an energy bath for the electrons and thus
affect the relaxation of distribution within the Hubbard band.
Whether nonlocal fluctuations in the intermediate-coupling
regime can also speed up interband thermalization and not
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only the intraband relaxation remains an important question
for future investigations. The observed crossover from a
nonthermal state to a thermal state can potentially be found
in SrRu1−xTixO3, and some of the 3d transition-metal oxides
with crystal-field splitting [33].
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