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A B S T R A C T

Many natural and synthetic processes are triggered by the interaction of light and
matter. Important examples here include photosynthesis, the vision process, photo-
chemical reactions, solar cells, and nanoplasmonics based on metamaterials. All
these complex processes are routinely explained by employing various approx-
imations, e.g. the Born-Oppenheimer approximation, the classical treatment of
electromagnetic fields, the rotating-wave approximation, or the reduction of multi-
component systems to few-level systems.
In the first part of this work, we assess the validity of the Born-Oppenheimer
approximation in the case of equilibrium and time-resolved nonequilibrium pho-
toelectron spectra for a vibronic model system of Trans-Polyacetylene. Using ex-
act diagonalization, we show that spurious peaks appear for the vibronic spectral
function in the Born-Oppenheimer approximation, which are not present in the
exact spectral function of the system. This effect can be traced back to the factor-
ized nature of the Born-Oppenheimer initial and final photoemission states. Only
when correlated initial and final vibronic states are taken into account, the spurious
spectral weights of the Born-Oppenheimer approximation are suppressed. In the
nonequilibrium case, we illustrate for an initial Franck-Condon excitation and an
explicit pump-pulse excitation how the vibronic wave packet motion can be traced
in the time-resolved photoelectron spectra as function of the pump-probe delay.
In the second part of this work, we aim at treating both, matter and light, on an
equal quantized footing. In the electronic structure community, the quantized na-
ture of electrons and nuclei is usually (approximately) incorporated, whereas the
electromagnetic field is mostly treated classically. In contrast, in quantum optics,
matter is typically simplified to models with a few levels, while the quantized na-
ture of light is fully explored. To bridge this gap, we apply the recently developed
generalized time-dependent density-functional theory, quantum electrodynamical
density-functional theory (QEDFT), which allows to describe electron-photon sys-
tems fully quantum mechanically. We present the first numerical calculations in
the framework of QEDFT. We show exact solutions for fully quantized prototype
systems consisting of atoms or molecules placed in optical high-Q cavities and cou-
pled to quantized electromagnetic modes, both for model systems heavily used
in quantum optics, as well as for systems with a real-space description. We fo-
cus on the electron-photon exchange-correlation contribution by calculating exact
Kohn-Sham potentials in real space using fixed-point inversions and present the
performance of the first approximate exchange-correlation potential based on an
optimized effective potential approach for a Jaynes-Cummings-Hubbard dimer. In
all these examples, we focus on spontaneous emission, atomic revivals, and strong-
coupling phenomena, all beyond the rotating-wave approximation.
This work opens new research lines at the interface between materials science and
quantum optics with the potential to unravel new physical phenomena (e.g. the
mixture of polaritons and polarons) and nonequilibrium effects such as photon or
polariton quasi-bound states.
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Z U S A M M E N FA S S U N G

Chemische Reaktionen in der Natur sowie Prozesse in synthetischen Materiali-
en werden oft erst durch die Wechselwirkung von Licht mit Materie ausgelöst.
Wichtige Beispiele hierfür sind die Photosynthese, der Sehprozess, photochemi-
sche Reaktionen, Solarzellen und Nanoplasmonen auf Metamaterialien. Üblicher-
weise werden diese komplexen Prozesse mit Hilfe von Näherungen beschrieben,
z.B. der Born-Oppenheimer Näherung, der Annahme eines klassischen elektroma-
gnetischen Feldes, der Drehwellennäherung, oder der Reduzierung von Vielkom-
ponentensystemen auf Systeme mit wenigen elektronischen Niveaus. Im ersten Teil
der Arbeit wird die Gültigkeit der Born-Oppenheimer Näherung in einem vibro-
nischen Modellsystem (Trans-Polyacetylene) unter Photoelektronenspektroskopie
im Gleichgewicht sowie zeitaufgelöster Photoelektronenspektroskopie im Nicht-
gleichgewicht überprüft. Die mit Hilfe von exakter Diagonalisierung bestimmte vi-
bronische Spektralfunktion zeigt aufgrund des faktorisierten Anfangs- und Endzu-
standes in der Born-Oppenheimer Näherung zusätzliche Peaks, die in der exakten
Spektralfunktion nicht auftreten. Diese falschen Gewichte in der Spektralfunktion
verschwinden erst, wenn statt der faktorisierten Zustände die exakten berücksich-
tigt werden. Im Nichtgleichgewicht zeigen wir für eine Franck-Condon Anregung
und eine Anregung mit Pump-Probe Puls, wie die Bewegung des vibronischen
Wellenpaktes im zeitabhängigen Photoelektronenspektrum verfolgt werden kann.
Im zweiten Teil der Arbeit werden sowohl die Materie als auch das Licht quanti-
siert behandelt. Normalerweise werden in Elektronenstrukturrechnungen die Elek-
tronen quantenmechanisch, die elektromagnetische Felder dagegen in klassischer
Näherung berücksichtigt. Hingegen wird in der Quantenoptik die Materie meist
auf wenige elektronischen Niveaus reduziert, wohingegen das Licht quantenme-
chanisch betrachtet wird. Für eine volle quantenmechanische Beschreibung des
Elektron-Licht Systems, verwenden wir die kürzlich entwickelte verallgemeinerte
zeitabhängige Dichtefunktionaltheorie, die quantenelektrodynamische Dichtefunk-
tionaltheorie (QEDFT), für gekoppelte Elektron-Photon Systeme. Wir zeigen erste
numerische QEDFT-Berechnungen voll quantisierter Atome und Moleküle in opti-
schen Kavitäten, die an das quantisierte elektromagnetische Feld gekoppelt sind.
Wir konzentrieren uns sowohl auf typische Modellsysteme aus der Quantenoptik,
als auch auf Systeme mit voller Ortsauflösung. Mit Hilfe von Fixpunktiterationen
berechnen wir das exakte Kohn-Sham Potential im diskreten Ortsraum, wobei un-
ser Hauptaugenmerk auf dem Austausch-Korrelations-Potential liegt. Wir zeigen
die erste Näherung des Austausch-Korrelations-Potentials mit Hilfe eines optimier-
ten effektiven Potential Ansatzes angewandt auf einen Jaynes-Cummings-Dimer. In
allen Beispielen untersuchen wir spontane Emission, atomare Revivals und stark
gekoppelte Phänomene, jeweils ohne Drehwellennäherung. Die dieser Arbeit zu-
grunde liegenden Erkenntnisse und Näherungen ermöglichen es neuartige Phäno-
mene an der Schnittstelle zwischen den Materialwissenschaften und der Quanten-
optik zu beschreiben, wie z.B. die Mischung aus Polaritonen und Polaronen oder
Nichtgleichgewichtseffekte wie quasi-gebundene Photon und Polaritonzustände.
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

The advent of quantum mechanics changed the scientific field of physics quite dra-
matically. Indeed there have been early hints by the famous works of e.g. James
Clerk Maxwell [1], Max Planck [2], Albert Einstein [2], Niels Bohr [3], and oth-
ers that the deterministic and continuous picture of physical processes involving
light, molecules or atoms does not hold on the small (atomic) length scale. The
combination of all these findings then naturalized in 1925 into the establishment
of the Schrödinger Equation [4], named after its founder Erwin Schrödinger. To-
gether with the theory of relativity, this quantum theory is one of the greatest
breakthroughs and success stories of the physics community in the 20th century
and thus is still a foundation of modern physics. Surely, the Schrödinger equation
is also only an approximate description of reality, but well justified in the nonrela-
tivistic limit of slow moving particles and atomic length scales. Since a universal
theory (theory of everything) remains unknown, physicists rely on approximate
equations, which are justified for certain limits. Besides its formal simplicity, the
Schrödinger equation is hard to solve. The exponential wall of many-body prob-
lems [5] prevents exact solutions of the Schrödinger equation for more than only a
few particles. This is why physicists and chemists invested much time into devel-
oping methods to solve the Schrödinger equation only approximately.
One of the first of such methods was Hartree theory, which allows to consider
many electrons in the attractive potential generated by their surrounding nuclei.
Its generalization to include the Pauli-spin interaction lead to Hartree-Fock theory,
which still remains a popular method. In 1964, Pierre Hohenberg and Walter Kohn
developed density-functional theory (DFT) [6] by proving the one-to-one correspon-
dence of the electron ground-state density, which is a measure for the probability
of finding an electron at a given position in space, to the external potential, which
considers e.g. the nuclear attraction. DFT has its origins in Thomas-Fermi theory [7],
which was developed in 1927. Thomas-Fermi theory was unable to predict molecu-
lar binding, due to the lack of a correct description of the electronic kinetic energy
and therefore only applied to specific materials such as metals. However, DFT over-
came many limitations of Thomas-Fermi theory. The theory of DFT is formally
exact and allows to replace the interacting many-body system by a noninteracting
Kohn-Sham system. The hereby emerging exchange-correlation potential requires
approximations, but these approximations make DFT practical and applicable for
numerical calculations. DFT became popular in the physics community after the de-
velopment of the local-density approximation (LDA) [8] in 1965 and in the quantum
chemistry community after the development of the generalized-gradient approxi-
mation (GGA) in the 1980s [9].
Besides its limitation to the ground-state properties of materials, DFT is nowadays
one of the most popular methods to calculate quantum properties of materials.
The generalization to time-dependent situations was worked out by Erich Runge
and Eberhard K. U. Gross in 1983 and termed time-dependent density-functional
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4 introduction

theory (TDDFT) [10]. In the last decade, TDDFT has been applied successfully to
a wide range of applications, e.g. the calculation of excitation energies [11], the
calculation of the dipole moment measured in absorption experiments [12], or to
time-dependent photoemission spectroscopy [13, 14].
Originally all the mentioned methods were developed for electronic structure prob-
lems and therefore typically treat exclusively the quantum mechanical problem of
interacting many-electron systems. However, electrons are not the only quantum
particles that drive quantum processes in physics, chemistry, and materials sci-
ence. In typical situations, the negatively charged electrons are accompanied by
positively charged nuclei. Since these nuclei are orders of magnitude heavier than
the electrons, most calculations in the electronic structure theory assume the Born-
Oppenheimer approximation [15]. In the harmonic Born-Oppenheimer approxima-
tion, the nuclear degrees of freedom are typically also termed the phonon modes.
For many physical processes, in particular, if the system is in a lowest energy
(ground-state) configuration, the assumptions underlying the Born-Oppenheimer
approximation are well justified. However, in particular dynamical processes,
which include e.g. charge excitations or charge transfer, are typically mediated
by quantum interactions. One important interaction here is the electron-nuclear
interaction, but also the interaction of particles with the electromagnetic field (pho-
ton modes) has to be taken into account. Although the latter interaction is of-
ten assumed to be an interaction of the classical electromagnetic field subject to
Maxwell’s equations with the matter, this assumption breaks down in a quantum
limit of few photons. Here, the quantized nature of the electromagnetic field has
to be incorporated explicitly. The recently developed theory of QEDFT [16–18] al-
lows to treat photons and electrons on the same quantized footing and is therefore
suitable for electron-photon calculations in the quantum limit.
To quantify the effects of these fundamental electron-boson interactions (e.g.
electron-phonon and electron-photon), we study in this thesis different situations
for which these correlated interactions become important. Therefore, this thesis is
divided into nine chapters:
Chapter 2 illustrates the theoretical background applied and developed for this
thesis. We briefly discuss the general quantum many-body problem, DFT, the cor-
related electron-photon interaction, and photoelectron spectroscopy. Chapter 3 dis-
cusses the model systems and the numerical methods, which are used throughout
this thesis. The applications of the theory are illustrated in the following chapters.
In chapter 4, we study the quality of the Born-Oppenheimer approximation in pho-
toelectron spectroscopy for a Su-Schrieefer-Heeger (SSH) model system, which is an
electron-phonon problem. In chapter 5, we utilize the recently established frame-
work of QEDFT to treat correlated electron-photon problems on an equal quantized
footing in a density-functional framework. We discuss the theoretical framework
and as the first application of this recent theory, we apply the framework to a
simple yet nontrivial model system, the Jaynes-Cummings-Hubbard (JCH) model.
Here, we analyze the quality of a mean-field approximation, which corresponds
to a classical Maxwell-Schrödinger propagation scheme and amounts to the ne-
glect of the exchange-correlation (xc) contribution in the Kohn-Sham (KS) poten-
tial. In chapter 6, we study the xc contributions for a correlated electron-photon
system in a two-dimensional model in real space using fixed-point iterations to
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construct the exact KS potential. In chapter 7, we show the first QEDFT calculations
with an approximate xc potential based on the optimized effective potential (OEP)
method. In the last chapter of the applications section, chapter 8, we treat a fully
quantized electron-phonon-photon problem and show the implications of strong
matter-photon coupling on the chemistry of the system. A summary of all findings
of this thesis, a conclusion, and an outlook to future work are given in chapter 9.
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2
T H E O R E T I C A L B A C K G R O U N D

2 .1 the quantum many-body problem

The time evolution of a many-body system of (quasi-) particles, e.g. nuclei,
electrons, phonons, or photons is described quantum mechanically by the time-
dependent Schrödinger equation [4]1

ih̄
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 , with |Ψ(t = 0)〉 = |Ψ(t0)〉 . (1)

The time-dependent (normalized) many-body wave function |Ψ(t)〉 is a complex
function on a Hilbert space H. It contains all information about the proper-
ties of the system. The self-adjoint quantum-mechanical operator Ĥ(t) is the
time-dependent Hamiltonian operator of the system. Both, the Hamiltonian and
the wave function are defined in a high-dimensional configuration space. The
Schrödinger equation is a linear partial differential equation with an initial condi-
tion on the wave function (initial state) |Ψ(t0)〉. This single equation is the only
equation, which has to be solved to obtain any desired physical quantity, such as
thermal coefficients [20], spectroscopic quantities [13], color [21], or the equilibrium
structures [22] of the system of interest by calculating the corresponding observ-
able or expectation value with O(t) = 〈Ψ(t)| Ô |Ψ(t)〉. Here, Ô is also a quantum
mechanical operator defined in H. Unfortunately, the Schrödinger equation is very
hard to solve exactly for any realistic system. Therefore, in particular theoretical
chemists and physicists have developed many different schemes to obtain approx-
imate solutions to the Schrödinger equation.
In equilibrium or static situations, where the Hamiltonian Ĥ(t) = Ĥ is time-
independent, the system is typically in the ground state. To obtain the ground state
corresponding to the Hamiltonian, Eq. 1 can be restated in terms of an eigenvalue
problem. The resulting equation is then called the static Schrödinger equation and
is of the following form

Ĥ |Ψn〉 = En |Ψn〉 . (2)

Here, En are the eigenvalues and |Ψn〉 the eigenfunctions/eigenstates of the system.
If the Hamiltonian Ĥ has a lower bound, it satisfies a variational principle. This
variational principle is called the Rayleigh-Ritz minimal principle and can be used
to obtain the lowest eigenvalue and eigenstate

E0 = 〈Ψ0| Ĥ |Ψ0〉 ≤ 〈Ψ| Ĥ |Ψ〉 , (3)

where the lowest eigenvalue (ground-state energy) E0 corresponds to the ground-
state wave function |Ψ0〉, while |Ψ〉 corresponds to an arbitrary wave function
defined in H.

1 Throughout this thesis, we use SI units [19], unless stated otherwise.
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10 theoretical background

2 .1 .1 Electron-Nuclear Hamiltonian

In Condensed Matter Physics, Quantum Chemistry, and Electronic Structure The-
ory, the main targets of numerical simulations are systems containing atoms,
molecules, clusters or solids. All these systems contain electrons and nuclei and
are therefore described quantum mechanically by the combined electron-nuclear
Hamiltonian. To reduce computational complexity, in many numerical simula-
tions only the electrons are considered explicitly, which is justified formally by the
Born-Oppenheimer approximation (BOA)2. Excellent reviews on these topics can
be found, e.g. in Refs. [23, 24].
This section first focuses on the general electron-nuclear Hamiltonian, then we ap-
ply the BOA to derive the electronic Born-Oppenheimer (BO) Hamiltonian.
The following electron-nuclear Hamiltonian contains ne electrons and Nn nuclei.
The electrons are described by the electronic coordinates ri, they carry electron
mass me and negative electric charge (−e). In addition, the nuclei in the system
are defined by the nuclear coordinates RI , the nuclear mass MI and the positive
charge (ZIe). The Hamiltonian is then written as follows

Ĥ = T̂e + T̂N + Ŵee + ŴNN + ŴeN , (4)

with

T̂e =
ne

∑
i=1

1
2me

p̂2
i , (5)

T̂N =
Nn

∑
I=1

1
2MI

p̂2
I , (6)

Ŵee =
1

4πε0

ne

∑
i=1

ne

∑
j>i

e2
∣∣ri − rj

∣∣ , (7)

ŴNN =
1

4πε0

Nn

∑
I=1

Nn

∑
J>I

ZI ZJe2

|RI −RJ |
, (8)

ŴeN = − 1
4πε0

ne

∑
i=1

Nn

∑
J=1

ZJe2

|ri −RJ |
. (9)

Here, T̂e(N) corresponds to the electron (nuclear) kinetic energy operator, while
Ŵee(eN/NN) corresponds to the electron-electron (electron-nuclear/nuclear-nuclear)
interaction energy operator. In the Hamiltonian, the electron and nuclear momen-
tum operators are defined as p̂j =

h̄
i
~∇j and p̂J = h̄

i
~∇J , respectively. Throughout

this section we refer with small/capital letters to electronic/nuclear quantities. The
Heisenberg uncertainty principle [25] dictates the position-momentum commuta-
tion relation, thus the following commutation relations are obeyed

[
ri, p̂j

]
= rip̂j − p̂jri = ih̄δi,j,

[
ri, rj

]
=
[
p̂i, p̂j

]
= 0, (10)

both for electron and nuclear operators. Furthermore, electrons obey fermionic par-
ticle statistics, while nuclei with integer (half-integer) spin obey bosonic (fermionic)

2 There are many fundamental processes in nonequilibrium-driven phenomena that require a proper
treatment of the nuclear degrees of freedom in the system beyond the BOA, e.g. in photoelectron
spectroscopy, which is the focus of Sec. 2.4 and Ch. 4.
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spin statistics. Although the Hamiltonian in Eq. 4 does not explicitly depend on
spin, the correct spin statistics has to be incorporated into the exact many-body
wave function.

2 .1 .2 Born-Oppenheimer Approximation

In 1927, Max Born and Julius Robert Oppenheimer [15] proved that the fully corre-
lated3 electron-nuclear system can be partially decoupled into an electronic and a
nuclear problem. In the BOA, the full electron-nuclear many-body wave function is
expanded in terms of purely electronic and purely nuclear wave functions. The full
expansion is exact in principle, but if the expansion is approximated by only consid-
ering the first term, the solution of the Schrödinger equation drastically simplifies.
The BOA can be justified physically by the large mass difference between electrons
and nuclei, which implies different timescales for each subsystem. Since the elec-
trons have in general much lower masses than nuclei (more than three orders of
magnitude), they can adjust much faster to a new charge (nuclei) configuration,
than vice versa. Formulated differently, electrons adjust quasi-instantaneously to
a modified nuclear configuration, which means effectively that electrons are in a
stationary state for each nuclear configuration [26].
Applying the BOA to Eq. 4 has the following consequences: First, the nuclear kinetic
energy contribution is neglected by assuming infinite nuclear masses (MI → ∞).
This assumption effectively reduces all nuclear coordinates {R} to classical param-
eters, since the nuclear momentum as the quantum conjugated variable vanishes.
Then in a second step, the remaining electronic Hamiltonian

Ĥe({R}) = T̂e + Ŵee + ŴeN({R}), (11)

with the corresponding (static) eigenvalue problem

Ĥe({R}) |φj({R})〉 = Ej({R}) |φj({R})〉 (12)

has to be solved for all fixed sets of possible nuclear configurations {R} to obtain
the electronic Born-Oppenheimer states. The eigenvalue Ej({R}) and the nuclear
Hamiltonian WNN({R}) from Eq. 8 contribute to the j-th BO potential-energy sur-
face (PES) that is given by

Uj({R}) = WNN({R}) + Ej({R}). (13)

Thus, every electronic excitation corresponds to an individual potential-energy sur-
face Uj. For each fixed set of nuclear coordinates {R}, the electronic eigenstates
|φj({R})〉 form a complete set in the electron many-particle Hilbert space. For a
given set of nuclear coordinates {R}, we can expand the exact many-body wave
function in terms of the electronic eigenstates |φj({R})〉 and the nuclear eigenstates
|χij({R})〉 by the Born-Huang expansion [27]

|Ψi({R})〉 =
∞

∑
j=0
|χij({R})〉 ⊗ |φj({R})〉 =

∞

∑
j=0
|χij({R})φj({R})〉 . (14)

3 The term correlated will appear repeatedly at various points of this thesis. By correlated systems, we
refer to quantum systems, which are not separable, hence their eigenstates are not factorizable.
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Figure 1: Born-Oppenheimer potential-energy surfaces in a Hydrogen molecule that is con-
fined to one dimension: Re corresponds to the equilibrium position of the relative
nuclear coordinate, while ν refers to nuclear (phonon) excitations.

Both, the electronic eigenstates |φj({R})〉, as well as the nuclear eigenstates
χij({R}), depend here parametrically on the set of nuclear coordinates {R}. The
nuclear states χij({R}) are found by solving the corresponding nuclear Born-
Oppenheimer Hamiltonian

Ĥj({R}) = T̂N + WNN({R}) + Ej({R})︸ ︷︷ ︸
Uj({R})

+
∞

∑
i=0
〈φj{R})| T̂N |φi{R})〉 , (15)

where T̂N and WNN are given by Eq. 6 and Eq. 8, respectively. Eq. 15 has to be
solved for each electronic eigenstate j individually. Here, the matrix elements in the
last term in the Hamiltonian are referred to as the nonadiabatic coupling elements
that connect different PES. The Born-Oppenheimer approximation now neglects
off-diagonal terms in the nonadiabatic coupling elements and only regards the
first term in the expansion in Eq. 14, defining the Born-Oppenheimer states as

|Ψi({R})〉 ∼ |χii({R})φi({R})〉 . (16)

Effectively, the nuclei now move in the electronic potential Ej({R}), as if the elec-
trons where in their corresponding ground state. At first glance, this approxima-
tion may seem rather drastic, but it has been shown to yield incredibly accurate
results for the low-lying states in the Born-Oppenheimer potential-energy surfaces.
In particular, the Born-Oppenheimer ground state |Ψ0({R})〉 is often a remarkably
good approximation to the exact ground state with small errors for many systems.
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2 .1 .3 Phonons and the Harmonic Approximation

One additional simplification can be achieved by solving Eq. 12 not for every pos-
sible nuclear configuration {R}, but only for the equilibrium positions Re and then
Taylor-expand Uj({R}) around this equilibrium configuration. If the expansion
is taken to second order, we arrive at the harmonic Born-Oppenheimer approxi-
mation. This approximation is often sufficient for physical situations, where the
nuclear positions remain close to their equilibrium positions. The harmonic nu-
clear Hamiltonian is then written in the following form

Ĥj = T̂N +
Np

∑
I=1

1
2

Mnω2
I,j
(
RI −RI,j,e

)2 . (17)

Here, RI,j,e are the equilibrium positions of the nuclei in the j-th Born-Oppenheimer
potential-energy surface and ωI,j are given by the slopes of the j-th Born-
Oppenheimer potential-energy surface of Eq. 15 at the equilibrium positions RI,j,e.
The Hamiltonian of Eq. 17 has the form of a sum of Np independent quantum
harmonic oscillators. These harmonic oscillator modes can be interpreted as quasi-
particles and are called harmonic phonon modes. The phonon frequencies RI,j,e
calculated in harmonic approximation turn out to be in excellent agreement with
experiment for a vast majority of systems. All effects beyond the harmonic approx-
imation (i.e. anharmonic effects) are important to describe phenomena linked to
thermal expansion, phase transitions, and many others.
For a Hydrogen molecule that is confined to one dimension (1D H2), Fig. 1 shows
two exact PES and the corresponding harmonic approximation as function of the
relative nuclear coordinate, i.e. the difference between the two nuclear coordi-
nates. The dashed lines correspond to exact Born-Oppenheimer PES, while the red
solid line corresponds to the approximated harmonic potential of the ground-state
potential-energy surface. The figure illustrates that the harmonic approximation
is relatively close to the exact surface in the case of the ground state (ν = 0). For
higher excitations (ν > 0), deviations between the harmonic PES and the exact
PES appear, which increase for higher ν. The first-excited electronic surface for
an one-dimensional Hydrogen molecule has no local minima and hence does not
support molecular binding. For large atomic distances, the ground-state and the
first-excited state surface both converge towards the limit of the energy of two
independent Hydrogen atoms.

2 .1 .4 Particles in Second Quantization

In this section, we briefly introduce the second quantization formalism for fermions
and bosons. The Hamiltonian of Eq. 11 is formulated in first quantization, i.e. it
is defined for a fixed number of electrons ne. Systems for which the number of
electrons is not conserved, e.g. open systems, require a reformulation of Eq. 11 in
second quantization. All operators present in Eq. 11 can be reformulated alterna-



14 theoretical background

tively in second quantization. For the one-body operators T̂e and ŴeN({R}), we
find

T̂e =
∫

d3r Ψ̂†(r)
1

2me
p̂2Ψ̂(r), (18)

ŴeN({R}) =
∫

d3r weN(r, {R})Ψ̂†(r)Ψ̂(r), (19)

while the two-body operator Ŵee is written in second quantization as follows

Ŵee =
1
2

∫
d3r

∫
d3r′ wee(r, r′)Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r) (20)

using the functions

wee(r, r′) =
e2

4πε0

1
|r− r′| ,

weN(r, {RJ}) = −
Nn

∑
I=1

ZIe2

4πε0

1
|r−RI |

.

In this definition, Ψ̂†(r) and Ψ̂(r) are the electronic creation and annihilation field
operators of single-particle states, which create or annihilate an electron at point
r in space, respectively. These operators have two spin components (σ =↑ / ↓)
and obey the fermionic anti-commutation (+) relations (we denote now the spin-
component explicitly by σ), which leads to

[
Ψ̂σ(r), Ψ̂†

σ′(r
′)
]
+
= Ψ̂σ(r)Ψ̂†

σ′(r
′) + Ψ̂σ(r′)Ψ̂†

σ′(r) = δ(r− r′)δσσ′ , (21)
[
Ψ̂σ(r), Ψ̂σ′(r′)

]
+
=
[
Ψ̂†

σ(r), Ψ̂†
σ′(r
′)
]
+
= 0. (22)

The commutation relations assure that by interchanging two indistinguishable par-
ticles the many-body wave function acquires an additional minus sign as prefactor,
i.e.

Ψ(r1, r2, r3, r4, ..., rne) = −Ψ(r1, r4, r3, r2, ..., rne).

In contrast to fermionic field operators, bosonic creation and annihilation field
operators Φ̂†(r) and Φ̂(r) obey the boson commutation relations

[
Φ̂(r), Φ̂†(r′)

]
= Φ̂(r)Φ̂†(r′)− Φ̂(r′)Φ̂†(r) = δ(r− r′), (23)

[
Φ̂(r), Φ̂(r′)

]
=
[
Φ̂†(r), Φ̂†(r′)

]
= 0, (24)

which leads to

Φ(r1, r2, r3, r4, ..., rne) = Φ(r1, r4, r3, r2, ..., rne).

2 .2 density-functional theory

In the previous sections, we have briefly presented solutions to quantum many-
body problems in terms of wave functions. In many-body systems, these wave
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functions provide a natural path to obtain observables in and out of equilibrium
by taking the expectation value of hermitian operators. In practice, this is often
not realizable, due to the large parameter space span by the wave function4. For a
ne electron system, the wave function depends on the spatial coordinates of each
electron, i.e. 3ne independent coordinates. All these coordinates imply a total pa-
rameter space of 103ne , if for example each coordinate is just sampled on 10 points.
For large systems, which here already refers to ne > 10, even if the wave function as
solution was found, it would be impossible to store the total wave function on an or-
dinary hard disk. In literature, this exponential scaling is often referred to as the ex-
ponential wall of many-body problems [5]. However in most practical applications
of quantum mechanics, we are not interested in knowing the full many-body wave
function, but instead we would like to arrive at predictions for physical observ-
ables. These observables are usually reduced quantities, such as the ground-state
energy, excitation energies, or binding energies which are all single real numbers,
or the electric charge distribution, or magnetization which are three-dimensional
functions. This observation suggests a change of perspective: Is it possible without
loosing generality to reformulate the Schrödinger equation such that instead of the
wave function a reduced variable becomes the central quantity? In this way, we
could avoid the many-body wave function and only consider reduced quantities
that provide us access to the relevant observables. It turns out that this is possi-
ble by DFT. In literature, there exist many different flavors of density-functional
theories. All share that they are based on a specific one-to-one correspondence
between conjugated variables. Typically the name density-functional theory refers
to the ground-state density-functional theory. It is also the most popular density-
functional theory and the conjugated variables are the ground-state density n0(r)
and the static external potential v0(r). Other flavors are, e.g. the generalization
to time-dependent situations, which is named TDDFT. Here, the density and the
external potential become time-dependent. Besides these two density-functional
theories, which share the electron density as basic variable, there exist also other
density-functional theories, such as time-dependent current density-functional the-
ory (TDCDFT), where the conjugated variables are the electronic current density
J(r, t) and the external vector potential A(r, t) [28]. TDCDFT allows the treatment
of magnetic fields, but is much less developed than DFT or TDDFT. The generaliza-
tion to quantum fields, QEDFT [18], where sets of conjugated variables appear is
discussed in more detail in Ch. 5 and following.

2 .2 .1 Ground-State Density-Functional Theory

This section is dedicated to ground-state DFT and we focus on aspects, which be-
come important in the following chapters. Comprehensive reviews on DFT can be
found, e.g. in Refs. [5, 29–32]. In ground-state DFT, the fundamental (basic) quan-
tity is the (ground-state) electron density n0(r), which is an one-body quantity and
only depends on three spatial coordinates. It is defined to yield the probability of

4 In fact, quantum systems for which the exact wave functions are computationally accessible are the
exception rather than the rule.
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v0(r) Ψ0 n0(r)

Hohenberg-Kohn Theorem

ĤΨ0 = E0Ψ0 n0(r) = ne
∫
dr2...drne |Ψ0(r, r2, ..., rne)|2

Figure 2: Graphical schematics of the Hohenberg-Kohn theorem: One-to-one correspon-
dence between the external potential v0(r) and the ground-state density n0(r).

finding an electron at a given point r in space and can be calculated in terms of the
ground-state wave function Ψ0 as follows

n0(r) = ne

∫
d3r2...d3rne |Ψ0(r, r2, ..., rne)|2 . (25)

The integration variables include all electron coordinates {r} excluding one. Ad-
ditionally, the electron density is normalized to the number of electrons ne =∫

d3r n0(r). Alternatively, we can define n0(r) in second quantization

n0(r) = 〈Ψ0| n̂(r) |Ψ0〉 = 〈Ψ0| Ψ̂†(r)Ψ̂(r) |Ψ0〉 . (26)

|Ψ0〉 is the ground state of the following time-independent Hamiltonian in agree-
ment with Eq. 11

Ĥe = T̂e + Ŵee + V̂0, (27)

where the external potential operator V̂0 includes the electron-nuclear interaction
operator ŴeN from Eq. 9 and can be written explicitly as a sum of single-particle
potentials V̂0 = ∑ne

i=1 v0(ri). The question, whether any arbitrary electron density
n0(r) can be constructed by an antisymmetric wave function Ψ0 as in Eq. 25 is
termed the n-representability problem [31]. It has been shown [33, 34] that any
finite nonnegative differentiable function is a n-representable electron density.
In 1964, Hohenberg and Kohn proved in their ground-breaking paper [6] the one-
to-one correspondence (bijective mapping) between the ground-state density n0(r)
and the external potential v0(r). This means that the external potential determines
the ground-state density uniquely and vice versa. By connecting both quantities
to the ground-state wave function, Hohenberg and Kohn show that knowing the
ground-state electron density is sufficient to calculate all observables in the system,
at least in principle. All observables are functionals of the ground-state density.
However, in many cases, this functional dependence may not be known explic-
itly [5]. In Fig. 2, we schematically depict the Hohenberg-Kohn theorem.
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2 .2 .2 Hohenberg-Kohn Theorem

The Hohenberg-Kohn theorem states explicitly the following [6]: "The ground-state
density n0(r) in some external potential v0(r) determines this potential uniquely."
This theorem was proved as follows: Let n0(r) be a nondegenerate ground-state
density of ne electrons in the potential v0(r) corresponding to the ground state
|Ψ0〉 and the ground-state energy E0. E0 is defined as

E0 = 〈Ψ0| Ĥe |Ψ0〉 =
∫

d3r v0(r)n0(r) + 〈Ψ0| T̂e + Ŵee |Ψ0〉 .

Now, we assume that there exists a second potential v1(r), with a ground state
|Ψ1〉, different to v0(r) and |Ψ0〉, but leading to the same density n0(r). It follows
that

E1 =
∫

d3r v1(r)n0(r) + 〈Ψ1| T̂e + Ŵee |Ψ1〉 .

By applying the minimal principle (Eq. 3), we get

E0 <
∫

d3r v0(r)n0(r) + 〈Ψ1| T̂e + Ŵee |Ψ1〉 = E1 +
∫

d3r (v0(r)− v1(r)) n0(r)

and

E1 <
∫

d3r v1(r)n0(r) + 〈Ψ0| T̂e + Ŵee |Ψ0〉 = E1 +
∫

d3r (v1(r)− v0(r)) n0(r).

Adding both inequalities leads to the contradiction E0 + E1 < E0 + E1 and we can
conclude by reductio ad absurdum that the assumption of the existence of v1(r) is
wrong. The generalization of this theorem to degenerate ground states has been
worked out by Lieb [35]. Note, that the Hohenberg-Kohn theorem requires a fixed
number of particles ne, a fixed kinetic energy operator T̂e, and a fixed electron-
electron interaction operator Ŵee. If one of these three variables is changed, it may
be possible to generate the same density n0 by a different external potential. This
feature is exploited later in the Kohn-Sham approach.
The total ground-state energy E0[n0] can be found by a variational principle

E0[n0] = min
Ψ→n0

〈Ψ| Ĥe |Ψ〉 = min
Ψ→n0

〈Ψ| T̂e + Ŵee |Ψ〉︸ ︷︷ ︸
F[n0]

+
∫

d3r v0(r)n0(r). (28)

In the above equation, we define the functional F[n0], which does not depend
explicitly on the applied external potential v0(r). This is why, F[n0] is also called the
universal Hohenberg-Kohn functional. For three-dimensional Coulomb systems,
the explicit form of F[n0] is unknown and needs to be approximated for practical
applications.
From the static Schrödinger equation in Eq. 2 with the Hamiltonian defined in
Eq. 27, we find that we can label all ground-state wave functions |Ψ0〉 by their
generating external potential, thus the ground-state densities can also be seen as
having a functional dependence on v0, such that

|Ψ0〉 −→ |Ψ0 [v0]〉 −→ |Ψ0 [n0]〉 . (29)
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Figure 3: Kohn-Sham construction: Many-body density in external potential vext(r) is re-
produced by auxiliary Kohn-Sham system in Kohn-Sham potential vs(r).

In the last step, we already used the one-to-one correspondence proved by Ho-
henberg and Kohn to replace the functional dependence on v0 by n0. Through
the ground-state wave function this functional dependence is inherited by all ob-
servables O [n0] = 〈Ψ0 [n0]| Ô |Ψ0 [n0]〉, which therefore become functionals of the
ground-state density. This equation yields a strong statement, which leads to the
following consequences: In principle, it is sufficient to know the ground-state den-
sity, from which then any desired ground-state observable, but also excited-state
observables [36] can be obtained, at least in principle. Thus, the explicit knowledge
of the exact ground-state wave function becomes obsolete.
The question, whether a given density n, which can be constructed as in Eq. 25,
is a ground-state density of a local potential v0(r), is the v-representability prob-
lem [31, 37]. Here, the Hohenberg-Kohn theorem only guarantees that the map-
ping of the electron density n0 to the external potential v0 is unique, but not that
it exists. While there are examples for non-v-representable densities [38, 39], there
exist proofs for ensemble v-representability on lattice systems [31, 37].

2 .2 .3 Kohn-Sham System in DFT

The one-to-one correspondence between the density and the external potential has
an appealing consequence: The ground-state proof states that for a given inter-
action Ŵee, a density n0(r) determines the corresponding external potential v0(r)
uniquely. But, if we change Ŵee, it is possible to reproduce the same n0(r) with
a different (effective) potential vs(r). This approach allows to replaces a system
of ne interacting electrons, obeying the many-body Hamiltonian of Eq. 27, by an
artificial (auxiliary) system of ne noninteracting Kohn-Sham particles [8]. At first
glance, the Kohn-Sham approach overcomes the exponential barrier, since in the
Kohn-Sham system we are left with ne single-particle equations, instead of the full
interacting ne-body problem. However, in the end of this section, we will see that
the exponential wall is hidden in the effective Kohn-Sham potential vs(r). This
potential mimics the electron-electron interaction such that the electron density in
the Kohn-Sham system of artificial particles is equal to the electron density of the
interacting many-body system.
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The noninteracting Kohn-Sham system of ne Kohn-Sham particles is described by
the Kohn-Sham equation


 1

2me
p̂2 + vext(r) + vH(r) + vxc(r)︸ ︷︷ ︸

vs(r)


 φi(r) = εiφi(r), (30)

where φi(r) are the Kohn-Sham orbitals. The Kohn-Sham potential vs(r)5 includes
the external potential vext(r), the classical Hartree potential

vH(r) =
e2

4πε0

∫
d3r′

n0(r′)
|r− r′| (31)

and the exchange-correlation potential vxc(r). From the single-particle orbitals
φi(r), the density can then be constructed using

n0(r) =
ne

∑
i=1
|φi(r)|2 . (32)

The noninteracting Kohn-Sham wave function Φ(r1, r2, ..., rne) in its properly anti-
symmetric form can also be constructed explicitly using the Kohn-Sham orbitals
φ(r). Due to the fermionic nature of the electrons, it consists of a single Slater
determinant

Φ(r1, r2, ..., rne) =
1√
ne!

∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) ... φ1(rne)

φ2(r1) φ2(r2) ... φ2(rne)

... ... ... ...

φne(r1) φne(r2) ... φne(rne)

∣∣∣∣∣∣∣∣∣∣

. (33)

The total (many-body ground-state) energy E0 is defined as

E0[n0] = Ts[n0] + U[n0] + Exc[n0] +
∫

d3r vext(r)n0(r), (34)

with the noninteracting kinetic energy Ts[n0] = 〈Φ| T̂e |Φ〉, the Hartree energy

U[n0] =
e2

8πε0

∫
d3r

∫
d3r′

n0(r′)n0(r)
|r− r′| ,

and the exchange-correlation energy

Exc[n0] =
∫

d3r εxc([n0], r)n0(r) (35)

with the exchange-correlation energy density εxc([n0], r) and

vxc(r) =
δExc[n0]

δn0
. (36)

5 The question of existence of vs(r) is called the noninteracting v-representability problem. For details
on this topic, see e.g. Ref. [31].
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The total energy E0 in Eq. 34 can also be reformulated in terms of the Kohn-Sham
eigenenergies εi of Eq. 30

E0[n0] =
ne

∑
i=1

εi −U[n0]−
∫

d3r vxc(r)n0(r) + Exc[n0]. (37)

The exchange-correlation potential vxc(r) is responsible to correctly account for all
quantum many-body effects, e.g. electron spin-dependent effects, van-der Waals in-
teractions [40], or electron-hole pair creation. From Eq. 28, we can directly connect
the universal Hohenberg-Kohn functional F[n0] to Exc[n0]:

Exc[n0] = F[n0]− Ts[n0]−U[n0]. (38)

Typically the exchange correlation potential is split further into vxc = vx + vc,
where the first part is responsible for all exchange effects due to the electron spin,
while the second part accounts for all correlation effects, which are caused by the
Coulombic electron-electron repulsion.

2 .2 .3 .1 Exact Kohn-Sham Potential Construction

In small systems, where it is possible to obtain the exact solution in terms of the
wave function, we can construct the Kohn-Sham potential vs explicitly [41]. This
procedure can give important insight and may help to improve existing approxima-
tions. For single electron or the two electrons-singlet problem, we can reformulate
the definition of the density in Eq. 32 as φ(r) =

√
n0(r) or φ(r) =

√
n0(r)/2, be-

cause we can choose the ground state to be real and insert it in Eq. 30 to obtain [42]

vs(r) =
h̄2

2me

~∇2
√

n0(r)√
n0(r)

+ E0. (39)

In the Kohn-Sham equation of Eq. 30, only the exchange-correlation potential vxc(r)
remains unknown. Since this potential is not known in general, we need to rely
on approximations in actual calculations. Thus, the exponential wall in quantum
many-body problems is hidden in this potential. We will briefly discuss common
(ground-state) approximations in the following section.

2 .2 .3 .2 Approximations to the Exchange-Correlation Potential

There exist many different ways to find approximations for vxc. For instance, see
e.g. Ref. [43] and references therein for a complete overview on existing and com-
monly used approximate functionals.

2 .2 .3 .3 Local-Density Approximation

The LDA [8] is the most prominent approximation, which is widely used for dif-
ferent applications, ranging from solids, molecular clusters, atoms and molecules.
Initially, LDA was used to describe solids, where the electronic structure is con-
sidered to be highly homogeneous and thus comparable to the one of the homo-
geneous electron gas. However, the LDA is now also extensively used for atoms
and molecules, where it often yields remarkably accurate bond lengths [44]. The
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general idea behind LDA is the following: In general, the exchange-correlation po-
tential at point r in space depends not only on the value of the density at the same
point n0(r), but on the whole spatial-resolution of the density n0. However, it may
be possible to expand the potential in terms of the derivatives of the density as

vxc([n0], r) = vxc

(
[n0, ~∇n0, ~∇2n0, ...], r

)
.

The LDA neglects any derivative of the electron density in vxc and only considers
the density locally. Furthermore, one uses the exchange-correlation energy density
εxc([n0], r) of a homogeneous electron gas. εxc is connected to vxc by Eqns. 35-36.
For the homogeneous electron gas, the exchange contribution εx can be calculated
analytically, while the correlation contribution εc can be obtained to high accuracy
by Monte-Carlo methods [45].

2 .2 .3 .4 Beyond the Local-density Approximation

A natural extension to the LDA are approximations, in which spatial-derivatives
of the density are also considered. This procedure is called semi-local. Popular
functionals here are the GGA [9, 46] such as the Perdew-Burke-Ernzerhof (PBE) [47]
approximation including its extension to solids PBEsol [48]. With the development
of the first semi-local functionals, DFT became also popular for quantum chemistry
applications [49]. In the last years, new developments, such as the hybrid function-
als [50], which treat the spin-interaction partly exact or the C6-approximations [40],
which are able to describe van-der Waals interactions became very successful and
are now the state-of-the-art for large-scale DFT calculations.

2 .2 .4 Time-Dependent Density-Functional Theory

In this section, we introduce TDDFT. Comprehensive reviews on TDDFT can be
found e.g. in Refs. [26, 51, 52]. In TDDFT, the fundamental variable is the time-
dependent electron density n(r, t), which is defined in analogy to Eq. 25 as

n(r, t) = ne

∫
d3r2...d3rne |Ψ(r, r2, ..., rne , t)|2 , (40)

where the many-body wave function Ψ(r, r2, ..., rne , t) is now a time-dependent
wave function evolving from the initial state Ψ(t0) and subject to the time-
dependent Hamiltonian

Ĥ(t) = T̂e + Ŵee + V̂(t). (41)

The external potential operator V̂(t) includes the electron-nuclear interaction op-
erator ŴeN of Eq. 9, but also an additional, possibly time-dependent, external po-
tential acting solely on the electrons, e.g. the potential of an external laser field
applied to the system. V̂(t) can also be written explicitly as a sum of single-particle

potentials V̂(t) =
ne

∑
i=1

v(ri, t).
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2 .2 .5 Equation of Motion for the Electron Density

The equation of motion (EOM) for the time-dependent density in Eq. 40 can be
derived in the second-quantization framework (Eq. 26). The EOM is then derived
by applying the Heisenberg equation of motion, which provides a connection be-
tween the time derivative of an expectation value A(t) = 〈Ψ(t)| Â(t) |Ψ(t)〉 to the
commutator of the corresponding operator Â(t) with the Hamiltonian Ĥ(t) here
written in the Schrödinger picture as

d
dt

A(t) =
i
h̄
〈Ψ(t)|

[
Ĥ(t), Â(t)

]
|Ψ(t)〉+ 〈Ψ(t)| ∂Â(t)

∂t
|Ψ(t)〉 . (42)

If the operator Â(t) = Â is not explicitly time-dependent, which is typically the
case in the Schrödinger picture, we find for the k-th derivative

∂k

∂tk A(t) =
(

i
h̄

)k

〈Ψ(t)|
[
Ĥ(t),

[
Ĥ(t),

[
Ĥ(t), ...

[
Ĥ(t)︸ ︷︷ ︸

k−times

, Â
]]]]
|Ψ(t)〉 . (43)

Applying Eq. 42 for the electron density leads to the first time-derivative of the
density, which is the continuity equation

∂

∂t
n(r, t) = −~∇ · J(r, t), (44)

where we define the electron current density operator as

Ĵ(r) =
h̄

2ime

(
Ψ̂†(r)

(
~∇Ψ̂(r)

)
−
(
~∇Ψ†(r)

)
Ψ(r)

)
. (45)

For the second time-derivative on the density, we use Eq. 42 twice and obtain

∂2

∂t2 n(r, t) =− ~∇ ·
(

∂

∂t
J(r, t)

)
= − i

h̄
~∇ · 〈Ψ(t)|

[
Ĥ, Ĵ(r)

]
|Ψ(t)〉

= −~∇ ·Q(r, t) +
1

me
~∇ ·
[
n(r, t)~∇v(r, t)

]
, (46)

with the electronic stress force [17]

Q(r, t) = − i
h̄
〈Ψ(t)|

[
Ĵ, T̂e + Ŵee

]
|Ψ(t)〉 . (47)

2 .2 .6 Runge-Gross Theorem

In 1984, Erich Runge and Eberhard K.U. Gross proved [10] that for fixed initial state
Ψ(t0) there exists an one-to-one correspondence between the time-dependent den-
sity n(r, t) and the time-dependent external potential vext(r, t). The Runge-Gross
theorem forms the basis of TDDFT and proves that TDDFT is an exact reformula-
tion6 of the time-dependent Schrödinger equation in Eq. 1. Fig. 4 schematically
illustrates the proof, which we briefly sketch in the following. The proof concludes

6 The question of the time-dependent v-representability was treated in Ref. [53].
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Ψ(r, t0)

(Ψ(r, t), v(r, t)) n(r, t)

(Ψ′(r, t), v′(r, t)) n′(r, t)

Figure 4: Schematic Runge-Gross proof: Evolving from the same initial state Ψ(r, t0), two
different wave functions Ψ(r, t) and Ψ′(r, t) will always lead to different densities
n(r, t) and n′(r, t), if the potentials v(r, t) and v′(r, t) differ by more than a trivial
time-dependent constant.

that two solutions Ψ(t) and Ψ′(t) to the time-dependent Schrödinger equation gov-
erned by the time-dependent Hamiltonians Ĥ(t) and Ĥ′(t) of Eq. 41 with external
potentials v(r, t) and v′(r, t), but common initial state Ψ(t0), never lead to the same
evolution of the electron density n(r, t), if the two potentials are different such that
v(r, t) 6= v′(r, t) + c(t). Here, the time-dependent constant function c(t) has no
spatial dependence. This restriction however does not assume that e.g. at initial
time t0 v(r, t0) 6= v′(r, t0) + c(t0). The original proof assumes time analyticity in the
external potentials, such that a Taylor-expansion in t around the initial time t = t0

is possible7. Assuming time analyticity, we can expand the external potentials in
Taylor series such that

v(r, t) =
∞

∑
k=0

1
k!

vk(r, t0)(t− t0)
k , and v′(r, t) =

∞

∑
k=0

1
k!

v′k(r, t0)(t− t0)
k, (48)

where we used the Taylor-coefficients vk(r, t0) = ∂k

∂tk v(r, t)
∣∣
t=t0

. The inequality
v(r, t) 6= v′(r, t) + c(t) requires that a minimal integer kmin exists for which

∂k

∂tk

(
v(r, t)− v′(r, t)

) ∣∣
t=t0
6= const. (49)

Let us first focus on the current densities J(r, t) and J′(r, t) that are defined in
Eq. 45 and are connected to n(r, t) and n′(r, t) by Eq. 44. The difference in their
time-derivative at t0 can be calculated as

∂

∂t
[
J(r, t)− J′(r, t)

] ∣∣
t=t0

=
i
h̄
〈Ψ(t0)|

[
Ĥ(t0)− Ĥ′(t0), Ĵ(r)

]
|Ψ(t0)〉

= −n(r, t0)

me
~∇
[
v(r, t0)− v′(r, t0)

]
. (50)

If the potentials v and v′ differ at initial time by more than a time-dependent
constant, i.e. v(r, t0) 6= v′(r, t0) + c(t0), we find kmin = 0. This leads in the above
equation to a nonvanishing right-hand side implying a nonvanishing J(r, t0 +∆t)−
J′(r, t0 +∆t) for infinitesimally small ∆t. From Eq. 50, we also find that the potential
is only defined up to a constant, since ~∇c(t) = 0.

7 The restriction on time-analytic external potentials has been lifted later [53–55].
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If kmin = k > 0, the potentials are equal (up to a constant) at initial time t0 but
differ for t > t0. We apply the Heisenberg equation of motion k-times (Eq. 43) to
find

∂k+1

∂tk+1

[
J(r, t)− J′(r, t)

] ∣∣∣∣
t=t0

= −n(r, t0)

me
~∇
(

∂k

∂tk

[
v(r, t)− v′(r, t)

]) ∣∣∣∣
t=t0

. (51)

The right-hand side always vanishes for l < k , hence we need to go to the order
k. For l = k, we find also a nonvanishing right-hand side, which leads to a non-
vanishing J(r, t0 + ∆t)− J′(r, t0 + ∆t) for infinitesimally small ∆t. For the current
density, we conclude that two solutions |Ψ(t)〉 and |Ψ′(t)〉 of the time-dependent
Schrödinger equation with external potentials v(r, t) and v′(r, t), but common ini-
tial state |Ψ0〉 never lead to the same electron current density evolution J(r, t).
Making use of Eq. 44, we find for the electron densities

∂k+2

∂tk+2

[
n(r, t)− n′(r, t)

] ∣∣∣∣
t=t0

=
1

me
~∇ ·
[

n(r, t0)~∇
(

∂k

∂tk

[
v(r, t)− v′(r, t)

])] ∣∣∣∣
t=t0

.

(52)

Provided the initial density n(r, t0) is reasonably well behaved [10], we can show by
reductio ad absurdum that also here the right-hand side is nonvanishing for kmin = k,
which leads to a nonvanishing n(r, t0 + ∆t)− n′(r, t0 + ∆t) for infinitesimally small
∆t. This concludes the proof of one-to-one correspondence: v(r, t) 6= v′(r, t) + c(t)
automatically leads to n(r, t) 6= n′(r, t) for a given initial state. Thus in this case
v(r, t) uniquely defines n(r, t).
In TDDFT, all observables have an additional dependence on the initial state Ψ(t0),
the so-called initial-state dependence

O([n, Ψ(t0)] , t) = 〈Ψ([n, Ψ(t0)] , t)| Ô |Ψ([n, Ψ(t0)] , t)〉 .

2 .2 .7 Kohn-Sham System in TDDFT

Similar to ground-state DFT, introduced in Sec. 2.2.3, the interacting many-body
problem can be replaced by a noninteracting Kohn-Sham problem. In the time-
dependent Kohn-Sham system, all observables accumulate an additional depen-
dence on the Kohn-Sham initial state Φ(t0). For all observables, we find

O([n, Ψ(t0), Φ(t0)] , t) = 〈Ψ([n, Ψ(t0), Φ(t0)] , t)| Ô |Ψ([n, Ψ(t0), Φ(t0)] , t)〉 ,
(53)

where |Ψ(t0)〉 is the many-body initial state and |Φ(t0)〉 is the Kohn-Sham initial
state. In general, |Φ(t0)〉 can be different to |Ψ(t0)〉, but |Φ(t0)〉 has to be chosen
such that n(r, t0) and ∂

∂t n(r, t)
∣∣
t=t0

are equal in the many-body and Kohn-Sham sys-
tem. The time-dependent Kohn-Sham equations for single-particle orbitals |φi(t)〉
can be set up as follows

ih̄
∂

∂t
|φi(t)〉 =


 1

2me
p̂2 + vext(r, t) + vH(r, t) + vxc(r, t)︸ ︷︷ ︸

vs(r,t)


 |φi(t)〉 , (54)
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where the Kohn-Sham potential vs(r, t) includes the external potential vext(r, t), the
classical time-dependent Hartree potential

vH(r, t) =
e2

4πε0

∫
d3r′

n(r′, t)
|r− r′| , (55)

and the xc potential vxc(r, t). By construction, the time evolution of the electron
density in the Kohn-Sham system is equal to the time evolution of the electron
density in the many-body system. This equality can be used to define the Hartree-
exchange-correlation (Hxc) potential vHxc = vH + vxc using the equation of motion
for the electron density of Eq. 46 and is then given as follows

1
me

~∇ ·
(

n(r, t)~∇vHxc(r, t)
)
= ~∇ ·

(
Q(s)(r, t)−Q(r, t)

)
, (56)

where Q is the electronic stress force of the interacting system as defined in Eq. 47

and Q(s) is the electronic stress force of the Kohn-Sham system.

2 .2 .7 .1 Adiabatic approximations

To calculate properties of real systems, we rely on approximations for vxc(r, t). The
simplest and most widely used approximation to describe time-dependent systems
is the adiabatic approximation. In the adiabatic approximation, we assume that the
system follows adiabatically the external perturbation. Under this assumption, we
can apply the ground-state potentials presented in Sec. 2.2.3.2

vadiabatic
xc ([n, Ψ0, Φ0], t) = vxc([n0], t)

∣∣
n0=n. (57)

Meaning, we use the ground-state functionals in Sec. 2.2.3 developed for the
ground-state density n0(r), but insert the time-dependent density n(r, t) at each
time step. The adiabatic approximation is justified for systems, where the time-
dependent density does not change rapidly. One of the most common approxi-
mations in TDDFT is the adiabatic local-density approximation (ALDA), where the
functional of the homogeneous electron gas is used. The ALDA has no initial-state
dependence and only depends on time locally. Locality in time means that the
potential at time t only depends on the density at time t and is independent on
the previous density evolution, hence does not contain memory effects. One way
to overcome this limitations is to connect TDDFT to many-body perturbation theory,
which is the topic in the next section.

2 .2 .8 Green’s Functions and the Sham-Schlüter Equation

In this section, we introduce the basic concepts of many-body perturbation theory
using the Green’s function formalism that we need in the next chapter to construct
approximate xc potentials. Comprehensive reviews on the topic of many-body per-
turbation theory can be found e.g. in Refs. [56–59].
The central object in many-body perturbation theory is the Green’s function [58].
The single-particle Green’s function is defined in terms of the electron field opera-
tors (Eq. 21) in the Heisenberg picture. In the Heisenberg picture, all quantum me-
chanical operators acquire a time-dependence, but states remain time-independent,
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while in the Schrödinger picture, the states are time-dependent, but the operators
are time-independent8. Operators can be transformed from the Schrödinger pic-
ture to the Heisenberg picture by the following transformation

ψ̂(r, t) = Û(t, t0)ψ̂(r)Û(t0, t). (58)

Here, we make use of the time-evolution operator, which is defined as [60]

Û(t, t0) = 11 +
∞

∑
n=1

(
− i

h̄

)n ∫ t

t0

dt1

∫ t1

t0

dt2...
∫ tn−1

t0

dtnĤ(t1)...Ĥ(tn), (59)

= 11 +
∞

∑
n=1

1
n!

(
− i

h̄

)n ∫ t

t0

dt1

∫ t

t0

dt2...
∫ t

t0

dtnT̂
[
Ĥ(t1)...Ĥ(tn)

]
, (60)

= T̂ exp
(
− i

h̄

∫ t

t0

Ĥ(t′)dt′
)

. (61)

In Eq. 60, we have introduced the operator T̂, which is the Wick’s time-ordering
operator. This operator orders operators with different time arguments such that
later times are shifted to the left. Next, we can define the one-particle Green’s
function

ih̄G(1, 1′) = 〈Ψ0| T̂
[
Ψ̂(1)Ψ̂†(1′)

]
|Ψ0〉 , (62)

where 1 = {r, t, σ} is the collective index for the space-time-spin variable. The
time-ordering operator gives

T̂
[
Ψ̂(1)Ψ̂†(1′)

]
=





Ψ̂(1)Ψ̂†(1′) if t > t′,

∓ Ψ̂†(1′)Ψ̂(1) if t < t′.
(63)

applied to fermionic (−) or bosonic (+) operators. The many-body wave function
|Ψ0〉 is the correlated ground-state of the N-electron system. Furthermore, we can
define a more general Green’s function, namely the N-particle Green’s function

(ih̄)N GN(1, ...N, 1′, ..., N′) = 〈Ψ0| T̂
[
Ψ̂(1) · · · Ψ̂(N)Ψ̂†(N′) · · · Ψ̂†(1′)

]
|Ψ0〉 .

(64)

The equation of motion of the interacting Green’s function gives the Dyson equa-
tion in differential form

[
ih̄

∂

∂t1
− h0(1)

]
G(1, 1′) + ih̄

∫
d3w(1, 2)G2(1, 2+, 1′, 2++) = δ(1, 1′), (65)

where 2+ implies that the time argument in 2 is shifted by a positive infinitesimal.
We assume that the electrons in the system obey the electronic Hamiltonian of
Eq. 41. In Eq. 65, h0(1) is the single-particle Hamiltonian (including T̂e and V̂) and
w(1, 2) the electron-electron interaction. In the Dyson equation, we find that the
equation of motion connects the single-particle Green’s function G(1, 1′) with the
two-particle Green’s function G2(1, 2, 1′, 2). By calculating the equation of motion

8 Also operators in the Schrödinger picture can have an explicit time-dependence, e.g. the Hamiltonian
Ĥ(t) through a time-dependent external potential, which describes an external laser field.
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of the two-particle Green’s function, we find a connection to the three-particle
Green’s function. This procedure gives us a hierarchy of equations of motion such
that the N-particle Green’s function is connected to the N + 1-particle Green’s
function. This hierarchy is also called Martin-Schwinger hierarchy and can be
reformulated formally by introducing the self-energy Σ(1, 2) into Eq. 65. This
equation then reads

[
ih̄

∂

∂t1
− h0(1))

]
G(1, 1′)−

∫
d3 Σ(1, 2)G(2, 1′) = δ(1, 1′). (66)

The Dyson equation in Eq. 66 can also be rewritten in terms of the noninteracting
Green’s function,

G(1, 1′) = G0(1, 1′) +
∫

d2
∫

d3 G0(1, 2)Σ(2, 3)G(3, 1′), (67)

where G0(1, 1′) is the noninteracting Green’s function that obeys
[

ih̄
∂

∂t1
− h0(1)

]
G0(1, 1′) = δ(1, 1′). (68)

The noninteracting Green’s function is often the starting point in numerical calcula-
tions. An example for a noninteracting Green’s function is the Kohn-Sham Green’s
function Gs(1, 1′), which is constructed using Kohn-Sham orbitals. In general, the
self-energy Σ(1, 2) includes all many-body effects for the evolution of the system.
In a similar spirit as in DFT, the self-energy Σ(1, 2) can be divided into

Σ(1, 2) = vH(1)δ(1, 2) + Σxc(1, 2)

by using the Hartree potential vH. In numerical calculations Σxc is approximated.
In many-body perturbation theory the self-energy is routinely expanded using
Feynman diagrams [61].

2 .2 .8 .1 Lehmann representation of the Green’s function

We derive the Green’s function in Lehmann representation by inserting a full set of
eigenfunctions 11 = ∑n |ΨN

n 〉 〈ΨN
n |. Here, the label (N) refers to a N-particle state.

The Green’s function can then be expressed as

ih̄G(1, 1′) =Θ(t− t′)∑
n

〈
Ψ0
∣∣ψ̂(1)

∣∣ΨN+1
n

〉 〈
ΨN+1

n

∣∣∣ψ̂†(1′)
∣∣∣Ψ0

〉

−Θ(t′ − t)∑
n

〈
Ψ0

∣∣∣ψ̂†(1′)
∣∣∣ΨN−1

n

〉 〈
ΨN−1

n
∣∣ψ̂(1)

∣∣Ψ0

〉
, (69)

where the step-function Θ(t − t′) assures the time-ordering. Using a Fourier
transformation and applying the substitution h̄ω′ = h̄ω + EN+1

n − E0 and h̄ω′ =
h̄ω− EN−1

n + E0, we find

G(r, r′, ω) = lim
δ→0+

∑
n

〈
Ψ0
∣∣ψ̂(r)

∣∣ΨN+1
n

〉 〈
ΨN+1

n
∣∣ψ̂†(r′)

∣∣Ψ0
〉

h̄ω− EN+1
n + E0 + iδ

+ lim
δ→0+

∑
n

〈
Ψ0
∣∣ψ̂†(r′)

∣∣ΨN−1
n

〉 〈
ΨN−1

n
∣∣ψ̂(r)

∣∣Ψ0
〉

h̄ω− E0 + EN−1
n − iδ

. (70)
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If the many-body wave functions Ψ are single Slater determinants, e.g. consisting
of Kohn-Sham orbitals φi, we arrive at the Lehmann representation of the noninter-
acting Green’s function [59]

G0(r, r′, ω) = lim
δ→0+

∑
i

φi(r)φ∗i (r
′)

h̄ω− (εi − µ)− iδsgn (εi − µ)
, (71)

where µ is the Fermi energy.

2 .2 .8 .2 Sham-Schlüter Equation

The gap between many-body perturbation theory and density-functional the-
ory [62, 63] was bridged by the Sham-Schlüter equation. In this equation the
exchange-correlation part in the self-energy Σxc(1, 1′) can be used to calculate the
corresponding Kohn-Sham potential vxc(r, t).
By construction, the density of the Kohn-Sham system is equal to the density of
the interacting system. Therefore, the Kohn-Sham Green’s function Gs(1, 1′) and
the many-body Green’s function G(1, 1′) are connected by

n(r, t) = − i
h̄

lim
t′→t

G(r, t, r, t′) = − i
h̄

lim
t′→t

Gs(r, t, r, t′). (72)

This direct connection already leads via the Dyson equation of Eq. 66 for the many-
body and the Kohn-Sham system directly to the time-dependent Sham-Schlüter
equation

∞∫

−∞

dτ2

∫
d3r2t

′
(τ2)G(r1, τ1, r2, τ2)Gs(r2, τ2, r1, τ1)vxc(r2, τ2)

=

∞∫

−∞

dτ3

∞∫

−∞

dτ4

∫
d3r3

∫
d3r4t′(τ3)t′(τ4)G(r1, τ1, r3, τ3)Σxc(r3, τ3, r4, τ4)

× Gs(r4, τ4, r1τ1). (73)

Here, the nonphysical pseudo-times τ are defined on the complex Keldysh-
contour [58]. Typically, the linearized form of the Sham-Schlüter equation is used,
where the many-body Green’s function G(r, τ1, r, τ2) is approximated by the Kohn-
Sham Green’s function Gs(r, τ1, r, τ2). Although Eq. 72 allows to connect the diag-
onals of G and Gs, in general their off-diagonals are different. The Sham-Schlüter
equation in Eq. 73 allows to calculate approximations for the Kohn-Sham potential
vxc(r, t) by approximating the self-energy Σxc. In principle, approximations of the
self-energy Σxc can be improved in a systematic way by including more diagrams
into Σxc. For instance, if the Hartree-Fock approximation is used for Σxc, we obtain
the local exact-exchange potential for vxc.

2 .2 .8 .3 Optimized Effective Potential

The term optimized effective potential (OEP) refers to a wide class of approxima-
tions to obtain the Kohn-Sham potential vxc [64]. All these approximations use
the Kohn-Sham orbitals |φi〉 to construct the effective Kohn-Sham potential. Thus,
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the Kohn-Sham potential vxc has an explicit dependence on these orbitals. The at-
tribute optimized is justified by the constraint that the Kohn-Sham potential remains
local, while the total energy is minimized. One way to obtain these approximations
is by applying the chain rule for functional derivatives and using [64]

vxc,σ(r) =
δExc({φi})

δnσ(r)
, (74)

where nσ(r) is the spin-resolved electron density and Exc the exchange-correlation
energy of Eq. 35 depending on the Kohn-Sham orbitals φi. Another way is by
directly using the Sham-Schlüter equation as given by Eq. 73. For the ground
state, efficient algorithms are available to directly solve the OEP equation without
invoking further approximations [65]. Whereas in the time-dependent case, the
OEP equations are rarely solved directly [66], but usually approximately, e.g. by
applying the Krieger-Li-Iafrate (KLI) approximation [67] to approximate the OEP

equation.

2 .3 photons and the electron-photon hamiltonian

In this section, we introduce the framework to study quantized electromagnetic
fields. Reviews on this topic can be found e.g. in Refs. [68–71]. So far, we re-
stricted ourselves to the treatment of quantum systems, which contain electrons
and nuclei. This restriction is lifted now and to this end, we first briefly introduce
how to quantize the classical theory of electromagnetic fields in vacuum based
on Maxwell’s equations. In the end of this section, we deal with the coupling of
quantum-mechanical electrons to quantized electromagnetic fields.

2 .3 .1 Classical Maxwell Field Equations

The electromagnetic field can be quantized by first considering the classical
Maxwell field equations, and then in a second step promoting the field amplitudes
to quantum operators. Throughout this section, the field quantities are written in
SI units [19].
We start with the classical Maxwell equations [72] for the electric field E(r, t) and
magnetic field B(r, t) in their differential form

~∇ · E(r, t) = ρ(r, t)/ε0, (75)
~∇ · B(r, t) = 0, (76)

~∇× E(r, t) = −∂B(r, t)
∂t

, (77)

~∇× B(r, t) = ε0µ0
∂E(r, t)

∂t
+ µ0J(r, t), (78)

where r denotes a three-dimensional position vector, t the time, ρ(r, t) refers to
the electron charge density, J(r, t) is the electron current density and ε0 and µ0 are
the vacuum permittivity and the magnetic permeability that are connected to the
speed of light c by ε0µ0 = 1/c2. To quantize the fields, it is useful to cast Maxwell’s
equations in terms of scalar and vector potentials. Therefore, we introduce the
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scalar field φ(r, t) and the vector field A(r, t). By using Eq. 76 and Eq. 77, we can
define these potentials as follows

E(r, t) = −~∇φ(r, t)−
(

∂A(r, t)
∂t

)
, (79)

B(r, t) = ~∇×A(r, t). (80)

The remaining two Maxwell equations Eq. 75 and Eq. 78 lead to the following field
equations

~∇
(
~∇ · ~A(r, t)

)
− ~∇2 ~A(r, t) +

1
c2

∂
(
~∇φ(r, t)

)

∂t
+

1
c2

∂2A(r, t)
∂t2 = µ0J(r, t), (81)

−~∇2φ(r, t)− ~∇ ·
(

∂A(r, t)
∂t

)
= ρ(r, t)/ε0.

(82)

2 .3 .2 Gauge Transformation

There exist pairs of potentials (A(r, t), φ(r, t)) and (A′(r, t), φ′(r, t)), for which the
field quantities E and B derived from Eq. 79 and Eq. 80 are identical. Therefore
A(r, t) and φ(r, t) are often considered nonphysical quantities. In contrast to E(r, t)
and B(r, t), A(r, t) and φ(r, t) are not directly measurable in experiment. This
nonphysical degree of freedom is called the gauge freedom. Performing a gauge
transformation does not affect any of the physical quantities, such as E(r, t) or
B(r, t), but instead affects A(r, t) and φ(r, t). Gauge transformations are used to
simplify the equations for the scalar and vector potential in a given setup and are
typically defined by using an arbitrary scalar gauge function G(r, t)

A(r, t) = A′(r, t)− ~∇G(r, t), (83)

φ(r, t) = φ′(r, t) +
∂G(r, t)

∂t
. (84)

Throughout this thesis, all fields are written in the Coulomb gauge. This particular
gauge is convenient for calculations in the nonrelativistic limit, where electrons
and nuclei move considerably slower than the speed of light. The Coulomb gauge
is defined by ~∇ ·A(r, t) = 0, or alternatively as a condition for the gauge function,
~∇2G(r, t) = ~∇ · A′(r, t). Applying the Coulomb gauge has direct consequences:
Due to the Helmholtz decomposition [18], it is possible to divide a vector poten-
tial into its transverse (T) and longitudinal (L) part, A(r, t) = AT(r, t) + AL(r, t),
which can be easily defined using the transverse/longitudinal delta-functions [70]:
VT/L(r, t) =

∫
d3r′V(r′, t) δT,L(r − r′). Applying this partitioning, we find in

Coulomb gauge that the vector field A(r, t) is purely transverse and is defined
by the transversal part of the electronic current JT(r, t) alone. In Coulomb gauge,
the field equations of Eqns. 81-82 take the following form

~∇2A(r, t)− 1
c2

∂2A(r, t)
∂t2 = −µ0JT(r, t), (85)

−~∇2φ(r, t) = ρ(r, t)/ε0. (86)

For a fixed gauge, all vector field potentials are unique and nonphysical degrees of
freedom vanish.
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2 .3 .3 Free Classical Field

In the absence of charges (sources) and currents in the system meaning ρ(r, t) = 0
and J(r, t) = 0, the field is considered to be free or in vacuum and Eq. 85 and Eq. 86

simplify to

~∇2A(r, t) +
1
c2

∂2A(r, t)
∂t2 = 0, (87)

φ(r, t) = 0. (88)

Eq. 87 and Eq. 88 are the starting point in the field quantization procedure. We
introduce a cubic quantization cavity of length L, volume V = L3 and periodic
boundary conditions. We further expand the vector potential A(r, t), the transverse
part of the electric field ET(r, t) (in Coulomb gauge: EL(r, t) = 0) and the magnetic
field B(r, t) in terms of plane waves. We solve Eq. 87 for A(r, t) and calculate B(r, t)
by Eq. 80 and E(r, t) by Eq. 79, which yields

A(r, t) = ∑
k

∑
λ=1,2

ekλ (Akλ exp (−iωkt + ik · r) + A∗kλ exp (iωkt− ik · r)) ,

(89)

ET(r, t) = ∑
k

∑
λ=1,2

ekλ iωk (Akλ exp (−iωkt + ik · r)−A∗kλ exp (iωkt− ik · r)) ,

(90)

B(r, t) = ∑
k

∑
λ=1,2

k× ekλ

|k| ik (Akλ exp (−iωkt + ik · r)

−A∗kλ exp (iωkt− ik · r)) . (91)

Here, ekλ is a (unit) polarization vector with two polarization directions λ, both
orthogonal to k, since there is no propagation along the longitudinal direction in
the Coulomb gauge possible. This means that ek1, ek2, and k form a right-handed
triad [70]. For periodic boundary conditions, the wave vector k takes the following
values

ki = 2πvi/L, (92)

with vi = 0,±1,±2... and i = (x, y, z). The relation between the angular frequency
ω and the wave vector k is called the dispersion relation, for which we obtain
ωk = c k. The total energy in the cavity is given by the expression

ER =
1
2

∫
d3r
[
ε0ET · ET + µ−1

0 B · B
]

. (93)

If we insert the electric field E and the magnetic field B into Eq. 93, we find that the
time dependence vanishes and the total radiative energy ER reduces to the sum of
time-independent contributions of the individual modes

ER = ∑
k

∑
λ

ε0Vω2
k (Akλ A∗kλ + A∗kλ Akλ) . (94)
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2 .3 .4 Riemann-Silberstein Vector

There exists a different way of performing electrodynamical calculations without
relying on the gauge-dependent quantities φ and A. For this purpose, the Riemann-
Silberstein vector can be used, which consists of the electric field E and the mag-
netic field B that are gauge-invariant quantities. The Riemann-Silberstein vector is
a complex vector and is defined as [73, 74]

F(r, t) =
√

ε0

2
E(r, t) + i

√
1

2µ0
B(r, t). (95)

In the absence of charges and currents, the four Maxwell equations in Eqns. 75-78

can be summarized into two equations by using F(r, t)

~∇ · F(r, t) = 0, (96)

i
∂

∂t
F(r, t) = c ~∇× F(r, t). (97)

Eq. 97 resembles the form of the time-dependent Schrödinger equation in Eq. 1.
Thus, the equation can be solved numerically by the same algorithms, which also
solve the time-dependent Schrödinger equation.

2 .3 .5 Quantization of the Field in the Schrödinger Picture

The electromagnetic field can be quantized by associating a quantum mechani-
cal harmonic oscillator with each mode kλ of the radiation field [75]. We can
use the creation operator â†

kλ and destruction operator âkλ for a quantized treat-
ment of the electromagnetic field. The creation and annihilation operators obey
the usual bosonic commutation relations, i.e. [âkλ, â†

k′λ′ ] = δkλ,k′λ′ and [âkλ, âk′λ′ ] =

[â†
kλ, â†

k′λ′ ] = 0.
The quantization of the electromagnetic field is realized by promoting (associating)
the vector field amplitude Akλ to a quantum operator Âkλ [70]

A(∗)
kλ

∧−→ Â(†)
kλ =

√
h̄

2ε0Vωk
â(†)kλ . (98)

Using Eq. 98, we obtain the quantized field operators in analogy to Eqns. 89-91

Â(r) = ∑
k

∑
λ=1,2

(
h̄

2ε0ckV

)1/2

ekλ

(
âkλ exp (ik · r) + â†

kλ exp (−ik · r)
)

, (99)

ÊT(r) = ∑
k

∑
λ=1,2

i
(

h̄ck
2ε0V

)1/2

ekλ

(
âkλ exp (ik · r)− â†

kλ exp (−ik · r)
)

, (100)

B̂(r) = ∑
k

∑
λ=1,2

i
(

h̄k
2ε0cV

)1/2

k̃× ekλ

(
âkλ exp (ik · r)− â†

kλ exp (−ik · r)
)

.

(101)

The quantization procedure is motivated by the canonical commutation relation
between the conjugated variables, i.e. the vector potential Â(r) and the transversal
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electric field ÊT(r). These two operators have to obey a commutation relation
similar to the position-momentum relation for massive particles (see Eq. 10)

[
Âi(r), ÊTj(r′)

]
= − ih̄

ε0
δTij(r− r′). (102)

In the vacuum state, we obtain a zero-point or vacuum energy

E0 =
1
2 ∑

k
∑
λ

h̄ωk. (103)

In principle, the frequencies ωk have no upper bound leading to infinite vacuum
energy, if all possible ωk are considered. Fortunately, physical observables, i.e.
expectation values, only contain energy differences and are therefore independent
of the zero-point energy. Note that the zero-point energy has no classical analogue
and is a real quantum property of the electromagnetic field.

2 .3 .6 Momentum Gauge and the Minimal-Coupling Hamiltonian

In the Coulomb gauge, the electrodynamics of an electronic system interacting
with electromagnetic field modes can be described by the minimal-coupling Hamil-
tonian [70]. Here, the electron-field coupling is introduced into the Hamiltonian
from Eq. 11 by the substitution p̂i → p̂i − eÂ(ri). This leads us to the following
minimal-coupling Hamiltonian

Ĥmin =
ne

∑
i=1

1
2me

[
p̂i − eÂ(ri)

]2
+ Ŵee + ŴeN({R}) +

ε0

2

∫
d3r
[
Ê2

T(r) + c2B̂2
(r)
]

︸ ︷︷ ︸
Ĥpt

,

(104)

where the last term in the Hamiltonian denotes the field Hamiltonian Ĥpt. This
term can also be rewritten in terms of the photon creation and annihilation opera-
tors

Ĥpt = ∑
k

∑
λ=1,2

h̄ωk

(
â†

kλâkλ +
1
2

)
=

1
2 ∑

k
∑

λ=1,2

(
p̂2

kλ + ω2
kq̂2

kλ

)
, (105)

where we made use of the photon displacement operator q̂kλ and photon momen-
tum operator p̂kλ, which are defined as

q̂kλ =

√
h̄

2ωk

(
â†

kλ + âkλ

)
, (106)

p̂kλ = i

√
h̄ωk

2

(
â†

kλ − âkλ

)
. (107)

The operators q̂kλ and p̂kλ are the displacement and momentum operators of the
quantum harmonic oscillator that is connected to the photon field mode kλ.
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2 .3 .7 Pauli-Fierz Hamiltonian and the Maxwell-Schrödinger Propagation

For classical external fields, the Hamiltonian of Eq. 104 can be conveniently refor-
mulated to the Pauli-Fierz Hamiltonian. The nonrelativistic Pauli-Fierz Hamilto-
nian ĤPF written in Coulomb gauge is defined as in Ref. [18] and is a reformulation
of the minimal-coupling Hamiltonian (see Sec. 2.3.6 and appendix B). To define the
Hamiltonian, we use four-component vectors with the notation b =

(
b0, b

)
.9 The

Hamiltonian is then given by

ĤPF(t) = T̂e + Ŵee + Ĥpt + Ĥint + Ĥcov + Ĥext, (108)

containing the nonrelativistic kinetic energy operator T̂e of Eq. 18 and the Coulomb
energy operator Ŵee of Eq. 20, both written in the second quantization framework
containing the electron field operators Ψ̂†(r), and Ψ̂(r). The next term in the Hamil-
tonian, the energy of the electromagnetic field, is given by

Ĥpt =
ε0

2

∫
d3r :

(
Ê2
(r) + c2B̂2

(r)
)

:,

where {:} refers to the normal-ordering of the operators to eliminate the infinite
vacuum energy. Furthermore, the Pauli-Fierz Hamiltonian contains the electron-
photon interaction operator Ĥint. The interaction is formulated in minimal cou-
pling by a bilinear coupling between the nonrelativistic (electron) internal current
operator Ĵ(r) and the electromagnetic Maxwell field operator Â(r)

Ĥint = −
∫

d3r Ĵ(r, t) · Â(r). (109)

The covariant Hamiltonian operator reads as

Ĥcov =
1
c

∫
d3r Ĵ0(r)

(
A0

tot(r, t)− e
2me

Â2
tot(r, t)

)
, (110)

where

Âtot(r, t) = Â(r) + aext(r, t),

A0
tot(r, t) = a0

ext(r, t) +
1
c

∫
d3r′

j0ext(r
′, t′)

4πε0|r− r′| .

The nonrelativistic current is defined by

J(r, t) = Ĵp(r) + ~∇× M̂(r)− e
mec

Ĵ0(r)Âtot(r, t), (111)

with the magnetization-density operator M̂(r) [18]. The term e
mec Ĵ0(r)Âtot(r, t) is

the diamagnetic current, while the operator Ĵp(r) is the paramagnetic current oper-
ator and is defined by

Ĵp(r) =
eh̄

2mei

[
Ψ̂†(r)~∇Ψ̂(r)−

(
~∇Ψ̂†(r)

)
Ψ̂(r)

]
, (112)

9 We note here, that in Ref. [18] the magnetic field operator B̂(r) is defined as B̂(r) = 1
c
~∇× Â(r), while

in this thesis we use the definition B̂(r) = ~∇× Â(r) to be consistent with Sec. 2.3 and Ref. [70].
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where we add an electronic charge compared to Eq. 45. The paramagnetic current
operator has the corresponding zero-component Ĵ0(r) = ecΨ̂†(r)Ψ̂(r) = ecn̂(r),
which is directly proportional to the electron density operator n̂(r).
The covariant Hamiltonian Ĥcov and the external Hamiltonian Ĥext contain the two
(classical) external vector potentials, i.e. aext (a0

ext) that couple to the electron current
and jext (j0ext) that couples to the Maxwell field operator. The external Hamiltonian
is given by

Ĥext = −
∫

d3r
(
Ĵ(r, t) · aext(r, t) + Â(r) · jext(r, t)

)
. (113)

We now define as a classical approximation for the electromagnetic field the
Maxwell-Schrödinger propagation [76]. In the Maxwell-Schrödinger formalism, we
neglect the quantized nature of the electromagnetic field in the Pauli-Fierz Hamil-
tonian of Eq. 108, hence Â = 0, while the classical vector field aext satisfies the clas-
sical Maxwell wave equation of Eq. 85. If we propagate the Schrödinger equation
of Eq. 1 with the Pauli-Fierz Hamiltonian together with the Maxwell wave equation
of Eq. 85, we get a set of two equations, which can be solved self-consistently.

2 .3 .8 Quantum Electrodynamics in a Cavity: Zero-Boundary Conditions

Besides periodic boundary conditions, we also study the case of zero-boundary
conditions for the electrodynamical field. For zero-boundary conditions, the al-
lowed wave vectors k are ki = πvi/L and we find for the vector potential,

Â(r) = ∑
k

∑
λ=1,2

(
h̄

2ε0ck

)1/2

ekλ

(
âkλ + â†

kλ

)
S(k · r), (114)

where we introduced the normalized mode function

S(k · r) =
(

2
L

)3/2 3

∏
i=1

sin(kiri). (115)

For convenience, we introduce the following abbreviations

Â(r) =
1√
ε0

∑
kλ

Akλ(r)q̂λk, (116)

ÊT(r) = −
1√
ε0

∑
kλ

Akλ(r) p̂λk, (117)

B̂(r) =
1√
ε0

∑
kλ

(
~∇×Akλ(r)

)
q̂λk, (118)

with Akλ(r) = ekλS(k · r).

2 .3 .9 The Length Gauge and the Dipole Approximation

The minimal-coupling Hamiltonian is inconvenient from different perspectives:
The field variables enter through the vector potential, rather than the electric field.
Hence, the electron-field interaction is not explicitly gauge-independent. A gauge-
independent electron-field coupling can be found in the so-called length-gauge.
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Here, the dielectric displacement operator D̂T(r), which consists of the transversal
electric field operator ÊT(r) and the electric polarization operator P̂(r), couples bi-
linearly to the electric polarization operator P̂(r). The coupling via D̂T(r) is directly
related to optical measurements. In the momentum gauge, the interaction between
the particles and the field is nonlinear in the radiation degrees of freedom due to
the Â2

(r) term. The change from the momentum gauge to the length gauge, can
be achieved by performing the Power-Zienau-Woolley transformation [77, 78]. This
transformation is general and independent of the dipole approximation [70]. How-
ever, assuming the dipole approximation [68], the Power-Zienau-Woolley transfor-
mation has a particularly simple form. For a detailed derivation, we refer the
reader to appendix A. The length-gauge Hamiltonian can be written as

Ĥdipole = T̂e + Ŵee + ŴeN({R}) +
1
2

∫
d3r

[
D̂2

T(r)
ε0

+ ε0c2B̂2
(r)

]

− 1
ε0

∫
d3r P̂T(r) · D̂T(r) +

1
2ε0

∫
d3r P̂2

T(r), (119)

with the electric displacement operator D̂(r) = ε0Ê(r) + P̂(r) and the polarization
operator in dipole approximation

P̂(r, {R}) = −e
ne

∑
i=1

ri δ (r− ri) + e
Nn

∑
I=1

ZI RI δ (r−RI) , (120)

where ri is the electron position operator and RI the nuclear position. By perform-
ing the unitary transformation p̂kλ → −ωq̂kλ and q̂kλ → 1

ω p̂kλ in Eqns. 116-118,
the Hamiltonian in Eq. 119 has a similar form as the free-photon Hamiltonian in
Eq. 105 and reads as

Ĥdipole = T̂e + Ŵee + ŴeN({R}) +
1
2 ∑

kλ

p̂2
kλ + ω2

kλ

(
q̂kλ −

eAkλ(Rc)

ωkλ
√

ε0
R̂
)2

,

(121)

with the total electronic dipole moment operator R̂ =
ne

∑
i=1

ri and

Â(r) =
1√
ε0

∑
kλ

Akλ(r)
ωkλ

p̂λk, (122)

D̂T(r) =
√

ε0 ∑
kλ

ωkλAkλ(r)q̂λk, (123)

B̂(r) =
1√
ε0

∑
kλ

(
~∇×Akλ(r)

)

ωkλ
p̂λk, (124)

P̂(r) = −e ∑
kλ

(
Akλ(Rc) · R̂

)
Akλ(r), (125)
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Figure 5: Left: Schematic view on the photoemission process, right: description of the
sudden approximation to photoemission.

with the position of the charge center of the system Rc. Throughout this thesis,
unless stated otherwise, we use SI units [19]. To transfer the field operators defined
in SI units in Eqns. 122-124 to Gaussian (G) units [19], we can use

Â(G)
(r) =

√
4π

µ0
Â(r) =

√
4π ∑

α

cAα(r)
ωα

p̂λk, (126)

D̂(G)
T (r) =

√
4π

ε0
D̂T(r) =

√
4π ∑

α

ωαAα(r)q̂λk, (127)

B̂(G)
(r) =

√
4π

µ0
B̂(r) =

√
4π ∑

α

c
(
~∇×Aα(r)

)

ωα
p̂λk. (128)

2 .4 theory of static and time-resolved photoelectron spec-
troscopy

In this section, we discuss the theory necessary to calculate photoelectron spec-
tra. Therefore, we introduce Fermi’s golden rule, discuss the equilibrium and
nonequilibrium spectral function, and study the spectral functions in the Born-
Oppenheimer approximation.
The light-matter interaction is essential in the field of spectroscopy. One particular
spectroscopic method is photoelectron spectroscopy, which is used to investigate
the structure of atoms, molecules and solids [79, 80]. Since photoelectron spec-
troscopy is based on nonneutral transitions between many-body states, it comple-
ments other spectroscopic methods such as optical-absorption spectroscopy [12]
that access charge neutral transitions, e.g. dipole or quadrupole transitions.
The left-hand side of Fig. 5 depicts schematically a typical photoelectron exper-
iment. In photoelectron experiments, high-energy photons with energy h̄ω are
used to probe the sample. The sample absorbs these high-energy photons with
the removal of an electron from the system. The emerging photoelectron is then
detected by experiment and allows to get insight about the sample structure.
In theory, photoelectron spectra can be obtained by calculating the one-body spec-
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tral function [81–84]. While in the literature, the complex photoemission process is
explained illustratively by the absorption of photons, which is a quantum process,
the one-body spectral function only depends on electronic operators. The quan-
tum nature of the electromagnetic field is implied only implicitly by the usage of
Fermi’s golden rule. From Fermi’s golden rule, the expression for the photocurrent
Jk(ω) that emerges in photoelectron experiments is given by first-order perturba-
tion theory [80, 81, 83] as

Jk(ω) =
2π

h̄ ∑
j

∣∣∣〈Ψ(N)
j,k | ∆̂ |Ψ

(N)
i 〉

∣∣∣
2

δ(Ek − Ej − h̄ω). (129)

We denote the final state of the photoemission process by Ψ(N)
j,k . Typically, these

final states contain two contributions: (i) the photoelectron with momentum k and
energy Ek is in a scattering state (e.g. a distorted plane wave, or time-inverted
scattering/low-energy electron diffraction (LEED) state [79]). (ii) the remaining
part of the system is in an excited state j that contains N − 1 electrons with energy
E(N−1)

j . After the photoemission process, the emitted electron and the remaining
photo fragment are in general still correlated. Both parts contribute to the com-
bined state Ψ(N)

j,k . We denote the N-body initial state in the photoemission process

by Ψ(N)
i with energy E(N)

i . From this state, the photoelectron will be emitted during

the photoemission process. In Eq. 129, Ej is given by Ej = E(N)
i − E(N−1)

j . Through-
out this section, we denote by the superscript (N) the number of electrons in the
state.
Fermi’s golden rule as defined in Eq. 129 is strictly valid only for pure states as
initial and final states. This is justified for situations, where the system is in the
N-electron ground state before the photoemission process, but also excited eigen-
states are allowed in principle. However, in many experimental setups such as
pump-probe photoelectron spectroscopy, it is not justified to assume the ground
state as initial state in the photoemission process. Instead, an excited state or a
superposition of excited states are a better description for the initial state. If the
initial state is not an eigenstate, the photoemission process can be described by the
nonequilibrium spectral function, which is discussed in Sec. 2.4.2.
The coupling operator ∆̂ in Eq. 129 between initial and final states is usually con-
sidered in dipole approximation either in length gauge (∼ r · E) or momentum
gauge (∼ p ·A), where the electric field E and the vector potential A are classical
fields subject to the classical Maxwell’s equations. The quantum nature of the elec-
tromagnetic field, which allows for the absorption and emission of single photons,
is incorporated by Fermi’s golden rule by the delta function δ(Ek − Ej − h̄ω). The
delta function assures energy conservation at t → ∞ between the energy of the
absorbed photon h̄ω and the energy difference of the electronic transition Ek − Ej,

thus 0 = h̄ω + E(N)
i −

(
Ek + E(N−1)

j

)
.

The widely used sudden approximation (SA) [82, 85] simplifies the problem of cal-
culating Eq. 129 drastically. This approximation assumes the decoupling in the
final states by setting

|Ψ(N)
j,k 〉 ∼ ĉ†

k |Ψ(N−1)
j 〉 , (130)
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Here, the operator ĉ†
k is an electronic creation operator, which creates an electron

with momentum k. We illustrate schematically the SA in Fig. 5 on the right. The
SA implies effectively that the final state in the photoemission process |Ψ(N)

j,k 〉 is a
product state between a plane-wave like state for the emitted photoelectron and
the remaining N − 1 electron many-body state |Ψ(N−1)

j 〉. Formulated differently,
after the sample was hit by the high-energy photon, the electron and the remain-
ing photofragment evolve independently, hence both are uncorrelated. Neglecting
multi-photon processes, applying the SA and assuming a high-energy limit (X-ray
spectroscopy), we can reformulate Eq. 129 in terms of the one-body spectral func-
tion ASA

lm,σ(Ek − h̄ω)

JSA
k (ω) ≈ 2π

h̄ ∑
lm,σ

∆kl,σ ASA
lm,σ(Ek − h̄ω)∆m,σk, (131)

In the high-energy limit, the matrix elements ∆kl,σ and ∆m,σk are often approxi-
mated by constant values [79, 80].
In the next two section, we discuss the equilibrium and the nonequilibrium spectral
function. For a detailed derivation of the equilibrium and nonequilibrium spectral
function, we refer the reader to the appendix D.

2 .4 .1 Equilibrium Spectral Function

Eq. 129 applies for equilibrium situations, where the initial state of the photoemis-
sion process |Ψ(N)

i 〉 is an eigenstate of the Hamiltonian. This assumption is justified
for photoelectron experiments, where the sample is in the ground state before the
photoemission process. The equilibrium spectral function is defined as

ASA
lm,σ(ω) = ∑

j
〈Ψ(N)

0 | ĉ†
l,σ |Ψ

(N−1)
j 〉 〈Ψ(N−1)

j | ĉm,σ |Ψ(N)
0 〉 δ(h̄ω− Ej). (132)

We furthermore assume that the diagonal elements of ASA
lm,σ are dominant, hence

(l = m), which is exact for independent electrons [83]. The spectral function is
directly connected to the Lehmann representation of the single-particle Green’s
function in Eq. 70 [80, 83]

A(ω) =
1
π

∣∣∣∣
∫

d3r lim
r′→r

G(r, r′, ω)

∣∣∣∣ =
1
π
|Tr [Im G(ω)]| . (133)

The spectral function as in Eq. 132 contains a sum-over-states expression, where
all correlated eigenstates have to be known explicitly. Alternatively, the spectral
function can be calculated in the time domain by the overlap of the time-evolved
initial state with the time-evolved kicked initial state

ASA
lm,σ(t) = 〈Ψ̃

(N−1)
−,l (t)| ĉ†

m,σ |Ψ(N)
0 (t)〉 . (134)

In the kicked initial state |Ψ̃(N−1)
−,l (t0)〉 = ĉl |Ψ(N)

0 (t0)〉 an electron has been removed
from the system at initial time t0. Eq. 134 can also be calculated for systems, where
it is not possible to calculate all eigenstates explicitly.
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Convergence and completeness of the employed basis set can be tested by evaluat-
ing the sum rule

N = ∑
l

∫
dωAll,σ(ω) = ∑

l
〈Ψ(N)

0 | ĉ†
l,σ ĉl,σ |Ψ

(N)
0 〉 . (135)

The spectral function obeys this sum rule, which yields the total number of elec-
trons N present in the initial state [86].

2 .4 .2 Nonequilibrium Spectral Function

The expression for the photocurrent in Eq. 131 depends explicitly on the initial
state of the photoemission process |Ψ(N)

0 〉. In equilibrium experiments, the system
is approximately in the ground state before the photoemission process takes place.
For nonequilibrium experiments, such as pump-probe experiments, this assump-
tion is not justified and therefore Fermi’s golden rule has to be extended to include
arbitrary initial states for photoemission. This can be done by replacing the state
Ψ(N)

0 in Eq. 132 by the time-dependent state Ψ(N)
0 (t) such that

ASA
lm,σ(t, ω) =∑

j
〈Ψ(N)

0 (t)| ĉ†
l,σ |Ψ

(N−1)
j 〉 〈Ψ(N−1)

j | ĉm,σ |Ψ(N)
0 (t)〉 δ(h̄ω− Ej).

(136)

This expression for the spectral function now depends explicitly on the time t
and the frequency ω and is further not time invariant in t. The time t can be in-
terpret as the delay time between the pump and the probe pulse. We allow for
time-dependent initial-states states |Ψ(N)

0 (t)〉 = ∑n dn(t) |Ψ(N)
n 〉, which can be ex-

panded in terms of the eigenstates Ψ(N)
n with corresponding eigenenergy En and

the coefficients dn(t0) = 〈Ψ(N)
0 (t0)|Ψ(N)

n 〉. As discussed in more detail in the ap-
pendix D, the transition energies Ej in Eq. 136 depend on the eigenenergies En that

correspond to the according eigenstate Ψ(N)
n and emerge by the expansion of the

initial state. For practical purposes, we neglect the n-dependence in the δ-function
of the spectral function in Eq. 136 and replace it by the energy of the initial state
E0 = 〈Ψ(N)

0 (t)|Ĥ|Ψ(N)
0 (t)〉, i.e. Ej = E0 − E(N−1)

j . This approximation allows us to
fix peak positions to N − 1 electron states and does not affect the spectral ampli-
tudes. Further, the approximation gives the δ-peak position a clear interpretation,
rather than the usage of relative energies. Considering the full n-dependence in
the delta function shifts high energy peaks to lower energy. For many situations,
e.g. general many-body problems, the exact many-body eigenstates and eigenen-
ergies are not available. In these cases, this approximation allows a practical way
to obtain photoelectron spectra.
One way beyond this approximation is to cast the nonequilibrium spectral function
directly in the time domain

ASA
lm,σ(t, τ) = 〈Ψ̃(N−1)

−,l (t + τ)| ĉ†
m,σ |Ψ(N)

0 (t + τ, t)〉 , (137)

with the kicked initial state |Ψ̃(N−1)
−,l (t)〉 = ĉl |Ψ(N)

0 (t)〉, where the operator ĉl acts at
time t on the state |Ψ0(t)〉. The sum rule of Eq. 135 is also applicable in nonequilib-
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rium situations. For pump-probe photoelectron experiments, we can also calculate
the time averages of the spectra, which can be calculated as follows

ASA
lm,σ(ω) =

1
t f − t1

∫ t f

t1

ASA
lm,σ(τ, ω)dτ. (138)

2 .4 .3 Approximations for the Electron-Phonon Spectral Function

The one-body spectral function as defined in Eq. 132 is formulated in terms of
correlated energy eigenstates of the full electron-phonon Hamiltonian. In practice,
for most systems the direct evaluation of this expression is not possible, since the
eigenstates are not accessible. For electron-phonon systems, a straightforward ap-
proximation is the replacement of the correlated electron-phonon initial and final
states by factorized Born-Oppenheimer states.
For the following discussion, we define as single-harmonic approximation (SHA)
the case where only the initial state is replaced by the corresponding factorized
Born-Oppenheimer state in harmonic approximation |χ00φ

(N)
0 〉, while all final

states are kept as correlated electron-phonon N − 1 electron states. In the SHA

the spectral function takes the form

ASA,SHA
lm,σ (ω) = ∑

j
〈χ00φ

(N)
0 | ĉ†

l,σ |Ψ
(N−1)
j 〉 〈Ψ(N−1)

j | ĉm,σ |χ00φ
(N)
0 〉 δ(h̄ω− Ej).

(139)

Interestingly, since the Born-Oppenheimer ground state is by construction not an
eigenstate of the full many-body Hamiltonian, already at the level of the SHA we
find a nonequilibrium situation, where in principle the nonequilibrium spectral
function applies. If the Born-Oppenheimer ground state is propagated using the
exact Hamiltonian, we find (small) oscillations in the observables during the time
propagation. This is in contrast to the exact ground state that has time-constant
observables by construction.
An additional simplification can be achieved, if the harmonic approximation is
assumed for both, the involved initial and final potential-energy surfaces. This
approximation replaces the remaining N− 1 electron states by Born-Oppenheimer
states in harmonic approximation and leads to the double-harmonic approxima-
tion (DHA) for the spectral function

ASA,DHA
lm,σ (ω) =∑

n,j
|
〈
χnj|χ00

〉
|2 〈φ(N−1)

j | ĉl,σ |φ(N)
0 〉 〈φ

(N)
0 | ĉ†

m,σ |φ(N−1)
j 〉

× δ(h̄ω− εj). (140)

In the DHA, peak heights in the photoelectron-spectrum are modulated by the
Franck-Condon factors

〈
χnj|χ00

〉
, i.e. the overlaps of nuclear wave functions.
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M O D E L S Y S T E M S A N D N U M E R I C A L M E T H O D S

In this chapter, we first introduce the model Hamiltonians, which are employed in
this thesis. In the second part, we discuss the numerical methods, which are used
for practical calculations.

3 .1 model systems for the study of the electron-boson interac-
tion

3 .1 .1 Su-Schrieffer-Heeger Hamiltonian

The Su-Schrieffer-Heeger (SSH) model [87, 88] is commonly used to model Trans-
Polyacetylene oligomers chains (Fig. 6 (a)) by describing π-electrons in the polymer
chain. In literature, the SSH Hamiltonian is employed, among others, to describe
soliton propagation in conjugated polymers [88], or long-lived oscillatory incoher-
ent electron dynamics [89]. The SSH Hamiltonian is defined as follows

Ĥssh = Ĥπ + Ĥph + Ĥπ−ph, (141)

Ĥπ = −T ∑
n,σ

ĉ†
n+1,σ ĉn,σ + ĉ†

n,σ ĉn+1,σ,

Ĥph = ∑
n

p̂2
n

2M
+

K
2
(ûn+1 − ûn)

2 ,

Ĥπ−ph = ∑
n,σ

α (ûn+1 − ûn)
(

ĉ†
n+1,σ ĉn,σ + ĉ†

n,σ ĉn+1,σ

)
,

where ĉ†
n,σ, and ĉn,σ denote the fermionic creation and annihilation operators that

create or destroy π-electrons with spin σ on site n of the chain, respectively. The
nuclear Hamiltonian Hph is described by the nuclear displacement operators ûn,
whose expectation values measure the displacement of the nuclear positions on
site n to the equidistant arrangement of the oligomers in the chain. The nuclear
displacement operators ûn and the nuclear momentum operators p̂n obey the usual
commutation relations as stated in Eq. 10. The Hamiltonian then naturally sepa-
rates into three parts: (i) the electronic Hamiltonian Ĥπ describes electron hopping
of π-electrons within a tight-binding scheme [90]. (ii) The nuclear Hamiltonian
Ĥph treats nuclei as a chain of coupled quantum harmonic oscillators, and (iii)
the electron-nuclear interaction part in the Hamiltonian Ĥπ−ph considers electron-
nuclear coupling up to first-order in the nuclear displacement. Formally, the
electron-phonon coupling Ĥπ−ph can also be combined with the kinetic term Ĥπ.
The hopping parameter T is then replaced by T − α (ûn+1 − ûn). This formal rear-
rangement has a clear physical interpretation: For electrons it is more favorable to
hop when two nuclei are closer to each other or formulated differently the effective
hopping parameter is reduced when the nuclei are moving apart. In all numerical
calculations, we use the standard set of parameters for the SSH-Hamiltonian [88],
α = 4.1 eV/Å, T = 2.5 eV, K = 21 eV/Å2, M = 1349.14 eVfs2/Å2, which leads

45
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Figure 6: (a) Chemical formula of a Trans-Polyacetylene chain. (b) Four Trans-
Polyacetylene oligomers containing two dynamic and two fixed nuclei. The co-
ordinates uj describe the oligomer displacement with respect to an equidistant
arrangement with lattice spacing a. In the ground state, the chain favors a dimer-
ized arrangement. This setup gives rise to one optical and one acoustical phonon
mode in the chain.

to a lattice spacing of a = 1.22 Å in the chain. Using this set of parameters, the
chain energetically favors a dimerized arrangement in the ground state, leading to
a nonvanishing displacement coordinate ui 6= 0, which is illustrated in Fig. 6 (b).
The many-body Su-Schrieffer-Heeger Hamiltonian of Eq. 141 can be rewritten in
terms of the BOA such that

Ĥssh,el = Ĥπ,el + Ĥπ−ph,el , (142)

Ĥπ,el = −T ∑
n,σ

ĉ†
n+1,σ ĉn,σ + ĉ†

n,σ ĉn+1,σ,

Ĥπ−ph,el = ∑
n,σ

α (un+1 − un)
(

ĉ†
n+1,σ ĉn,σ + ĉ†

n,σ ĉn+1,σ

)
,

which leads to an electronic Schrödinger equation of the following form

Ĥssh,el ({un}) |φ(N)
j ({un})〉 = εel,j ({un}) |φ(N)

j ({un})〉 . (143)

This Hamiltonian considers the electronic degrees of freedom quantum mechani-
cally, while the nuclear component is reduced to classical coordinates {un}. Fur-
thermore, the eigenvalues εel,j ({un}) as function of {un} contribute to the Born-
Oppenheimer surfaces of the system as given by Eq. 13. Besides the surfaces, the
Hessian of the electronic energies with respect to the displacements can be com-
puted to obtain the harmonic frequencies ω, which are fundamental frequencies in
the harmonic approximation of the BOA.
If external laser fields are applied to the system, we need to extend the Hamilto-
nian of Eq. 141. In dipole coupling, the correlated many-body Hamiltonian can be
modified to

Ĥssh(t) =Ĥπ + Ĥph + Ĥπ−ph + Ĥπ,E(t) + Ĥph,E(t), (144)

Ĥπ,E(t) =− e ∑
n,σ

xn ĉ†
n,σ ĉn,σ · E(t),

Ĥph,E(t) =∑
n

qn ûn · E(t),

E(t) =E0 exp
(
− (t− t0)

2 /σ2
)

sin ωlt,
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Figure 7: The two-site Jaynes-Cummings-Hubbard model is defined by the electron hop-
ping element tkin, the on-site potential difference vext, the electron-photon inter-
action strength λ and the photon mode frequency ω.

where xn corresponds to the position of site n, e to the electric charge constant and
qn to the charge of the nuclei n. The electric field E(t) describes the amplitude
of the laser pulse. In the Hamiltonian of Eq. 144, the external laser pulse couples
linearly to both, the electric dipole moment, and the nuclear dipole moment.

3 .1 .2 The Jaynes-Cummings-Hubbard Hamiltonian

The general nonrelativistic light-matter Hamiltonian of Eq. 108 can be directly con-
nected to the Jaynes-Cummings-Hubbard (JCH) Hamiltonian, the Rabi Hamilto-
nian, and spin-boson models, which all have been intensively investigated in the
quantum optics literature [75, 91–94]. All these Hamiltonians have been applied in
the context of Rabi oscillations, field fluctuations, oscillation collapses, revivals, co-
herences, entanglement, and the dynamics of dissipative systems (see e.g. Ref. [93]
and references therein). The direct connection between the Hamiltonian in Eq. 108

and the Jaynes-Cummings-Hubbard Hamiltonian is discussed in appendix C.
The JCH Hamiltonian contains one single electron on two sites in space with hop-
ping constant tkin. This two-site model is coupled to a single photon-field mode of
frequency ω with the coupling strength λ. Fig. 7 shows a schematic view of the
model system. Furthermore, in the Hamiltonian two external variables are present,
i.e. vext(t) and jext(t), which couple only to the photon field and the electron,
respectively. We define the Hamiltonian in the electron site basis as

Ĥ(t) =− tkinσ̂x + ωâ† â + λ
(

â + â†
)

σ̂z + jext(t)
(

â + â†
)
+ vext(t)σ̂z. (145)

where σx and σz are Pauli-matrices and fulfill the commutation relation
[
σ̂i, σ̂j

]
=

2iεijkσ̂k with (ijk = xyz). The photon creation and annihilation operators â† and â
create or destroy a photon in the photon mode. The JCH Hamiltonian can be trans-
formed to the electron energy basis by the unitary transformation Û = 1√

2
(σ̂x + σ̂z),
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which effectively interchanges σ̂x ↔ σ̂z. In the energy basis the Hamiltonian in
Eq. 145 is commonly referred to as the Rabi Hamiltonian and reads

Ĥrabi(t) =− tkinσ̂z + ωâ† â + λ
(

â + â†
)

σ̂x + jext(t)
(

â + â†
)
+ vext(t)σ̂x. (146)

A popular approximation for the Rabi Hamiltonian and the JCH Hamiltonian is the
rotating-wave approximation (RWA). The RWA divides the Pauli matrix σ̂x in the
interaction term into σ̂x = σ̂+ + σ̂− where σ̂+ = 1

2

(
σ̂x + iσ̂y

)
, σ̂− = 1

2

(
σ̂x − iσ̂y

)
and

then neglects the energy nonconserving terms σ̂+ â† and σ̂− â, respectively1. In the
RWA, the Rabi Hamiltonian is analytically solvable [93]. However, the RWA is only
valid in the weak-coupling regime (λ ∼ 0.01), while in the strong-coupling limit
(λ ≥ 0.1), the RWA breaks down [95]. Recently, analytical results without invoking
the RWA have been published [94].
The electron density n has for a two-site model two components n = (n1, n2) that
describe the probability of finding an electron on the individual site. However,
since the number of electrons is fixed, i.e. n1 + n2 = 1 in the case of the JCH model,
only one nontrivial degree of freedom remains. This is why in the following, we
refer to the on-site density difference σz = 〈σ̂z〉 = n1− n2 as the electron density for
the JCH model. We emphasize that σz is in a physical sense not an electron density
as defined by Eq. 25, since it can also have negative values. We will define here
the photon displacement coordinate q as in Eq. 106. The Heisenberg equations of
motion for q and σz are given as follows

σ̇z(t) = −i
〈[

σ̂z, Ĥ(t)
]〉

= −2tkinσ̂y(t), (147)

σ̈z(t) = −i
〈[ ˙̂σz, Ĥ(t)

]〉
= −4tkin

(
tkinσz(t) + vext(t)σx(t) + λ

〈(
â† + â

)
σ̂x

〉)
,

(148)

q̇(t) = −i
〈[

q̂, Ĥ(t)
]〉

= i
√

ω

2

(
a†(t)− a(t)

)
= p(t), (149)

q̈(t) = −i
〈[ ˙̂q, Ĥ(t)

]〉
= −ω2q(t)−

√
2ω (λσz(t) + jext(t)) . (150)

The last equation can be solved directly

q(t) =
∫ t

0
dt′

1
ω

sin
(
ω
(
t− t′

))
f (t′) + q0 cos(ωt) +

q̇0

ω
sin(ωt), (151)

f (t′) = −
√

2ω
(
λσz(t′) + j(t′)

)
. (152)

with the initial conditions q(t0) = q0 and q̇(t0) = q̇0. This integral equation will be
important later for the calculation of Kohn-Sham mean-field potentials.

3 .1 .3 GaAs Quantum Dot in an Optical Cavity

The model system consisting of a single electron coupled to a single photon-field
mode is schematically depicted in Fig. 8. To describe the electron in the gallium ar-
senide (GaAs) semiconductor medium, we use an effective atomic mass system [96]

1 Some papers in the literature, e.g. Ref. [93], refer to the Rabi Hamiltonian in Eq. 146 after applying the
RWA to the Jaynes-Cummings Hamiltonian. In this thesis, we refer to the case, where the electronic
Hamiltonian is written in energy eigenbasis to the Rabi Hamiltonian, whereas the case, where the
electronic Hamiltonian is written in the site basis to the JCH Hamiltonian.
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Figure 8: Model system for a GaAs quantum dot in an optical cavity: (a) the single electron
confined to two dimensions is coupled to a resonant photon field mode and sub-
ject to the external potential vext(r). The field mode with frequency ωα influences
the time evolution of the electron density n(r, t) through the electron-photon in-
teraction strength λα. (b) shows the two-dimensional electronic ground-state den-
sity n0(r) and (c) illustrates the external potential vext(r).

(see appendix. F.2). The electron is confined in two dimensions in space and the
model Hamiltonian is given as follows

Ĥ(t) =

(
− h̄2

2m
~∇2 + vext(rt)

)
+

1
2

[
p̂2

α + ω2
α

(
q̂α −

λα

ωα
· r
)2
]
+

jα
ext(t)
ωα

q̂α,

(153)

where r = xex + yey. The electron has an effective mass of m = 0.067me and is
subject to the following external potential vext(r) = 1

2 mω2
0r2 + V0e−r2/d2

. The exter-
nal potential is a harmonic trap with a Gaussian peak in its center. The parame-
ters are chosen according to experimental values: h̄ω0 = 10 meV, V0 = 200 meV,
d = 10 nm, and the effective dielectric constant κ = 12.7ε0. While the electronic
ground state is nondegenerate, the first excited state has a two-fold degeneracy [96].
We choose the frequency of the photon field mode ωα in resonance to the excita-
tion from the ground state to the first-excited state with h̄ωα = 1.41 meV. We
assume λα = λα

(
ex + ey

)
, hence the photon field mode is polarized in ex + ey

direction, without loss of generality. To connect to experiments in the field of
cavity quantum electrodynamics (QED), we will tune the values for λα in the calcu-
lations. Using the introduced parameters, we employ in the weak-coupling limit
values for λ ∼ 10−3

√
meV/nm and in the (ultra) strong-coupling limit [97, 98]

λ ∼ 10−1
√

meV/nm. Furthermore for all numerical calculations using the cavity-
GaAs model system, we apply a 127× 127 two-dimensional real-space grid to rep-
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resent the electronic subsystem and we include up to 40 photon number states.
The correlated problem has then a total dimensionality of 645160 (127× 127× 40)
basis functions, which is still numerically solvable.

3 .2 methods and numerical implementations

3 .2 .1 Eigenvalue Problems and Finite-Difference Methods

To solve the Schrödinger equations in Eqns. 1 and 2 numerically, we need to dis-
cretize the equations in space and time. Therefore, we expand the equations that
were originally defined in the continuum in a finite basis set. In principle, many ba-
sis sets are possible. In practice however, most basis sets are physically motivated.
In the literature, many different basis sets are used, each of them have their individ-
ual advantages and disadvantages. Popular choices of basis sets are the Gaussian
basis set [99], augmented plane waves [100], centered atomic orbitals [101], and the
real-space grid [102]. An arbitrary wave function can be expanded into nb arbitrary
basis functions |φi〉 such that

|Ψn〉 =
nb

∑
i=1

c(n)i |φi〉 . (154)

Using the basis set expansion, we reformulate Eq. 2 in terms of a generalized
eigenvalue equation

nb

∑
i=1
〈φj| Ĥ |φi〉 c(n)i = En

nb

∑
i=1

Sjic
(n)
i , (155)

where we multiplied Eq. 2 from the left with 〈φj| and defined the overlap matrix
Sji =

〈
φj|φi

〉
. Eq. 155 is a generalized matrix eigenvalue problem of the form

hv = λsv with the matrix h = hij, the eigenvectors v = c(n)i , the eigenvalues λ = En

and the overlap matrix s = Sji. For an orthogonal basis set such as the real-space
grid, Sij corresponds to the unit matrix 11 and the generalized eigenvalue problem
reduces to a normal eigenvalue problem. The matrix elements of the Hamiltonian
matrix h can be calculated explicitly, if the basis functions are known explicitly. For
instance, for a uniform real-space grid first-order derivatives and the Laplacian in
the Hamiltonian can be discretized with the finite-difference scheme. Throughout
this thesis, we use a uniform real-space grid.

3 .2 .2 Jordan-Wigner Transformation and the Bosonic Operators

The matrix representation of the electronic creation and annihilation operators in
Fock space can be constructed in terms of a Jordan-Wigner transformation [103].
Using the Jordan-Wigner transformation, we construct the electronic creation and
annihilation operators using the Pauli-Matrices σi with i = (x, y, z), σ+, and σ−.
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The electronic creation (annihilation) operator ĉ(†)n↓ creates (destroys) an electron
with down (↓) spin at site n on the real-space grid. These operators are defined as

Hfm = H2x2
n↑ ⊗ H2x2

n↓ ⊗ · · · ⊗ H2x2
2↓ ⊗ H2x2

1↑ ⊗ H2x2
1↓

ĉ1↓ = 11 ⊗ 11 ⊗ · · · ⊗ 11 ⊗ 11 ⊗ σ+

ĉ1↑ = 11 ⊗ 11 ⊗ · · · ⊗ 11 ⊗ σ+ ⊗ σz

ĉ2↓ = 11 ⊗ 11 ⊗ · · · ⊗ σ+ ⊗ σz ⊗ σz
...

ĉn↑ = σ+ ⊗ σz ⊗ · · · ⊗ σz ⊗ σz ⊗ σz

(156)

where the operation ⊗ corresponds to a tensor product of two Hilbert-spaces. The
electron creation operators are constructed accordingly, by replacing σ+ by σ−.
Hfm denotes the total Fock space of the system. The discretized electron creation
and annihilation operators anticommute as their real-space analogue in the con-
tinuum (Eq. 21) and fulfill the anticommutation relations [ĉi, ĉj]+ = [ĉ†

i , ĉ†
j ]+ = 0

and [ĉi, ĉ†
j ]+ = δi,j, exactly. The total size of the Fock space is 22ns , where ns is the

number of sites.
The corresponding bosonic operators can be constructed as

â =




0 1 0 · · · 0

0 0
√

2 · · · 0
...

...
...

. . .
...

0 0 0 · · · √n

0 0 0 · · · 0




and â† =




0 0 · · · 0 0

1 0 · · · 0 0

0
√

2 · · · 0 0
...

...
. . .

...
...

0 0 · · · √n 0




. (157)

The bosonic annihilation (creation) operator a(†)n destroys (creates) a boson on site n.
Furthermore these operators are routinely used in the calculation of the quantum
harmonic oscillator. Interestingly, in case of bosons it is not possible to satisfy
their real-space commutation relations correctly with the truncated form in Eq. 157.
These operators commute as follows

[
â, â†

]
=




1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 · · · 0 1 0

0 0 · · · 0 0 −n




6= 11. (158)

The value n in the last row even increases with increasing basis size nb. This illus-
trates the need of choosing a sufficiently large basis size such that the dynamics in
the system is not influenced by the highest basis function. In practical calculations
this can be directly tested by increasing the basis size until convergence is found.
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Ψ(k1,k2) = Ψ(k2,k1)
Two-Photon
number states:

|1, 1, 0, 0, 0, ..., 0 >
|1, 0, 1, 0, 0, ..., 0 >
|1, 0, 0, 1, 0, ..., 0 >

|0, 1, 1, 0, 0, ..., 0 >
|0, 1, 0, 1, 0, ..., 0 >
|0, 1, 0, 0, 1, ..., 0 >

|0, 0, 0, 2, 0, ..., 0 >
|0, 0, 0, 2, 0, ..., 0 >
|0, 0, 2, 0, 0, ..., 0 >

Figure 9: The mapping of the two-photon number states onto a two-dimensional two-
photon wave function in momentum representation.

For many bosonic sites, we can construct the total operators operating in the total
bosonic Fock space Hph in analogy to Eq. 156 as

Hph = Hnxn ⊗ Hnxn ⊗ · · · ⊗ Hnxn ⊗ Hnxn ⊗ Hnxn

â1 = 11 ⊗ 11 ⊗ · · · ⊗ 11 ⊗ 11 ⊗ â

â2 = 11 ⊗ 11 ⊗ · · · ⊗ 11 ⊗ â ⊗ 11

â3 = 11 ⊗ 11 ⊗ · · · ⊗ â ⊗ 11 ⊗ 11
...

ân = â ⊗ 11 ⊗ · · · ⊗ 11 ⊗ 11 ⊗ 11
(159)

The creation operators â†
n follow by replacing â with â†. The combined Fock space

containing electrons and phonons is constructed by using the tensor products

Hph-fm = Hph ⊗ Hfm

ĉn = 11 ⊗ ĉn

ân = ân ⊗ 11
...

(160)

While the unit matrix 11 in Eq. 156 has the size 2× 2, in Eq. 159 the size n × n,
the matrix 11 has in Eq. 160 the size of the total fermionic subsystem or bosonic
subsystem, respectively.
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3 .2 .3 Extension to Photons

To include photons into numerical calculations, we perform a wave function ex-
pansion in terms of photon number states

|Ψ(t)〉 = ∑
j

αj,0(t)|φj〉 ⊗ |0〉 (zero-photon state)

+ ∑
j

∑
n

αj,n(t)|φj〉 ⊗ â†
n|0〉 (one-photon states)

+ ∑
j

∑
n,n′

αj,n,n′(t)|φj〉 ⊗ â†
n â†

n′ |0〉 (two-photon states)

+ ... (161)

Here, |φj〉 are the atomic or molecular basis functions, while |0〉, â†
n |0〉, and â†

n â†
n′ |0〉

denote the photonic Fock number states. The tensor product connects the two
Hilbert spaces. If we create the individual basis function applying the photon
creation operator a†

n on the vacuum state, we obtain already properly symmetrized
wave functions, which fulfill the boson commutation relation.
In Fig. 9, we show the mapping from the flat number index of all wave functions
that contain two photons to the two-dimensional photon wave function. Due to
the symmetric behavior of the photons, we only need to consider the lower half of
all possible combinations of states (gray-shaded area). This leaves (N2−N)/2+ N
basis functions in the two-photon subspace.

3 .2 .4 Symmetry and Sparsity

In many cases, the Hamiltonian obeys different symmetries, which can be exploited
to simplify the computational problem. If a Hamiltonian commutes with a quan-
tum mechanical operator, i.e.

[
Ĥ, Ô

]
= 0, (162)

its expectation value is conserved in time. This time-conservation of expectation
values is a classical analogue of conserved quantities. Possible conserved quantities
of the Hamiltonian are the spin operators Ŝz, Ŝ2, the particle number N̂, or the par-
ity P̂, among others. By ordering basis states according to sets of eigenvalues of all
symmetry operators that commute with the Hamiltonian, we first block diagonal-
ize the Hamiltonian. Then in a second step, we can perform exact diagonalization
in the emerging subblocks, which is computationally much more favorable than
the full problem.
In Tab. 1, we show the Pascal’s triangle. By calculating the triangle, we can cal-
culate how many one-, two-, three-,.. particle states exist for a given number of
electronic sites. The last row in the table represents the case of four electronic sites
both with spin ↑ and spin ↓. Here, we find 9 different values for the electron num-
ber (0− 8). In particular, we find 8 different one-particle states, and 70 four-particle
states. The corresponding block structure of the Hamiltonian is shown in Fig. 10

for the case of the electron number operator N̂, where the size of the individual
blocks correspond to the value of the Pascal’s triangle and the number of blocks
corresponds to the different values of the electron particle number operator.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Table 1: Pascal’s triangle with rows zero to eight.

3 .2 .5 Exact Diagonalization

To get access to all eigenvalues and eigenstates of the system, we employ the exact
diagonalization technique [104]. To this end, we explicitly construct all operators
in the combined electron-nuclear Fock space Hph-fm present in the Hamiltonian by
using their matrix representation in the chosen basis set. In Fock space, states with
different electron number ne are directly accessible, which is convenient in situa-
tions, where the particle number changes, e.g. for the calculation of photoelectron
spectra. All remaining blocks of the blockdiagonal Hamiltonian can be diagonal-
ized with either a dense or a sparse eigenvalue solver. Standard sparse diagonal-
ization approaches for exact diagonalization are usually much faster, but only give
access to a few (usually the lowest) eigenvalues and eigenvectors, whereas dense
eigenvalue solvers return the full spectrum of all eigenvalues and eigenvectors of
the static Schrödinger equation, but are limited to small systems.

3 .2 .6 Propagation Methods

If we know all eigenvectors Ψn and En eigenvalues of Eq. 2 explicitly and the Hamil-
tonian Ĥ is time-independent, we can expand the wave function Ψ(t) formally
into the energy eigenbasis of the Hamiltonian Ĥ and solve the time-dependent
Schrödinger equation in Eq. 1 with the initial state Ψ(t0) in principle exactly by

|Ψ(t)〉 =
nb

∑
i=1

e−
i
h̄ Entcn(t0) |Ψn〉 . (163)

with cn(t0) = 〈Ψ(t0)|Ψn〉. However for most systems, exact diagonalization is
numerically impossible and even if the exact eigenstates are known, it is usually
more convenient to directly approximate the time-evolution operator, due to per-
formance and stability conditions. Here, time is discretized on a time-grid with
spacing ∆t. Formally, Eq. 1 can then be solved for time-dependent Hamiltonians
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ne = 0
ne = 1

ne = 2

ne = 3

ne = 4 ne = 4

ne = 5

ne = 6

ne = 7
ne = 8

Number states sorted Hamiltonian matrix

Figure 10: Block structure of the Hamiltonian imposed by the conserved number operator
N̂ for four electronic sites. Each block corresponds to a fixed particle number.
ne = 4 corresponds to the largest block in this setup.

Ĥ(t) by using the group property of the time-evolution operator from Eq. 59 as
follows

|Ψ(t)〉 =Û(t, t0) |Ψ(t0)〉
=Û(t, t− ∆t)Û(t− ∆t, t− 2∆t) · · · Û(t0 + ∆t, t0) |Ψ(t0)〉 . (164)

The time-evolution operator Û(t′, t) has to be approximated. Popular choices are
the Lanczos propagation scheme [105, 106], Crank-Nicolson propagators or the
Runge-Kutta propagator. For a comprehensive analysis of the different possible
propagation schemes used in time-dependent many-body calculations, we refer
the reader to Ref. [107]. In this thesis, we employ the Lanczos propagation scheme,
unless otherwise stated.

3 .2 .7 Numerical Integration and Volterra Integral Equations

Throughout this thesis we perform numerical integrations of arbitrary functions
f (x) defined on a grid with N + 1 grid points using the trapezoidal rule [108]

∫ b

a
dx f (x) ∼ b− a

2N
( f (x1) + 2 f (x2) + 2 f (x3) + ... + 2 f (xN) + f (xN+1)) .

(165)
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The error of the trapezoidal rule scales quadratic with the grid spacing h = N
b−a , i.e.

O(h2). It can also be applied to two-dimensional integrations

∫ b

a
dx
∫ x

a
dy f (x, y) ∼

∫ b

a
dx

x− a
2N

( f (x, y1) + 2 f (x, y2) + ... + f (x, yN+1))
︸ ︷︷ ︸

L(x)

∼ b− a
2N

(L(x1) + 2L(x2) + ... + L(xN+1)) . (166)

Furthermore, in Ch. 7, we solve Volterra integral equations of the first kind, which
are defined as follows

x∫

0

K(x, t)y(t)dt = f (x). (167)

We identify the kernel K(x, t) of the integral equation and we aim for solving
Eq. 167 for y(x). The Volterra equation can be solved numerically by discretizing
the variables x → {xi} and t → {ti} on a grid with spacing h and the integral

with a midpoint method:
x∫

0
→

n−1
∑

i=0
, where n is the number of grid points. Hence,

Eq. 167 turns into the discretized version

h
n−1

∑
i=0

K(xn, xi+1/2)Yi+1/2 = f (xn), (168)

and can be solved by [109]

Yn−1/2 =
f (xn)

hK(xn, xn−1/2)
−

n−2

∑
i=0

K(xn, xi+1/2)

K(xn, xn−1/2)
Yi+1/2. (169)

Applying the midpoint method to discretize the integral has the advantage that the
diagonal of the kernel K(x, t) is not explicitly used. In cases where the diagonal of
the kernel is singular, this turns out to be advantageous. If the kernel is factorizable
K(x, t) = a(x)b(t), we can simplify Eq. 169 further

Yn−1/2 =
f (xn)

hK(xn, xn−1/2)
− a(xn)c(xn−3/2)

K(xn, xn−1/2)
, (170)

c(xn−3/2) =
n−2

∑
i=0

b(xi+1/2)Yi+1/2.

Here, the last term in Eq. 170 can be rewritten such that instead of evaluating the
total sum {0 : n− 2} at each step n, we only need to update the term by performing
an addition, since c(xn−3/2) = c(xn−5/2) + b(xn−3/2)Yn−3/2.

3 .2 .8 Fixed-Point Algorithm

To lift the restriction of Taylor-expandability in time on the external potentials, one
of the generalizations of the Runge-Gross proof was stated as a fixed-point ques-
tion [54]. Besides generalizing the Runge-Gross theorem, the fixed-point proof can
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be formulated in an iterative algorithm, which yields the external potential. In a
Kohn-Sham framework, the fixed-point method can be used to explicitly construct
the usually unknown xc-potential [110], if the exact many-body densities are known
beforehand. The exact xc-potential is essential to correctly reproduce the time evo-
lution of a density of an interacting many-body system by the time evolution of a
noninteracting Kohn-Sham system. However, only for simple few-electron systems
the Schrödinger equation can be solved exactly and the exact potential constructed
explicitly. Such systems include low-dimensional systems, three-dimensional Hy-
drogen or Helium atoms and molecules or various lattice models.
In the following, we employ the fixed-point algorithm to the JCH model and real-
space models and discuss its specific form in these applications.

3 .2 .8 .1 Jaynes-Cummings-Hubbard Model

In the Jaynes-Cummings-Hubbard model discussed in Sec. 3.1.2, the equation of
motion for the electron density σz(t) (Eq. 148) can be reformulated to yield an
iterative equation, which can be used to obtain the external potential via a fixed-
point procedure

vext(t) =
−σ̈z(t)− 4tkin

(
tkinσ̂z(t) + λ 〈Ψ(t)|

(
â† + â

)
σ̂x |Ψ(t)〉

)

4tkinσx(t)
. (171)

The right-hand side depends implicitly on vext through the wave function
|Ψ[vext], t]〉. To increase the numerical stability, we change the equation slightly
and obtain an iterative equation in a regularized form by adding the parameter α

to avoid a vanishing denominator

v(k+1)
ext (t) =

−σ̈z(t)− 4tkin

(
tkinσ̂z(t) + λ 〈Ψ(t)|

(
â† + â

)
σ̂x |Ψ(t)〉 − αv(k)ext(t)

)

4tkin (σx(t) + α)
.

(172)

We choose the parameter α such that σx(t) + α 6= 0. Then, we get a stable iteration
algorithm in the spirit of Ref. [111]

P : v0 → rhs[v0], (173)

V : rhs[v0]→ v1, (174)

F [v0] = (V ◦ P) [v0] = v1, (175)

and Eqns. 173-175 are solved iteratively until self-consistency is reached. The term
rhs refers to the right-hand side of Eq. 172, which contains the density σz(t) and
its second-time derivative σ̈z(t). These two variables have to be given a priori, e.g.
by an exact propagation in the total Hilbert or Fock space of the problem.

3 .2 .8 .2 Real-space Models and Multi-grid Solver

In real space, the external potential can be also obtained by an iterative algorithm.
In this thesis, we follow the procedure outlined in Refs. [110, 111]. We exploit
the second time-derivative of the electron density to obtain the direct connection



58 model systems and numerical methods

between the density and the external potential. We can rewrite Eq. 46 to yield an
iterative formula

1
me

~∇ ·
[
n(r, t)~∇v(k+1)(r, t)

]
= − ∂2

∂t2 n(r, t)− ~∇ ·Q([v(k)]r, t). (176)

Eq. 176 gives us an iterative algorithm such that we can iterate: v(k)(r, t) →
v(k+1)(r, t). Since the electron density n(r, t) is known a priori, we can use Eq. 176

iteratively to construct the time-dependent external potential v(r, t). However, this
equation relies on the explicit evaluation of the expectation value of the electronic
stress force Q([v(k)]r, t), which is numerically expensive. Therefore in practical
applications, we replace Eq. 176 by

− 1
me

~∇ ·
[
n(r, t)~∇v(k+1)(r, t)

]
=

∂2

∂t2

[
n([v(k)], r, t)− n(r, t)

]

− 1
me

~∇ ·
[
n([v(k)], r, t)~∇v(k)(r, t)

]
, (177)

which yields with discretized time [112]

− 1
me

~∇ ·
[
n(r, t)~∇v(k+1)(r, t)

]
=

A
∆t2

[
n([v(k)], r, t)− n(r, t)

]

− B
∆t

[
~∇ · J([v(k)], r, t) +

∂

∂t
n(r, t)

]

− 1
me

~∇ ·
[
n([v(k)], r, t)~∇v(k)(r, t)

]
. (178)

In the last step, we introduce the continuity equation from Eq. 44 for stability rea-
sons. The constants A and B are chosen to A = 1.5 and B = 0.5. Eq. 178 is solved
at each time-step. The left-hand side of this equation contains the Sturm-Liouville
operator, which is numerically solvable by applying a multigrid scheme [108] with
zero-boundary condition [112]. The conditions on convergence of Eq. 178 can
be found in Ref. [113]. To find the fixed-points of Eq. 178 numerically, we first
solve the (time-dependent) many-body Schrödinger equation with the Hamilto-
nian Ĥ([v(k)]). For time-dependent problems, we employ the numerical propaga-
tion methods discussed in Sec. 3.2.6, whereas for static problems, we use the exact
diagonalization method discussed in Sec. 3.2.5 to access the exact many-body wave
function. Next we can calculate according to Eq. 40 the corresponding electron
density n([v(k)], r, t) and the divergence of the current density ~∇ · J([v(k)], r, t). Us-
ing the input density n(r, t) and its time derivative ∂

∂t n(r, t), we then calculate the
right-hand side of Eq. 178. To numerically invert the equation, we employ a full
multigrid solver [108] with a red-black Gauss-Seidel algorithm as the smoothing
operator and a bilinear interpolation of the coarse-grid. Using this solver, we then
invert the equation to obtain v(k+1)(r, t). The whole procedure has to be repeated
until self-consistency is reached. As convergence parameter, we typically choose:
∆v =

∫
dr|v(k+1) − v(k)| < 10−6 or ∆n =

∫
dr|n[v(k+1)] − n[v(k)]| < 10−15. To

speed up convergence, we employ a direct inversion in the iterative subspace (DIIS)
approach [114]. This method is a standard method in many self-consistent many-
body calculations [115] and uses Lagrange multiplier to minimize a set of error
vectors obtained from the previous iterations. For our case, we use as error vectors
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E(r, t) = A
∆t2

[
n([v(k)], r, t)− n(r, t)

]
− B

∆t

[
~∇ · J([v(k)], r, t) + ∂

∂t n(r, t)
]
, which has to

vanish for the fixed-point solution.





Part IV

A P P L I C AT I O N S





4
N O N A D I A B AT I C A N D T I M E - R E S O LV E D P H O T O E M I S S I O N
S P E C T R O S C O P Y F O R M O L E C U L A R S Y S T E M S

In recent years, the field of photoelectron spectroscopy has seen rapid progress
by novel experimental possibilities. In particular, the advent of femtosecond
laser pulses [116] enabled experimentalists to trigger and record dynamical intra-
molecular processes in real-time using time-dependent pump-probe photoelectron
spectroscopy [117]. In pump-probe experiments, two sequential pulses with a de-
lay time ∆t are applied to the sample. The first pulse pumps (excites) the sample
out of the equilibrium configuration, while the second pulse probes the sample
by photoionization. Tuning the delay time ∆t between these two successive pulses
allows to monitor the dynamical microscopic processes in the sample. Successful
applications of time-resolved photoelectron spectroscopy include the characteriza-
tion of ultrafast photochemical dynamic processes in liquid jets [118], the ultrafast
electronic relaxation, the hydrogen-bond-formation and the dissociation dynam-
ics [119], the probing of unimolecular and bimolecular reactions in real-time [120],
or the investigation of multidimensional time-resolved dynamics near conical in-
tersections [121], among other processes, but all on a femtosecond timescale.
Using TDDFT, time-dependent pump-probe photoelectron spectroscopy has been
first described by Pohl et al. [122]. This theory is based on the calculation of the
momentum distribution of Kohn-Sham orbitals far away from a reference point.
Only recently, De Giovannini et al. [14] simulated explicitly the pump pulse and
the photoelectron, both in real-time, using a mask-function in real space. However,
both works share the assumption of the validity of the BOA employing classical
nuclei. Beyond the classical nuclei approximation, reduced density-matrices [123],
quantum chemistry methods by using the double-harmonic approximation for pho-
toelectron transitions [124], or by Franck-Condon-factors [125] have been used.
In this chapter, we simulate photoelectron spectra of time-independent and time-
dependent systems and calculate exact correlated electron-phonon results without
invoking the BOA. We use these exact results to assess the quality of the BOA

in photoelectron spectroscopy. To this end, we study a model system for Trans-
Polyacetylene and treat the electrons and nuclei both quantum-mechanically, on
equal footing. This chapter is organized as follows. First, we study to which ex-
tend the BOA is justified for the model system in photoelectron experiments. We
show that spurious peaks appear in the static photoelectron spectrum, if the BOA

is assumed in SHA and DHA. These spurious amplitudes only vanish, if the full cor-
related electron-nuclear problem is correctly considered. In the second part of this
section, we focus on time-dependent photoelectron spectroscopy. We show how the
underlying dynamics of the nuclear wave packet can be traced in time-dependent
photoelectron spectra. The chapter is based on the theory of photoelectron spec-
troscopy illustrated in Sec. 2.4 and the SSH Hamiltonian introduced in Sec. 3.1.1.

This chapter is based on the work reported in Flick et al. [84], which was performed in close collabo-
ration with all coauthors. I contributed to all aspects of the work.

63
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4 .1 su-schrieffer-heeger hamiltonian

Throughout this chapter, we work with the SSH Hamiltonian of Sec. 3.1.1 with
four oligomers. We explicitly construct the matrix representation of all quan-
tum operators present in Eq. 141 in full Fock space, where different numbers of
electrons N are directly accessible. Since, we consider four oligomers, we build
the electronic creation and annihilation operators (ĉ†

i and ĉi) by using the Jordan-
Wigner transformation as discussed in Sec. 3.2.2 on a four site basis. The elec-
tronic subsystem coupled to two phonon modes (optical and acoustical) is de-
fined on a uniform two-dimensional real-space grid. Derivatives in the phonon
operators are constructed using an 8th-order finite-difference scheme. The to-
tal electron-phonon Fock space contains up to eight electrons and has a size of
Mtot = 44 × 35× 35 = 313600 basis functions. The reduced Hilbert spaces with
four (three) electrons has M[4]([3])

max = 70(56)× 35× 35 = 85750(68600) basis func-
tions. We get access to Mtot eigenvalues E(N)

j and eigenstates |Ψ(N)
j 〉 of the system

by solving the following correlated eigenvalue problem employing the exact diag-
onalization technique as discussed in Sec. 3.2.5 with a dense eigensolver

Ĥssh |Ψ(N)
j 〉 = E(N)

j |Ψ(N)
j 〉 . (179)

The eigenstates |Ψ(N)
j 〉 and eigenvalues EN

j are the exact correlated stationary states
of the combined system of electrons and nuclei in Fock space and their correspond-
ing eigenenergy. To reduce the dimensionality of the problem, we exploit different
symmetries (see Sec. 3.2.4), which can be used to block diagonalize the Hamilto-
nian Ĥssh, i.e. the spin operators Ŝz, Ŝ2, particle number N̂, and parity P̂. Through-
out this chapter, the superscript (N) denotes the number of electrons in the state.
In the presence of pump and probe pulses, we explicitly propagate the time-
dependent Schrödinger equation

ih̄
∂

∂t
|Φ(N)(t)〉 = Ĥssh |Φ(N)(t)〉 , (180)

with an arbitrary initial state Φ(N)(t) by a Lanczos propagation scheme (see
Sec. 3.2.6).
With increasing numbers of oligomers in the SSH chain, the size of the Fock space
increases exponentially. This scaling limits the calculation of exact eigenstates and
the time evolution of wave functions to only a small SSH chain. In the present case,
we study a SSH chain consisting of four oligomers. However, these exact numerical
solutions still serve as a valuable reference to assess the quality of approximate
schemes, which are also applicable to simulate larger systems.

4 .2 born-oppenheimer approximation for the ssh hamiltonian

This section is dedicated to a comparison of the accuracy of the BOA for the SSH

model. In Fig. 11, we illustrate the BO PES in the system. In dashed lines, we
compare the exact surfaces to the harmonic approximation, which is shown in
solid lines. All PES are plotted along the optical normal mode. For all surfaces, we
find a very good agreement between the exact and the harmonic approximation.
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Figure 11: (a) For a Trans-Polyacetylene oligomer, exact BO surfaces (dashed) vs. harmonic
approximation (solid) along the optical axis are shown with black lines for N− 1
electron states and the red line for the N-electron ground state. (b) Photoelectron
spectrum in double-harmonic approximation (DHA).

The exact surfaces have already a harmonic character, since the phonon subsystem
in the correlated Hamiltonian (Eq. 141) is dominated by the quadratic potential in
the phonon Hamiltonian Ĥph. All anharmonicities are due to the electron-phonon
coupling term Ĥπ−ph, which are rather weak for the chosen set of parameters. More
quantitatively, the BOA can also be assessed in terms of eigenenergies or overlaps
between exact states and BO states. For the lowest five states and two higher-lying
states, Tab. 2 shows the exact BO energies Eexact

BO and the BO energies in harmonic
approximation Eharmonic

BO in comparison to the exact many-body energies of the
correlated system Eexact. Additionally, we calculate the corresponding overlaps of
BO and exact states. In agreement with the PES, we find low lying BO states in
harmonic approximation and exact BO states close to the exact correlated states.
The exact BO and the harmonic BO ground state have an overlap of each 99.86%
with the exact correlated ground state. Nevertheless, for higher-lying states, the
harmonic BO approximation, as well as the exact BOA yield states with less accurate
energies and overlaps compared to the exact states (e.g. in state #86: 0.89, and 0.96,
respectively). The table also shows that the exact BO energies Eexact

BO provide a lower
bound to the exact correlated energies Eexact.

4 .3 numerical aspects of the calculation of the spectral func-
tion

Experimental photoelectron spectra are typically shown as function of the positive
binding energy, see e.g. Fig. 4 in Ref. [80]. The spectra shown in this chapter can
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BOA employing the exact BO surfaces

state # Eexact (eV) Eexact
BO (eV) (e,o,a) overlap

1 −11.3414 −11.3419 1, 0, 0 0.9986

2 −11.2166 −11.2171 1, 0, 1 0.9986

3 −11.1583 −11.1588 1, 1, 0 0.9955

4 −11.0918 −11.0924 1, 0, 2 0.9986

5 −11.0336 −11.0341 1, 1, 1 0.9955

86 −9.5155 −9.5157 1, 10, 0 0.9676

87 −9.5076 −9.5078 1, 8, 3 0.9740

BOA employing the harmonic BO surfaces

state # Eexact (eV) Eharmonic
BO (eV) (e,o,a) overlap

1 −11.3414 −11.3419 1, 0, 0 0.9986

2 −11.2166 −11.2171 1, 0, 1 0.9986

3 −11.1583 −11.1587 1, 1, 0 0.9953

4 −11.0918 −11.0923 1, 0, 2 0.9986

5 −11.0336 −11.0339 1, 1, 1 0.9953

86 −9.5155 −9.5102 1, 10, 0 0.8964

87 −9.5076 −9.5023 1, 8, 3 0.9361

Table 2: Comparison of exact/harmonic BO states to exact correlated states: Exact corre-
lated energies Eexact, exact BO energies Eexact

BO , harmonic BO energies Eharmonic
BO and

overlap between exact and BO states. (e,o,a) correspond to BO quantum number of
the state (electronic state, optical phonon mode, acoustical phonon mode).

be connected to this convention if the absolute value of the x-axis is considered,
which then leads to positive values for the binding energy. Additionally the sum-
over-states expressions for the spectral function as e.g. in Eq. 132 only provide the
position of the peak and its amplitude. Throughout this chapter, we broaden the
peaks of all spectra with a Lorentzian broadening of the form

f (E; E0, γ) =
1
π

γ

(E− E0)
2 + γ2

. (181)

Electronic Green’s function calculations typically use a broadening of γ = 0.1 eV.
However, such a broadening would completely wash out the phonon side bands.
To resolve the rich structure of the vibrational side bands a much smaller broaden-
ing of γ = 0.002 eV has to be used. This broadening is about an order of magnitude
smaller than 1/40 eV, the typical energy scale for vibronic motions at room temper-
ature. As a consequence, all vibrational sidebands shown in the following sections
are experimentally only clearly visible in a low temperature limit.
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(a) DHA spectrum
S<−5eV =3.975
S>−5eV =0.062

S =4.037

(b) SHA spectrum
S<−5eV =3.992
S>−5eV =0.008

S =4.000

(c) exact spectrum
S<−5eV =4.000
S>−5eV =0.000

S =4.000

1 electronic state
2 phonon mode (optical)
3 phonon mode (acoustical)

Figure 12: Photoelectron spectra for Trans-Polyacetylene. (a) The ground-state spectrum in
double-harmonic approximation (DHA), (b) the ground-state spectrum in single-
harmonic approximation (SHA), (c) the exact ground-state spectrum from the
full-quantum calculation. S refers to the value of the sum rule (Eq. 135). S>−5eV
and S<−5eV indicate partial summations in the energy range above −5 eV and
below −5 eV, respectively.

4 .4 comparison of bo and exact ground-state photoelectron spec-
tra

In Sec. 2.4.3, we introduced different levels of theory for the calculation of electron-
phonon photoelectron spectra in terms of the one-body spectral function. The dif-
ferent levels include the exact spectral function given by Eq. 132, the SHA defined in
Eq. 139, and the DHA in Eq. 140. For the SSH model, we can explicitly evaluate the
sum-over-states expressions, since we have access to all contributing eigenstates
using dense exact diagonalization. Using these eigenstates, we are further able
to calculate the sum rule from Eq. 135, which gives us an additional measure for
the orthogonality and completeness of the underlying eigenstates. In the present
section, we illustrate, how these different levels of approximations perform in the
static case for Trans-Polyacetylene.
Fig. 12 shows the spectral functions of the SSH chain in a logarithmic scale for three
different cases. The spectral function (a) colored in black is calculated using the
DHA (Eq. 140). The green-colored spectrum in (b) depicts the spectrum calculated
in SHA, where Eq. 139 has been employed, while spectrum (c) shows the exact cor-
related ground-state spectrum computed from Eq. 132 in blue. In addition, we plot
the value of the total sum-rule S , the sum-rule only including contributions from
energies smaller than −5 eV (S<−5eV), and the sum-rule only including contribu-
tions from energies higher than −5 eV (S>−5eV). In spectrum (a) for the DHA, we
also associate the peaks with their corresponding quantum number, which consists
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S = (3.988, 3.988, 0.000)

nmax = 2
S = (3.993, 3.990, 0.003)

nmax = 3
S = (3.996, 3.990, 0.006)

nmax = 10
S = (4.000, 3.992, 0.008)

nmax = 20
S = (4.000, 3.992, 0.008)

nmax = M
[4]
max = 85750

S = (4.000, 3.992, 0.008)

∣∣∣χ00φ
(N)
0

〉
=
∑nmax
n=1 an

∣∣∣Ψ(N)
n

〉
(b) SHA - Spectra with increasing
number of expansion coefficients

Figure 13: Nonadiabaticity in the BO ground state of the Trans-Polyacetylene chain: (a)
projection of the BO ground state onto correlated eigenstates. (b) SHA spectra
with increasing number of expansion coefficients. S = (S, S<−5eV, S>−5eV), as in
Fig. 12.

of the quantum number of the electronic state, the optical mode and the acoustical
mode.
In Fig. 12, we find by comparing to the exact spectral function shown in blue that
the DHA and the SHA are both able to accurately predict the peak positions corre-
sponding to the optical phonon modes in the energy range from −10 eV to −5 eV.
This feature of the approximations is in agreement with the quality of the overlaps
and the eigenenergies shown in Tab. 2. However, the DHA fails in predicting the cor-
rect peak height. Peaks, which correspond to optical phonon excitations are most
dominant and their peak broadening hides peaks, which correspond to mixed or
acoustical phonon excitations. Additionally, the DHA spectrum violates the sum
rule due to the incompleteness of the approximation. All three spectra share that
most of the spectral amplitude is located in energy areas below −5 eV, while only
less than two percent of the spectral weight is located in the energy range above
−5 eV in the DHA and SHA spectra. As most prominent difference between the
individual spectra, we find that the DHA and SHA acquire spurious peaks above
−5 eV compared to the exact correlated ground-state spectrum. Theses spurious
peaks will be discussed in the next section.

4 .5 nonadiabaticity in ground-state photoelectron spec-
troscopy

The differences in the energy range from −5 eV to 0 eV between the DHA spectrum
and the exact correlated spectrum shown in Fig. 12 can be traced back to two in-
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dividual origins. Since in the double-harmonic approximations, we perform two
harmonic approximations, meaning the N-particle ground state is approximated
by a harmonic BO state as well as the N − 1 particle eigenstates, which both are
necessary to compute the matrix elements in Eq. 140. Both approximations con-
tribute independently to the spurious peaks in the spectrum. This can be seen if
we compare to the SHA. Here, only the N-particle ground state is approximated,
while the exact N − 1 particle eigenstates are used. If we compare the sum rule in
Fig. 12, we find that the spectral weight of the spurious peaks in the energy range
from −5 eV to 0 eV is reduced from 1.6% in DHA to 0.2% in SHA. The remaining
spectral weight in comparison to the exact spectra can be associated with the fac-
torized nature of the BO N-particle ground state used in the SHA.
The expansion of the BO ground state in terms of exact correlated eigenstates al-
lows to study the origin of the spurious peaks more closely. This expansion reads
as follows

|χ00 φ
(N)
0 〉 =

nmax

∑
n=1

〈
Ψ(N)

n

∣∣∣ χ00 φ
(N)
0

〉
|Ψ(N)

n 〉 =
nmax

∑
n=1

an |Ψ(N)
n 〉 . (182)

In Fig. 13 (a), we show the amplitude of the different expansion coefficients an in
logarithmic scale. The black dot in the graph indicates the highest overlap, which
by construction is found between the BO ground state and the exact correlated
ground state. It has a value of 0.9986, as can be also obtained from Tab. 2. All
other overlaps are orders of magnitudes smaller. These overlaps can be classified
according to which PES in terms of Fig. 11 they originate from. Overlaps stemming
from the same PES are shown in the same color in the Figure. In Fig. 13 (b), we
show the SHA spectral function for increasing number nmax in the summation in
Eq. 182. The first spectrum shows the case of nmax = 1. In this case, we only
take the wave function with the highest overlap into account, which is the exact
correlated ground state. Thus in the spectrum, we recover the shape of the exact
spectrum, but with smaller amplitude, since a1 = 0.9986 < 1. Because the states
in Eq. 182 are not renormalized after truncation S 6= 4. In the case of nmax = 1,
we find S = 4 · a2

1 = 3.9888. If we then include more and more expansion coef-
ficients an with n > 1, we find a gradual emerging of the artificial peaks in the
energy range from −5 eV to 0 eV. This spurious amplitude is caused by additional
cross and diagonal terms of the spectral function, which involve correlated excited
N-particle eigenstates. We conclude that these additional peaks are a side-effect
of the factorized nature of the BO states, since we find them arising in the case of
the harmonic approximation as well for exact BO surfaces beyond the harmonic ap-
proximation. In both cases, we find more than one term (nmax > 1) contributing to
Eq. 182, which then leads to the additional cross and diagonal terms in the spectral
function.
For the Su-Schrieffer-Heeger model we find that the quality of the BOA is very ac-
curate, since the overlaps between the BO states and the exact correlated states is
very high, due to the harmonic nature of the original problem, as shown in Tab. 2.
However already in this case, which may be a best-case scenario, we find these
artificial peaks with a spectral weight of about 1.6% in DHA. This indicates that for
general systems, where the BOA may be less well justified due to anharmonicities
in the system, a larger contribution to the spurious spectral peaks can be expected.
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Figure 14: SHA and exact spectra obtained from time-propagations (TP) and sum-over-
states (SOS) expression. The red boxes indicate the nonadiabaticity present in
the BOA also discussed in Sec. 4.5.

Nevertheless, for larger nuclear masses, the BOA becomes again more accurate until
in the limit of infinite nuclear mass, the BO ground state of the system is identical
to the correlated ground state, thus both leading to identical spectra.
Routes to correct for these nonadiabatic effects beyond the BOA are not straightfor-
ward. Here, possible ways may be the inclusion of nonadiabatic couplings in the
Born-Huang expansion (Eq. 14), an explicitly correlated ansatz for the combined
electron-nuclear wave function, as e.g. in an electron-nuclear coupled cluster ap-
proach [126], a combined multi-component density-functional theory approach for
electrons and nuclei [127], or in an electron-phonon Greens function theory [128,
129].

4 .6 comparison between propagated spectra and sum-over-states

In Sec. 2.4, we discuss the possibility of calculating photoelectron spectra by a sum-
over-states (SOS) expression, which is given by Eq. 132 for the equilibrium case and
Eq. 136 for the nonequilibrium case. Additionally, it is also possible to calculate
these spectra by an explicit time propagation (TP). Here, the expressions are given
in Eq. 134 for the equilibrium case and Eq. 137 for more general nonequilibrium
situations. In Fig. 14, we compare these two different ways of obtaining the spectra.
We start by discussing the equilibrium scenario, where we use the exact correlated
ground state as initial state in the photoemission process. The two upper plots in
blue and black in Fig. 14 show the equilibrium case. The first spectrum, shown in
blue, corresponds to the exact spectrum evaluated with the sum-over-states expres-
sion in Eq. 132. This spectrum is the same spectrum, as shown in Fig. 12 in blue. It
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is an equilibrium spectrum, since the correlated many-body ground state is used as
initial state for the photoemission process. The second spectrum, shown in black is
calculated using an explicit time evolution of two different initial states in the time
propagation for Eq. 134. As discussed in Sec. 2.4.1 one of the two involved states
is the correlated ground state and the other one is the kicked correlated ground
state missing one electron. We find that both equations lead to an almost identical
spectrum that only differ due to the additional broadening, which is employed in
the calculation of the sum-over-states expression.
The second case we discuss is the nonequilibrium case. Applying the SHA, we
find a nonequilibrium scenario, since the Born-Oppenheimer ground state is not
an eigenstate of the correlated electron-phonon Hamiltonian as defined in Eq. 141.
The two spectra at the bottom of Fig. 14 are nonequilibrium spectra in the SHA.
Here, the green spectrum is the same spectrum as shown in Fig. 12. To determine
the nonequilibrium spectrum, we use the sum-over-states expression of Eq. 136, in
which we neglect the energy dependence of the δ function and replace the term En

by the energy E0. This approximation can be circumvented, if we directly use the
explicit time propagation applying Eq. 137. As illustrated in Fig. 14, this approx-
imation does not change the amplitude of the peaks, but shifts low energy peaks
to higher energies. In Fig. 14, the red-highlighted area shows the nonadiabaticity
as discussed in Sec. 4.5. This approximation in the sum-over-states expressions
has no implications on the nonadiabaticity present in the BOA photoelectron spec-
tra, since it only shifts the position of the peaks, but does not change amplitudes.
However, it has implications on the time-resolved pump-probe photoelectron spec-
tra discussed in the following section, since the approximation artificially shifts
low energy peaks to higher energies. For the SSH model the evaluation of the pho-
toelectron spectrum employing Eq. 137 for pump-probe spectroscopy is infeasible,
since we would need to perform calculations on two time axis. Therefore, we use
the approximate sum-over-state expression, which only involves a single time axis.
For more details, we refer the reader to the appendix D for a detailed derivation
for the equilibrium and nonequilibrium spectral function.

4 .7 time-resolved pump-probe photoelectron spectra

So far, we only considered static processes, in which the photoelectron emission is
initiated from the ground state. In this section, we study time-dependent processes,
where we analyze explicitly time-resolved photoelectron spectra. Therefore, we
perform time propagations of given initial states and calculate the photoemission
spectra at each time step. To illustrate pump-probe experiments, we analyze two
different examples with different initial states. In the first example, we choose a
Franck-Condon excitation as initial state, while in the second example, we start in
the correlated ground state, which is then excited by a resonant femtosecond laser
pulse prior to the photoemission process.

4 .7 .1 Initial Franck-Condon Excitation

In our first example, we study the time-dependent photoelectron spectrum of an
electronic excitation out of the ground state. This initial excitation is a Franck-
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Figure 15: (a) Excitation with Frank-Condon transition: The excited N-electron initial state
propagates on the BO surface of the first excited electronic state. N (N − 1) -
electron PES are shown in red (black). The yellow background indicates the
oscillation spread of the wave-packet center, while the different shapes refer to
the squeezing of the vibronic state. (b) spectra at different time-steps (the first
(ground-state) spectrum t0 correspond to Fig. 12 (b)), (c) all spectra are plotted
time-resolved, with high intensity areas shown in red and low intensity areas
shown in blue color. The motion of the nuclear wave-packet center as function
of pump-probe delay is shown in dashed-black lines.

Condon transition as illustrated in Fig. 15 (a) schematically. Thus, we assume for
the excited state a factorized state consisting of the first excited N-particle elec-
tronic state |φ(N)

1 〉 and the ground-state configuration |χ00〉. This excitation can
then be written as follows

|Ψ(N)(t = t0)〉 = |χ00 φ
(N)
1 〉 . (183)

After the Franck-Condon transition, the initial state from Eq. 183 is propagated in
real-time with the full correlated many-body Hamiltonian in the total Fock space
of the system. Since the Franck-Condon initial state is not an eigenstate of the
correlated Hamiltonian, its time propagation leads to a wave-packet motion, as
typical for harmonic potentials. In Fig. 15 (a), we show the motion of the wave
packet schematically. Close to the surface, the wave packet is broader, whereas in
the middle of the surface, the wave packet is sharper. We propagate the initial state
from t0 = 0 fs to the final state t f = 110 fs. The total propagation time corresponds
to 9/4 of the oscillation period of the nuclear wave packet in the excited state. In
Fig. 15 (a), the yellow background indicates the spread of oscillation of the nuclear
wave-packet center.
We simulate a probe pulse by calculating the photoelectron spectrum in terms of
the one-body spectral function after the delay time τ during the time propaga-
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tion. Here, we use the time-dependent expression from Eq. 136. In Fig. 15 (b), we
show the photoelectron spectra for two different delay times of τ = t1 = 0 fs and
τ = t f = 110 fs in green color. The spectrum shown in red color is the ground-
state spectrum (the SHA spectrum as in Fig. 12 (b)) and shows the effects of the
initial Franck-Condon excitation. We find that the spectrum reveals different peaks,
which gain and loose spectral amplitude after the initial Franck-Condon excitation
and during the following time propagation. The blue-colored time-averaged spec-
trum at the bottom of Fig. 15 (b) shows a broad distribution of the peaks. Instead,
the peaks in the ground-state SHA spectrum are localized close to the minimal
energy in the PES. During the time propagation, each spectrum is recorded. All
recorded spectra are shown in the two-dimensional surface plot in Fig. 15 (c). We
plot the one-body spectral function ASA

lm,σ(τ, ω) as a continuous function of the de-
lay time τ. Thus, every slice of the plot corresponds to a single spectrum obtained
at τ. The color code corresponds to the amplitude of the peaks. High photoelectron
amplitudes are shown in red whereas lower amplitudes are shown in blue. The ver-
tical spacing between neighboring peaks corresponds to different electron-phonon
states in the same PES. In addition, in Fig. 15 (c), the dashed black line indicates
the center of the nuclear wave packet (first moment) during the time propagation
as function of the delay time τ. One oscillation period corresponds to T0 = 48.94 fs.
The average along the x-axis of the delay time τ, hence over all slices, again yields
the average spectrum in Fig. 15 (b) plotted in blue.
In conclusion, the two-dimensional plot of the spectral function illustrates that we
can connect the gain and loss of spectral amplitude as function of pump-probe
delay time τ directly to the underlying motion of the nuclear wave packet. We
find similarities to optical pump-probe spectroscopy, which also reveals insight
about the nuclear dynamics of the system. In contrast to optical pump-probe ex-
periments, time-resolved photoelectron spectroscopy accesses excitations, which
are not charge-neutral. Thus, it allows to observe transitions, which can be dipole
forbidden.

4 .7 .2 Explicit Pump Pulse

In the second example, we explicitly simulate the initial excitation process. While
the Franck-Condon excitation is an instantaneous excitation, real excitations in
atoms and molecules have a finite transition time. We improve the description
of the excitation process by explicitly including the pump pulse into the time
propagation. Therefore, we employ the Hamiltonian from Eq. 144 with an electric
field E(t) consisting of a Gaussian envelope with midpoint t0 = −6 fs, maximum
envelope E0 = 0.85 V/Å and variance σ = 1.5 fs. The carrier wave is a sine
function with frequency ωl = ∆E/h̄ = 6.20 fs−1. We tune the laser frequency
in resonance to the Franck-Condon transition, thus ∆E is chosen such that it
corresponds to the example of a Franck-Condon excited initial state as in Sec. 4.7.1.
The correlated Hamiltonian Ĥssh(t) becomes explicitly time-dependent due to the
time-dependent external potential E(t). To correctly capture the time-dependence
of the Hamiltonian, we use a Lanczos propagator with an exponential midpoint
scheme [107]. The initial state at t0 = −10 fs is the exact correlated ground state,
which is then propagated with the correlated many-body Hamiltonian including
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Figure 16: Time-dependent pump-probe photoelectron spectroscopy: (a) Amplitude of
the laser-pulse (Eq. 144), (b) overlaps of the time-evolved state with electronic
ground and first excited BO states and the exact correlated ground state, (c) spec-
tra at different pump-probe delay times (the first spectrum at t0 corresponds to
Fig. 12 (c)), (d) spectra plotted time-resolved, high intensity shown in red and
low intensity shown in blue.

the dipole coupling to the external pump laser as given in Eq. 144.
Fig. 16 (a) shows the electric field E(t) of the external laser pulse as function of
the pump-probe delay time τ. The laser pulse starts at t = −10 fs and acts on the
system until it is switched off at t = 0 fs. In Fig. 16 (b), we compute the overlaps
of the time-propagated state with two BO states in blue and red and with the exact
correlated ground state in black as function of time. For the BO overlaps, we plot
in red the overlap with the BO ground state and in blue with the Franck-Condon
excited state, which was chosen as initial state in Sec. 4.7.1. Using these overlaps,
we evaluate which states are populated during the time propagation. Since we
pick the exact correlated state as initial state at initial time t = −10 fs the overlap
with the BO ground state |χ00 φ

(N)
0 〉 is 0.9986 (as shown in Tab. 2). While the laser

pulse acts on the system, it drives population from the BO ground state to the
Frank-Condon state |χ00 φ

(N)
0 〉. Here, we identify two competing processes: First,

the external laser pulse drives population from |χ00 φ
(N)
0 〉 to |χ00 φ

(N)
1 〉. Afterwards,

once this state is populated, a wave packet motion is induced on the first excited
PES, as seen in Sec. 4.7.1. Therefore, the system never reaches a situation, where
only two states |χ00 φ

(N)
0 〉 and |χ00 φ

(N)
1 〉 occur in the system. However, this picture

is assumed in the Franck-Condon excitation process. After the laser pulse vanishes
at t = 0 fs, the time-propagated state has an overlap of around 50% with the exact
correlated ground state. We find small oscillations of the overlap with the BO

ground state, as can be seen in the inset of Fig. 16 (b). These oscillations are caused
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by the small deviations between the BO ground state and the exact correlated
ground state.
In Fig. 16 (c) we show photoelectron spectra for different delay times τ. For
comparison, we also show the correlated ground-state spectrum of Fig. 12 (c) in
red, which is recorded at initial time τ = −10 fs. In green, we plot two spectra,
which were recorded after the laser pulse acted on the system at time τ = 0 fs
and τ = 110 fs, respectively. The time-averaged spectrum is shown in blue at the
bottom of Fig. 16 (c). All spectra have a very high intensity peak at −7.5 eV. This
peak can be attributed to the remaining population of the correlated ground state,
which stays constant at around 50%. In Fig. 16 (d), we show all recorded spectra
as a function of the pump-probe delay time τ in a two-dimensional surface plot.
In this two-dimensional plot, we can observe the underlying oscillation of the
nuclear wave packet as in the example in Sec. 4.7.1. In summary, we find many
similarities between Fig. 15 (c) and Fig. 16 (d). This leads us to the conclusion
that the initial Franck-Condon excitation captures large parts of the more accurate
spectrum obtained by an explicit inclusion of the pump-probe pulse. However,
we also find some differences, since the explicit inclusion leaves population in the
correlated ground state and the finite time of the excitation process leads to an
initial state, which consists of more than a few factorized states. These broader
distribution of involved states introduces small nonadiabatic contributions to the
spectrum in the energy range from −4 eV to −2 eV.

4 .8 summary

In the first part of this chapter, we have evaluated the quality of the BOA in the
Su-Schrieffer-Heeger Hamiltonian. We find high overlaps of the BO states and only
small anharmonicities due to the electron-phonon coupling in the Hamiltonian.
While the overlaps and eigenenergies of the exact correlated states and the BO states
are in good agreement, we find nonadiabatic contributions to the equilibrium and
nonequilibrium photoelectron spectra in the model system for Trans-Polyacetylene.
These contributions lead to spurious peaks in the double-harmonic approximation
and the single-harmonic approximation for the spectral function and only vanish
if the full correlated spectral function is considered. However, if either the initial
state in the photoemission process or the N− 1 particle eigenstates are replaced by
the factorized BO states these spurious amplitudes are nonvanishing. This is why
we attribute these spurious spectral weight to the factorized nature of the BO states.
An expansion of the BO ground state in the complete set of correlated eigenstates
shows that additional cross and diagonal terms, which involve excited correlated
eigenstates are the origin for these spurious spectral weight amplitudes.
Additionally, we have shown for an initial Franck-Condon excitation and an ex-
plicit simulation of the resonant laser pulse how we can trace the nuclear motion
as a function pump-probe delay in the spectral functions with real-time propaga-
tions of the Trans-Polyacetylene chain. Future work in this direction could include
the study of temperature and pressure dependence of the photoelectron spectra
or an extension of the present femtosecond laser excitation to ultrafast photoelec-
tron spectroscopy with attosecond laser pulses. An alternative line of research may
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focus on the development of xc-functionals in a generalization of TDDFT, which
includes correlated electron-phonon effects, e.g. based on electron-nuclear multi-
component density-functional theory [127].
In this section the applied external laser pulse in Sec. 4.7.2 was assumed to be clas-
sical as described in Sec 2.3.1. This regime is typically well justified in the case of
femtosecond laser pulses, due to the high-amount of photons present in the laser
pulse. In the following chapters, we study how the quantum nature of electro-
magnetic fields (e.g. in the few-photon limit) influences the correlated light-matter
interaction in interactions of light with molecules and atoms.



5
Q U A N T U M - E L E C T R O D Y N A M I C A L D E N S I T Y F U N C T I O N A L
T H E O RY I N T H E N O N R E L AT I V I S T I C L I M I T

The original formulation of TDDFT as discussed in Sec. 2.2.6 treats the many-body
problem of interacting electrons. Time-dependent electromagnetic fields can be
included by an additional time-dependent external potential vext(r, t). Such a treat-
ment of the electromagnetic field implies that the electromagnetic field is treated
classically. Typically, the external field only considers the dipole coupling of the
electric field, i.e. vext(r, t) = E(r, t) · er with the dipole operator r. In contrast,
the treatment of external magnetic fields goes beyond the original formulation of
TDDFT. Magnetic fields can be treated in the framework of TDCDFT [28], which
uses the electron current J and an external vector field Aext as conjugated variables.
However, TDCDFT still relies on the classical approximation for the electromagnetic
field. In this chapter, we investigate QEDFT, which overcomes the classical ap-
proximation to the electromagnetic field. In QEDFT, matter and light are treated
quantum mechanically, both on an equal footing. While the classical approxima-
tion of the light-matter interaction is justified in the limit of strong laser pulses, in
which a high numbers of photons occur, this approximation breaks down in the
single-photon limit. While TDDFT is restricted to purely electronic systems, QEDFT

is applicable to correlated electron-photon systems. This chapter is based on the
work published in Refs. [17, 18]. Ref. [17] formulates the foundations of QEDFT in
the nonrelativistic limit, while the work reported in Ref. [18] treats the general the-
ory on various approximations starting from the relativistic Dirac equation with
a fully quantized fermionic field and all the way down to the nonrelativistic limit.
Earlier work on this topic has been published in Refs. [16, 130].
In this thesis, we focus on the nonrelativistic limit, in which the minimal-coupling
Hamiltonian, and the Power-Zienau-Woolley Hamiltonian are an appropriate de-
scription of the system. In this chapter, we follow Ref. [17] by outlining the specific
aspects of the theory of QEDFT, which is used in the following chapters of this the-
sis.
In QEDFT, the basic internal variables are an electronic variable and a field variable
of the electromagnetic field. These variables form a set of basic (internal) variables,
which has an one-to-one correspondence to a set of conjugated (external) variables.
Formulated differently: There exists a unique and bijective mapping between the
set of internal variables and the set of external variables for each initial state. This
unique mapping is the analogue of the one-to-one correspondence between the
electron density n(r) and the external potential vext(r) in ground-state DFT. We
refer the reader to Tab. 3 for an overview of different flavors of density-functional
theories.
The chapter is organized as follows: We first discuss the setup of the correlated

This chapter is partly based on the work reported in Ref. [18], where I contributed to the derivation
of the model system, performed all numerical simulations, and prepared the figures shown in the
manuscript.
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theory basic variable 1:1←→ conjugated variable Reference

DFT n0(r)
1:1←→ vext(r) [6]

TDDFT n(r, t) 1:1←→ vext(r, t) [10]

TDCDFT J(r, t) 1:1←→ Aext(r, t) [28]

QEDFT-M (J(r, t), A(r, t)) 1:1←→ (Aext(r, t), jext(r, t)) [17, 18]

QEDFT-L (n(r, t), qα(t))
1:1←→

(
vext(r, t), j(α)ext (t)

)
[17]

Table 3: Different levels of density-functional theories including reference papers. QEDFT-
M corresponds to the QEDFT framework in the momentum gauge, whereas QEDFT-
L refers to QEDFT in the length gauge.

electron-photon problem, then we focus on the equations of motion for the elec-
tromagnetic field variables and the electron variable. We use the equations of
motion to prove the one-to-one correspondence in the spirit of the original TDDFT

proof by Runge-Gross [10] (see Sec. 2.2.6). Afterwards, we setup the Kohn-Sham
system and discuss the mean-field approximation that corresponds to the Maxwell-
Schrödinger propagation of Sec. 2.3.7. In the last part of this chapter, we present
a first explicit example of a QEDFT calculation. For the Jaynes-Cummings-Hubbard
model, we compare the quality of the mean-field approximation to exact solutions.

5 .1 multicomponent theory

In this chapter, we consider a multicomponent system of ne interacting electrons
coupled to nm quantized electromagnetic field modes. The time evolution of an
arbitrary initial state |Ψ0〉 = |Ψ(t0)〉 of such quantum systems is given by the
time-dependent Schrödinger equation of Eq. 1. Here, the time evolution of the
quantum system is governed by the many-body Hamiltonian Ĥ(t). Throughout
this thesis we apply for correlated electron-photon problems the Power-Zienau-
Woolley Hamiltonian in the length gauge as given in Sec. 2.3.9. For completeness,
let us reformulate the Hamiltonian of Eq. 119 in the following way

Ĥ(t) =
ne

∑
i=1

(
− h̄2

2me
~∇2

i + vext(ri, t)

)
+

e2

4πε0

ne

∑
i>j

1∣∣ri − rj
∣∣

+
nm

∑
α=1

1
2

[
p̂2

α + ω2
α

(
q̂α −

λα

ωα
·R
)2
]
+

j(α)ext (t)
ωα

q̂α. (184)

In comparison to Eq. 119, we explicitly insert the electron kinetic energy operator
T̂e, and the electron-electron interaction operator Ŵee as given by Eq. 5 and Eq. 7,
respectively. Additionally, we introduce the collective index α = kλ that consists
of the wave number k and the two possible polarization directions of the electro-
magnetic field λ. Furthermore, we define the electron-photon coupling strength
λα = eAα(Rc)/

√
ε0. In Eq. 184, the electromagnetic field couples to the electrons

present in the system by the total electronic dipole moment R = ∑ne
i=1 r. This al-

lows us to define the α-th components of the Maxwell field operator Âα and the
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electrical displacement operator D̂α at the position of the charge center Rc by the
operators p̂α and q̂α that are defined by Eqns. 106-107. In the following, we fix Rc

to the origin, hence Rc = 0. The α-th component of the displacement field operator
D̂α and the vector field operator Âα can be calculated as follows

D̂α =
ε0ωαλα

e
q̂α, (185)

Âα =
λα

eωα
p̂α. (186)

In addition in Eq. 184, we further introduce an external current j(α)ext (t), which al-
lows to exclusively control the photon field.
In Eq. 184, the electron-photon interaction is incorporated into two terms: (i) the
explicit electron-photon interaction Hamiltonian, which can be formulated equiva-
lently by

Ĥint = −
nm

∑
α=1

ωαq̂α

∫
dr (λα · r) n̂(r), (187)

and (ii) in the electron self-energy term [131]

Ĥes = ∑
α

(λα ·R)2 /2, (188)

which is a dipole self-interaction term. In Eq. 187, the electron density operator
n̂(r) couples linearly to the photon displacement operator q̂α. This direct coupling
makes both quantities ideal candidates for the set of basic internal variables in a
density-functional scheme for QEDFT1. In Eq. 184, n̂(r) and q̂α also couple individ-
ually to external variables, the external potential vext(r, t) and the external current
field j(α)ext (t), respectively.
In general, it is possible to classify all solutions of Eq. 184 by the initial state |Ψ0〉
and the external potentials (vext, jext). Or stated differently, the Power-Zienau-
Woolley Hamiltonian contains an implicit functional dependence on these vari-
ables: Ĥ(t) → Ĥ([Ψ0, vext, jext] , t). Furthermore, the functional dependence of
the Hamiltonian is inherited by all possible solutions, namely the time-dependent
many-body wave function |Ψ(t)〉. Since all observables are calculated as expecta-
tion values of an arbitrary operator Ô(r) using the many-body wave function, they
can be also interpreted as functionals of the initial state and the external potentials
(vext, jext) as

O(r, t) = 〈Ψ(t)| Ô(r) |Ψ(t)〉 = O([Ψ0, vext, jext] , r, t). (189)

In particular, we find that also the basic internal variables can be seen as functionals
of the initial state and the external potentials

n(r, t) = n([Ψ0, vext, jext] , r, t) (190)

qα(t) = qα([Ψ0, vext, jext] , t). (191)

1 We note here that the electron density n̂(r) is a natural quantity of the electronic part of the system,
while the photon displacement operator q̂α is a mixed field-matter quantity, due to its connection to
the displacement field operator D̂α defined in Eq. 185. Please also see the appendix A.



80 qedft in the nonrelativistic limit

Every density-functional theory is based on the uniqueness and existence of a map-
ping between a set of basic variables (e.g. the electron density or the electronic
current) and a set of external potentials. If this mapping exists and is unique, we
can replace the functional dependence on the external potentials in Eqns. 189-191

by a functional dependence on the basic internal variables. This replacement pro-
cedure has different advantages, such as the possibility to simulate the dynamics
of an interacting system by a noninteracting Kohn-Sham system, which may lead
to a reduction in computational effort and makes the density-functional theory a
practical method for many-body calculations.
To complete the fundamental theory of QEDFT, we outline the one-to-one proof for
fixed initial state |Ψ0〉 as derived in Ref. [17, 18]

(
vext(r, t), j(α)ext (t)

)
1:1←→
Ψ0

(n(r, t), qα(t)). (192)

To this end, in the next section, we first discuss the equations of motion for the
quantized electromagnetic field and in a second step the equations of motion for
the electrons.

5 .2 equations of motion for the quantized electromagnetic field

In the following section, we focus on the photon part in the basic variables-
potential mapping. As basic variable for the photon field, we use the expecta-
tion value of the displacement operator qα(t), which couples in the last term of the
Hamiltonian in Eq. 184 to the external potential j(α)ext (t) as corresponding conjugated
variable. To establish the explicit connection between the conjugated variables, we
can use Heisenberg’s equation of motion as given in Eq. 42 and find

∂

∂t
qα(t) = pα(t), (193)

∂2

∂t2 qα(t) = ωαλα ·R(t)−ω2
αqα(t)−

j(α)ext (t)
ωα

, (194)

with the time-dependent total dipole moment R(t) =
∫

n(r, t) r dr. By calculating
the first time-derivative of the photon displacement operator, we recover the con-
nection between qα(t) and pα(t) known from quantum harmonic oscillators. We
find explicitly that pα(t) is the conjugated momentum of qα(t). The second time-
derivative in Eq. 194, yields a wave equation, as in the case of Maxwell’s equations.
It contains the effective inhomogeneity

j(α)s (t) = −ω2
αλα ·R(t) + j(α)ext (t), (195)

such that Eq. 194 can be rewritten as follows

∂2

∂t2 qα(t) = −ω2
αqα(t)−

j(α)s (t)
ωα

. (196)
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Eqns. 194 and 196 already yield a direct connection between the external potential
variable j(α)ext (t) and the set of internal basic variables (n(r, t), qα(t)). To this end,
Eq. 196 can be solved formally as in Eq. 151 by

qα(t) = qα(t0) cos(ωαt) +
q̇α(t0)

ωα
sin(ωαt)− 1

ω2
α

∫ t

t0

dt′ sin
(
ωα

(
t− t′

))
j(α)s (t′),

(197)

with the initial conditions qα(t0) and q̇α(t0). Thus, if (n(r, t), qα(t)) are given, we
can immediately construct the corresponding j(α)ext (t) using Eq. 194. Therefore, the
existence and uniqueness of the total mapping in Eq. 192 only depends on the
mapping vext(r, t) 1:1←→

Ψ0
(n(r, t), qα(t)). This mapping is investigated in the follow-

ing section.

5 .3 equations of motion in the electronic subsystem

At this point, we are able to prove the Runge-Gross theorem2 for the one-to-
one correspondence between the sets of conjugated variables as formulated in
Eq. 192. This means that we require that two different sets of external potentials
(vext(r, t), j(α)ext (t)) and (v′ext(r, t), j(α)′ext (t)) always lead to two different sets of basic
internal variables (n(r, t), qα(t)) and (n′(r, t), q′α(t)) under the condition that the
system evolves from a common initial state |Ψ0〉.
Using the Hamiltonian in Eq. 184, the second time-derivative of the electron den-
sity n(r, t) is equal to

∂2

∂t2 n(r, t) = −~∇ ·Q(r, t) +
1

me
~∇ ·
(

n(r, t)~∇vext(r, t)
)

+
nm

∑
α=1

1
me

~∇ · λα 〈Ψ(t)| n̂(r)
(
λα · R̂−ωαq̂α

)
|Ψ(t)〉 . (198)

The first line of this equation is in agreement with the equation of motion of purely
electronic problems discussed in Eq. 46. Eq. 194 and Eq. 198 allow us to proof the
one-to-one correspondence following the reasoning of the original Runge-Gross
proof [10] (Sec. 2.2.6) and the references [17, 18]. Let us assume that v′ext(r, t) 6=
vext(r, t) + c(t), and j(α)′ext (t) 6= j(α)ext (t) with the time-dependent function c(t) that
is constant in space. We furthermore assume time analyticity in vext and jext, such
that there exists a Taylor series for both quantities around the initial time t0 (Eq. 48).
This implies that there exists a kmin = k such that

∂k

∂tk

(
vext(r, t)− v′ext(r, t)

) ∣∣∣∣
t=t0

6= const or
∂k

∂tk

(
j(α)ext (t)− j(α)′ext (t)

) ∣∣∣∣
t=t0

6= 0.

(199)

If kmin = 0, we find for the electron density

∂2

∂t2

(
n(r, t)− n′(r, t)

) ∣∣∣∣
t=t0

=
1

me
~∇ ·
(

n(r, t0)~∇
[
vext(r, t0)− v′ext(r, t0)

])
,

(200)

2 The ground-state proof in analogy to the Hohenberg-Kohn proof discussed in Sec. 2.2.2 has been
worked out recently in Ref. [132].



82 qedft in the nonrelativistic limit

and for the photon displacement coordinate qα(t)

∂2

∂t2

(
qα(t)− q′α(t)

) ∣∣∣∣
t=t0

=
j(α)′ext (t0)

ωα
− j(α)ext (t0)

ωα
. (201)

We find that if one of the right-hand sides of Eqns. 200-201 is nonvanishing, then
either n(r, t + ∆t)− n′(r, t + ∆t) 6= 0 or qα(t + ∆t)− q′α(t + ∆t) 6= 0 for infinitesimal
small ∆t. Thus leading to different densities for t > t0. In the case of kmin = k > 0,
we have to apply the Heisenberg equation of motion k-times to find

∂k+2

∂tk+2

(
n(r, t)− n′(r, t)

) ∣∣∣∣
t=t0

=
1

me
~∇ ·
[

n(r, t0)~∇
(

∂k

∂tk

[
vext(r, t)− v′ext(r, t)

])] ∣∣∣∣
t=t0

,

(202)

and for the photon displacement coordinate qα(t)

∂k+2

∂tk+2

(
qα(t)− q′α(t)

) ∣∣∣∣
t=t0

=
∂k

∂tk

(
j(α)′ext (t)

ωα
− j(α)ext (t)

ωα

) ∣∣∣∣
t=t0

. (203)

Here, we used explicitly that ∂k

∂tk (n(r, t)− n′(r, t))
∣∣
t=t0

= 0, since kmin = k. Since,
Eq. 202 is equal to Eq. 52, we can apply the original Runge-Gross proof. Again
we find that if one of the right-hand sides is nonvanishing, either n(r, t + ∆t) −
n′(r, t + ∆t) 6= 0 or qα(t + ∆t) − q′α(t + ∆t) 6= 0 for infinitesimal small ∆t. This
finding concludes the proof. Since we used the same conditions on n(r, t) as in
Sec. 2.2.6, we also find that the initial density n(r, t) has to be reasonably well
behaved [10]. Interestingly, the conditions on qα(t) are slightly weaker, only time
analyticity on qα(t) and j(α)ext (t) is required.

5 .4 kohn-sham system in qedft

The one-to-one correspondence between the set of conjugated variables allows us,
in analogy to Sec. 2.2.7, to replace the originally interacting quantum problem by
a problem with different interaction operator Ĥint. A straightforward choice is a
noninteracting Kohn-Sham system3, which decouples the electronic problem from
the photonic problem. The Kohn-Sham system can be setup as follows

ih̄∂tφi(r, t) = − h̄2

2me
~∇2φi(r, t) + vs(r, t)φi(r, t), (204)

ih̄∂t |α, t〉 = 1
2
[
p̂2

α + ω2
αq̂2

α

]
|α, t〉+ j(α)s (t)

ωα
q̂α |α, t〉 , (205)

where the Kohn-Sham photon wave function is given by |α, t〉 = ∑n cn |n, t〉 and
|n, t〉 are the Fock number states of the α-th cavity mode. The Kohn-Sham electron
wave function Φs can be calculated using the single-particle orbitals φi(r, t) with the
help of Eq. 33. The initial electron density n(r, t0) and its time-derivative ṅ(r, t0)

have to be equal to the coupled many-body system. Formulated differently, we

3 In principle, different KS systems are possible. An alternative KS system could be chosen such that it
still contains specific parts of the electron-photon interaction explicitly.
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Figure 17: Kohn-Sham construction in QEDFT. The left-hand site shows the interacting
electron-photon system, while the right-hand side shows the noninteracting
Kohn-Sham system.

have to choose a Kohn-Sham initial state Φs(t0) such that it leads to the same
electron density and time-derivative on the electron density as the correlated many-
body initial state Ψ(t0). The same is also required for the photon displacement
operator, which means qα(t0) and q̇α(t0). However the Kohn-Sham initial state
Φs(t0) and the exact many-body initial state Ψ(t0) can be different in principle, if
the initial conditions on the densities are fulfilled. The equations of motion for the
Kohn-Sham system then read

∂2

∂t2 n(r, t) = −~∇ ·Q(s)(r, t) +
1

me
~∇ ·
(

n(r, t)~∇vs(r, t)
)

, (206)

∂2

∂t2 qα(t) = −ω2
αqα(t)−

j(α)s (t)
ωα

, (207)

where the Kohn-Sham electronic stress force operator is defined as

Q(s)(r, t) = − i
h̄
〈Φs(t)|

[
Ĵ, T̂e

]
|Φs(t)〉 . (208)

The Kohn-Sham potential vs(r, t) is defined as [17]

vs(r, t) = vext(r, t) + vHxc(r, t) + vMxc(r, t), (209)

where vHxc(r, t) is the Hartree-exchange-correlation potential and vMxc is the mean-
field-exchange-correlation potential. The photon external field j(α)s (t) is defined
by Eq. 195. By construction the Kohn-Sham system produces the same time-
dependent density n(r, t) as the interacting many-body problem. This allows us
to define vHxc(r, t) and vMxc(r, t) using Eqns. 194,198,206,207 by Sturm-Liouville
equations as

1
me

~∇ ·
(

n(r, t)~∇vHxc(r, t)
)
= ~∇ ·

(
Q(s)(r, t)−Q(r, t)

)
(210)

1
me

~∇ ·
(

n(r, t)~∇vMxc(r, t)
)
=

1
me

nm

∑
α=1

~∇ · λα 〈Ψ(t)| n̂(r)
(
λα · R̂−ωαq̂α

)
|Ψ(t)〉 ,

(211)
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where the electron stress force Q(r, t) is defined by Eq. 47. If there is no electron-
photon interaction present in the system, λα = 0, the mean-field-exchange-
correlation potential vanishes with vMxc = 0 and vHxc reduces to the Hartree-
exchange-correlation potential as defined by Eq. 56 in Sec. 2.2.7. For a single elec-
tron, where naturally no electron-electron interaction is present in the system, the
Hxc potential as defined in Eq. 210 does not vanish, vHxc 6= 0, since in general

〈Φs(t)|
[
Ĵ, T̂e

]
|Φs(t)〉 − 〈Ψ(t)|

[
Ĵ, T̂e

]
|Ψ(t)〉 6= 0,

due to different kinetic energy contributions between the interacting system and
the Kohn-Sham system. Nevertheless, we define the Hartree contribution in vHxc as
in Eq. 55 for purely electronic problems. To derive the mean-field approximation
to Eq. 211, we replace the correlated many-body state |Ψ(t)〉 by the Kohn-Sham
state |Φs(t)〉 and insert the projector |Φs(t)〉 〈Φs(t)|. We end up with the time-
dependent expectation values n(r, t), R(t), and qα(t) instead of the operators n̂(r),
R, and q̂α. Using this procedure, we obtain for the mean-field potential

vM(r, t) =
nm

∑
α=1

(λα ·R(t)−ωαqα(t)) λα · r. (212)

Furthermore, we can insert qα(t) directly using Eq. 197

vM(r, t) =
nm

∑
α=1

{
λα ·R(t) +

1
ωα

∫ t

t0

dt′ sin
(
ωα

(
t− t′

))
j(α)s (t′)

−ωαqα(t0) cos(ωαt)− q̇α(t0) sin(ωαt)
}

λα · r. (213)

Because in Eq. 213 only electronic operators are present, this reformulation allows
us to perform QEDFT calculations by only employing an electronic Kohn-Sham sys-
tem. This is sufficient, since we can then construct the photon displacement coor-
dinates qα(t) using Eq. 197 and all photon observables (as well as the electronic
observables) have a functional dependence on (n(r, t), qα(t)).

5 .5 numerical example for the model qedft

In this chapter, we explicitly perform the first numerical simulations in the frame-
work of QEDFT. We apply the Jaynes-Cummings-Hubbard (JCH) model, introduced
in Sec. 3.1.2, to demonstrate how a time-dependent QEDFT calculation can be setup.
We further study the most obvious question in the QEDFT framework: Is it necessary
to develop approximate exchange-correlation potentials for QEDFT, or is it already
sufficient to neglect these contributions and treat the correlated electron-field inter-
action by a mean-field ansatz, which is effectively a classical approximation as the
Maxwell-Schrödinger framework that is discussed Sec. 2.3.7. To assess this ques-
tion, we analyze the quality of the mean-field approximation in the model system.
We consider two different examples: In the first example, we choose a factorizable
initial state, where the electron is localized on one of the two sites and the photon
field is initially in vacuum. This setup corresponds to a true quantum limit, where
the single electron interacts with a small number of photons. In this setup, we
find regular Rabi oscillations. We further compare this setup in the weak- and the
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Figure 18: Exact results for the JCH Hamiltonian of Eq. 145 in the weak-coupling limit:
(a) Population inversion σx(t), (b) density σz(t), (c) exact Kohn-Sham potential
vs(t), and (d) Kohn-Sham population inversion σs

x(t).

strong-coupling limit. In the second example, we choose again a factorizable initial
state, where the electron populates the electronic excited state, while the field is in
a coherent state with an average number of four photons in the field. Since coher-
ent states are often seen as the most classical quantum states [75], we may naively
expect only small effects of the exchange-correlation potential for this setup. This
setup is in spirit of panel 3 in Fig. 4 of Ref. [93]. In this setup, we find the occur-
rence of collapses and revivals in the Rabi oscillations.
The theory developed in the previous sections can be directly applied to the Jaynes-
Cummings-Hubbard Hamiltonian of Eq. 145. The numerical parameters in the
calculation are chosen according to typical values in the literature: tkin = 0.5,
ω = 1, λ = (0.01, 0.1), while we set the external fields to zero jext(t) = vext(t) = 0.
Here all values are given in atomic units. Since tkin = ω/2, the electronic excita-
tion from the ground state |g〉 to the excited state |e〉 is in resonance to the field
mode ω. We can identify the two basic variables, which are the photon coordi-
nate q(t) =

√
1/2ω

〈
â† + â

〉
and the difference in the electronic on-site density

σz(t). The latter is the basic variable in the JCH-model, since the electron density
n(r, t) has only two degrees of freedom on a two-site model, while one of these
two degrees can be fixed by the normalization condition

∫
dr n(r, t) = 1 in the

case of single-electron problems. The Kohn-Sham system is given in analogy to
Eq. 204-205 by

ih̄∂t |xs, t〉 = (−tkinσ̂x + vs(t)σ̂z) |xs, t〉 , (214)

ih̄∂t |ns, t〉 = 1
2
[
p̂2 + ω2q̂2] |ns, t〉+ js(t)

ω
q̂ |ns, t〉 , (215)
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Figure 19: Exact potentials and densities (solid black line) compared to mean-field poten-
tials and densities (dashed red line) in the case of regular Rabi oscillations in
the weak-coupling limit λ = 0.01: (a) Kohn-Sham potential vs(t) and (b) density
σz(t). (c) Kohn-Sham potential js(t) and (d) photon displacement coordinate
q(t).

with the Kohn-Sham potential vs(t) = vMxc(t) + vext(t), where the first part is the
mean-field-exchange-correlation potential and the second part is the external po-
tential. The wave function |xs, t〉 is defined on an electronic two-site basis with the
basis functions |1〉 and |2〉, where the electron is located on site 1, or 2, respectively.
The photon wave function |ns, t〉 is defined on the photon number states.
In the first numerical example, we study the time evolution of a coupled many-
body system and the corresponding uncoupled Kohn-Sham system. Both systems
share the same initial state: |Ψ(t0)〉 = |Φ(t0)〉 = |1〉 ⊗ |0〉 . |1〉 is an electronic state,
where the electron populates one of the two sites, while |0〉 refers to the vacuum
photon state. The exact results of the propagation in the correlated many-body sys-
tem are shown in Fig. 18. In panel (a) of Fig. 18, we plot the expectation value of σ̂x

in time. This observable corresponds to the kinetic energy contribution in the JCH-
model. However, σx is also known as the population inversion, since σx = [−1, 1]
and the value σx = −1 corresponds to the electron populating the exited state
|e〉 = 1√

2
(|1〉 − |2〉), while σx = 1 corresponds to the electron populating the elec-

tronic ground state |g〉 = 1√
2
(|1〉+ |2〉). For the initial state |1〉 = (|g〉+ |e〉) /

√
2,

we find σx(t0) = 0. From the population inversion, we observe regular Rabi os-
cillations between the values 0 and 1. In the weak-coupling limit, the frequency
of these Rabi oscillations is connected to the electron-photon coupling strength λ.
In panel (b), we also find regular Rabi oscillations for the density σz(t) as a slower
oscillation in the envelope of the function. In addition, we observe a fast oscillation.
The frequency of this oscillation corresponds to the electron kinetic energy. When
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Figure 20: Exact potentials and densities (solid black line) compared to mean-field poten-
tials and densities (dashed red line) in the case of regular Rabi oscillations in
the strong-coupling limit λ = 0.1: (a) Kohn-Sham potential vs(t) and (b) density
σz(t). (c) Kohn-Sham potential js(t) and (d) photon displacement coordinate
q(t).

the envelope function tends to zero, we observe the neck-like features typical for
Rabi oscillations [133]. Having the exact density σz(t) at hand, we can perform an
explicit fixed-point construction of the exact Kohn-Sham potential vs as explained
in Sec. 3.2.8.1. For the two-site JCH model, an analytic inversion formula [134, 135]
exists, which we use to test the accuracy of the fixed-point method. The exact
inversion formula is given by

vs(t) = ±
σ̈z(t) + 4t2

0σz(t)

2
√

4t2
0 (1− σz(t))

2 − σ̇z(t)
, (216)

where the choice of the sign ± depends on the initial state [135]. However in gen-
eral, the analytic form of the inversion formula is unknown, while the fixed-point
construction is a more general method. We plot the corresponding vs in panel
(c) of Fig. 18. Here again, we find fast oscillations in vs. Having the exact vs at
hand, we perform an explicit Kohn-Sham propagation of the systems in Eq. 214-
215. By construction this KS system leads to the same density as the many-body
system shown in (b), but leads to a different Kohn-Sham population inversion
σs

x(t) = 〈Φ(t)| σx |Φ(t)〉 shown in (d). The exact interacting population inversion
σx(t) = 〈Ψ(t)| σx |Ψ(t)〉 is a functional of the electron density σz(t), the interacting
initial state Ψ(t0), and the Kohn-Sham initial state Φ(t0).
In real KS calculations, the exact KS potential remains unknown. Thus, we have to
rely on approximations for the exchange-correlation potential. As a first approxi-
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Figure 21: Exact results for the JCH Hamiltonian in the weak-coupling limit: (a) Population
inversion σx(t), (b) density σz(t) and (c) exact Kohn-Sham potential aKS(t), and
(d) the Kohn-Sham population inversion σS

x (t) in the case of a coherent initial
state (the setup is in spirit of panel 3 in Fig. 4 in Ref. [93])

mation we can regard the mean-field approximation. From Eq. 212, we can derive
for the JCH model the simple expression

vM(t) = λ
√

2ω q(t). (217)

In the mean-field approximation, we completely neglect any exchange-correlation
contribution to vMxc. For the JCH model, this approximation is related to a coupled
Maxwell-Schrödinger propagation (Eq. 75-78) discussed in Sec. 2.3.7. For the JCH

model, we expect the mean-field approximation to become exact in the limits λ→ 0
and λ→ ∞.
In Fig. 19 and Fig. 20, we assess the quality of the mean-field approximation in
the weak and strong-coupling limit. Here, the exact densities and exact Kohn-
Sham potentials shown in black are compared to mean-field densities and mean-
field potentials shown in red, which were calculated in a self-consistent mean-field
propagation. Already in the weak-coupling limit shown in Fig. 19, we find large
differences. The mean-field potentials in panel (a) and (c) are qualitatively different
compared to the exact Kohn-Sham potentials in this resonant setup. Already at the
initial time, the exact vs(t0) 6= vM(t0). This difference is then also inherited by the
density observables σz(t) shown in panel (b) and q(t) shown in panel (d), causing
a difference in the oscillation frequency. Here, the mean-field density oscillates
slower than the exact density. The strong-coupling limit is shown in Fig. 20. In this
limit, the dynamics show features beyond the rotating-wave approximation. Here,
we observe a nonregular feature in the exact Kohn-Sham potential around t = 30.
This feature is not captured by vM(t).
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Figure 22: Exact densities and potentials (solid black line) compared to mean-field densities
and potentials (dashed red line) in the case of a coherent initial state: (a) Kohn-
Sham potential vs(t) and (b) density σz(t). (c) Kohn-Sham potential js(t) and (d)
density q(t).

In the second example, we again choose a factorizable initial state, which consists
of the electronic ground state |g〉 and a coherent photon state with mean-photon
occupation of 4. This example is in the spirit of the calculation in panel 3 shown in
Ref. [93]. In our case, we use the following initial states

|Ψ0〉 = |Φ0〉 = |g〉 ⊗ |α〉 . (218)

For the Kohn-Sham initial state, we choose the exact many-body initial state. Co-
herent states [136, 137] in single field modes can be written as

|a〉 =
∞

∑
n=0

fn(α) |n〉 , with fn(α) =
αn
√

n!
exp

(
−1

2
|α|2

)
, (219)

where fn(α) is a Poisson distribution, and in our example α2 = 4. Thus, for the
initial states, we have 〈Ψ(t0)| â† â |Ψ(t0)〉 = 〈Φ(t0)| â† â |Φ(t0)〉 = 4. In Fig. 21, we
show the exact many-body results in the weak-coupling limit with λ = 0.01. In this
example, we find that the population inversion σx(t) in panel (a) oscillates with a
slower frequency compared to the density σz(t) in panel (b). In panel (a), we find
the Jaynes-Cummings collapse of Rabi oscillations at t = 250, which is followed by
a quiescence of the oscillation up to t = 500. After t = 800, we find the revivals of
the Rabi oscillations. In contrast, the density σz(t) oscillates rather rapidly during
the quiescence time. Therefore, we can conclude that during the quiescence in the
population inversion, the system is not at rest, as it may seem from panel (a), but
there are dramatic changes in the density σz(t). The exact KS potential is shown in
panel (c). It can be used to construct the exact density using a Kohn-Sham scheme.
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In panel (d), we find that the Kohn-Sham population inversion σs
x(t) is again dif-

ferent to the exact population inversion σx(t). The exact results are contrasted to
the mean-field results in Fig. 22. We find that for long propagations of times up
to t = 2500, the mean-field approximation is not a very accurate approximation to
the exact dynamics. This means that even in the limit, where the photon field is ini-
tially in a coherent state, which resembles a classical state in quantum mechanics,
the mean-field approximation is not a sufficient approximation and more advanced
approximations are needed to make more accurate predictions [138, 139].

5 .6 summary

In this section, we showed the basic theory of QEDFT in the dipole coupling. We out-
lined the general theory and focused on the one-to-one correspondence between
the set of internal variables and external variables. This correspondence can then
be used to setup a Kohn-Sham scheme, which allows for numerically feasible cal-
culations, if approximations for the meanfield-exchange-correlation (Mxc) potential
are applied. As a first approximation, we considered explicitly the quality of the
mean-field potential that resembles a Maxwell-Schrödinger propagation scheme.
In all considered numerical examples in this section, we find that the classical de-
scription fails to treat the limit of low-photon numbers correctly. This indicates
the need to develop more sophisticated approximations for the xc potential. One
possibility here is the OEP method, which will be the focus of chapter 7.



6
E X A C T Q E D F T K O H N S H A M P O T E N T I A L S I N R E A L S PA C E

In this chapter, we apply the framework of QEDFT discussed in Ch. 5 to a cavity-
GaAs model system in real space, which consists of a trapped single electron cou-
pled to a quantized electromagnetic field mode as discussed in Sec. 3.1.3. The
setup is a resonant setup, since the cavity mode is tuned in resonance to the first
electronic transition. This model enables us to study the real-space features of the
exact Mxc potential in correlated electron-photon systems. To construct the full
KS potential vs(r, t), we use the fixed-point inversion scheme, which is discussed
in Sec. 3.2.8.2. Comparing the exact KS potential to the corresponding mean-field
potential vM(r, t) allows us to identify significant beyond mean-field features in
vs(r, t) and assess in which situations we may expect them to occur. As in the case
of charge-transfer processes in traditional TDDFT [141, 142], we find also for the
case of correlated electron-photon interactions peak and step structures in vs(r, t),
which depend nonlocally in time and space on the electron density. We observe
rich peak and step structures, which can be accounted fully to the correlated light-
matter interaction in its complete quantum-mechanical nature. These features are
independent of the model and can be expected also for general electron-photon
coupled situations.
This chapter is organized as follows: In the first part, we study the ground state of
the cavity-GaAs model in the weak-coupling regime and the strong coupling regime
and calculate the corresponding ground-state KS potential. Then, in the second
part, we study three time-dependent examples with different initial states and the
time-dependent KS potential. In the last part, we apply the Born-Oppenheimer
framework originally developed for electron-nuclear problems as discussed in
Sec. 2.1.2 to the cavity-GaAs model and calculate the emerging BO surfaces. We
then use these surfaces to analyze the dynamics of the electron-photon system.

6 .1 kohn-sham system of the cavity-gaas model

To construct the Kohn-Sham system of the cavity-GaAs model, we can directly
apply Eqns. 204-205. Using the fixed-point iteration formula [110] of Eq. 177,
we are able to construct the full KS potential. Since in this chapter, we treat
a single-electron problem, we can consider the effect of the dipole self-energy
ves = ∑α (λα · r)2 /2 emerging from Eq. 188 exactly. This means that in the Mxc

potential only contributions from the explicit electron-photon interaction Hamil-
tonian Ĥint of Eq. 187 remain. This allows us to define the full effective KS

potential as: vs(r, t) = vext(r) + ves(r) + vMxc(r, t). Since we treat the interac-
tion in dipole coupling, we can work out the mean-field potential analytically as
vM(r, t) = −ωαqα(t)λα · r, which corresponds to the well-known dipole-coupling
term, if the field is treated classically. We furthermore attribute the effects of the

This chapter is based on the work reported in Flick et al. [140], which has been performed in close
collaboration with all coauthors. I contributed to all aspects of the work.
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Figure 23: Panel (a) shows the ground-state density, and panel (b) the vMxc(r), both in
weak-coupling (λα = 1.68 · 10−3 meV1/2/nm). Panel (c) shows the ground-state
density, and panel (d) vMxc(r), both in strong-coupling (λα = 0.134 meV1/2/nm),
(e) diagonal and (f) antidiagonal cuts of vMxc(r) for weak coupling (blue) and
strong coupling (red). The white arrow in (a) indicates the polarization direction
of the photon mode.

difference of the Kohn-Sham electronic stress force operator and the correlated
electronic stress force operator Q(s) −Q in Eq. 210 to vMxc.

6 .2 numerical results in the ground state

We start our discussion with the ground-state calculations for the cavity-GaAs

model. The exact ground state is accessible using exact diagonalization as dis-
cussed in Sec. 3.2.5. The implemented fixed-point inversion scheme to obtain the
exchange-correlation potential vMxc can be benchmarked in the static case by com-
paring against the exact inversion formula from Eq. 39. The ground-state results
are shown in Fig. 23. In panel (a), we show the ground-state density in the case
of weak coupling (λα = 1.68 · 10−3 meV1/2/nm). We find a slight prolongation
perpendicular to the polarization direction εα = (ex + ey) of the photon field. The
polarization direction is indicated by the white arrow. In Fig. 23, we compare the
density in the weak-coupling limit to the density in strong-coupling regime for
λα = 0.134 meV1/2/nm, which is shown in (c). When we approach the strong-
coupling regime, we find a splitting of the ground-state electron density along the
polarization direction of the photon mode. In the Kohn-Sham system, the pro-
longation and the splitting of the density has to be modeled by the Mxc potential.
Therefore for vMxc(r), we find in (b) for weak-coupling and (d) for strong-coupling
a strong peak in the middle of the cavity, which becomes stronger for stronger λα.
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weak coupling strong coupling

λα 1.68 · 10−3 meV1/2/nm 0.1342 meV1/2/nm〈
â†

α âα

〉
1.18 · 10−3

3.19

γ 0.999764 0.4919

Q 3.88 · 10−4
0.4567

Table 4: Ground-state properties of the cavity-GaAs model, photon occupancy
〈

â†
α âα

〉
, pu-

rity γ and Mandel Q-parameter.

In (e) and (f), we show diagonal and antidiagonal cuts through the Mxc potential.
We find vMxc(r) three orders of magnitudes higher in the strong-coupling regime,
than in the weak coupling regime, for the considered parameters. The strong peak
in the middle of the cavity pushes the density apart and induces the splitting. It
is not possible to generate such a charge splitting by a classical static field in the
dipole coupling. Thus, already here we find important beyond mean-field contri-
butions.
Next, we investigate the origin of the charge splitting in the strong-coupling regime.
In Fig. 24, we plot the lowest six exact eigenenergies of the full correlated electron-
photon system. For small coupling, we find that the ground-state energy is well
separated from the energy of the first excited state. The ground-state density starts
to split, when the ground-state energy comes close to the first excited-state energy.
This is also illustrated in Fig. 25, where we plot different densities from the inter-
mediate coupling regime (λα = 0.0671 meV1/2/nm) to the strong-coupling regime
(λα = 0.1342 meV1/2/nm). In the strong-coupling regime the electron density
changes dramatically. While in the weak-coupling regime the electron density is
dominated by contributions, which can be associated with the ground-state density
for the cavity-free case, we find in the strong-coupling regime that contributions,
which are excited state densities in the cavity-free case become dominant contribu-
tions to the electronic ground-state density. These contributions cause the splitting.
The excited-state energies in Fig. 24 are also worth analyzing. We find for λα = 0
a three-fold degeneracy in the first-excited state. This degeneracy is due to the
two-dimensionality of the electronic problem and the additional dimensionality
introduced by the photon mode. The lower polariton branch (blue) reduces its en-
ergy until it merges with the ground-state energy in the strong-coupling regime.
Besides the eigenenergies and the densities, we also calculated the photon-number
expectation value

〈
â†

α âα

〉
, the purity γ and the Mandel Q-parameter of the interact-

ing problem. The results are shown in Tab. 4. While we find a very low photon
occupation in the ground state for the weak-coupling, which is 1.18 · 10−3, we ob-
serve in the strong coupling a significant number of photons, i.e. 3.19. The purity
γ = Tr(ρ2

ph) is a typical measure for the correlation in the system. Using the purity,
we can quantify the electron-photon correlation. A value γ ∼ 1 indicates a system,
which is close to a factorizable system, while a stronger deviation from 1 indicates
a system, which is nonseparable [143]. In the weak-coupling, we find γ = 0.999764,
while in the strong-coupling, we find γ = 0.4567. This strong deviation from the
value 1 indicates a high electron-photon correlation in the ground state for strong-
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Figure 24: Exact ground-state (black) and excited-state energies (blue, red, yellow, cyan,
and green) for the six lowest states in the correlated electron-photon problem
for the cavity-GaAs model.

coupling. A second parameter, which we evaluate is the Mandel Q parameter [144].
It is defined by

Q =

〈
â†

α â†
α âα âα

〉
−
〈

â†
α âα

〉2

〈â†
α âα〉

(220)

and measures the deviation of the field distribution from the Poisson distribution.
A value Q = 0 corresponds to the Poisson distribution, hence a classical light
field. In coherent pulses, photons reach the detector in random intervals. Q > 0
corresponds to photon bunching, which means that photons reach the detector
in bundles. Formulated differently, if the detector detects a photon, then it is
highly probable that a second photon will be detected shortly afterwards. Thermal
sources, such as black body radiation emit bunched light. In contrast, Q < 0 corre-
sponds to the nonclassical behavior of photons and is referred to as antibunching.
Here, photons reach the detector in intervals, which are larger than the random
intervals of coherent light. We find for the weak-coupling Q = 3.88 · 10−4 and for
the strong-coupling Q = 0.4567. In particular in the strong-coupling regime, we
observe strong electron-photon correlation and a strong deviation of the photon
field from a coherent distribution. Additionally, in the weak- as well as in the
strong-coupling regime, we find peaks in the Mxc potential, which become more
dominant for stronger coupling. This peak leads to a split in the electron density
for the ground state in the strong coupling regime.
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Figure 25: Transition of the ground-state density from the intermediate coupling regime
(λα = 0.0671 meV1/2/nm) to the strong-coupling regime (λα = 0.1342
meV1/2/nm).

6 .3 time-dependent results using different initial states

In this section, we consider the time-dependent situation to assess the dynamical
features present in the time-dependent Mxc potential vMxc(r, t). As initial states,
we choose three different examples: In the first example (i), we use a factorizable
initial state, which consists of the electronic ground state |g〉 and a coherent field
state. The coherent state of the photon field has initially

〈
â†

α âα

〉
= 4. The sec-

ond example (ii) considers also a factorizable state, which consists of the electronic
ground state |g〉 and for the field state, we pick a linear superposition between
the vacuum and the one-photon state: 1/

√
2 (|0〉+ |1〉), thus

〈
â†

α âα

〉
= 0.5. In

the third example (iii), we choose a nonfactorizable initial state, namely the cor-
related electron-photon ground state obtained as discussed in Sec. 6.2. This state
is then additionally driven by an external classical laser field. For all three ini-
tial state, we choose the electron-photon coupling strength in the weak-coupling
regime, λα = 3.36 · 10−3 meV1/2/nm. All examples are propagated using the Lanc-
zos propagator with (i) 160000, (ii) 360000, and (iii) 20000 time steps with a time
step of ∆t = 0.146 fs. We start our discussion with the first example. Since the
initial state is a factorizable state, we choose the Kohn-Sham initial state to be
the electronic part of the exact many-body initial state. The results are shown in
Fig. 26 and Fig. 27. In Fig. 26 (a), we show the time evolution of the dipole moment
εα · r = 〈x + y〉. The mean-field results are shown in red, while the exact results are
shown in black. Since the photon field is initially in a coherent state, the dipole mo-
ment in the mean-field propagation is for small times, between 0 ps and 6 ps, very
close the exact propagation. The dipole moment starts to deviate after t = 6 ps.
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Figure 26: Dynamics of the correlated electron-photon system. Coherent state as initial
state for the photon mode: (a) Exact (black) vs. mean field (red) dipole moment
〈x(t) + y(t)〉, (b) Mandel Q(t) exact (solid black) vs. mean field (dashed red)
and purity γ exact (dashed black) vs. mean field (dashed-dotted red). The inset
in panel (b) shows Qexact(t) and QMF(t) between 3 ps and 5 ps.

In Fig. 26 (b), we compare the Mandel Q parameter and the purity γ. As in panel
(a), until t = 6 ps, we find that both the purity γ and the Mandel Q parameter
show good agreement between the mean field and the exact propagation. After
t > 6 ps, the mean-field results start to deviate drastically from the exact solution.
In the case of the Mandel Q parameter, we find the Kohn-Sham photon field by
construction staying in a coherent field QMF(t) = 0, while the exact Q(t) < 0 for
t up to t = 6 ps, which indicates nonclassical behavior in the photon field. This
is shown in the inset of Fig. 28 (b). After t = 6 ps, the Mandel parameter turns
positive, indicating photon bunching and the purity γ deviates strongly from 1,
which means that the exact propagation is after that time in a nonfactorizable state.
After this time, we can expect beyond mean-field contributions in the Mxc potential,
since larger features may be necessary in the KS potential to correctly reproduce
the correlated many-body density n(r, t) by the auxiliary noninteracting KS system.
At these times, memory effects become dominant and peaks and steps appear in
the Kohn-Sham potential vMxc. For the first example, we plot the Mxc potential,
the diagonal cuts through vMxc and the corresponding density for four different
time (t = 0, 3.67, 4.53, 7.29 ps) in Fig. 27. We find that for time t < 6 ps the mean-
field contribution is the dominant contribution to vMxc, as can be seen in Fig. 27

(a). Nevertheless already in this time-interval, we find large beyond mean-field
contributions at the turning points of the time evolution of the dipole moment. At
these times, we find several steps and peaks, as shown in Fig. 27 (d) and (g) which
can be attributed to the nonclassical electron-photon interaction. After the time
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Figure 27: Dynamics of the correlated electron-photon system. Coherent state as ini-
tial state for the photon mode: In (a), (d), (g) and (j), Mxc potential at
t = 0, 3.67, 4.53, 7.29 ps with the corresponding diagonal cuts in (b),(e),(h),(k)
and the corresponding time evolution of the electron density in (c),(f),(i),(l).

t = 6 ps, the beyond mean-field contributions become the dominant contributions
and a nonvanishing peak in the center of the cavity appears as shown in Fig. 27

(j). The diagonal of the KS potential is shown in Fig. 27 (b), (e), (h), and (k). These
beyond mean-field contributions are then also responsible for the deviation in the
observables of the mean-field propagation compared to the exact propagation. In
Fig. 27 (c), (f), (i), and (l), we show the time evolution of the exact density and
identify oscillating charge transfer processes between the lower left and the upper
right section (Fig. 27 (f) and (i)). Next, we analyze the second example. Here, we
choose again a factorizable initial state. It consists of the electronic ground state
and for the photon field of a superposition of the lowest two Fock number states
(vacuum and one-photon state). The time-dependent results are shown in Fig. 28

and Fig. 29. In Fig. 28 (a), we compare the dipole moment of the exact propagation
to the mean-field propagation. While in the first example, we choose a coherent
state, which resembles a classical state in the quantum limit, we find that in this
example for small time, i.e. t = 0 ps to t = 2 ps, also the mean-field approximation
is reliable. In this time interval in the exact vMxc, the mean-field contribution is the
dominant contribution (Fig. 29 (a)). In this example, we find after the first turning
point in the dipole moment a peak appearing in the Mxc potential shown in Fig. 29

(d). This peak persists in the following time evolution and causes deviations in the
dipole moment. We find that the mean-field dipole moment significantly differs
from the exact dipole moment, i.e. the mean-field dipole moment has a lower am-
plitude compared to the exact dipole moment at t ∼ 20 ps. Later in time, we find
peaks and steps appearing in vMxc shown in Fig. 29 (g) and (j), which have a high
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Figure 28: Dynamics of the correlated electron-photon system. Superposition of two Fock
number states as initial state for the photon mode: (a) Exact (black) vs. mean
field (red) dipole moment 〈x(t) + y(t)〉, (b) Mandel Q(t) exact (solid black)
vs. mean field (dashed red) and purity γ exact (dashed black) vs. mean field
(dashed-dotted red).

amplitude. The peak and step structure of the KS potential becomes clearly visible
in the diagonal cuts in Fig. 29 (b), (e), (h), (k). In Fig. 28 (b), we compare the Man-
del Q(t) parameter and the purity γ in the exact with the mean-field propagation.
After t = 2 ps, both parameters show the breakdown of the mean-field description.
The purity indicates an oscillation between a factorizable and a nonfactorizable
system, since it oscillates between 1 and 0.8 and the Mandel Q parameter shows
strong nonclassical behavior in the field mode. The density shown in Fig. 29 (c),
(f), (i), (l)) shows oscillations.
In the last example, we choose the initial state to be a nonfactorizable state and
pick the correlated ground state of the electron photon system as initial state in the
exact propagation. For the Kohn-Sham system, we choose an initial state, which is
consistent with the initial conditions as discussed in Sec. 6.1. Since we only treat a
single electron problem, we can use the exact correlated ground-state density n0(r)
to calculate the necessary initial state for the Kohn-Sham system as follows

Ψs(r, t0) =
√

n0(r). (221)

The system is then driven by an external laser field of the form vL(rt) = E(t) · r,
which is added to the Hamiltonian. For the electric field amplitude, we choose
E(t) = E0 exp(−(t− t0)2/σ2) sin(ωt) and further choose the following parameters
t0 = 0.29 ps, σ = 0.058 ps, h̄ω = 1.41 meV and E0 = 0.23 meV/nm. The results
of the time propagation are shown in Fig. 30 and Fig. 31. Overall, we find for this
example, that the mean-field propagation performs quite well. In Fig. 30 (a), we
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Figure 29: Dynamics of the correlated electron-photon system. Superposition of two Fock
number states as initial state for the photon mode: In (a), (d), (g) and (j), Mxc
potential at t = 0, 1.56, 13.92, 37.83 ps with the corresponding diagonal cuts in
(b),(e),(h),(k) and the corresponding time evolution of the electron density in (c),
(f), (i), (l).

show the laser pulse applied to the system. It has its highest amplitude at t = 0.3 ps.
In Fig. 30 (b), we compare the mean field to the exact dipole moment. Both agree
well. The projections on the electronic eigenstates are shown in Fig. 30 (c). We see
dominantly an excitation through the external laser pulse from the ground state to
the first-excited state. In Fig. 30 (d) the Mandel Q(t) and the purity γ are shown.
We find for this example that the system remains close to a factorizable system
and no large contributions to nonclassical behavior is found in the field mode. The
dynamics of the system is mainly driven by the external laser pulse. Although we
find beyond mean-field contributions in the KS potential (Fig. 31 (a), (c), (e)), these
contributions are rather small compared to the applied external field. The external
field drives the density (Fig. 31 (b), (d), (f)) back and forth.

6 .4 interpretation of the peak and step structures in qedft

The nature of the peaks and steps found in this chapter for correlated electron-
photon problems in the ground state and time-dependent cases is reminiscent of
peaks and steps, which were also found in electron DFT [42]. For the ground-state
KS potential it was shown that in the dissociation limit of molecules a peak appears
between two atoms, originating from the kinetic correlation term to counterbalance
the electronic Coulomb interaction [145]. A step in the KS potential is found, if dif-
ferent ionization potentials between the individual fragments occur. The value
of this step is such that it adjusts these two potentials [42]. In TDDFT, dynami-
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Figure 30: Dynamics of a correlated electron-photon system with nonfactorizable initial
state and driven by an external laser pulse: Initially the system populates the
combined electron-photon ground state. (a) shows the electric field of the ap-
plied external laser pulse, (b) shows the exact (black) and classical (red) dipole
moment. (c) shows the projections of the time-dependent wave function on the
first three electronic eigenstates. (d) shows the evolution of the Mandel Q(t)
parameter and purity γ for exact (black) and classical approximation (red).

cal steps and peaks occur in nonequilibrium dynamical situations [141], such as
charge transfer [142], and are missed by even the exact adiabatic approximation.
In Ref. [146] it was shown that in TDDFT the kinetic contribution is often but not
always responsible for these peak and step structures and for the ground state, it is
shown that step and peak structures appear, whenever more than one determinant
is necessary to describe the interacting many-body state.
We can in particular connect to standard electron DFT using the latter reasoning.
Also in the time-dependent cases for electron-photon interactions presented in this
chapter, we find that peaks and steps are arising, if the purity γ deviates from 1. A
value of 1 indicates a factorizable system, which can be factorized into an electronic
and a photonic wave function. If γ deviates from 1, then we need more than only a
single factorizable state to correctly describe the interacting system. In these cases
also the KS potential acquires a peak (and step) structure. Whether this structure
originates from kinetic contributions or from contributions, which are explicitly
from the electron-photon interaction could be explored in a future work. Since we
use the fixed-point algorithm as presented in Eq. 177, the current implementation
can not distinguish which individual part of Eq. 198 is responsible for the peak
and step structure in the KS potential. However, this identification can be done in
principle by using the exact many-body wave function.
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Figure 31: Dynamics of a correlated electron-photon system with nonfactorizable initial
state and driven by an external laser pulse: Initially the system populates the
combined electron-photon ground state. (a),(c),(e) shows the vMxc potential for
different times, (b),(d),(f) shows the electron density at the corresponding times.

6 .5 validating the numerical fixed-point algorithm

To validate the numerical implementation of the fixed-point algorithm, we can
compare our numerical results for the ground state to the results obtained from
exact diagonalization. Using exact diagonalization, we can also construct with
Eq. 39 the exact Kohn-Sham potential and compare to the results obtained using
the fixed-point inversion. Defining

δn(k)(r) = n([v(k)], r)− n(r)), (222)

where n([v(k)], r) is the ground-state electron density obtained by the fixed-point
iteration after k iterations and n(r) is the ground-state density obtained by exact
diagonalization. In Fig. 32 (a) and (b), we plot the spatial resolution of δn(r) for
the results discussed in Sec. 6.2. In Fig. 32 (a), we plot δn(r) after convergence
with λα = 1.68 · 10−3 meV1/2/nm shown in Fig. 23 (a) and (b) shows δn for the
calculation from Fig. 23 (b) with λα = 0.134 meV1/2/nm after convergence. We find
that the error at each grid-point is very small and has the order of O(10−19), which
is below numerical double precision. The 1-Norm of δn(r) is plotted in Fig. 32

(c). Here we find a quasi-exponential reduction of the error for each iteration step
(Note the logarithm scale of the y-axis in the plot). In both runs, we need 13

iterations to meet the convergence criteria (see Sec. 3.2.8.2). In the plot, we see
after 5 iterations a drastic drop in the error. This reduction is due to the employed
DIIS step, which we use for each individual fixed-point iteration at each time-step
only once, exactly after 5 iterations.
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Figure 32: (a) shows δn for the calculation from Fig. 23 (a) with λα = 1.68 · 10−3

meV1/2/nm), (b) shows δn for the calculation from Fig. 23 (b) with λα = 0.134
meV1/2/nm) and (c) shows the 1-norm of δn at each iteration step of the fixed-
point iteration.

6 .6 interpretation of the electron-photon dynamics in terms of

bo surfaces

In this section, we analyze the many-body dynamics of the first example discussed
in Sec. 6.3, in terms of BO surfaces. In electron-phonon problems, which are treated
in Ch. 4, typically adiabatic BO surfaces are calculated. Fig. 11 in Ch. 4 shows an
example of such adiabatic surfaces. In this case, the acoustical and optical phonon
frequencies are much smaller than the electronic excitation frequency which is the
adiabatic limit.
Nevertheless in this chapter, we treat an electron-photon problem, where the pho-
ton frequency is in resonance to the first electronic transition. We first define as in-
termediate regime the weak-coupling regime, where the difference in the electronic
energies is in the order of the photon frequency as can be seen in Fig. 24. Next, we
define as antiadiabatic limit the strong-coupling regime, where the difference in
the electronic eigenenergies are smaller than the photon frequency. This behavior
of the electronic system is due to the dipole self-interaction, which renormalizes
the electronic eigenenergies and can be also seen from Fig. 24. In this section, we
use the Born-Oppenheimer factorization originally developed for electron-nuclear
problems to analyze the dynamics in electron-photon systems. Therefore, we con-
sider the electronic BOA Hamiltonian to Eq. 184, where we neglect the photon
kinetic energy contribution 1

2 p̂2
α and replace the operator q̂α by the coordinate qα.

The electronic BOA Hamiltonian then reads

ĤBO({qα} , t) =
ne

∑
i=1

(
− h̄2

2me
~∇2

i + vext(ri, t)

)
+

e2

4πε0

ne

∑
i>j

1∣∣ri − rj
∣∣

+
nm

∑
α=1

ω2
α

2

(
qα −

λα

ωα
·R
)2

+
j(α)ext (t)

ωα
qα, (223)
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Figure 33: The Born-Oppenheimer surfaces of the correlated electron-photon problem. (a)
show the surfaces for λα = 3.36 · 10−3eV−1/2/nm, which is equal to the inter-
acting strength of the first example in Sec. 6.3. Panel (b) shows the surfaces for
λα = 0.134eV−1/2/nm, which is equal to the strong-coupling example in Sec. 6.2.
The axis denotes the displacement of the photon mode qα in arbitrary units.

where the displacement field variables qα are reduced to classical parameters and
ĤBO now parametrically depends on these {qα}. Ej({qα}) can be calculated by
employing the static Schrödinger equation

ĤBO({qα}) |φj({qα})〉 = Ej({qα}) |φj({qα})〉 ,

where φj({qα}) is an electronic wave function. The photonic BOA Hamiltonian is
then given in analogy to Eq. 15 as

Ĥj({qα}) = ∑
α

1
2

p̂2
α + Ej({qα}) +

∞

∑
i=0
〈φj{qα})| T̂pt |φi{qα})〉, (224)

and the BO states then follow as given by Eq. 16. The last term in Eq. 224 describes
the nonadiabatic coupling between the individual PES. We neglect these nonadia-
batic terms for the following discussion. In Fig. 33 (a), we show the surfaces cor-
responding BO surfaces Ej({qα}) for the weak-coupling regime of λα = 3.36 · 10−3

eV−1/2/nm, which is also employed in the first time-dependent example discussed
in Sec. 6.3. We find that all PES have a strong harmonic nature, due to the q̂2

α term
in Eq. 223. All anharmonicity is caused by the electron-photon interaction term
Ĥint. These contributions are small due to the weak-coupling limit. We find the
lowest PES shown in black, well separated from the first and second excited PES

shown in solid red and dotted blue. The first and second excited PES are close
to degeneracy. In contrast to Fig. 24, where we find a three-fold degeneracy for
the first-excited state in the weak-coupling limit, we here find only two PES, since
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Figure 34: The occupation of the photon number states in (a) the first PES and (b) the third
PES for the first time-dependent example discussed in Sec. 6.3. At initial time
t = 0 ps, we find a dominant coherent distribution with

〈
â†

α âα

〉
= 4 in the

first PES. (P1,P3) denotes the total population in the first PES, and third PES,
respectively.

the problem is restricted to the two dimensions of the electron. In Fig. 33 (b), we
show the PES surfaces in the strong-coupling regime with λα = 0.134 eV−1/2/nm,
which corresponds to the strong-coupling example of Sec. 6.2. Here, we also find
an overall harmonic nature of the problem, but also stronger deviations. In the
lowest PES shown in black and the third PES shown in solid red, two minima with a
double-well structure appear. In particular the minima in the lowest PES is shifted
strongly away from the equilibrium position at 0 arb.units.
In this way, we now use the BO surfaces shown in Fig. 33 (a) to analyze the many-
body dynamics of the time-dependent example studied as the first example in
Sec. 6.3. In this example, which is shown in Fig. 26-27, we calculated the purity γ,
which is a measure separability of the many-body wave function. We found that
γ is close to 1 up to t = 5 ps, which means that the many-body wave function
is close to a factorizable state. After t = 5 ps, γ deviates strongly from 1 and
the system is not factorizable anymore. In Fig. 34, we show the occupation of the
photon number states in the first PES in (a) and the third PES in (b). The values
(P1,P3) give the population of the first PES and the third PES, respectively. All other
PES are populated by order of magnitudes smaller, since P1+P3 is close to 1 for all
times. In Fig. 34 (a), we find that at initial time t = 0 ps, the first PES is populated
with a photon state, which has a coherent distribution with

〈
â†

α âα

〉
= 4, which is

in agreement with our initial condition. During the time propagation, we observe
a transfer of population from the first PES to the third PES. In the first PES, we
see until t = 9.3 ps a depletion of population, while in the third PES (Fig. 34 (b)),
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a growing of the population. After this time, the population is again transferred
back from the third PES to the first PES. However, not only the amplitude of the
population is changing, but also the center of the wave packets. In principle, if the
same photon state would be populated in the two different PES, the system could
still be factorizable. For small times, up to t = 5 ps the center of the wave packet
in the first PES remains close to its initial value. Later it changes to smaller photon
numbers, which indicates photon absorption. We can conclude that the dynamics
of the many-body system is dominated by the population transfer from the first
PES to the third PES and vice versa. While for this example, a good approximate
description may be a two surface approximation for the electronic system, which
is similar to a JCH model, we expect a different behavior for more complex BO sur-
faces. e.g. in many-electron problems, multi-photon modes, or strong-coupling
situations.

6 .7 summary

In summary, we have shown how a Kohn-Sham scheme can be set up to describe
correlated electron-photon problems. Using the fixed-point algorithm allows us
to construct the exact KS potential for such problems. In the ground state of the
cavity-GaAs, we identify large nonclassical features, which then also manifest in
the KS potential. Here we find for the ground state a dominating peak, which even
leads to charge splitting in the strong-coupling limit. For the time-dependent sce-
nario we showed three examples. In two of these examples the classical description
breaks down after a short time. In the exact Mxc potential, we find peaks and steps
appearing. In the last example, where the dynamics of the system is mainly driven
by the external potential, the classical description is in good agreement with the
exact description, which marks the classical limit.
Further research can focus on the development of approximate Mxc potentials,
which then allow for large-scale quantum calculations for correlated electron-
photon situations. Additionally as observed in the two examples discussed here,
we found for small times a good agreement between the mean-field and the exact
propagation, a promising route in improving the xc approximations may be in fur-
ther studies of memory effects and initial-state dependence. In electron-phonon
calculations, many methods such as surface hopping [147] have been developed,
future work could therefore also focus on the extension of these method originally
developed for electron-phonon applications to electron-photon problems.
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D E V E L O P I N G A P P R O X I M AT I O N S T O T H E
E X C H A N G E - C O R R E L AT I O N P O T E N T I A L I N Q E D F T

In this chapter, we focus on the development of an efficient and practical xc poten-
tial, which introduces quantum effects of the correlated electron-photon interaction
into the electronic KS potential. To this end, we study the Hamiltonian presented in
Sec. 2.3.9 in the length gauge and follow the route of the OEP approach (Sec. 2.2.8.3)
to obtain the first approximate vxc potential for QEDFT. We use the Sham-Schlüter
equation from Sec. 2.2.8 to get the direct connection between the many-body self-
energy Σxc and the KS potential vs. The self-energy Σxc is approximated by a GW
approximation, taking the two lowest diagrams, the Hartree and the Fock diagram,
into account.
We then apply this theory to a small, yet nontrivial model-system, the JCH model.
We analyze its correlated ground state and the time evolution of the electron den-
sity in this two-site model in different coupling regimes and evaluate the quality
of the OEP approximation in the offresonant case. This chapter is organized as
follows: We first discuss the general OEP framework for correlated electron-photon
problems. Then we apply this framework to static and time-dependent numerical
examples and discuss the accuracy of the numerical implementation.

7 .1 general theory of the oep approximation for qedft

We consider a system of ne electrons with coordinates {ri} interacting with nm

quantized photon modes of corresponding photon displacement coordinates {qα}
and frequencies ωα. The Hamiltonian for this problem is formulated in the length
gauge in the usual dipole approximation [68] and given by Eq. 184.
The electron-photon interaction is given by two terms, the explicit electron-photon
interaction term Ĥint from Eq. 187 and the dipole self-energy term Ĥes from Eq. 188.
We recast here both terms in the Heisenberg picture

Ĥpt-e(t) = Ĥint(t) + Ĥes(t),

Ĥint(t) = −
nm

∑
α=1

ωαq̂α(t)
∫

dr (λα · r) n̂(r, t),

Ĥes(t) = ∑
α

(λα ·R(t))2 /2.

These two terms give rise to an additional effective electron-electron interaction of
second order in λα, which can be motivated by the S-matrix [57]

S(−∞, ∞) =11− i
h̄

∫ ∞

−∞
dt1Ĥpt−e(t1)

− 1
2h̄2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2T

[
Ĥpt−e(t1), Ĥpt−e(t2)

]
+ · · · (225)

This chapter is based on the work reported in Ref. [148], which has been performed in close collabo-
ration with all coauthors. In this work, I implemented and performed all numerical simulations.
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(a)

(b)

(d)
(c)

Figure 35: Feynman diagrams: (a) Hartree and (b) Fock diagram in the action functional
A, and the (c) Hartree and (d) Fock diagram in the self-energy Σxc.

Here, we directly see that the first-order term vanishes due to the even/odd sym-
metry, while the lowest order contributing is the second-order term in λα for Ĥint(t)
and Ĥes(t), respectively. To this end, the coupling to the quantized field modes
causes an additional effective electron-electron interaction in second order in λα of
the following form

Wee(1, 2) = ∑
α

(λαr2) (λαr1)Wα(t1, t2) (226)

Wα = ω2
αDα(t1, t2) + δ(t1 − t2), (227)

where we define the photon displacement propagator ih̄Dα(t1, t2) =〈
T̂ [q̂α(t1), q̂α(t2)]

〉
using Wick’s time-ordering operator T̂. The mean-field contri-

bution is defined as [58] and equal to Eq. 212

vM(r, t) =
∫

d3r′
∫

dt′Wee(r, t, r′, t′)n(r′, t′), (228)

Using the linearized Sham-Schlüter equation [63] from Eq. 73

∫
d2GS(1, 2)vxc(2)GS(2, 1+) =

∫
d2
∫

d3GS(1, 2)Σxc(2, 3)GS(3, 1+), (229)

we approximate the self-energy Σxc by the exchange-like (Fock) diagram

Σxc(1, 2) = ih̄GS(1, 2)Wee(2, 1), (230)

where Wee is given by Eq. 226 and the Kohn-Sham Green’s function Gs(1, 2) by
Eq. 71. Using the Langreth rules [58] and expressing the Kohn-Sham Green’s
function in terms of the Kohn-Sham orbitals φi, we arrive at the following time-
dependent OEP equation [148]

i
h̄ ∑

i,j

∫ t

−∞
dt1
[
〈φi(t1)| vx(t1) |φj(t1)〉 fi − Sij(t1)

]
φ∗j (r, t)φi(r, t) + c.c. = 0,

(231)
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where we have introduced the quantity

Sij(t1) = ∑
k,α

∫ t1

−∞
dt2 dα

ik(t2)dα
kj(t1) [(1− fi) fkW>(t1, t2)− fi(1− fk)W<(t1, t2)] ,

(232)

with W≷(t1, t2) = −iωα/2e±iωα(t2−t1) ± δ(t1 − t2) and fi is the fermion occupation
number and dα

ik(t) = λα 〈φi(t)| r |φk(t)〉 is the dipole matrix element projected on
the coupling constant λα. In Eq. 232, c.c. denotes the complex conjugate of the
former term. The OEP equation yields a connection between vx(r, t) and the matrix
elements Sij that depend on the self-energy Σxc. Therefore, Sij describes correlated
electron-photon processes in the system such as the creation and annihilation of
electron-hole pairs caused by photon absorption and emission. Furthermore the
OEP equation in the presented form involves the evaluation of all occupied and
all unoccupied orbitals, since the sums over i, j, k in Eq. 231 are in principle unre-
stricted with limits [1, ∞]. This is in contrast to the electron x-only OEP equation [65]
that can be constructed using Sternheimer equations such that only occupied or-
bitals are involved.
If we assume initial states with q̇α(t0) = 0, we can directly evaluate the mean-field
contribution. It is given by Eq. 212 and reads here

vM(r, t) =−∑
α

ωα(λαr)
∫ t

0
dt1 sin [ωα(t− t1)] (λαR(t1))

−∑
α

(λαr) [(λαR(0)) cos(ωαt)− λαR(t)] , (233)

where R(t) =
∫

d3r r n(r, t). Further, in the case of a time-independent external
potential, the time-dependent OEP equation reduces to the static OEP equation. To
derive this limit, we can integrate out the explicit time-dependence and perform a
Fourier transformation. The static OEP equation then follows as

∑
i,j

[ 〈φi| vx |φj〉
εi − εj − iη

fi − Sij

]
φ∗j (r)φi(r) + c.c. = 0, (234)

where the matrix elements Sij are defined as

Sij = ∑
k,α

dα
ikdα

kj (εi − εk − iη)

2
(
εi − εj − iη

)
[

(1− fk) fi

εi − εk − h̄ωα − iη
+

(1− fi) fk

εi − εk − h̄ωα − iη

]
. (235)

Further, we assume the limit η → 0. This static equation then leads to a second-
order correction to the ground-state energy of the following form

Ex = −1
2 ∑

i,k,α
|dα

ik|2
[

h̄ωα
(1− fi) fk

εi − εk + h̄ωα
− (1− fi) fk

]
, (236)

and is directly connected to the Lamb shift [149]. As in Sec. 6, if we treat single
electron problems, we can consider the effects of the dipole-self interaction Hamil-
tonian Ĥes exactly. In the following numerical example, we therefore define as
classical potential vc(r, t) = vM(r, t) + ves(r).
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Figure 36: Exact (black), OEP (red) and classical (green) static OEP results: (a) shows the
electron density σz as a function of the electron-photon coupling strength λ. (b)
shows the total energy EK as a function of λ.

7 .2 model system : static calculation

We now apply the introduced OEP formalism to a small, yet nontrivial, model
system, the Jaynes-Cummings-Hubbard model system. The model Hamiltonian is
defined in Sec. 3.1.2. To be consistent with the many-body Hamiltonian Eq. 184,
we add two additional constants to the Hamiltonian of Eq. 145: The constant λ2/2
to account for the dipole self-energy and the photon vacuum energy constant ω/2.
Further we replace the electron-photon coupling strength by λ → √

ω
2 λ. The

Hamiltonian then reads

Ĥ = −Tσ̂x +

[√
ω

2
λ
(

â + â†
)
+ vext(t)

]
σ̂z + ω

(
â† â +

1
2

)
+

λ2

2
. (237)

As numerical parameters, we choose ω = 1, vext = 0.2, T = 0.7 all given in atomic
units. In the static case, we find the static vx potential as

vx = −λ2 vS

W

[
ω (ω + 3W)

(ω + 2W)2 − 1

]
, (238)

and the ground-state energy functional then takes the following form

EK[vs] = −T 〈σ̂x〉+ vext 〈σ̂z〉+ Ex[vs] +
ω

2
, (239)

with Ex = λ2T2

W(ω+2W)
, where W is the Kohn-Sham eigenvalue, i.e. the ground-state

(g) KS orbital has energy εg = −W, while the excited-state (e) KS orbital has energy
εe = W and the electron density σz that is the on-site population difference σz. In
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Figure 37: Time-dependent OEP results for λ = 0.1 with comparison of OEP (red), exact
(black) and classical (green) results: (a) shows the time evolution of the electron
density σz(t) and (b) shows the time evolution of the Mxc potential in the case of
the sudden switch of the external potential vMxc.

Fig. 36, we compare the quality of the OEP approximation in the static case with the
classical approximation and the exact results for the case of the JCH dimer. Fig. 36

(a) shows the electron density σz as a function of the electron-photon coupling
strength λ. In the static case, we find an overall very good agreement for the
OEP approximation with the exact results, which is in the weak-coupling limit
for λ < 0.5 and in the strong-coupling limit for λ > 2. In particular, the OEP

approximation shows a clear improvement over the classical approximation, which
provides only accurate results in the limits λ → 0 and λ > 2. In the intermediate
regime, here 0.5 < λ < 2, the OEP shows relatively small deviations from the exact
results. Similar behavior can be also found for the case of the total energy EK as
shown in Fig. 36 (b). Here, the OEP result is in very good agreement to the exact
result, with only small deviations in the intermediate regime 0.5 < λ < 2. In
contrast, the classical approximation shows clear deviations and performs for all
coupling strength worse than the OEP approximation.

7 .3 model system : time-dependent calculation

In the time-dependent case, the time-dependent OEP equation for the JCH model
reads

i
∫ t

−∞
dt1ṽx(t1)dge(t1)deg(t) + c.c.

= λ2ω
∫ t

−∞
dt1

∫ t1

−∞
dt2 c(t, t1) deg(t2)eiω(t2−t1) + c.c., (240)
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Figure 38: Time-dependent OEP results for λ = 0.1 with comparison of OEP (red), exact
(black) and classical (green) results: (a) shows the time evolution of the electron
density σz(t) and (b) shows the time evolution of the Mxc potential in the case of
a factorizable initial state.

where ṽx(t) = vx(t) + λ2σz(t). The dipole matrix elements between the electronic
ground state (g) and the excited state (e) are defined as dge(t) = 〈φg(t)| σ̂z |φe(t)〉
and enter the quantity c(t, t1) = dge(t)σz(t1)− dge(t1)σz(t). The mean-field poten-
tial is given by

vM(t) = −λ2ω
∫ t

0
dt1 sin [ω (t− t1)] σz(t1)− λ2σz(t0) cos(ωt) + λ2σz(t).

(241)

To solve the cavity time-dependent optimized effective potential (TDOEP) scheme
numerically, we employ a similar procedure as presented in Ref. [66] within the
standard numerical TDOEP approach. We simultaneously solve the time-dependent
Kohn-Sham equation and the TDOEP equation (Eq. 240) in the interval [0, T]. This
can be achieved by an iterative loop, which takes at each time step the Kohn-Sham
orbitals obtained by the KS equation as input to Eq. 240, which then yields a new
vMxc potential. This new vMxc potential is then used to repeat the propagation of
the KS equation. This loop is repeated until self-consistency in vMxc is reached.
Previous vMxc values are used as initialization of the loop. We propagate the time-
dependent KS equation using an exponential midpoint propagator (see Sec. 3.2.6)
for high accuracy. The numerical integration of the TDOEP equation, which is a
Volterra integral equation of the first kind, is performed using a midpoint integra-
tion scheme combined with the trapezoidal rule [109]. In Fig. 37, we show the time
evolution for the case of the initial state being the correlated ground state of the
system with the parameters λ = 0.1 and vext = −0.2. At the initial time, we change
the sign of the external potential to vext = 0.2. This induces a density oscillation in
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Figure 39: Time-dependent OEP results for λ = 0.5 with comparison of OEP (red), exact
(black) and classical (green) results: (a) shows the time evolution of the electron
density σz(t) and (b) shows the time evolution of the Mxc potential.

the system as shown in Fig. 37 (a). We plot the classical results in green, the exact
results in black and the OEP results in red. For small times, we find a good agree-
ment of all three propagations, but after t = 30 a.u., the classical density starts to
change slightly. This behavior is further highlighted in the inset of Fig. 37 (a). The
OEP result is in good agreement with the exact result. In Fig. 37 (b), we show the
vMxc(t), which shows more deviations. Here, we find a clear improvement of the
OEP over the classical approximation. The OEP only changes at later time slightly
with respect to the exact propagation.
In Fig. 38, we show the time evolution for the case of a factorizable initial state,
λ = 0.1 and vext(t) = 0. The photon field is initially in the vacuum, while the
electron is in a superposition state: Ψ =

(
1/2 |1〉+

√
3/2 |2〉

)
⊗ |0〉, where |1〉 and

|2〉 denote site 1 and 2, respectively and the photon state |0〉 refers to the field in
the vacuum state. The results of the time propagation are shown in Fig. 38 (a) for
the electron density and (b) for the vMxc potential. We find the same qualitative
behavior as in the previous example, as the OEP shown in red clearly improves
the classical results shown in green compared to the exact results shown in black.
The differences between small times (5 < t < 10) and later times (35 < t < 40) is
highlighted in the inset of Fig. 38 (a).
In the last example in this chapter, we choose a stronger coupling example with
λ = 0.5. We again choose a similar setup as in Fig. 37. Initially the system is in
the ground state of the external potential vext = −0.2 and the sign of the potential
is flipped at the initial time of the time propagation. The density of this example
is shown in Fig. 39 (a). Here, we find larger deviations between the OEP results
shown in red and the exact results shown in black. We observe for small times
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Figure 40: Validation of our numerical implementation: (a) shows the difference of the δσz:
σz,exact − σz,oep in black and σz,exact − σz,2nd in green. (b) shows the difference of
δvx = vx,numerical − vx,analytical.

(t < 10 a.u.) a good agreement between OEP and exact results, and in particular an
improvement over the classical result shown in green. After t = 10 a.u., however
also the OEP starts to deviate from the exact results. This finding is also inherited
in the vMxc potential shown in Fig. 39 (b). Here we find for small times t < 5 a.u.
the OEP potential on top of the exact potential and the classical potential deviates
already at t = 0 a.u. However for longer times also the OEP starts to deviate.

7 .4 validation of the numerical implementation

We validate our numerical results by comparing to corresponding analytic expres-
sions. If we assume the initial state as Ψ = (u |1〉+ v |2〉)⊗ |0〉, as in the second
example in Sec. 7.3 and apply time-dependent perturbation theory [150] for the
JCH model in resonance (2T = ω), we obtain the following formula for the density
σz up to second order in λ

σz,2nd(t) =
(
u2 − v2)

(
cos (ωt) +

λ2

4

(
t
ω

sin (ωt)− t2 cos (ωt)
))

+O(λ4).

(242)

The coefficients u and v are given by the electronic initial state and subject to the
normalization condition u2 + v2 = 1. In the second example in Sec. 7.3, we use
u = 1/2, and v =

√
3/2.

By construction, the density calculated within the OEP framework is correct up to
the second order in the coupling λ. Due to the self-consistency, we can expect the
OEP density to be slightly more accurate than the perturbation formula of Eq. 242.



7.5 summary 115

In Fig. 40 (a), we show the difference between the density obtained by an OEP run
as in the previous sections and the analytic formula up to second order in λ, both
with respect to the exact density σz,exact. We choose a small λ = 0.01. In Fig. 40,
we find that the error of σz,2nd is larger than the error of σz,OEP, which verifies the
correctness of the implemented OEP approach.
A second measure can be given by solving the TDOEP equation from Eq. 240 an-
alytically by inserting the zero-order density σz,0th = 2uv cos (ωt) and transition
density d12,0th = (u + v)2 exp{−iωt}/2− (u− v)2 exp{iωt}/2. We then find the
following formula

vx,2nd(t) = −
(u− v)3 (u + v)ωt sin(ωt)λ2

4uv
+ θ(λ4). (243)

This analytic formula can now be compared to the numerical results, which we
obtain, if we use σz,0th and d12,0th as input in our numerical OEP equation solver. In
Fig. 40 (b), we show the difference between the numerical results and the analytic
results. In this case, the accuracy is only limited by the time step, which is used
in the solver for the Volterra integral equation (see Sec. 3.2.7). We find a very
small error of O(10−9) for ∆t = 0.01. The accuracy of the numerical solution of
the integral equation is in this case further limited due to the singularity of the
diagonal of the kernel K(xn, xn) = 0 in the Volterra integral equation. Even more
accurate results can be obtained, if this singularity is lifted e.g. by replacing the
OEP equation by its time-derivative version. For all presented results in this chapter,
the obtained accuracy using the form of the OEP equation of Eq. 240 is sufficient.

7 .5 summary

In this section we have shown the first calculations within the OEP framework of
QEDFT. We find clear improvements of OEP over the mean-field approximation for
the ground state from the weak to the strong-coupling. Further, we analyzed the
performance of the TDOEP scheme in the time-dependent case. Here we find good
agreement to the exact results in an offresonant setup and in the weak-coupling
regime. Additionally, we validated the numerical implementation by comparing
its results to analytic formulas. Further research may focus on the analysis of the
OEP behavior in stronger coupling situations as shown in the last example. One
different route lies in the study of approximations to the OEP on the lines of the KLI

approximation [64, 67]. Additionally an exact or approximate reformulation of the
OEP equation without involving the unoccupied orbitals is desirable to bring the
calculations to three dimensions and further study the real-space features of the
OEP approach.





8
T H E H Y D R O G E N - D E U T E R I U M D I M E R I N A N O P T I C A L
C AV I T Y

8 .1 introduction

In the last years, tremendous experimental progress has enabled scientists to ob-
tain new insights into the interaction of quantized photons correlated with matter.
These experiments show, e.g. that the conductivity in organic semiconductors can
be improved by an order of magnitude through hybridization with the vacuum
field [152]. Other experiments have shown that the coherent coupling of molecu-
lar resonators with a micro-cavity mode shows large shifts in the vibrational fre-
quency [153] or that strong coupling allows to tune the work function in organic
materials [154]. All these different experiments indicate new states of matter and
different chemistry, if the quantized nature of light becomes important. Nowadays
the strong-coupling limit is achieved routinely in the fields of current quantum
electrodynamics (current-QED) [155, 156] or cavity-QED [157, 158].
In this chapter, we study a model system, which contains nuclear, electronic and
photonic degrees of freedom explicitly. It consists of an artificial molecule, which
contains two nuclei and two electrons confined to one-dimension, which is orthog-
onal to the propagation direction of the photon field in the cavity. This model
system is located in an optical cavity, where it couples to a single photon mode.
We show how the correlated light-matter interaction changes the electronic BO sur-
faces. These changes have immediate consequences [159], e.g. in the bond length
of the molecule or the absorption spectrum. Additionally, we show how the new
ground state acquires a new electron-nuclear-(vibronic) photon quasiparticle char-
acter.

8 .2 cavity born-oppenheimer approximation

In this section, we study a vibro-photon system for a model consisting of two
nuclei and two electrons, which are coupled to a single cavity mode of the cavity.
The cavity mode is tuned in resonance to the first vibrational excitation of the
dimer system. We schematically depict such a system in Fig. 41. The molecule
in the cavity is shown on the left. It is exposed to the cavity mode, which is
defined by the cavity frequency ωα and the matter-photon coupling strength λα.
On the right-hand side, we depict a simplified picture of the hybridization of the
system, therefore we show the BO surface depending on the nuclear coordinate
X in atomic units (Bohr). We show the eigenstates of the molecular system in
BOA. In the ground state, the electrons are subjected to the ground-state BO surface,
which is shown in dashed-black lines. The harmonic approximation to the exact

This chapter is part of the review article [151] that is currently in preparation.
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Figure 41: Left: Molecular dimer in a cavity with cavity-frequency ω. Right: Exact ground-
state BO surface in black dashed lines, harmonic ground-state BO surface in solid
red lines, and exact first excited-state BO surface in dashed-gray lines, ν indicates
the phonon excitation, Re denotes the BO equilibrium distance, and λ denotes
the Rabi splitting by the phonon-photon hybridization and the matter-photon
interaction strength.

BO surface is shown in solid red lines. The individual harmonic excitations of the
nuclear (phonon) subsystem are indicated by ν. Since the cavity mode is tuned
in resonance, we find Rabi splitting [93] of the first vibrational excitation, which is
proportional to the matter-photon coupling constant λα. The first excited electronic
BO surface is shown in gray-dashed lines. This surface has no minima, hence
featuring the dissociation of the molecule. In the dissociation limits that is for X >

5 a.u., the ground-state and the first-excited BO surfaces merge. In Fig. 41 (a), we
furthermore denote the electric field component Ex, the magnetic field component
By and the wave vector of the photon field mode kz that build a triad as discussed
in Sec. 2.3.3.
We consider such systems in the dipole approximation and length gauge. In this
setup, the correlated electron-nuclear-photon Hamiltonian for the dimer in a cavity
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can be written as a sum of the electron-nuclear Hamiltonian Ĥen and the photon
Hamiltonian Ĥpt. It follows [17, 68, 140, 148]

Ĥ = Ĥen + Ĥpt, (244)

Ĥen = − h̄2

2M1
~∇2

X1
− h̄2

2M2
~∇2

X2
− h̄2

2m3
~∇2

x3
− h̄2

2m4
~∇2

x4

+
Z1Z2e2

4πε0

√
(X1 − X2)

2 + 1
− Z1e2

4πε0

√
(X1 − x3)

2 + 1

− Z1e2

4πε0

√
(X1 − x4)

2 + 1
− Z2e2

4πε0

√
(X2 − x3)

2 + 1

− Z2e2

4πε0

√
(X2 − x4)

2 + 1
+

e2

4πε0

√
(x3 − x4)

2 + 1
, (245)

Ĥpt =
1
2 ∑

α

[
p̂2

α + ω2
α

(
q̂α +

λα

ωα
·R
)2
]

, (246)

R = Z1X1 + Z2X2 − x3 − x4. (247)

Here, the capital variables, X1 and X2, denote the nuclear coordinates, while
the small variables x3 and x4 denote the electronic coordinates, and q̂α =√

h̄
2ωα

(
â†

α + âα

)
defines the photon displacement coordinate using the electronic

creation and annihilation operators [17, 148]. Furthermore, we only describe the
two valence electrons explicitly and we choose for the nuclear masses M1 = mp

and M2 = mp, where mp is the proton mass. For the nuclear charges, we select
Z1 = 1.2, and Z2 = 0.8. The masses m3 and m4 are set to the electron mass me, i.e.
m3 = m4 = me. In one-dimensional problems the electronic Coulomb interaction
is routinely modeled by a soft-coulomb interaction [160]. In the photon Hamil-
tonian Ĥpt, we consider the electron-nuclear-photon coupling in dipole approxi-
mation using the coupling constant λα and the electron-nuclear dipole operator
R. The latter consists of an electronic and a nuclear contribution R = Rn + Re,
where Rn = Z1X1 + Z2X2 and Re = −x3 − x4. The complete many-body problem
including two electrons, two nuclei and one photon mode is a five-dimensional
problem. To reduce the computational complexity, we use the following relative
coordinates: the electron distance coordinate x = x1 − x2, the nuclear distance co-
ordinate X = X1 − X2, the distance between the electronic and the nuclear center
of masses ξ and the global center of mass XCM2 [161]. For more details, we also
refer the reader to the appendix E. These relative coordinates allow to reduce the
dimensionality of the problem to four dimensions. We use the following real-space
grid: NX = 61, dX = 0.08, Nx = 41, dx = 0.5, Nξ = 51, dξ = 0.2, Npt = 40, where
the latter describes the maximum number of photons in the system. For clarity, we
will use throughout this section, the original coordinates X1,X2,x3,x4 in all formulas.
The cavity frequency ωα is chosen to be in resonance to the first vibronic transition
ω12, hence ωα = ω12 = 0.01216 a.u.. The dipole moment of this transition has a
value of d12 = 0.01869 a.u..
The Hamiltonian in Eq. 244 contains two matter-photon interaction terms, the ex-
plicit matter-photon interaction Ĥint = ∑α ωαq̂α (λα ·R) and the quadratic electron-
nuclear self-energy term Ĥes = ∑α (λα ·R)2/2. By introducing the electron-photon
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Figure 42: (a) shows the eigenenergies for different values of the matter-photon interaction
strength λ, (b) shows the bond length 〈X1 − X2〉. Black dots correspond to the
ground-state |g〉, blue dots to the lower-polariton state |LP〉 and red dots to the
upper-polariton state |UP〉, green dots to the second lower-polariton state |LP2〉
and cyan plots to the second upper-polariton state |UP2〉.

coupling constant gα =
√

h̄ωαλα/
√

2, we can explicitly connect to typical strong-
coupling calculations, as in Ref. [159]. The quadratic electron-nuclear self-energy
term is the analogue of the A2 dependence in the momentum gauge. To our knowl-
edge this term is often neglected and only rarely considered [162, 163]. The approx-
imation neglecting Ĥes is surely valid in the inter-molecular region, where it can-
cels the inter-molecular Coulomb interaction [70]. However in the intra-molecular
region, which is the focus of the present study this term has to be taken into ac-
count. Additionally, we emphasize that in Eq. 244, the Coulomb interaction is
considered in the cavity-free limit. In real-systems, we also expect a different form
of the Coulomb interaction for cavity-systems, in particular in the strong-coupling
regime.
Since the cavity frequency is close to the vibrational frequency and far from any
electronic resonance, we consider the following approximation: The photons cou-
ple only to the nuclear coordinates, but not to the electronic coordinates. Therefore,
we set R(BO)(X1, X2) = Rn + 〈Re(X1, X2)〉, in the electron-nuclear-photon interac-
tion Hamiltonian, while we keep the full R dependence in the electron-nuclear
self-energy Hamiltonian Ĥes. In the following, we denote this approximation as
cavity Born-Oppenheimer approximation (CBOA). To solve the BO problem, we
first solve the electronic problem

Ĥe(X1, X2) |φj(X1, X2)〉 = Ej(X1, X2) |φj(X1, X2)〉 , (248)
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Figure 43: (a) shows the CBOA surfaces for different values of the matter-photon interaction
strength λ, (b) shows the overlap of the exact states with the CBOA states. Black
dots correspond to the ground state |g〉, blue dots to the lower-polariton state
|LP〉 and red dots to the upper-polariton state |UP〉.

with

Ĥe(X1, X2) = −
h̄2

2m3
~∇2

x3
− h̄2

2m4
~∇2

x4

+
e2

4πε0

√
(x3 − x4)

2 + 1
− Z1e2

4πε0

√
(X1 − x3)

2 + 1

− Z1e2

4πε0

√
(X1 − x4)

2 + 1
− Z2e2

4πε0

√
(X2 − x3)

2 + 1

− Z2e2

4πε0

√
(X2 − x4)

2 + 1
+

1
2 ∑

α

(λα ·R)2 . (249)

In a second step, we then solve the nuclear-photon problem

Ĥj(X1, X2) = −
h̄2

2M1
~∇2

X1
− h̄2

2M2
~∇2

X2
+ Uj(X1, X2)

+ ∑
α

1
2
[
p̂2

α + ω2
αq̂2

α

]
+ ωαq̂αλα ·R(BO) (250)

with the potential-energy surfaces (PES) in analogy to Eq. 13

Uj(X1, X2) = Ej(X1, X2) +
Z1Z2e2

4πε0

√
(X1 − X2)

2 + 1
. (251)

This procedure allows us to effectively decouple the system into an electronic and a
nuclear-photon part. Using Ĥj(X1, X2) |χij(X1, X2)〉 = εi(X1, X2) |χij(X1, X2)〉, where
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Figure 44: Absorption spectra for different matter-photon coupling strength λα. LP de-
notes the lower-polariton peak and UP the upper-polarition peak.

|χij〉 denotes a correlated nuclear-photon wave function, we can construct the BO

states, i.e. for the BO ground state |Ψ0〉 = |χ00φ0〉. Such a procedure reduces for
λα = 0 to the usual BOA [26], where no matter-field interaction is present.
In the following, we present our results applying the CBOA. For the matter-photon
coupling strength, we choose values between 0 ≤ λα ≤ 30ωα.
In Fig. 42 (a), we show the eigenenergies of the cavity system as function of the
matter-photon coupling strength λα. The general harmonic trend is given by the
self-energy term, which is nonnegligible for the given system. In black, we plot
the ground-state energy, in red/blue (cyan/green), we plot the first (second) upper
and lower-polariton states. The matter-photon coupling induces the Rabi splitting
in the energy, as illustrated in Fig. 41. With increasing λα, we find an increasing
Rabi splitting. The bond length, X of the individual states is plotted in Fig. 42 (b).
For this plot the same color code as in panel (a) applies. We find that the matter-
photon coupling introduces large changes in the bond length, in our case the bond
length is reduced from 1.63 a.u. to 1.50 a.u. for the ground state.
In Fig. 43 (a), we explicitly show different CBOA surfaces obtained from the CBOA

Hamiltonian Eq. 249. These surfaces depend on the nuclear coordinate X, which
is also a measure for the nuclear bond length. We find that for increasing λα

the matter self-energy term introduces a harmonic (parabolic) potential, which
introduces major changes in the BO surfaces. The lowest surfaces in the figure
corresponds to the cavity-free limit. The results illustrate that tuning λα allows
to shape the BO surfaces harmonically. In general, changes in the BO surfaces
change the chemistry of the system, with implications on various quantities e.g.
the bond length, tunneling barriers, or band gaps. Additionally in Fig. 42, we
find that an increasing value of λα shifts the bond length to smaller values. In
Fig. 43 (b), we assess the quality of the CBOA approximation. While for small
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values of λα the CBOA has the same quality as the cavity-free electronic BOA, we
observe the break-down of the CBOA for strong matter-photon interaction. The
overlap of the CBOA ground state with the exact correlated ground state drops
to 97%. Similar to the usual BOA, the quality of higher-lying states, which are
here the upper and the lower-polariton states, is smaller compared to the quality
of the ground state. In Fig. 44, we show an example for a spectroscopic quantity,
which is highly influenced by the strong matter-photon coupling. The ground-state
absorption spectrum can be calculated using a sum-over-states expression [159]

σ(ω) =
4πω

c
Im lim

δ→0

|〈Ψk|R |Ψ0〉|2
ωk −ω0 −ω− iδ

. (252)

The correlated ground-state is denoted by |Ψ0〉 and has the eigenenergy h̄ω0. In
the numerical calculations, we apply a broadening of the individual peaks, as pre-
sented in Ref. [140] and in Chap. 4 for electron-phonon problems for photoelectron
spectroscopy. In Fig. 44, we show spectra for different matter-photon coupling
strength λα. For increasing coupling, we find a clear signature of the Rabi splitting.
In the spectra, we explicitly denote the lower-polaritonic and the upper-polaritonic
peak, which are clearly visible in the strong-coupling limit. Additionally higher-
lying excitations also show the Rabi splitting, e.g. the second peak shows a three-
fold degeneracy.

8 .3 summary

In summary, in this chapter we have shown how a correlated electron-phonon-
photon calculation can be performed. We find that adding the photonic degrees
of freedom introduces major changes in the electronic structure of the system. We
find that in the strong-coupling regime, chemical quantities of the system change
quite dramatically, e.g the BO surfaces, the bond length, or the absorption spectrum.
All these findings suggest a wealth of novel applications by modifying and shaping
the chemical landscape or the reaction barriers with the help of the strong-coupling
regime in optical cavities.
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C O N C L U S I O N





9
S U M M A RY, C O N C L U S I O N S A N D O U T L O O K

In this thesis, we treated electron-nuclear, electron-photon and electron-nuclear-
photon problems. The electron-nuclear problem is typically treated by employing
the BOA, where the nuclei enter the electronic equations as classical parameters. A
similar approximation is typically used in electron-photon problems. Here, in typ-
ical electronic structure calculations, the effect of the photon field enters through
a (time-dependent) external potential. To study effects beyond these classical ap-
proximations is the prime goal of this thesis.
The electron-nuclear problem in photoelectron spectroscopy was studied in chap-
ter 4. Here, we showed that the BOA introduces artificial peaks in the photoelectron
spectra, which can be attributed to the factorized nature of the BOA. These peaks
only vanish, if the exact correlated eigenfunctions are known. Naturally the ques-
tion arises, how we can extend the present theory to incorporate these beyond
BOA effects. Here, some theoretical development has already been taken place
such as the electron-nuclear coupled cluster approach [126], the multi-component
density-functional theory approach for electrons and nuclei [127], or an explicit
electron-phonon Greens function theory [128, 129]. However, all these theories are
still in their infancy and complete calculations, which treat many electrons and
many nuclei on the same footing are still not feasible.
The chapters 5-7 have been devoted to the correlated electron-photon problem.
At present, the description of electron-photon interactions using the density-
functional approach QEDFT is still at a very early stage. QEDFT opens the possi-
bility to perform a large kind of different calculations, which all treat both sub-
systems, the photons and the electrons on an equal footing. Although, the first
steps towards the developments of a proper xc-functional using an OEP approach
as discussed in Ch. 7 are very promising, there remain many open questions. For
instances, is it possible to develop for electron-photon applications an analogue of
the very successful LDA functional, which is among the most popular functionals
in the electronic DFT? The usefulness of the QEDFT approach will highly depend on
the quality of available functionals. This means that more research is necessary to
develop new functionals. However, the quality of existing functionals (mean field
and OEP) needs also be assessed in real space and many-electrons calculations to
properly evaluate their validity. One further promising route may lie in directly
applying the Green’s function framework [164] to these correlated electron-photon
problems. In this way, some of the problems of QEDFT may be circumvented.
The framework of QEDFT could also be extended to phonon problems. Since,
phonons and photons both have bosonic character an extension may be doable.
However, the extension to phonon-phonon interactions and in particular the study
of the role of the dipole self-energy term requires further research and makes the
extension not straightforward.
In the last chapter 8, we studied a correlated electron-photon-phonon problem.
Here, we were able to show that the strong-coupling of the matter and the photon
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field changes the chemical landscape quite dramatically. This new field is particu-
larly driven by experiment [152, 153], which is now capable of studying ensembles
of molecules strongly coupled to a resonant field mode. All these experiments are
theoretically not very well understood, which shows the need of the development
and extension of existing theory as well as the design of new algorithms. Addi-
tionally, ab-initio three-dimensional calculations are necessary to correctly explain,
but also to predict the results of such experiments.
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A
P O W E R - Z I E N A U - W O O L L E Y T R A N S F O R M AT I O N

The minimal-coupling (momentum-gauge) Hamiltonian in Coulomb gauge with
~∇ · Â(r), from Eq. 104 is written as

Ĥmin =
ne

∑
i=1

1
2me

[
p̂i − eÂ(ri)

]2
+ Ŵee + ŴeN({R}) +

ε0

2

∫
d3r
[
Ê2

T(r) + c2B̂2
(r)
]
.

(253)

This form of the Hamiltonian may be inconvenient for the following reasons:

• The canonical momentum conjugated to the position operator ri is not the
kinetic momentum as in field-free situations:

me
∂

∂t
r̂i =

ime

h̄
[
Ĥmin, ri

]
= p̂i − eÂ(ri), (254)

but consists of two terms, p̂i that is a matter quantity and Â(ri) that is a field
quantity. In contrast, the canonical momentum to the vector field (calculated
by using the commutation relations for ÊT(r) and Â(r) from Eq. 102

∂

∂t
Â(r) =

i
h̄
[
Ĥmin, Â(r)

]
= −ÊT(r) (255)

is the transverse electric field operator, which is a gauge-invariant field quan-
tity.

• The Hamiltonian in Eq. 104 contains a term proportional to Â2
(ri). This term

yields operators, which create and destroy two photons. Furthermore, this
term mediates a nonlinear interaction between particles.

• The matter-field interaction is given by the term p̂i · Â(ri). Since Â is not
gauge-invariant (see Chap. 2.3.2), also the interaction is not explicitly written
in a gauge-invariant form.

All these reasons make it desirable to cast Eq. 104 in a different form. Some of
above problems can be cured by considering the Power-Zienau-Woolley transfor-
mation [70, 131]. This unitary transformation is defined by the transformation
operator

Ŝ =
1
h̄c

∫
dr P̂(r) · Â(r). (256)

Here, P̂(r) denotes the electric polarization field operator and is defined formally
as [70]

P̂(r) = e
∫

dλr′δ(r− λr′). (257)
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132 power-zienau-woolley transformation

All operators are transformed into the new frame by

ÛT F̂Û = eiŜ F̂e−iŜ = F̂ + i
[
Ŝ, F̂

]
− 1

2
[
Ŝ,
[
Ŝ, F̂

]]
... (258)

Many operators (in particular ri and Â(r)) appearing in Eq. 104 remain invariant
under the Power-Zienau-Woolley Transformation, however two operators change

ÛTp̂iÛ = p̂i + eÂ(ri)−
∫

d3r θ̂(r)× B̂(r), (259)

ÛTÊT(r)Û = ÊT(r)−
1
ε0

P̂(r), (260)

with θ̂(r) = er′
∫ 1

0 dλλδ(r − λr′). This vector fields definition is similar to the
electric polarization operator, but differs by a λ under the integrand. The new
operators on the right-hand side of the above equations are in general not equal
to their old equivalent. For clarification, we replace the quantity ÊT(r) appearing
on the right-hand side of Eq. 260, by D̂T(r)/ε0, where D̂T(r) is the displacement
field operator. We note, that the same is the case for the momentum operator p̂,
i.e. the operator p̂ in the old frame is different to the operator p̂ in the new frame.
However, we leave the symbol to be consistent with literature. Plugging Eqns. 259-
260 into Eq. 104 leads us to the Power-Zienau-Woolley or multipolar/length-gauge
Hamiltonian

ĤPZ =
ne

∑
i=1

1
2me

[
p̂i −

∫
d3r θ̂(r)× B̂(r)

]2

+ Ŵee + ŴeN({R})

+
1
2

∫
d3r
[
D̂2

T(r)/ε0 + ε0c2B̂2
(r)
]
+

1
2ε0

∫
d3r P̂2

(r)− 1
ε0

∫
d3r P̂(r) · D̂(r),

(261)

which is equal to Eq. 119 in the dipole approximation. Formally, we now cured
most of the previously mentioned shortcomings: The new canonical momenta in
the dipole approximation are as follows

me
∂

∂t
ri =

ime

h̄
[
ĤPZ, ri

]
= p̂i, (262)

∂

∂t
Â(r) =

i
h̄
[
ĤPZ, Â(r)

]
= − 1

ε0

(
D̂T(r)− P̂T(r)

)
. (263)

The canonical momentum to the position operator ri is now again the kinetic mo-
mentum, as in field-free situations. However, the canonical momentum to the vec-
tor potential operator Â(r) now consists of the displacement field operator D̂T(r)
and the matter quantity, the polarization operator P̂(r). In addition, in the Power-
Zienau-Woolley Hamiltonian, the matter-field interaction is written explicitly in
a gauge-invariant form, namely P̂T(r) · D̂T(r) and also the two-photon operators
stemming from the quadratic Â2

(r)-term are avoided.
However, we emphasize that the physical behavior of the system, i.e. the observ-
ables, is the same either in the length gauge and the momentum gauge. Which
form of the Hamiltonian is more convenient for the practical calculation depends
on the specific problem.



B
G A U G E C O N D I T I O N S O N a e x t

b .1 coupling of a0
ext to the electron density

In this section, we show how the Pauli-Fierz Hamiltonian of Eq. 108 can be rewrit-
ten such that the external potential a0

ext couples to the electron density. Further-
more, we recover the momentum-gauge Hamiltonian from Eq. 104. The Pauli-Fierz
Hamiltonian in Ref. [18] is defined as follows

Ĥ ( t) = ĤM + ĤEM + ĤC −
∫

d3r Ĵ(r, t) · Â(r)

+
1
c

∫
d3r Ĵ0 (r)

(
A0

tot (r, t) − e
2m

Â2
tot (r)

)

−
∫

d3r
(

Ĵ(r, t) · aext (r, t) + Â(r) · jext (r, t)
)

. (264)

As next step, we apply the following gauge condition aext (r, t) = 0, j0
ext (r, t) = 0

and neglect any magnetization

Ĥ ( t) = ĤM + ĤEM + ĤC −
∫

d3r Ĵp (r) · Â(r) +
e

2mc

∫
d3r Ĵ0 (r)Â2

(r)

−
∫

d3r
(

Â(r) · jext (r, t) − 1
c

Ĵ0 (r)a0
ext (r, t)

)
. (265)

Next, we plug in the definitions of Jp (r) from Eq. 112 and the zero component of
the current Ĵ0 (r) = ecΨ̂† (r)Ψ̂(r). Further, we use integration by parts such that

∫
d3r

(
~∇Ψ̂† (r)

)
Â(r)Ψ̂(r) = Ψ̂† (r)Â(r)Ψ̂(r)

∣∣∣∣
Ω

−
∫

d3r Ψ̂† (r)~∇
(

Â(r)Ψ̂(r)
)

, (266)

where the first term at the right-hand side is evaluated at the boundary of the
integration volume Ω. We assume that this term vanishes. Making use of these
simplifications, we end up with

Ĥ ( t) =
1

2m

∫
d3r Ψ̂† (r)

(
p̂ − eÂ(r)

)2 Ψ̂(r) + ĤEM + ĤC

−
∫

d3r
(

Â(r) · jext (r, t) − e n̂(r)a0
ext (r, t)

)
, (267)

which is the minimal coupling Hamiltonian from Eq. 104 with additional coupling
terms of the basic variables to the external fields and potentials. In the last term,
we identify the explicit coupling of the external potential a0

ext (r, t) to the electron
density n̂(r).
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b .2 coupling of aext to the electron current

We apply the following gauge condition a0
ext (r, t) = 0, j0

ext (r, t) = 0 with the goal
rewrite the Pauli-Fierz Hamiltonian of Eq. 108 such that the external vector field
aext couples explicitly to the electron current operator. We find

Ĥ ( t) = ĤM + ĤEM + ĤC

−
∫

d3r Ĵ(r, t) · Âtot (r) − e
2mc

∫
d3r Ĵ0 (r)Â2

tot (r)

−
∫

d3r Â(r) · jext (r, t) , (268)

then leads directly to

Ĥ(t) =
1

2m

∫
d3rΨ̂†(r)

(
p̂− eÂtot(r)

)2 Ψ̂(r) + ĤEM + ĤC

−
∫

d3r Â(r) · jext(r, t), (269)

which is the minimal coupling Hamiltonian of Eq. 104 with additional coupling
terms of the basic variables to external fields and potentials.



C
D E R I VAT I O N O F J AY N E S - C U M M I N G S - H U B B A R D M O D E L
F R O M T H E N O N R E L AT I V I S T I C H A M I LT O N I A N

To derive the Jaynes-Cummings model system studied in Sec. 5.5 from the Hamilto-
nian in Eq. 267, we consider only one single-electron and one single-photon mode.

Therefore ĤEM = − h̄ω
2

d2

dq2 +
h̄ω
2 q2 with Â = C qε√

ω
, where we use C =

(
h̄

ε0L3

)1/2
.

Under these assumptions, Eq. 267 becomes

Ĥ(t) =
1

2m

(
h̄
i
~∇− eÂ

)2

− h̄ω

2
d2

dq2 +
h̄ω

2
q2 (270)

+ ea0
ext(r, t)− jext(t) · Â,

In the next step, we perform the Power-Zienau-Woolley transformation (Sec. A)
explicitly. The unitary transformation operator reads

Û = exp
[

i
h̄

(
Ce

ε · r√
ω

q
)]

= exp
[

i
h̄
(
er · Â

)]
. (271)

We need to transform the following two operators

Û† h̄
i
~∇Û =

h̄
i
~∇+ e ~̂A, (272)

Û† d
dq

Û =
d
dq

+
i
h̄

(
Ce

ε · r√
ω

)
, (273)

with the substitution id/dq → p and q → −id/dp, we end up with the Power-
Zienau-Woolley Hamiltonian

Ĥ(t) = − h̄2

2m
~∇2 +

h̄ω

2

(
p− Ce

h̄
ε · r√

ω

)2

− h̄ω

2
d2

dp2

+ ea0
ext(r, t) +

iC√
ω

ε · jext(t)
d

dp
. (274)

We continue with yet another time-dependent gauge transformation (here we use
d

dx

∫ x
a f (t)dt = f (x))

Û(t) = exp
[

iC
h̄ω

3
2

(
jext(t)p +

C
2h̄
√

ω

∫ t

0
j2ext(t

′)dt′
)]

. (275)

Then

Û† d
dp

Û =
d

dp
+

iC
h̄ω

3
2

jext(t), (276)

Û†∂tÛ =
iC

h̄ω
3
2

(
∂t jext(t)p +

C
2h̄c
√

ω
j2ext(t)

)
. (277)
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Hence, the new Hamiltonian takes the form

Ĥ(t) = − h̄2

2m
~∇2 +

h̄ω

2

(
p− Ce

h̄
ε · r√

ω

)2

− h̄ω

2
d2

dp2

+ ea0
ext(r, t) +

C
ω

3
2

j̇ext(t)p, (278)

where jext(t) = ε · jext(t). In the last step, we discretize the matter part and employ
a two-site approximation for the single electron

− h̄2

2m
~∇2 → −tkinσ̂x, (279)

eωε · r→ eωε · lσ̂z = e Ĵ, (280)

ea0
ext(r, t)→ eea0

ext(t)σ̂z = −aext(t) Ĵ, (281)

∂t jext(t)→ ω j̃ext(t), (282)
C√
ω

p→ Â =
C√
2ω

(
â† + â

)
. (283)

Using these replacements, we end up with the Hamiltonian in Eq. 145.
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D E R I VAT I O N O F T H E S P E C T R A L F U N C T I O N

The one-body spectral function is defined as follows [58]

Aij(t, t′) = 〈Ψ0|
{

ĉi(t)ĉ†
j (t
′)
}
|Ψ0〉

Aij(t, t′) = 〈Ψ0| ĉ†
j (t
′)ĉi(t) + ĉi(t)ĉ†

j (t
′) |Ψ0〉

Aij(t, t′) = A<
ij (t, t′) + A>

ij (t, t′), (284)

with t′ > t. The operators ĉ and ĉ† are here written in the Heisenberg picture. The
index refers to a combined index i = (n, σ) and j = (m, σ′), where n and m refer to
the site number and σ and σ′ refer to spin up or spin down.
In this work, we only consider the first part of the commutator A<

ij (t, t′), since
we are interested in photoemission spectra. The second term A>

ij (t, t′) leads to
inverse photoemission spectra [58]. In the following discussion, we distinguish
two cases: (i) if Ψ0 is an eigenstate of the Hamiltonian Ĥ of the system, we work
in an equilibrium framework, (ii) if Ψ0 is not an eigenstate of the Hamiltonian Ĥ,
we have to work in a nonequilibrium framework.

d.1 equilibrium spectral function

The equilibrium spectral function applies for situations, where Ψ0 is an eigenstate
of the corresponding many-body Hamiltonian Ĥ of the system. Hence, we can
write Eq. 284 in terms of a time-correlation function

Aij(t, t′) = 〈Ψ0| ĉ†
j (t
′)ĉi(t) |Ψ0〉

= 〈Ψ0| eiĤt′/h̄ ĉ†
j e−iĤt′/h̄eiĤt/h̄ ĉie−iĤt/h̄ |Ψ0〉

= 〈Ψ0| ĉ†
j e−iĤ(t′−t)/h̄ ĉi |Ψ0〉 eiE0(t′−t)/h̄

= 〈Ψ0(τ)| ĉ†
j |Ψ̃(τ)〉 , (285)

with τ = t′ − t and the initial condition |Ψ̃(τ = τ0)〉 = ĉi |Ψ0〉.
Eq. 284 can be reformulated to get a sum-over-states expression. This is accom-
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plished by the insertion of an complete set of states ∑
m
|Ψm〉 〈Ψm| = 11 and a Fourier

transform with respect to the time-difference τ = t′ − t

A<
ij (t, t′) = 〈Ψ0| ĉ†

j (t
′)ĉi(t) |Ψ0〉

= 〈Ψ0| eiĤt′/h̄ ĉ†
j e−iĤt′/h̄eiĤt/h̄ ĉie−iĤt/h̄ |Ψ0〉

=∑
m
〈Ψ0| ĉ†

j |Ψm〉 〈Ψm| ĉi |Ψ0〉 ei(E0−Em)(t′−t)/h̄, (286)

A<
ij (ω) =

∞∫

−∞

dτ

2π ∑
m
〈Ψ0| ĉ†

j |Ψm〉 〈Ψm| ĉi |Ψ0〉

× ei(E0−Em−h̄ω)τ/h̄

=∑
m
〈Ψ0| ĉ†

j |Ψm〉 〈Ψm| ĉi |Ψ0〉 δ (E0 − Em − h̄ω) , (287)

A<
ii (ω) =∑

m
|〈Ψ0| ĉ†

i |Ψm〉|2δ (E0 − Em − h̄ω) . (288)

d.2 nonequilibrium spectral function

In nonequilibrium situations, Ψ0 is not an eigenstate of the many-body Hamilto-
nian Ĥ. Nevertheless, it is also possible to formulate the spectral function in Eq. 284

as time-correlation function involving propagated states

A<
ij (t, t′) = 〈Ψ0| ĉ†

j (t
′)ĉi(t) |Ψ0〉

= 〈Ψ0| eiĤt′/h̄ ĉ†
j e−iĤt′/h̄eiĤt/h̄ ĉie−iĤt/h̄ |Ψ0〉

= 〈Ψ0(t′)| ĉ†
j e−iĤ(t′−t)/h̄ ĉi |Ψ0(t)〉 , (289)

A<
ij (t, τ) = 〈Ψ0(τ + t)| ĉ†

j |Ψ̃(τ + t, t)〉 . (290)

We introduce the relative time τ = t′− t, as in Sec. D.1, while t keeps its initial nota-
tion. The state |Ψ̃(τ + t, t)〉 is defined as |Ψ̃(τ + t, t)〉 = e−iĤτ/h̄ ĉi |Ψ0(t)〉, meaning
the kick ĉi on the wave function that removes one electron from the system acts
at time t during the time propagation. A Fourier transform with respect to the
relative time τ yields the general expression for the sum-over-states expression

A<
ij (t, t′) = 〈Ψ0| ĉ†

j (t
′)ĉi(t) |Ψ0〉 ,

A<
ij (t, τ) = 〈Ψ0| eiĤ(τ+t)/h̄ ĉ†

j e−iĤτ/h̄ ĉie−iĤt/h̄ |Ψ0〉
= ∑

n,n′,m
eiτ/h̄(En′−Em)+it/h̄(En′−En)

× 〈Ψ0| Ψn′〉 〈Ψn′ | ĉ†
j |Ψm〉 〈Ψm| ĉi |Ψn〉 〈Ψn| Ψ0〉 , (291)

A<
ij (t, ω) =

∞∫

−∞

dτ

2π ∑
n,n′,m

eiτ/h̄(En′−Em−h̄ω)+it/h̄(En′−En)

× 〈Ψ0| Ψn′〉 〈Ψn′ | ĉ†
j |Ψm〉 〈Ψm| ĉi |Ψn〉 〈Ψn| Ψ0〉

= ∑
n,n′,m

eit/h̄(En′−En)δ (En′ − Em − h̄ω)

× 〈Ψ0| Ψn′〉 〈Ψn′ | ĉ†
j |Ψm〉 〈Ψm| ĉi |Ψn〉 〈Ψn| Ψ0〉 . (292)
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In our simulations, we neglect the energy dependence of the delta function in the
last equation. Hence, we replace the term En′ by the energy E0 of the state Ψ0. This
leads to

A<
ij (t, ω) = ∑

n,n′,m
eit/h̄(En′−En)δ (E0 − Em − h̄ω)

× 〈Ψ0| Ψn′〉 〈Ψn′ | ĉ†
j |Ψm〉 〈Ψm| ĉi |Ψn〉 〈Ψn| Ψ0〉

= ∑
m
〈Ψ0(t)| ĉ†

j |Ψm〉 〈Ψm| ĉi |Ψ0(t)〉 δ (E0 − Em − h̄ω) , (293)

A<
ii (t, ω) = ∑

m
|〈Ψ0(t)| ĉ†

i |Ψm〉|2δ (E0 − Em − h̄ω) . (294)





E
C O O R D I N AT E T R A N S F O R M AT I O N F O R D I AT O M I C
M O L E C U L E S

In this chapter, we derive the coordinate transformation, which allows to separate
the center-of-mass motion of the Hamiltonian in Eq. 244. This goal is achieved
by using relative coordinates, which are similar to the transformation used in
Ref. [161] for the case of a neutral homonuclear diatomic molecule. We start with
the Hamiltonian Ĥen of Eq. 244

Ĥen = − h̄2

2M1mp
~∇2

X1
− h̄2

2M2mp
~∇2

X2
− h̄2

2me
~∇2

x3
− h̄2

2me
~∇2

x4

+
e2

4πε0

Z1Z2√
(X1 − X2)

2 + 1
+

e2

4πε0

1√
(x3 − x4)

2 + 1
− e2

4πε0

Z1√
(X1 − x3)

2 + 1

− e2

4πε0

Z1√
(X1 − x4)

2 + 1
− e2

4πε0

Z2√
(X2 − x3)

2 + 1
− e2

4πε0

Z2√
(X2 − x4)

2 + 1
.

(295)

Here, X1 is a nuclear coordinate corresponding to a nucleus with mass m1 = M1mp

and charge Q1 = Z1e, X2 is a nuclear coordinate corresponding to a nucleus with
mass m2 = M2mp and charge Q2 = Z2e, x3, and x4, are electronic coordinates with
masses m3 = m4 = me, where me is the electron mass, mp the mass of a proton and
Z1, Z2, M1, M2 are dimensionless scalars. The total charge is fixed to Q1 + Q2 = 2.
We now introduce the following new coordinates:

electronic center of mass coordinate xCM1 =
x1 + x2

2
,

distance between electrons x = x2 − x1,

nuclear center of mass coordinate XCM1 =
M1X1 + M2X2

M1 + M2
,

distance between nuclei X = X2 − X1.

These relative coordinates can now be used to perform a global center of mass
transformation, but keeping the nuclear and electronic distance coordinates x and
X

global center of mass XCM2 =
(M1 + M2)mpXCM1 + 2mexCM1

M
,

distance between XCM1 and xCM1 ξ = xCM1 − XCM1,
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with the total mass M = (M1 + M2)mp + 2me. The coordinate definitions can also
be formulated in terms of the following transformation matrices




X

x

ξ

XCM2




=




−1 1 0 0

0 0 −1 1

− M1
M1+M2

− M2
M1+M2

1
2

1
2

M1mp
M

M2mp
M

me
M

me
M







X1

X2

x1

x2




,




pX1

pX2

px1

px2




=




−1 0 −M1mp
M

M1mp
M

1 0 −M2mp
M

M2mp
M

0 −1 1
2

me
M

0 1 1
2

me
M







pX

px

pξ

pXCM2




.

If we plug both into Eq. 295, we obtain the following Hamiltonian

Ĥen =
M1 + M2

2M1M2mp
p2

X +
1

me
p2

x +
2me + (M1 + M2)mp

4 (M1 + M2)memp
p2

ξ +
1

2M
p2

XCM2

+
e2

4πε0

Z1Z2√
X2 + 1

+
e2

4πε0

1√
x2 + 1

− e2

4πε0

Z1√(
ξ − 1

2 x + M2
M1+M2

X
)2

+ 1

− e2

4πε0

Z1√(
ξ + 1

2 x + M2
M1+M2

X
)2

+ 1
− e2

4πε0

Z2√(
−ξ + 1

2 x + M2
M1+M2

X
)2

+ 1

− e2

4πε0

Z2√(
−ξ − 1

2 x + M2
M1+M2

X
)2

+ 1
.

The dipole operator is defined in old and new coordinates as

d̂ = e (Z1X1 + Z2X2 − x3 − x4) = e
(
−2ξ +

M1Z2 −M2Z1

M1 + M2
X
)

.



F
AT O M I C U N I T S

f .1 hartree atomic units

We shortly review the Hartree atomic units. In these units, we set me = e = h̄ =

1/4πε0 = 1. These quantities correspond to the following values in SI units

Name Symbol Value in SI

electron rest mass me 9.11 · 10−31 kg

elementary electric charge e 1.60 · 10−19 C

reduced Planck’s constant h̄ 1.05 · 10−34 Js

electric constant−1 1
4πε0

8.99 · 109 kg m3 s−2C−2

Using this definition derived units for the length, energy and time take the follow-
ing form

Name Symbol Expression Value in SI

length a0 4πε0h̄2/(mee2) 5.2918 · 10−11 m

energy Eh mee4/(4πε0h̄)2 4.5397 · 10−18 J

time ut h̄/Eh 2.4189 · 10−17s

f .2 effective atomic units for a gaas system

In Ch. 6, we use an effective atomic unit system for the model system of GaAs. We
use the values from a GaAs semiconductor, with:
m∗ = 0.067me and ξ = 12.7ε0 as given in Ref. [96]. This effectively means that in
the effective atomic units m∗ = 1

4πξ = h̄ = e = 1. We can use the above table to
derive the following effective units

E∗h = m∗e4/(4πξ h̄)2 =
0.067
12.72 Eh = 11.30 meV,

a∗0 = 4πε0h̄2/(mee2) =
12.7
0.067

a0 = 10.03 nm,

u∗t = h̄/E∗h =
12.72

0.067
ut = 58.23 fs.
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