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ABSTRACT

Deep moist convection is an inherently multiscale phenomenon with organization processes coupling

convective elements to larger-scale structures. A realistic representation of the tropical dynamics demands a

simulation framework that is capable of representing physical processes across a wide range of scales.

Therefore, storm-resolving numerical simulations at 2.4 km have been performed covering the tropical

Atlantic and neighboring parts for 2 months. The simulated cloud fields are combined with infrared

geostationary satellite observations, and their realism is assessed with the help of object-based evaluation

methods. It is shown that the simulations are able to develop a well-defined intertropical convergence zone.

However, marine convective activity measured by the cold cloud coverage is considerably underestimated,

especially for the winter season and the westernAtlantic. The spatial coupling across the resolved scales leads

to simulated cloud number size distributions that follow power laws similar to the observations, with slopes

steeper in winter than summer and slopes steeper over ocean than over land. The simulated slopes are,

however, too steep, indicating toomany small and too few large tropical cloud cells. It is also discussed that the

number of larger cells is less influenced by multiday variability of environmental conditions. Despite the

identified deficits, the analyzed simulations highlight the great potential of this modeling framework for

process-based studies of tropical deep convection.

1. Introduction

Clouds and convection are essential components of

Earth’s climate system. Their direct influence and their

related physical processes strongly shape Earth’s radiative

energy budget. They couple the atmosphere vertically via

convective redistribution of energy, moisture, and mo-

mentum and laterally bridge marine and land regions via

their interplay with the general circulation (Arakawa 2004;

Arakawa and Jung 2011; Stevens and Bony 2013). One

particular aspect, the phenomenon of spatial convective

aggregation, has gained interest in the climate modeling

community, leading to the question of whether the

organization of convection matters for the mean climate

(Holloway et al. 2017; Wing et al. 2017). Clustered orga-

nized convection modifies the surrounding environment

(drying and warming of the free troposphere and moist-

ening of the boundary), which directly influences the

longwave outgoing radiation (Planck response) and feeds

back onto its anvil and surrounding boundary clouds

(cloud response) (Bony et al. 2016). If there is a systematic

dependency of convective aggregation on global surface

temperature, then there might be an important climate

feedback that is missing in current assessments of climate

sensitivity (Khairoutdinov and Emanuel 2013; Mauritsen

and Stevens 2015; Mapes 2016).

A considerable part of this climate sensitivity uncer-

tainty can be attributed to an insufficient numerical

representation of clouds and convection in general cir-

culation models (GCMs) (Medeiros et al. 2008; Gettelman

et al. 2012).GCMsparameterize convection using statistical
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theories that assumea scale separation between convective

scales and large-scale dynamics; however, this underlying

idea is questionable (Grabowski 2001; Arakawa 2004;

Marsham et al. 2013; Birch et al. 2014). Important con-

vective processes, like the triggering [i.e., diurnal cycle;

see Bechtold et al. (2014b)] or the evolution of convection

[i.e., interaction of multiple cells; see Khairoutdinov et al.

(2009); Schlemmer and Hohenegger (2016)], are not cap-

tured adequately, which results in biased interactions

of the parameterized small scales with resolved larger

scales. In tropical regions, these shortcomings are partic-

ularly large because convection grows deep quickly, and

shallow and deep convection exhibit a complex interplay

(Sherwood et al. 2014; Li et al. 2014). For instance, Peters

et al. (2017) showed that capturing the observed spatio-

temporal structures of tropical rainfall matters for an ad-

equate representation of tropical intraseasonal variability.

Especially over the oceans, the intertropical convergence

zone (ITCZ) possesses a strong sensitivity to convection

parameterization schemes, and even small modifications

can lead to large structural differences (Nolan et al. 2016;

Möbis and Stevens 2012). The radiative impact of tropical

clouds has been shown to dominate possible latitudinal

shifts of the ITCZ (Voigt et al. 2014).

We approach the problem of the so-called ‘‘convec-

tion parameterization deadlock’’ (Randall et al. 2003;

Randall 2013) with large-domain, storm-resolving model

simulations that explicitly resolve convection processes.

The investigations are focused on the tropical Atlantic

and adjacent continents (Klocke et al. 2017) and aim to

analyze deep convective characteristics for two different

seasons: boreal summer and winter. Simulated features

of tropical deep convection are evaluated against in-

frared Meteosat observations. This idea is motivated by

the necessity to test the storm-resolving simulations with

novel evaluation approaches that are capable of assessing

the additional level of complexity, which is introduced

by resolved interacting convection.

The imaging radiometers aboard the geostationary

Meteosat platforms are the perfect instruments to char-

acterize convective development and cloud organization

due to their frequent temporal update rate and high

spatial resolution. There exists a rich record of literature

that analyzed deep convection over the tropical Atlantic

based onMeteosat data. For instance, Duvel (1989, 1990)

investigated interannual and diurnal variations of deep

convection over tropical Africa and the Atlantic Ocean.

They found the existence of a strong coherent diurnal

cycle of convective cloudiness over oceanic areas with

flow convergence, which is further modulated by propa-

gating easterly waves. Machado et al. (1992, 1993) and

Machado and Rossow (1993) studied the structural

characteristics of tropical convection and their temporal

variability using object-based techniques. They found a

power law decay of the cloud number size distribution

with an exponent around 2. In addition, they demon-

strated that high-level cloudiness has a weak maximum

over the Atlantic in the early morning and is more pro-

nounced within the troughs of the easterly waves. They

also suggested that diurnal variations over the ocean

mainly result from internal variations in large mesoscale

convective systems (MCSs) and not from new initiation

of convection. Furthermore, Schroeder et al. (2009) and

Bennartz and Schroeder (2012) analyzed the spatial dis-

tribution and the temporal behavior of convective activity

using Meteosat observations. The latter found that de-

rived convective activity and minimum convective tem-

peratures are remarkably stable over time and that the

longest-livingmarineMCSs are initiated near theAfrican

easterly jet position.

Alongside increasing numerical simulation capabilities

and growing availability of high-quality cloud observa-

tions, techniques for evaluating simulated tropical cloud

characteristics have evolved. The satellite-directed eval-

uation methods typically invoke a radiative transfer

scheme, the so-called satellite forward operator, which

translates the simulation output into synthetic satellite

radiances that can be directly compared to real observa-

tions. The method was advanced by Morcrette (1991),

who compared satellite-observed and GCM-based diur-

nal variability in terms of brightness temperature histo-

grams. Several other investigators improved the use of

synthetic Meteosat data for GCM evaluation (Roca et al.

1997; Chaboureau et al. 2000; Chevallier and Kelly 2002;

Slingo et al. 2004; Tian et al. 2004; and others), focusing

on different dynamical aspects of tropical convection as

well as extensions of the method to allow for multispec-

tral (Chaboureau and Pinty 2006; Thelen and Edwards

2013) and even multisensor (Matsui et al. 2014) consid-

erations. Proceeding to finer spatial scales, Zhang et al.

(2008) evaluated their superparameterization model

(4-km grid spacing) against Meteosat and found that

convection was overactive in the considered situations.

Finally, very large-domain or even global convection-

permitting simulations have been analyzed byOtkin et al.

(2009) (3-km grid spacing) and Sato et al. (2009) (7-km

grid spacing), respectively, jointly with Meteosat obser-

vations. The latter study especially shows how the confi-

dence about the realism of the numerical simulation can

advance understanding of interaction processes in terms

of underlying physics.

The advent of convection-permitting simulations in-

creased the demand for novel spatial or object-based eval-

uation techniques (see, e.g., Ebert 2008; Gilleland et al.

2009). Therefore, several authors developed object-based

analysis methods for convection-permitting simulations
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of tropical convection along with Meteosat observations

with a focus on convective activity over Africa (Pearson

et al. 2010, 2014; Negri et al. 2014;White et al. 2018). They

demonstrated that explicitly resolving deep convection

improves the representation of convective life cycles, as

well as the ability to simulate diurnal cycles and upscale

growth of convective cloud clusters. Similarly, Inoue et al.

(2008) and Roh and Satoh (2014) analyzed cloud-size

distributions of deep convective clouds in the tropical

Pacific for their simulations (around 3-km grid spacing)

and found good agreement with observed statistics.

However, higher model resolutions do not always guar-

antee improved realism of all aspects of convective cloud

characteristics. For instance, Machado and Chaboureau

(2015) analyzed a set of convection-permitting forecasts

over Brazil and found that the forecasts produced too

many small cloud and rain cells with a shorter lifetime

than observed. Problems with too many small convection

cells were also found by others (e.g., Pearson et al. 2014;

Rempel et al. 2017;White et al. 2018), which indicates the

general presence of a persistent simulation bias across

model versions and setups. With that in mind, we extend

the abovementioned studies in two ways. We first focus

more on the tropicalAtlantic and compare characteristics

of marine deep convection to its land-based counterpart

for two different seasons. Second, we extend available

evaluation techniques by introducing a histogram match-

ingmethod that is applied before the object-based analysis.

This allows for a clearer separation of the assessment of

the quality of simulated histograms and the evaluation

of spatial structures. In particular, threshold-based analysis

techniques, similar to the one we employ, are extremely

sensitive to cloud cover biases. In the design of object-

based evaluationmetrics, it is therefore very important not

to penalize cloud cover or similar shortcomings several

times [see, e.g., Rempel et al. (2017) for a discussion of

object-based forecast metrics].

The paper is structured as follows. The setup of the

cloud-resolving simulations and the observations of the

geostationary satellite Meteosat are described in section 2.

Section 3 presents the object-based analysis methods, as

well as the histogram matching approach for distribu-

tional bias correction that is applied in section 4 in order

to reveal the spatial distribution and temporal variability

of deep moist convection in the tropical Atlantic belt.

Final conclusions are given in section 5.

2. Storm-resolving simulations and satellite data of
the tropical land and ocean

The studied domain covers the tropical Atlantic re-

gion from the western parts of Africa to the Caribbean

Sea and northeastern parts of South America, with a

horizontal extent of more than 9000km in east–west

direction and more than 3000km from south to north

(see Fig. 1). The evaluation of simulated deep convec-

tion focuses on a boreal summer and a winter month

during the Next-Generation Aircraft Remote Sensing

for Validation (NARVAL) campaigns (Stevens et al.

2016; Klepp et al. 2014) in August 2016 and December

2013. These twomonths reflect the reversal points of the

tropical Atlantic seasonal cycle. In the following, they

are taken as representatives of the winter and summer

seasons (Brueck et al. 2015). The domain encompasses

the ITCZ in the Atlantic and the related trade wind

regions in the north and south of the convergence zone.

We define two subregions of the full domain: the inner

parts of the tropical Atlantic and the western part of the

African continent. We exclude a 300-km-wide stripe

centered on the coastal regions to obtain a sufficient

separation between land and ocean environments. In

summer, the ITCZ is centered at about 108N, and deep

convective events in the domain are influenced by

easterly waves and fast-moving convective storms over

Africa (see Fig. 1). In winter, the deep convective ac-

tivity is focusedmore in the central tropical Atlantic and

farther south at about 58N.

a. Storm-resolving simulations

In support of the NARVAL flight campaign, storm-

resolving (2.4-km grid spacing) simulations of the

tropical Atlantic for every day in December 2013 and

August 2016 were performed (Klocke et al. 2017) using

the Icosahedral Nonhydrostatic (ICON) model (Zängl
et al. 2015) of the GermanWeather Service (DWD) and

theMax Planck Institute for Meteorology. Thirty-six-hour

forecasts are initialized for each day of the two months

at 0000 UTC with the atmospheric analysis product

from the European Centre for Medium-RangeWeather

Forecasts (ECMWF) and are nudged on the lateral

boundaries with the corresponding 3-hourly forecast

data. Because of the relatively high resolution of

ICON, the parameterizations for convection, gravity

wave drag, and subgrid-scale orography are not used.

The first 12 h of each simulation are discarded due

to artifacts from the initialization and to allow for the

small-scale phenomena to develop from the coarser

(16 km for December 2013 and 9.5 km for August

2016) initial fields [similar to Maurer et al. (2015)].

The full model state is saved every hour and serves as

an input for the calculation of synthetic radiances, as

described in the following.

b. Synthetic radiances from simulation data

A satellite forward operator has been applied to the

thermodynamic and hydrometeor fields from the model
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to compute the simulated radiation with spectral char-

acteristics of Meteosat Spinning Enhanced Visible and

Infrared Imager (SEVIRI). We employ the so-called

SynSat method (Keil et al. 2006; Senf and Deneke 2017)

that prepares model output variables (namely, profiles

of air pressure, temperature, moisture, and hydrometeor

content), as well as surface properties, and sequentially

performs single-column radiative transfer calculations

with the RTTOV model version 11 (Saunders et al.

1999). In a preparation step, cloud-radiative properties

are estimated from the hydrometeor mass mixing ratios.

We choose the operational configuration in which cloud

ice and precipitating snow masses are added, and the

McFarquhar et al. (2003) scheme is applied to estimate

the effective crystal sizes from which scattering and

absorption coefficients are derived. The simulated in-

frared radiances are converted into equivalent black-

body temperatures, called brightness temperatures

(BTs) in the following. Note that the applied simplifi-

cations in the description of microphysical properties

and, consequently, the infrared radiative cloud charac-

teristics are typically inconsistent with model-internal

formulation and can lead to uncertainties of simu-

lated brightness temperatures on the order of a few

kelvin [see, e.g., Senf and Deneke (2017) for further

discussion].

c. Satellite data

Measurements of the SEVIRI instrument on board

the Meteosat Second Generation (MSG) geostationary

satellite are used for evaluation of simulated convection.

We analyze hourly SEVIRI data from the operational

MSG prime service operated at a nominal subsatellite

longitude of 08. The horizontal resolution of measured

radiances is 3 km at the equator and increases toward the

poles. SEVIRI covers a broad range of the solar and

terrestrial radiation spectrum, with a total of 12 chan-

nels. For simplicity, we only use two infrared channels

here, centered at 6.2 and 10.8mm. The former is strongly

affected by absorption from atmospheric water vapor.

Most of the signal emitted at 6.2mm comes from the

upper troposphere between 200 and 300 hPa. The spatial

distribution of 6.2-mm radiation either reflects the dis-

tribution of upper-tropospheric water vapor or that of

FIG. 1. Brightness temperature fields for (a) Meteosat observations and (b) synthetic ICON

imagery at 1800 UTC 15 Aug 2016. Color shading indicates low BTs, with values lower

than 240K.
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very cold clouds. The second channel, at 10.8mm, is lo-

cated in the atmospheric window, which means that ra-

diation is only slightly influenced by absorption from

atmospheric gases. The main signal thus comes from the

land or ocean surfaces or the top layers within clouds or

a combination of the two.

For comparison, the observed brightness temperatures

have been reprojected and regridded onto themodel grid.

An example of the 10.8-mm brightness temperature

(BT10.8) is shown in Fig. 1 for 1800UTC 15August 2016.

Clouds with a cold top temperature (highlighted with

colored shadings) mark the positions where deep moist

convection ismost active and reaches to high atmospheric

altitudes. In this particular example, deep convection

over the tropical Atlantic is modulated by large-scale

wave-like features and is highly organized in convectively

active regions.

3. An object-based method to evaluate deep
convective clouds

a. Object-based analysis

Object-based analysis methods might allow for deeper

insights into the temporal evolution and spatial charac-

teristics of convective clouds than standard techniques,

based on comparison of gridpoint values or regional value

distributions (see, e.g., Ebert 2008; Gilleland et al. 2009).

We therefore convert simulated and observed BT10.8

fields into sets of cell objects using a threshold-based

segmentation technique. An illustration is given in Fig. 2,

and further details are described in appendix A. One

prime advantage of our applied segmentation procedure

is that we are able to consistently split up filament con-

nections between visually separate cloud cells, compared

to standard methods that use connected compound

analysis (e.g., Wielicki and Welch 1986; Machado et al.

1992; Negri et al. 2014; Rempel et al. 2017).

A BT10.8 threshold of 230K has been chosen, which

roughly corresponds to a height of 11km in a standard

tropical atmosphere (Machado et al. 1992). This tem-

perature threshold is identical to the threshold considered

in Schroeder et al. (2009) and Bennartz and Schroeder

(2012) to assess the distribution of convective activity

over Africa and the tropical Atlantic. With BTs lower

than 230K, only the deep convective cores and the upper

parts of thick convective anvil clouds are taken into ac-

count. Quite a large diversity on threshold choices can be

found in the literature, however [e.g., see discussion in

Bennartz and Schroeder (2012)].

The cells are analyzed using a set of standard object-

based metrics (see, e.g., Rempel et al. 2017). For instance,

the size of each cloud object with index i is defined by its

equivalent diameterDi 5 2
ffiffiffiffiffiffiffiffiffi

ai/p
p

, which is the diameter of

an area-equal circle with area ai. Based on the equivalent

diameters, we build size-resolved statistics. The number of

cells Nk is counted for different size categories defined

by logarithmic size intervals (Dk21, Dk21 1DDk), with

FIG. 2. Illustration of the segmentationmethod. Small regional excerpt ofMeteosat observations of an organized convective systemover

the tropical Atlantic showing (a) visible reflectances at 0:6mm, (b) BT10.8, and (c) result of the segmentation method when a BT10.8

threshold of 230K is applied. The observation is from 1200 UTC 15 Aug 2016, the lower-left corner lies at 4.338N, 33.598E, and spatial

coordinates are measured relative to that corner.
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DDk 5 cDk21, c5 0:229, and D0 5 20 km; k5 1, . . . , 20

denotes the size range index [similar to Machado et al.

(1992)]. Cloud number size distributions (CNSDs) have

been computed as cell number density per size interval via

n
k
5

1

DD
k

N
k

A
reg

, (1)

where Areg refers to the area of the analysis region (e.g.,

the tropical Atlantic and western Africa). We do not

apply a size-dependent bias correction of the analysis

area Areg, as proposed by Wood and Field (2011), to

correct for removed large cells that are connected to the

domain edges. We furthermore compute cloud cover

distribution functions (CCDFs), which give size depen-

dence of relative cold cloud coverage. In contrast to the

CNSD, the CCDF was normalized with respect to the

logarithmic bin size D log(Dk), that is,

f
k
5

1

D log(D
k
)

A
k

A
reg

, (2)

to highlight the cloud cover contributions coming

from the different scale ranges. The latter involves

Ak 5�i2Ik ai, which is the area covered by all cells

within a certain size range with index k; Ik is the cell

index set for all cells that belong to k. Based on the

CCDF, we define a median cell diameterD50 5Dk*, for

which one-half of the cloud coverage originates from

cells with smaller diameters, whereas the other half

comes from larger cells; that is, k* is determined from

the implicit relation

�
k.k*

f
k
5 �

k,k*

f
k
, (3)

after Wood and Field (2011). Based on the temporal

analysis discussed in appendix B, area rates are calcu-

lated as instantaneous changes in anvil area. Cells that

possess larger area rates than the upper quartile are

termed actively growing, whereas cells with area rates

smaller than the lower quartile are termed dissipating.

b. Bias correction of simulated BTs

We base our evaluation of simulated tropical con-

vection on the comparison of simulated and observed

BTs. As we will show in section 4, the average frequency

distribution of simulated BTs deviates significantly from

the observations over a broad range of BT values. These

histogram biases carry information about deficits in

our ability to realistically simulate deep convective de-

velopment and organization processes and, to a lesser

extent, about the shortcomings in the satellite forward

operator. Hence, understanding simulation biases might

help us to improve our models and their configuration.

On the other hand, these biases do negatively influence

our ability to identify similarities and differences in

spatial structures of deep convective clouds and their

temporal variability. By the term ‘‘spatial structures,’’

we mean the relative arrangement of field values rather

than their absolute values. This information might be

assessed based on the rank of the individual values in a

more robust manner. In that sense, we propose to sep-

arate the model evaluation into two tasks: (i) the anal-

ysis of BT histograms and (ii) the comparison of spatial

structures from the rank fields. To stay within the BT

space, we transform the simulated rank fields back using

histogrammatching, which is explained in the following.

We determine the cumulative distribution functions

(CDFs) for observed and simulated BT10.8s. We use

descending BT order; that is, CDFs give the probability

that a BT value is smaller than a certain threshold. CDFs

are accumulated over full months. The result for August

2016 is shown in Fig. 3a. For instance, the probability is

3.6% to observe a BT10.8 smaller than 230K, but 2.2%

only for simulated BT10.8s. The inverse CDFs map a

certain probability or percentile value to corresponding

BT10.8 thresholds. Now, taking the average observed

coverage of 3.6%, a simulated BT threshold of 240.9K

would result. Hence, aiming to match observed and

simulated cold cloud coverage, an increase in the sim-

ulated BT threshold of around 11K would be needed.

This is a significant cloud cover bias for which we have to

correct before the application of object-based evalua-

tion metrics. In other words, if we apply a BT bias cor-

rection of211K to the simulated BT10.8 around 241K,

we adjust the simulated cloud cover to the observed

counterpart (see arrows in Fig. 3a). In the following, the

bias correction is applied to the simulated BT10.8 dis-

tribution gathered for the full domain. The BT distri-

butions are accumulated for each of the two months,

separately, to obtain mapping functions. Thereafter,

simulated BTs are mapped onto the typically observed

BTs that have equal percentile values. Thismethod is also

known as histogram matching in the image-processing

community. The results based on bias-corrected BT10.8s

are labeled by ‘‘ICON-t’’ and are shown together with the

uncorrected simulated BTs.

The applied BT10.8 bias correction for the two

months is presented in Fig. 3b as a function of simulated

BT10.8. The BT10.8 correction is mainly negative over a

broad range of low BTs and on the order of 10K. This is

related to a positive BT bias of the simulations, indi-

cating too-low cloud tops and too-small convective

anvils, which is slightlymore pronounced inAugust 2016

than in December 2013. Furthermore, Fig. 3b also

shows a hypothetical spread of the BT bias correction if
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the histogram matching technique would be applied on

hourly and not on monthly average basis. It illustrates

that cold cloud coverage bias is a very persistent feature

of the ICON simulations besides the large temporal

variability.

4. Results

a. Monthly average cloud statistics

Subsequently, monthly average cloud statistics are ana-

lyzed, for which we contrast similarities and deviations

between observations and simulations. Full-domain prob-

ability density functions (PDFs) of BT10.8 and BT6.2 are

compared in Fig. 4. The PDFs of observed BT10.8 show a

frequency peak around 293K, which is related to the sur-

face temperature of the cloud-free ocean. However, the

simulated BT10.8 PDFs show a peak that is shifted to

288K, which is close to the cloud-top temperature of

marine low-level clouds. Hence, the simulations overesti-

mate the low-level cloudiness over the subtropical parts of

the ocean, which is probably caused by the too-coarse

model resolution for the proper representation of shallow

convection, a common consequence from too little mixing

in the boundary layer (Bechtold et al. 2014a). At the low

BT10.8 tail, the distributions follow approximately the

same shape but exhibit an offset of around 10K, as men-

tioned in section 3b. As a result, the cold cloud coverage

with BT10.8, 230K is underestimated up to a factor of 2.

This cloud cover bias is more pronounced over the ocean

(see Table 1). The BT offset is relatively stable across a

considerable BT10.8 range (also see Fig. 3). This circum-

stance led us to suspect that the underestimation of cloud

cover is mainly caused by an underestimation of cloud-top

height and, thus, overestimation of cloud-top tempera-

tures. This further motivates the analysis of ICON-t

properties to investigate if the structural characteristics of

simulated convection show a higher degree of realism.

Furthermore, Fig. 4 shows the average distributions of

BT6.2, which is connected to upper-tropospheric water

vapor. Large-scale dry patches lead to the occurrence

of a broad BT6.2 PDF maximum around 240K. The sim-

ulations closely follow the observed curve. An underesti-

mation of low BT6.2 frequencies and corresponding

compensationwithin the peak region is again caused by the

cold cloud cover bias. Therefore, the large-scale upper-

level moisture patterns are well represented in the simu-

lations. This is in contrast to the simulations over tropical

Africa, analyzed by Negri et al. (2014), for which a pro-

nounced dry bias of upper-level moisture was found.

In the following, we focus on object-based analysis of

tropical deep convection. Average cell characteristics

are derived from observed and simulated BT10.8 values

colder than 230K and are shown in Fig. 5 for the summer

season over the Atlantic Ocean. Additionally, compu-

tations of cold cloud coverage, average nearest-neighbor

distance, and CNSD power law exponents are provided

in Table 1, which supplements the graphical represen-

tation in Fig. 5. Results for the bias-corrected ICON-t

are presented in addition to the uncorrected simulation

FIG. 3. Bias correction for simulated ICON BT10.8 data using histogram matching. (a) Based on the aggregated

CDFs of ICON (green line) andMeteosat (orange line), a mapping is performed that transforms simulated BT10.8

to observed BT10.8 possessing the same CDF values (see section 3b). (b) The average BT10.8 correction (thick

lines) has to be added to the simulated BT10.8 (on abscissa) to map the average simulated BT10.8 distribution to its

observed counterpart. The mapping is derived for two time periods: December 2013 (solid lines) and August 2016

(dashed lines). The shaded interval between the thin lines gives the 16th- to 84th-percentile range of hypothetical

BT10.8 corrections if the BT10.8 mapping would be derived for each time slot separately. This hypothetical spread

is only shown for illustration purposes and was not used for bias correction in the current study.

JULY 2018 S ENF ET AL . 2167

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/146/7/2161/4377356/m
w

r-d-17-0378_1.pdf by M
AX-PLAN

C
K-IN

STITU
TE FO

R
 M

ETEO
R

O
LO

G
Y user on 28 August 2020



values (ICON). In general, the bias correction leads to

an improvement of considered cell metrics over the

ocean (with some exceptions, especially over the land;

not shown), which means that the simulated cloud

structures are relatively close to the observations. From

Fig. 5a, it appears that the observed and simulated

CNSDs can be represented by a power law over a large

range of sizes (i.e., nk ;D2b
k ). The negative power law

TABLE 1. Cold cloud coverage (in %) under the condition of BT10.8, 230K (first block), average nearest-neighbor distances (second

block), and power law exponents b of the cloud number size distribution (third block) for two subregions, Africa and Atlantic, and the

Meteosat observation as well as the ICON simulation with and without bias correction. Mean power law exponent values and 90%

confidence intervals (in parentheses) are obtained from repeated linear least squares fits using a bootstrap approach. Absolute frequencies

are assumed to be realizations of Poisson processes. Boldface scaling coefficients indicate simulated values that are significantly different

from observation at 1% level.

Tropical Atlantic Western Africa

Dec 2013 Aug 2016 Dec 2013 Aug 2016

Cold cloud coverage in %

Meteosat 1.9 1.7 0.9 5.7

ICON 0.7 0.9 0.5 4.9

ICON-t 1.5 1.5 0.9 7.3

Average nearest-neighbor distances: Average (mode) in km

Meteosat 128 (61) 126 (68) 192 (65) 151 (66)

ICON 115 (52) 104 (56) 175 (69) 126 (58)

ICON-t 97 (51) 101 (55) 134 (45) 112 (55)

CNSD power law exponents: Expected value (confidence interval)

Meteosat 2.6 (2.8, 2.5) 2.3 (2.4, 2.2) 2.6 (3.0, 2.4) 2.1 (2.2, 2.0)

ICON 3.3 (3.5, 3.1) 2.8 (3.0, 2.7) 3.2 (3.5, 2.9) 2.2 (2.3, 2.1)

ICON-t 3.1 (3.3, 3.0) 2.6 (2.8, 2.6) 3.3 (3.6, 3.0) 2.3 (2.4, 2.2)

FIG. 4. Occurrence frequencies of (left) BT10.8 and (right) BT6.2 for (a),(b) December 2013 and (c),(d) August

2016. Observation (orange) is compared to the simulation (green). Normalization with BT bin-width is applied to

obtain probability density functions. The average occurrence frequency is given by the solid line, and the range

between the 16th and 84th percentiles (corresponding to 6 standard deviation) is plotted as semitransparent

shadings. Insets in (a) and (c) zoom into the PDF for the low BT range below 230K.
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slopes b are between 2.1 and 2.6 for observation and

between 2.2 and 3.3 for simulations (see Table 1), with

considerable uncertainty. This is in line with Machado

et al. (1992), who found slopes of Meteosat-derived

CNSD varying around 2 for similar BT ranges. Slightly

larger slopes of 2.6 to 2.9 and of 3.1 were reported

by Wood and Field (2011) and Peters et al. (2009),

respectively (reported exponents were recalculated by

us from the original exponents b0 using the formula

b5 2b0 2 1, which accounts for the variable transfor-

mation going from CNSDs per area interval to CNSDs

per diameter interval). The two studies based their an-

alyses on very different spaceborne observations; the

former studied cells derived from cloud masks, whereas

the latter based their study on radar-derived precipitation

cells. Both studies also discussed the universality of the

power law behavior and the link to simplified models, a

bounded cascade model for Wood and Field (2011)

and a gradient percolation model for Peters et al. (2009),

highlighting the fractal nature of the cloud–precipitation

system. It was further discussed by Peters and Neelin

(2006) andPeters et al. (2009) that scale-freeCNSDsmight

originate from an underlying critical behavior, with water

vapor amount as control parameter.

The quantitative agreement of CNSD power law ex-

ponents with previous studies is not trivial, as different

analysis methods have been applied, and it shows that

our watershed-based segmentation technique beside

methodical differences leads to a similar partitioning

between smaller and larger cells. The observed slopes

are typically steeper in winter than in summer, which

suggests that deep convective clouds are slightly less

organized during the winter season. In the summer

season, the observation attains steeper slopes over the

ocean than over the land. Similar to Wood and Field

(2011), larger slope values are obtained for smaller cold

cloud coverage. Simulated slopes capture the seasonal

and land–ocean differences. However, the simulated

slopes are typically too steep, even for ICON-t, indi-

cating too many small and too few very large tropical

cloud cells in the simulations. Additionally, Fig. 5b

shows size dependence of relative cold cloud coverage.

When a b value of around 3 is approached, the contri-

bution of smaller cells to area-integrated properties like

cloud fraction and accumulated precipitation becomes

more and more important (Wood and Field 2011).

Consistent between observation and simulation, larger

cells contribute more to cloud coverage than smaller

FIG. 5. Object-based statistics for August 2016 and the tropical Atlantic. Shown are (a) cloud number size distribution nk, (b) cloud

cover distribution function fk, (c) cloud nearest-neighbor distance, (d) the vertical-shape parameter (i.e., the ratio between mean and

minimum BT10.8), (e) the ratio between horizontal dimensions, and (f) the cell minimum BT10.8 values. The monthly average distri-

bution (thick solid line) and its standard error due to temporal variability (error bars) is given for Meteosat observations (orange),

unmodified ICON simulations (green), and bias-corrected ICON-t (blue). The black dashed lines present the average observed distri-

butions over land for the same time period. The cloud number size distribution is normalized with respect to diameter D and divided by

domain area; the cloud cover distribution is, however, normalized with respect to lnD.
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cells do. We also see that the simulations begin to resolve

spatial scales that are small enough that resolution limi-

tations only have a minor impact on the total cold cloud

coverage. The average observed nearest-neighbor dis-

tance is on the order of 120km over the ocean and 150km

over land in the summer season (see Fig. 5c and Table 1).

The nearest-neighbor distance distributions are heavily

skewed toward larger distances. Simulations underesti-

mate the typical nearest-neighbor distances, which could

be due to the larger number of simulated small cells or

could even be an indication that the simulations show a

higher degree of convective organization in terms of more

clustered spatial cloud arrangement.

Two cell-shape metrics are discussed in the following.

First, the ratio between average and maximum BT10.8

excess over the threshold value (shown in Fig. 5d) can be

interpreted as vertical shape of the objects [see, e.g.,

Wernli et al. (2008); Rempel et al. (2017) for more de-

tailed discussion]. Values close to zero indicate more

peaked objects, whereas values close to 1 indicate flatter

objects. The vertical-shape parameter is larger for the

observations, meaning that the observed cold cloud cells

are slightly flatter. Second, PDFs of the horizontal as-

pect ratio between minor and major object axes are

presented in Fig. 5e. The average observed horizontal

aspect ratio is around 0.5, meaning the major cell axis is

around twice as large as the minor cell axis. The PDF of

the horizontal aspect ratio is much broader than the

PDF of the vertical-shape parameter. On average, sim-

ulated cells have slightly smaller aspect ratios; hence,

they are slightly more elongated, compared to the ob-

servation. Finally, the cell minimum BT10.8 is shown in

Fig. 5f. Over the ocean and the summer season, the most

probable value for the observed BT minimum is around

220K. Around 30% of the observed cells have colder

BT10.8 minima than 210K, and only 5% of the cells are

colder than 200K. For the winter season (not shown),

the probabilities reduce to 18% and 4% for 210 and

200K, respectively. Over land, we have 40% and 18%

for minimum BTs colder than 210 and 200K for the

summer season, respectively. During wintertime and

over land, relative occurrence frequencies of minimum

BT values are only around half of the respective sum-

mertime values. In general, the simulations are able to

capture the differences between the seasons and be-

tween land and ocean. The occurrence frequency of cold

core temperatures (,210K) is mainly underestimated in

uncorrected ICON simulations. In contrast, the bias

correction leads to an overcompensation of core tem-

perature occurrence rates over the ocean, which high-

lights that bias-corrected ICON-t results have to be

carefully interpreted and are more meaningful for

structural cell metrics.

For the winter season, Meteosat observations show

a broad band of convective activity over the tropical

Atlantic, with a maximum in the central part of the ocean

(see Fig. 6). Over Africa, the activity is mainly located at

the coastal regions around the equator. The main part of

observed activity is caused by medium-size cells between

150 and 400km. Persistent clusters of large cells (.400km)

are also observed in the tropical Atlantic. While the

simulated deep convective clouds cover, in general, the

right areas, convective activity over the tropical ocean

is underestimated in the boreal winter season. The

underestimation is mainly resulting from the simula-

tion of too few of the largest convective cells. Bias

correction only slightly improves this, which means

that the cell-size underestimation is a robust structural

deficit. For August, the band of observed convective

activity is slightly shifted northward, with a more

narrow appearance, especially in the western Atlantic.

The convective activity over the ocean is linked to

western Africa. The simulation realistically represents

the distribution of convective activity over land across

the cell-size spectrum. Over ocean, the distribution of

simulated small cells is closer to the observation than

for larger cells. The largest simulation deficits appear

for the largest cold cloud cells and in the western

Atlantic region.

We further assess the spatial distribution of typical

cell sizes, which is shown in Fig. 7. The analysis is based

on median cell diameters D50, defined by Eq. (3) after

Wood and Field (2011), for which local CCDFs have

been computed on a regular 18 3 18 longitude–latitude
grid. Observed median cell sizes reach several hundred

kilometers in the ITCZ region, which is in contrast to

Wood and Field (2011), where no pronounced signal of

organized deep convection was shown, probably due the

dominance of smaller low- to medium-level clouds.

Simulated median cell sizes are underestimated over the

ocean in both seasons. In general, the observation in

comparison to simulation shows much larger and

therefore more persistent cells in the winter season.

However, the simulations capture the development of

larger convective clusters over land during summer. In

this season, simulated cloud cell sizes over the western

part of the Atlantic are considerably too small.

The average spatial distribution of growing versus

decaying cold cloud cells is considered in Fig. 8. To ob-

tain the resulting figure, the Lagrangian cell area change

is calculated as explained in appendix B. Then, the

temporal area rates are assigned to the objects, and area-

weighted statistics are applied (i.e., the area rate is

counted for each object pixel). Thereafter, the number

of times is calculated in which the local area rates fall

below or are above the average interquartile range.
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Finally, the local difference between growing (above

75th percentile) and decaying (below 25th percentile) is

plotted. Hence, the number difference fields showwhere

more cells decay or grow on average in a certain region.

In the winter season, observations show a broad band

from the coast of West Africa to the western Atlantic,

where cell growth is more frequent than decay. This

connection between coastal parts and the central ocean

is not apparent in the simulations. Simulated enhanced

activity over the ocean is slightly shifted northward. In

the summer season, observed as well as simulated con-

vective activity is enhanced over western Africa, as

FIG. 6. Spatial distribution of cold cloud coverage for different cell-size intervals for (first block of three rows) December 2013 and

(second block of three rows) August 2016. Contrasted are Meteosat observation (first line in each block), ICON, and bias-corrected

ICON-t simulations (second and third lines in each block). Cold cloud coverage is defined as the relative fraction of a certain grid box that

has a BT10.8 value lower than 230K and belongs to a cloud cell within a selected size range.We choose different size conditions (from left

to right column): all cell sizes, sizes smaller than 150 km, sizes between 150 and 400 km, and sizes larger than 400 km. Note that different

color tables have been used.

FIG. 7. The spatial distribution of median cell size D50 for the time periods of (top) December 2013 and (bottom) August 2016.

Compared are (left) Meteosat observations, (middle) ICON simulations, and (right) bias-corrected ICON-t. The median size was cal-

culated using Eq. (3), based on local CCDFs that were computed on a regular 18 3 18 longitude–latitude grid.
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expected from the climatology of the region (e.g.,

Nicholson 2013). We also recognize wavelike features in

both the observation and in the simulation, with more

frequent decay in the African coastal regions and again

enhanced growth farther westward over the ocean. This

compares well with Kouadio et al. (2010), who investi-

gated the precursor MCSs of tropical hurricanes and

showed that these MCSs typically initiated in western

Africa and dissipated over the Atlantic or near the

African coast. The simulation, however, fails to capture

enhanced growth over the western part of the Atlantic

and the Caribbean Sea.

We summarize that the storm-resolving simulations

are able to realistically reproduce the observed monthly

average scaling behavior of deep convective cloud cells

across a broad range of spatial scales. Major simulation

deficits are identified for marine convection cells with

diameters larger than 100 km. These cells are under-

represented, and their absence introduces significant

biases in cold cloud coverage. The causes of these model

biases are still not well understood. Simulated convec-

tion over land is better represented than its marine

counterpart, possibly due to its stronger coupling to the

diurnally heated boundary layer. These and other tem-

poral effects are further discussed in the next section.

b. Temporal variability of deep convective clouds

Tropical convection exhibits regular variations on

subdaily as well as multiday time scales (see, e.g., Duvel

1989, 1990). The latter especially is influenced by the

impact of equatorial waves that strongly modulate

convective activity over the tropical Atlantic [see

Kiladis et al. (2009) for a general overview]. To inves-

tigate the temporal variability of simulated cold cloud

characteristics in relation to the observation, we apply a

variance decomposition technique similar to Rempel

et al. (2017). In a first step, daily average values

are calculated and subtracted from the considered time

series: for instance, the relative occurrence of BT10.8

values in a certain bin interval. The resulting time series

is thus corrected for the multiday variability. In a second

step, values at the same local time are gathered, and an

average diurnal cycle is calculated. This average diurnal

cycle is again subtracted from the signal to obtain a time

series representing only the residual variance. Thus,

long-term variability goes into the multiday signal, high-

frequency variability contributes to the residual signal

with the average diurnal behavior handled separately.

The multiday, the average diurnal, and the residual

variance exactly add up to the total variance of the

considered time series. After dividing by the total vari-

ance, we get a simple variance decomposition into three

contributions that together add up to 100%. This vari-

ance decomposition is shown in Fig. 9 for BT10.8 and

BT6.2 occurrence frequencies. In general, the temporal

variability of BT10.8 distributions is well represented.

The range between 295 and 310K, mainly associated

with land surface temperatures, is dominated by an av-

erage diurnal signal that accounts for around 90% of the

total variability. This is first caused by the diurnal change

in land surface temperatures due to solar heating, and

second due to the diurnal cycle in cloud coverage, which

reduces the surface contributions seen from space. In

the broad range between 200 and 280K, the multiday

FIG. 8. Spatial distribution of anvil growth and decay. Themaps show the absolute number difference between time slots where actively

growing cold cloud coverage and strongly decaying cold cloud coverage was retrieved. The instantaneous temporal change in cell area was

used as cell growth proxy. The number of active time slots was defined as the number of times when the 75th percentile of the total area

rate distribution was exceeded. Similarly, strong decay was defined as area shrinking, with values below the 25th percentile of the same

area rate distribution.
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variability of BT10.8 is significantly higher inDecember,

with on average 50%, compared to 30% in the summer

season (see Fig. 9a vs 9c). The ICON simulation seems

to have a tendency to overestimate multiday variability

of cold cloud–affected BTs and correspondingly un-

derestimates the average diurnal variability. High

BT6.2s that are mainly associated with large-scale dry

air patterns are dominated bymultiday variability on the

order of 80%, which is reasonably represented in the

simulations. Cloud-affected low BT6.2s show an in-

creased diurnal signal.

In addition, Fig. 10 shows the relative variancepartitioning

for the observed and simulated CNSD for several size

bins. In general, the contribution of multiday variability

decreases with increasing cloud cell size. This behavior

seems to be counterintuitive at first. It is, however,

physically plausible that the number of small cells is

dependent on the large-scale variability of the environ-

mental conditions and shows a more passive response to

changes in the background convective forcing. Larger

convective systems possess a higher degree of organi-

zation. We hypothesize that the more involved envi-

ronmental feedbacks of these cloud clusters make them

less sensitive to changes in the convective forcing, giving

them a higher degree of independence from multiday

changes in environmental conditions. In the winter

season, the multiday variability decreases from around

50% for the smallest cells to 20% for the largest cells.

The contribution of the observed average diurnal vari-

ability is negligible for the winter season and for the

ocean in the summer season as well. During summer and

over land, the average diurnal signal increases with de-

creasing cell size. Up to 40% of diurnal variance relative

to the total variance is observed for the smallest cells.

The simulated variability of cell-size occurrence fre-

quency matches quite well for winter and the tropical

Atlantic region. For the summer ocean and the

winter land, the multiday variability of small cells is

overestimated. For the largest cell sizes, all simulations

show a tendency to underestimate themultiday variability.

FIG. 9. As in Fig. 4, but for relative variance in the occurrence frequencies. The temporal variance in each

histogram bin has been decomposed into multiday, average diurnal, and residual variance contributions. The thick

solid lines represent the relative contribution of multiday variance to total variance in percent. The shaded interval

adds the relative contribution of the average diurnal variance to the multiday variance; the upper thin line, thus,

represents the sum of the two. The part above the thinner line can be attributed to the remaining residual variance.

All three contributions together add up to 100%.
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This indicates missing persistence and reamplification of

the large mesoscale convective systems under certain

conditions. Over land and during the summer season,

the influence of the average diurnal variability of small-

and medium-size cells up to 200 km is underestimated.

The simulations significantly overestimate the effect of

residual variability of these cloud cells, whichmeans that

observed temporal fluctuations of cell occurrence rates

are relatively smaller and are more driven by external

forcing mechanisms than suggested by the simulation.

The temporal evolution of cold cloud cover with

BT10.8 , 230K is shown in Fig. 11 for the two consid-

ered seasons as a function of local solar time (LST). The

local time was calculated with respect to the model ini-

tialization time, also allowing for relative times greater

than 24h. Furthermore, the first 12 h of model spinup

were not excluded from this analysis; however, they

were also not mixed with the last 12 h of simulation from

the previous day runs to get a clear indication of how

model spinup influences the simulated diurnal cycle.

Observed cloud cover over the ocean has a double-peak

structure, with the first peak at 0600 LST and the second

at 1300 LST. Thereafter, observed cloud cover decays,

reaching a minimum around 2000 LST. This behavior

can be observed in summer as well as in winter, with a

more pronounced early-afternoon peak and slightly

larger average cloud coverage in winter. After spinup,

the simulations approach a similar marine double-peak

structure in the diurnal cloud cover variation, slightly

more visible in the summer season. The early-afternoon

peak is shifted by 4 h; the timing of the early-morning

peak, however, is realistically simulated. The overall

amplitude of the diurnal variation of cold cloud cover

over the ocean is underestimated. Over land, the ob-

served summertime cold cloud cover shows a pronounced

diurnal cycle, with a minimum of 3% around 1100 LST

and a cloud covermaximumof 9%around 1800 LST. The

simulation also shows a strong diurnal signal, but with a

broad peak delayed around 6h. Considerable spinup

effects are visible in the beginning of the simulation that

might be one cause of the shifted diurnal peak in cloud

coverage.

To link the average diurnal cycle to the different cloud

sizes, we focus now on the contributions of different

cloud sizes to the double-peak structure in the diurnal

cycle of marine cold cloud coverage. We use anomalies

FIG. 10. As in Fig. 9, but for variance decomposition of the cloud number size distribution. Relative variance parts

are shown for Meteosat (orange), ICON (green), and bias-corrected ICON-t (blue) for the (a),(b) tropical Atlantic

and (c),(d) Africa for (left) December 2013, and (right) August 2016.
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of CCDFs, which are presented in Fig. 12. This metric

shares some similarities with the score statistic presented

by Pearson et al. (2010, 2014), which is based on the

normalized CNSD time series. At the time of the early-

morning peak, observed CCDF anomalies are positive

around a cell size of 200 km. Subsequent spatial growth

(indicated by the inclined red band in Fig. 12) leads to

high CCDF anomalies around 500-km cell diameter in

the early afternoon. In the evening hours, possibly after

sunset, CCDF anomalies start to decay across a range

from 100- to 800-km scale. The observed decay is more

pronounced for the cell diameters larger than 300 km,

which gives the chance for the medium-range cells

around 200km to quickly reamplify in the early-morning

hours. This observed size partitioning of diurnal cloud

coverage compares well with results fromMachado et al.

(1993), who investigated the effect of diurnal variations

on cold cloud coverage based on early Meteosat obser-

vations. The simulations hardly reproduce the observed

features of the CCDF anomalies. Model spinup is again

dominant in the morning hours up to 1000 LST, leading

to a positive anomaly (due to too-persistent initial cloud

features) in the wintertime simulations and a negative

anomaly in summer (due to strong decay of initial clouds

and slow buildup again). This illustrates that the details

of the model spinup behavior are highly dependent on

the environmental conditions. The summertime simu-

lations show a promising diurnal pattern after spinup,

especially clear in ICON-t. The simulated afternoon

peak (now shifted to the evening) mainly results from

the variation of large cells around 500 km, whereas the

simulated early-morning peak is predominantly induced

by medium-range cells around 200 km. It remains an

open question if this signal will become clearer for

convection-resolving simulations performed with longer

lead times.

Depending on the season, the multiday variability in the

tropical Atlantic is dominated either by oscillations with a

frequency of around 2 weeks or westward-propagating

waves with a much more frequent reoccurrence. The dif-

ferent modes of multiday variability are visualized in

Fig. 13, which combine relative occurrence frequency of

cold clouds (under the condition of BT10.8, 230K) and

upper-tropospheric dry air patches (under the condition

of BT6.2. 245K) averaged over the latitude band from

08 to 158N. In the winter season, an oscillation with

spatial scales of 308–408 longitude (i.e., several thousand
kilometers) and 10–16-day period is superposed by a

large-scale westward-propagating wave. The propagat-

ing wave is more pronounced in the cloud frequency

field, and its phase progression is on the order of

48day21, corresponding to 400–500 kmday21. The sim-

ulations capture the large-scale structure in the wave

patterns in upper-tropospheric water vapor and cold

cloud coverage. The relative coverage of cold cloud

areas is, however, significantly underestimated, leading

to fewer convectively active regions. In the summer

season, dry disturbances propagate across the whole

FIG. 11. Diurnal cycle of cold cloud cover from BT10.8 , 230K (a) over the ocean and (b) over the African

continent. Cloud coverage contributions have been assembled and averaged for local solar times relative to the

model initiation time of 0000 UTC, allowing for times greater than 24 h. Averages for the winter season (dashed

lines) are shown together with summer season values (solid lines). Note the different vertical axis ranges in the

two panels.
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tropical Atlantic, with a reoccurrence frequency of

5–7 days and a phase progression speed of 88–108day21,

corresponding to around 1000kmday21. Alternating with

the dry air disturbances, small bands of cold cloudiness

propagate with similar speed toward the west. The sum-

mer season simulations capture several of the observed

features. In particular, simulated cloud bands show a

similar progression speed and temporal persistence. The

simulated duration of cold cloud events at a certain lon-

gitude position is, however, slightly overestimated, with

median values increasing from 5h for observation to 6h

for bias-corrected simulation. Summarizing, the simula-

tions are, in general, very well suited for the representa-

tion of typical patterns of multiday variability of cold

cloudiness and upper-tropospheric water vapor.

In summary, we see that a size-resolved analysis helps

to improve the understanding the temporal variability of

simulated tropical convection. We could identify that

the number of larger cloud cells is less affected by

multiday variability, possibly due to stronger feedbacks

shaping their own environmental conditions. We further

showed that the observed double peak in the diurnal

cycle of marine cloud coverage might be caused by

subsequent spatial growth, a process that still needs to

be improved in the simulations.

5. Conclusions and outlook

Deep moist convection in the tropics is an important

component of the climate system. Deep convective

clouds and their accompanying cirrus anvil shields

strongly influence the radiative energy balance in the

tropics. Realistic simulation of tropical dynamics with

numerical models is, however, inherently difficult.

Convective-scale processes need to be resolved over

large domains in which convective-scale elements

then have the chance to organize into large-scale

structures.

The goal of the current study is to provide a thorough

analysis of observed and simulated characteristics of deep

convective clouds over the tropical Atlantic and neigh-

boring continents. We aim to assess realism and possible

shortcomings of large-extent, storm-resolving simula-

tions, which have been performed with a grid spacing

of 2.4km. Special emphasis is put on the comparison

of convective activity and size-related cell properties,

contrasting two different seasons: boreal summer and

winter. The simulations are evaluated against infrared

Meteosat observations, which have a comparable spatial

resolution. A satellite forward operator is applied to the

simulation output to assess the model’s performance in

observation space. Furthermore, we introduce a histogram

matching technique to analyze similarities and differ-

ences in the representation of spatial structures separated

from the analysis of BT histograms. The former are as-

sessed based on transformed simulation fields that basi-

cally include information about the rank of individual data

points. These fields are decomposed into individual cells

with the help of a threshold-based segmentation technique,

and a set of object-based metrics is analyzed. Based

thereon, we obtain the following conclusions:

(i) The simulations are able to establish a well-defined

ITCZ region over the tropicalAtlantic, being closer to

the observation in summer than in winter. Furthermore,

FIG. 12. Anomalies of CCDFs as a function of cell diameter and local solar time over the tropical Atlantic. CCDFs have been nor-

malized with respect to the ln(D) (similar to Fig. 5b), and CCDF anomalies have been calculated by subtracting the time–average CCDF.

Compared are (left) Meteosat observations, (middle) ICON simulations, and (right) bias-corrected ICON-t for (top) December 2013 and

(bottom) August 2016.
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convective activity developing over the land seems

to be better represented than its marine counterpart.

(ii) The observed, as well as simulated, CNSDs show a

power law behavior, with negative slopes between

2.1 and 2.6 for the observation and between 2.2 and

3.3 for simulations. Observed slopes are typically

steeper in winter than in summer; for summer, steeper

slopes are observed over the ocean than over the land.

Simulated slopes, in general, reproduce the seasonal

and land–ocean differences in the averageCNSDs. The

simulated slopes are, however, too steep, indicating too

many small and too few very large tropical cloud cells.

(iii) The observed cold cloud cover distribution is found

to be dominated by cells larger than 100km. The

underrepresentation of these scales in the simula-

tion introduces a significant bias up to a factor of 2,

with this bias beingmore pronounced over the ocean.

The average observed diurnal variation in cloud

coverage shows a double-peak behavior over the

ocean with maxima at 0600 and 1300 LST, which is

caused by an upscale growth of marine cloud cells

between 100 and 400km. The simulations capture

the diurnal cloud coverage evolution qualitatively,

however, with too-small diurnal amplitude, with

major peaks delayed and with a less clear growth

signature across the spatial scales.

(iv) Considering temporal variability in general, we

see that several interdaily modes, from westward-

propagating waves to biweekly oscillations, are well

reproduced by the current simulation setup. We

further recognize that the number of large cloud cells

is less affected bymultiday variability. This is found in

observations, as well as in simulations, and might be

related to longer lifetimes of large cloud cells and to

the larger dynamical feedbacks these cells induce to

modify their own environmental conditions.

We like to emphasize that the discussed simulations

are the first in a series of planned experiments of storm-

resolving simulations over the tropics. They have never

been optimized as is normally done for climate and

weather models (Hourdin et al. 2017). Considering this

aspect, the realism of tropical Atlantic simulation goes

far beyond our initial expectations. The satellite-based

evaluation focused on a very specific part of the tropical

system, mainly the structure of very cold cloud patches

(colder than 230K), which only makes up a small

FIG. 13. Relative frequency of occurrence of deep clouds (BT10.8 , 230K; blue shades) and dry air patches with (BT6.2 . 245K;

yellow–red shades) as a function of longitude and time (Hovmoeller diagram). Data from (left) Meteosat, (middle) ICON, and (right)

ICON-t for the (top) winter and (bottom) summer seasons. The color range of deep cloud occurrence rates is scaled to meet the 75th- to

95th-percentile range of the observation.
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percentage of the total cloud cover. As a result of the anal-

ysis, we could identify major shortcomings in the represen-

tation of the largest organized convective systems over the

ocean, especially in boreal winter situations. The origins of

these limitations need to be further understood. Possible

explanations might be the too-short run times of the model

before reinitialization and the missing feedbacks with the

underlying ocean surface (see Klocke et al. 2017). Corre-

sponding experiments are planned, and a repeated exami-

nation of the evaluation analysis will help to assess the

impact of different factors and thus hopefully increase our

capabilities for more realistic simulations of tropical con-

vection. Further sensitivity experiments will be targeted on

the tuning of microphysical parameters, the consistent cou-

pling between radiation and microphysics (with special em-

phasis on anvil radiative properties), and marine boundary

layer processes. In addition, improving the representation of

low-level cloud processes will be the focus of targeted sen-

sitivity experiments, in which conventional and advanced

methods for the parameterization of shallow convection will

be contrasted with explicit simulations and observations.

New computer and numerical methods allow us to use

complex atmospheric models at resolutions to explicitly

resolve parts of the model physics over large domains

that were formerly part of subgrid-scale parameteriza-

tions. Even global simulations at storm-resolving scales

are soon becoming feasible. At the same time, satellite

observations are available, which allow targeted evalu-

ation of variability and structure of deep convection.

With the two in tandem, we feel well equipped to con-

tribute to the development and improvement of the

future atmospheric models for weather and climate.
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APPENDIX A

Details about the Segmentation Technique

In the following, the details of the applied segmenta-

tion method are described. The procedure sequentially

performs five steps to come from the initial BT10.8

field to a categorical field of object labels (see Fig. A1). As

discussed by, for example, Davis et al. (2006) and

Weniger and Friederichs (2016), spatial filtering is an

important part of an object-based analysis and results

in greater robustness against random field variations.

Therefore, the BT10.8 field is smoothed with a curvature

flow filter (Malladi and Sethian 1995) in the first step

(from Fig. A1a to Fig. A1b). The filter method is typi-

cally used for image denoising and has the advantage

that sharp boundaries of features (in our case, clouds)

are preserved. The chosen filter parameters are 0.05 for

the nondimensional time step and 5 for the number of

iterations. In the second step, a threshold value of 230K is

applied to the smoothed BT10.8 field, and all values

smaller than this threshold are considered as potential cold

cloud cells (see Fig. A1c). In the third step, so-called

markers are placed as initial positions for region growing.

These markers are found by an iterative shrinking pro-

cedure. To achieve this, first-guess objects are derived

by a standard four-connected compound analysis that

identifies contiguous cell areas only connected across

the gridbox edges. For each grid point within the object,

we determine the Euclidean distance to the closest back-

ground (outside the object) position. This absolute dis-

tance field is normalized by the maximum distance per

object yielding a relative distance field, which is 1 at the

core of the object and decays to zero toward the object

edges. Thereafter, we shrink the objects by 10% of their

size by basically applying a threshold of 0.1 to the relative

distance field. The shrinking sequence is repeated three

times, and the resulting set of object points (see Fig. A1d)

is taken as marker input for step four in Fig. A1. This

implementation of the marker method has the advantage

that it behaves scale invariant, meaning that it splits ob-

jects of similar shapes independently of their spatial scale.

Watershed segmentation is applied in step four that can be

easily understood if one imagines a mountainous land-

scape in which the mountain valleys are slowly filled with

colored water. Disjoint valleys get a different color, and

each color is representing a label of an object. If now the

water level rises, the water-filled areas start to grow. If

the water bodies of different valleys with different colors

touch, a dam is built at the interface to separate these

different water bodies. The method stops when a

predefined water level is reached, which is, in our case,

the threshold value of 230K. In the final step five, we
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merge again all cells that share a long connecting inter-

face in which the combined object cluster essentially

looks cut through in the middle. The condition for the

merge is also based on the distance-to-background field.

If the absolute distance along the interface is larger than

50% of the maximum distance in one of the individual

cells, a merge is applied to all involved cells. In addition, a

secondfilter step is applied to themerged data in step five.

All cells that have connected areas smaller than 40model

grid boxes are disregarded. The chosen cutoff corre-

sponds to an equivalent diameter around 17km, which is

7 times the native grid spacing and, thus, just beyond the

effective model resolution (see, e.g., Zängl et al. 2015).

In the applied object-based analysis, we only consider

cloud cells that are located well inside the domain and

remove any cell that is closer than 11 grid points to the

domain edge.

APPENDIX B

Calculation of Instantaneous Object Area Rates

In the following, the derivation of instantaneous

temporal trends of object areas that will be used to

distinguish between active and dissipating cold cloud

cells is discussed. As the cell objects possess significant

FIG. A1. Schematic depiction of the applied segmentation procedure based on a cutout of the BT10.8 field from Fig. 2. From (a) the

starting point to (f) the final result, the segmentation algorithm sequentially runs through five steps (black arrows) in clockwise direction.

The BT10.8 field shown in (a) is smoothed with a curvature flow filter (step 1) using five iterations and then masked with a threshold value

of 230K (step 2). The interior is shown in black. Marker objects are determined in step 3 via a method that iteratively shrinks first-guess

objects for 10% of their size (three iterations). The marker objects are shown in colors, and gray shading visualizes the edges, which have

been removed. Based on the marker field, watershed segmentation is applied in step 4, which basically fills up the gray areas with the color

of the nearest marker. Finally, objects are merged again that share an interface having a distance to background, which is at least 50% of

the maximum distance-to-background values of one of the objects, which belong to the interface (see text for further explanation). From

(d) to (e), colors of the largest objects are passed.
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horizontal motion within the simulation output interval

(Dt) of 1h, we apply an extrapolation technique to cor-

rect for potential location mismatches due to advec-

tion. Therefore, the flow field is estimated from the

sequential evolution of observed as well as simulated

BT10.8 fields using an optical flow technique [OpenCV

implementation of Farnebäck (2003)]. In essence, the

method tries to find structures at the actual time step t that

have been identified at previous time step t2Dt. These
structures are compared at different coarse-graining levels

building a pyramid from finer to coarser scales. A search

window (in our case, 11 3 11 grid points, roughly 30 3
30km2 in native resolution) is shifted, and the location is

identifiedwhere the absolute difference between the target

and the shifted window is minimal. As a result, the applied

optical flow algorithm calculates a dense two-dimensional

field of location shifts, which are projected onto the seg-

mented objects and finally averaged. To get rid of surface

contributions, BT10.8 values larger than 260K have been

replaced by this threshold. Furthermore, the input BT

fields are spatially subsampled by a factor of 4 for in-

creasing efficiency (i.e., only every fourth grid point has

been used for computations).

In the next steps, the segmented objects at t2Dt are
shifted by their average flow, and the resulting field is

combined with the unaltered segmentation result at t to

build a three-dimensional data stack, adding the time

coordinate as third dimension to the existing two hori-

zontal dimensions (x, y). The 3D data are segmented

again with the same parameter options as their two-

dimensional counterpart (see appendix A). The resulting

objects are three-dimensional where the time dimension

is composed of two layers. Objects that are connected at

two subsequent times are labeled with the same index.

Areas with equal index are summed separately for the

two times, and the difference between the two divided by

the time interval of 1h gives the object area rate. The

morphology of the three-dimensional objects can be quite

complex, including multiple splits and merges where the

areas of all involved cells are counted.
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