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A B S T R A C T

Recent decades have ushered in tremendous progress in understanding the neural basis of language. Most of our
current knowledge on language and the brain, however, is derived from lab-based experiments that are far
removed from everyday language use, and that are inspired by questions originating in linguistic and psycho-
linguistic contexts. In this paper we argue that in order to make progress, the field needs to shift its focus to
understanding the neurobiology of naturalistic language comprehension. We present here a new conceptual
framework for understanding the neurobiological organization of language comprehension. This framework is
non-language-centered in the computational/neurobiological constructs it identifies, and focuses strongly on
context. Our core arguments address three general issues: (i) the difficulty in extending language-centric ex-
planations to discourse; (ii) the necessity of taking context as a serious topic of study, modeling it formally and
acknowledging the limitations on external validity when studying language comprehension outside context; and
(iii) the tenuous status of the language network as an explanatory construct. We argue that adopting this fra-
mework means that neurobiological studies of language will be less focused on identifying correlations between
brain activity patterns and mechanisms postulated by psycholinguistic theories. Instead, they will be less self-
referential and increasingly more inclined towards integration of language with other cognitive systems, ulti-
mately doing more justice to the neurobiological organization of language and how it supports language as it is
used in everyday life.

1. Introduction

The last two decades have witnessed extensive methodological ad-
vances in the non-invasive study of brain activity. These advances allow
researchers to address questions that have been at the core of the
neurobiology of language since its inception, addressing the structural
and functional basis of phonetic, semantic and syntactic processing.
Neuropsychological analysis of brain damage was the dominant method
for understanding neural function for over 150 years (see Levelt, 2012),
but offered only a relatively gross picture of neural function in language
processing, which could not capture the unfolding of neural events

among transiently activated brain regions. In contrast, the current state
of the art allows characterizing comprehension as a product of network-
level interactions at different temporal and spatial scales, and offers
promise towards explaining how the brain supports language compre-
hension in naturalistic, everyday language use.

Yet, the theoretical focus in research into the neurobiological or-
ganization of language has largely been maintained on those questions
originating in linguistics and psycholinguistics, and theoretical progress
in the neurobiology of language has maintained a remarkably stable
and linear course of advancement. Experimental work has largely fol-
lowed a research program wherein: (i) a linguistic function or operation
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is defined, (ii) an experimental paradigm manipulates a variable that
operationalizes this function, and (iii) regions or networks whose ac-
tivity or connectivity varies systematically with the levels of the in-
dependent variable are interpreted as supporting, subserving, med-
iating, computing, implementing, or otherwise performing the
cognitive process in question. This neurolinguistic approach has cata-
lyzed and advanced research in the neurobiology of language: matching
activity patterns to function assists diagnosis in cases of stroke or
trauma, is core to studying brain-behavior correlations, and allows
sophisticated meta-analyses to draw conclusions about brain regions
associated with linguistic functions. Beyond their compatibility with
the premises of the lesion-symptom mapping work that initiated the
neurobiology of language, several other factors contribute to make
neurolinguistic models the tool of choice for studying language in the
brain. They set up constrained hypotheses, are for the most part con-
ceptually precise and, by social convention, often limit themselves to
examining a single brain region or tightly defined networks. All these
factors contribute to clearly written scientific reports, communicating
results that map onto the linguistic and psycholinguistic communities’
common ground.

However, targeting the neurobiological basis of experimentally
isolable processes has offered little by way of understanding how the
brain supports language comprehension as it is carried out in everyday
naturalistic discourse. This means comprehension of ideas presented
across multiple sentences. The fact that neurobiological accounts of
syntax and semantics drawn from tightly controlled studies may not
scale to the discourse level is only one concern. More importantly, the
existing paradigm simply does not intend to address questions that are
crucial for understanding the neurobiology of Naturalistic Language
Comprehension (NLC henceforth). Examples are the interaction be-
tween semantic processes and memory encoding or retrieval during
comprehension, or the impact of context on online comprehension
processes. Thus, there is a real question about whether data from simple
experiments are relevant to understanding everyday language proces-
sing.

If extrapolation from basic paradigms is not a productive analytic
method, how can we study and interpret which principles organize
brain activity during NLC? Based on work by us and others, we argue
here that addressing this question requires a different explanatory fra-
mework. This framework attributes a central role to neurobiological
mechanisms that implement language but are not essentially linguistic;
holds that context must be considered as fundamental for under-
standing the neurobiology of language comprehension rather than an
additional consideration; and argues that neurobiological accounts of
comprehension must divorce from the idea that it is largely dependent
on activity within a central language network. In the next subsection we
provide a synopsis of these main tenets of the framework, which we
then present in detail in the subsequent sections of the manuscript.2

1.1. Theoretical tenets

Limiting language-specific interpretations: Brain activity observed
during language comprehension is frequently interpreted in terms of
core linguistic processes. Such computations include but are not limited
to monotonic integration of information, establishing coherence, and
prediction. Despite this, several studies suggest that these effects are
parsimoniously explained by basic computations that are not limited to
language comprehension, although often documented in areas asso-
ciated with language comprehension. For this reason, linguistic-related
constructs such as semantic or syntactic complexity should not con-
stitute the default interpretive framework. Rather, from first principles,

such effects should be adopted after considering alternatives that can be
formulated in terms of generic predictive and compositional processes
not unique to language. Processes that co-occur during naturalistic
comprehension, such as memory operations or emotional responses also
fall within this category. Section 2 presents this argument.

Broadening the notion of context and emphasizing its necessity: There
have been several demonstrations of the impact of context on language
comprehension (for reviews, see Hagoort & van Berkum, 2007; van
Berkum, 2008). Our argument for an essential role for context in neu-
robiological explanation derives from a synthesis of this work, as well
as recent developments in computational modeling of language. First,
during language comprehension, very diverse types of context appear to
be integrated within the same time frame. These include prior textual
context (co-text), the social context of the communication such as
characteristics of the speaker, or personal context such as the beliefs of
the comprehenders, or their mood. In addition, contextual integration
appears to implicate a limited set of networks that are often involved in
semantic processing. We present several generic, non-linguistic com-
putational architectures that can support this broad sort of contextual
integration. Our second argument for taking context as an organizing
factor is based on studies that suggest that neurobiological conclusions
drawn from studies where single-sentences are presented outside of
context do not naturally extend to more naturalistic contexts. This is a
problem of external/ecological validity. Section 3 presents the argu-
ment for opening up the notion of context.

Letting go of the notion of a stable language network: Concentrating on
a neurobiological language network, defined anatomically or func-
tionally, as a starting point for investigation results in an incomplete
understanding of the diverse brain networks that implement NLC and
their temporal dynamics. Neuroimaging research shows that during
discourse comprehension, brain networks are brought online and off-
line dynamically, depending on the content comprehended, and that
comprehenders’ preferences with respect to the type of information on
which they focus shape the organization of activity in regions central to
comprehension. In addition, brain regions considered outside the ca-
nonical language network, such as, for example, posterior midline areas
of the human brain often involved in vision, play crucial and largely
ignored roles in comprehension. Findings from other neurobiological
domains further suggest that assuming a fixed functional language
network may be a weak starting position. In developing this point we
address several misconceptions often used to support the existence of
functional networks for language. First, anatomical connectivity im-
poses only moderate constraints on functional connectivity or on net-
works deployed for specific tasks, so it is tenuous to argue that anato-
mical connectivity constraints result in invariant functional networks.
Second, functional networks are inherently non-stationary, and their
core topological features are strongly influenced by context, making it
difficult to speak of ‘a network’. Section 4 presents this argument for
letting go of the idea of a core stationary anatomical-functional lan-
guage network as a neurobiological explanatory construct.

1.2. Main aims and structure

Our main aim is to argue for a substantial shift in perspective in how
cognitive scientists, who are consumers of neurobiological research,
and cognitive neuroscientists who produce this research think about the
neurocognitive basis of language comprehension as understood in
natural contexts (we avoid here a discussion of production due to the
limited neurobiological literature on the topic). We present a research
agenda that can advance our understanding of the principles that or-
ganize brain activity during language comprehension. Beyond advan-
cing neurobiological knowledge, this progress is also likely to challenge
theoretical positions on language in the cognitive sciences. To this end
we present a large body of experimental findings, but only in order to
illustrate the utility of this approach, as we do not purport to provide an
overview of how the brain organizes language.

2 For readability, we omit references in this section unless necessary for
tracking ideas’ provenance, as the empirical findings are presented in length in
subsequent sections.
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There are various neurobiological models of language, addressing
issues such as white matter structure, sublexical speech perception, the
neural basis of several sub-functions of language, and the role of dorsal
and ventral streams (e.g., Binder & Desai, 2011; Bornkessel-
Schlesewsky & Schlesewsky, 2013; Fedorenko & Thompson-Schill,
2014; Friederici, 2012; Hagoort & Indefrey, 2014; Hickok et al., 2007;
Zwaan, 2014). We do not attempt to review those here. Instead we call
for a shift in perspective, which holds the promise of more accurately
modeling linguistic behavior, such as the neurobiological markers of
successful comprehension and memory for content, as well as
grounding of language in more basic computations. This endeavor can
open the way to tighter integration of language studies with other do-
mains of cognitive neuroscience from which they have been tradition-
ally isolated. As we show, ideally this should induce timely revisions in
the ontology guiding current thought about what computations are the
building blocks for neurobiological accounts of language.

2. Limiting language-specific interpretations

Computationally, language comprehension relies on processes that
are generally described as ranging from lower-level acoustic/phonetic
processing to higher-level discourse comprehension. Studies examining
the neurobiological implementation of discourse-level processes run
into two main interpretive difficulties. One difficulty is more general,
and relates to explaining activation in areas that were not predicted as
involved in the computation of interest. Here, researchers need to be
careful to avoid what has been called ‘reverse inference’ (Poldrack,
2006). This is a logically invalid inference where activity in a certain
region is interpreted in reference to a cognitive process that is fre-
quently associated with the region, but that was not directly controlled
or tested in the study.3 For instance, finding greater hippocampal in-
volvement in one language task may be interpreted as suggesting that
this task is accompanied by greater memory encoding demands (even
though hippocampal activity can reflect novelty responses to verbal
stimuli, Grunwald, Lehnertz, Heinze, Helmstaedter, & Elger, 1998).
This problem is more prevalent in studies manipulating higher-level
discourse features than, for example, in studies manipulating lower-
level acoustic features, as these are not as likely to prompt differences in
activation outside sensory regions.

The second problem pertains to the tendency to interpret brain
activity during comprehension in terms of computations that are spe-
cific to language processing at the discourse level (e.g., evaluation of
semantic constraints between a sentence and preceding sentences).
With some notable exceptions (such as work based on oscillatory un-
derpinnings of language), many studies of the neurobiology of language
interpret brain activity in terms of complex language-specific compu-
tations – what we call a language-essential interpretation. For example,
Ben-Shachar, Hendler, Kahn, Ben-Bashat, and Grodzinsky (2003) found
that Broca’s area (posterior left inferior frontal gyrus) differentiated
sentences containing syntactic movement from those that did not, and
interpreted this finding in reference to neural reality of syntactic
transformations (p. 433). Only later work adjudicated between this
syntactically-centered interpretation and a more basic one based on
working-memory demands (see Santi & Grodzinsky, 2007). There is a
long-standing work in the neuropsychology literature on whether
Broca’s area is necessary for sentences considered to contain traces
(e.g., Caramazza, Capasso, Capitani, & Miceli, 2005), and even in ma-
nipulations of object vs. subject extraction (Caplan, Stanczak, & Waters,
2008), more complex structures do not necessarily involve this region.
The involvement of Broca’s area in sentence comprehension has been

interpreted in multiple ways since Ben-Shachar et al.’s study (for a re-
view, see Rogalsky & Hickok, 2010).4 This shows how language-es-
sential interpretations can overlook more basic or domain-general
computations that can similarly, and more parsimoniously, account for
the differential involvement of a brain region given different types of
language contents or tasks. The potential impact of reverse-inferences
and language essential interpretations is compounded by the relative
sparsity of such studies which has not allowed in depth investigation of
many related questions.

Identifying core computations is an end in itself from the perspec-
tive of basic research, and can also result in a more complete under-
standing of co-occurring cognitive deficits in clinical states or explain
correlations with cognitive deficits in apparently different domains. As
detailed below (Section 2.1), effects of plausibility, consistency, pre-
dictability and event-change are often interpreted in language-essential
terms in neurobiological studies. However, some results indicate that
these effects are more parsimoniously explained by assuming basic
computations that are not limited to language comprehension, but
operate similarly over stimuli lacking semantics or meaningful syntax.

2.1. Basic functions for narrative construction, event segmentation and
prediction

What evidence supports the claim that some computations con-
sidered crucial for discourse comprehension are better understood in
terms of more basic functions? Neurobiologically, integration of spoken
or written narratives into a meaningful structure has been linked to a
network that includes perisylvian temporal and left inferior frontal
regions, but also the medial prefrontal cortex and the precuneus (e.g.,
Ferstl, Neumann, Bogler, & von Cramon, 2008). Whether these regions
are involved in the construction of non-linguistically communicated
narratives has received considerably less consideration, but some data
support this possibility. Humphries, Willard, Buchsbaum, and Hickok
(2001) used fMRI to examine the processing of narratives commu-
nicated via sentences or via sequences of environmental sounds (gun
shot, footsteps fading). They found that beyond the expected activity in
lower-level regions that process any auditory input, both types of nar-
ratives induced activity in regions linked to higher-level language
processing, including posterior lateral temporal and inferior frontal
regions. Thus, comprehension of narratives, communicated by any
means, may rely on regions typically associated with language pro-
cessing.

Consistent with this possibility, electrophysiological signatures for
integration of meaningful but non-linguistic information are similar to
those found for language. Silent sequences of meaningful visual events
produce signatures of integration-difficulty that are similar to those of
semantic integration and syntactic repair in language studies (a N400
and P600-like ERP potential, Sitnikova, Holcomb, Kiyonaga, &
Kuperberg, 2008). Integrating a word or picture with a preceding
sentence produces similar evoked responses (Willems, Ozyurek, &
Hagoort, 2008). This integration process is not limited to language
contexts: when musical pieces are followed by words that match or
mismatch the atmosphere evoked by the preceding music, mismatched
words produce a stronger N400 electrophysiological response. The si-
milarity of these patterns to those found for difficulty in semantic

3 This is not to say that any abductive inference, or inference to the best
explanation, is necessarily normatively invalid, but that any such inference
should be made only after careful ruling out all other possibilities (Harman,
1965).

4 These include mediation of sequential-related computations in linguistic
and non-linguistic elements (Fiebach & Schubotz, 2006; Hoen, Pachot-Clouard,
Segebarth, & Dominey, 2006), implementation of semantic unification at the
single sentence or discourse level (Hagoort, 2005, Hagoort, 2017), or controlled
retrieval of meanings in more demanding situations (e.g., Novick, Trueswell, &
Thompson-Schill, 2005), to name a few. It is still an ongoing question whether
the region mediates a single high-level function, multiple functions in different
subregions, or a core though yet-undefined, lower-level computation that could
account for the diverse sets of activation patterns found in this region (Rogalsky
& Hickok, 2010).
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integration suggests that integration vis-a-vis non-linguistic contexts
may rely on similar processes (Koelsch et al., 2004). Finally, musical
contents can also generate N400 responses. Daltrozzo and Schon (2009)
presented participants with words that were followed by a musical
piece, and found that N400 responses to the music tracked its perceived
fit with the preceding word. This suggests that music can convey con-
ceptual information, which is evaluated by neural computations that
also underlie language processing. This set of findings, as a whole, is
most parsimoniously explained by an account on which language-
evoked semantic integration is implemented by a general mechanism
for mapping new information onto a relevant context. This basic com-
putation is sensitive to the contextual fit of incoming linguistic content
(Hagoort, 2005; Hagoort & van Berkum, 2007), but importantly, we
argue that it is not uniquely implicated in language processing.

Segmenting streams of information into series of events is another
cognitive process known to organize discourse, narrative and film
comprehension. According to Event Segmentation Theory (Richmond &
Zacks, 2017; Zacks, Speer, & Reynolds, 2009), people parse information
streams into units of action, or event models, that guide comprehen-
sion. These models allow predictions about future actions by relying on
long-term schematic knowledge (Schank & Abelson, 1977), and failures
of such predictions form an internal signal for an event boundary. For
instance, once people learn that someone filled gas from the pump, long
term-knowledge would predict that this person would go on to pay for
the gas rather than just drive away, because paying is part of the ’filling
gas’ event model. In support of this model, behavioral studies have
shown that shifting a discourse topic along the temporal or spatial di-
mensions produces processing costs (Radvansky & Copeland, 2010;
Zwaan, Madden, & Whitten, 2000), perhaps due to increased effort
involved in updating a new segment of a situation model (Speer &
Zacks, 2005). Neurobiological studies have shown that event shifts in
narratives are associated with activity in a network consisting of mainly
posterior brain regions (Speer, Zacks, & Reynolds, 2007; Whitney et al.,
2009). This network overlaps with a more extensive one that tracks
event-shifts in movies (Zacks et al., 2001), and there is some evidence
(Baldassano et al., 2017) for an overlap between networks involved in
segmentation of auditory and audiovisually communicated narratives.

Could such findings can be accounted for via lower level mechan-
isms unrelated to semantic or episodic memory? Work by Tobia,
Iacovella, Davis, and Hasson (2012) suggests this might be the case. In
that study, participants listened to tonal series in which transition
probabilities between tones were non-stationary and changed over
time. Participants indicated when they noticed changes in the series’
regularity, and points of cross-participant consensus were labeled as
common subjective change-points. Brain activity in temporal windows
prior to these change-points was compared to control epochs, defined as
epochs that were not followed by change-point indications. This ana-
lysis identified a network strongly overlapping with that found in the
event-change literature summarized above. These findings are in fact
quite consistent with Zacks’ Event Segmentation Theory, which is ag-
nostic about whether the operations of working memory access, pre-
diction and the evaluation of prediction are limited to semantic content.
However, these findings do suggest there is a basic function that eval-
uates features of ongoing and prior contexts to identify contextual
change, which operates across multiple domains. This activity can ac-
count, at least in part, for activation patterns seen in event segmenta-
tion studies.

Prediction is another process that is considered integral to language
comprehension (see Huettig, 2015 for review).5 Beyond the well-

established finding that the processing of words appearing at the end of
sentences reflects their sentential predictability (e.g, Wlotko &
Federmeier, 2012), electrophysiological studies have shown that, when
contextually licensed, predictions are generated before word presenta-
tion (DeLong, Urbach, & Kutas, 2005; van Berkum, Brown, Zwitserlood,
Kooijman, & Hagoort, 2005; but see renewed debate in Nieuwland
et al., 2018). It has been suggested that the architecture that supports
the construction of predictions in the brain is a general one, based on a
hierarchical cascade of predictions made at different levels of granu-
larity, which are evaluated and refined based on bottom-up input
(Friston, 2009; Rao & Ballard, 1999).

The neurobiological question pertains to the neural basis of se-
mantic predictions: do these rely on a language-specific predictive ar-
chitecture or alternatively, on a more basic system? If the latter were
the case, it would be sensible to first understand what are the features
of the basic system and then (or in tandem) see how this system sup-
ports predictions in language. Indeed, recent neurobiological work
provides converging evidence for the hypothesis that linguistic pre-
dictions are based on a lower-level prediction-generating and evalua-
tion system that also implements sub-lexical predictions. First, certain
brain networks appear to have the capacity to generate predictions in
an abstract, domain-general manner and may subserve prediction in
both linguistic and non-linguistic domains. For instance, activity in the
anterior part of the right temporal cortex differentiates between pre-
dictable and unpredictable sequences for both auditory and visual in-
puts (Nastase, Iacovella, & Hasson, 2014). Second, lateral temporal
regions implicated in low-level auditory speech processing (left planum
temporale, and medial transverse temporal gyrus) have the capacity to
engage in low-level predictions and their evaluation. Tremblay, Baroni,
and Hasson (2013) found that these regions were sensitive to the pre-
dictability of auditory input streams, independently of whether these
consisted of speech or non-speech tokens, and importantly, no temporal
regions showed sensitivity to predictability in speech series alone, thus
suggesting that there is no unique status for predictability in speech
stimuli. These same low-level areas also signal surprise, as shown by
Mustovic et al. (2003). In that study, unexpected periods of silence
embedded within a stimulus stream were associated with increased
activity in auditory cortex. To conclude, auditory cortex and nearby
association cortices are involved in the construction of predictions in
generating surprise (error) signals (sometimes termed a prediction error
term’). In all, regions in the vicinity of primary auditory cortex have the
capacity to implement non-semantic prediction, when these are li-
censed by statistical patterns in recently encountered input.

Predictions during language comprehension can be based on nu-
merous types of information that are not unique to the language do-
main. These include the base-rate frequency of possible continuations,
or their sequential transition probabilities. The former reflects the
overall context-independent frequency of a token, and the latter its
probability given some contextual constraints such as its first-order
transition probability. To illustrate, the phrase there is is more likely to
be followed by a than by an since a is more frequent in the English
language. Still, the phrase he flew is still more likely to be followed by
an than by a due to transition constraints. Behavioral studies have
shown that people are sensitive to both these types of statistical features
in language input (Ellis, 2002). But sensitivity to these sources of pre-
dictability is not limited to the language domain: Tobia, Iacovella and
Hasson (2012) found that while people passively listened to tonal sti-
muli, lateral-temporal regions were sensitive to both the base-rate
(marginal) frequency of the tones and their transition probabilities,
though in different subregions. The aforementioned studies are just a
sample from a large body of evidence suggesting that predictions for
auditory inputs are generally mediated by lateral temporal, inferior
frontal, and basal ganglia regions (for review, see Hasson & Tremblay,
2016). These findings support a different level of explanation for neu-
robiological accounts of predictability or regularity during language
comprehension. Rather than assuming that these areas are involved in

5We note that the terms prediction and predictability are often time used
when accounting for any type of differential responses observed to less vs.
more-predictable stimuli, without making strong claims about whether this is a
result of anticipatory prediction, or post-stimulus backward checking post-
diction.
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computations that are specifically sensitive to language, such as re-
presentation of language statistics, or construction of predictions based
on semantic content, such findings point to domain-general functions
that may generalize over the specific features of the input stream. To
illustrate, effects of syllable-stream regularity on auditory cortex ac-
tivity has been interpreted as a signature of online-word segmentation
processes during language learning which aid cracking the language
code (McNealy, Mazziotta, & Dapretto, 2006), but may reflect a basic
level computation subserving multiple domains.

To summarize, the capacity to construct an integrated representa-
tion of continuous discourse and evaluate it for consistency, segment it
into event-like structures, or construct and evaluate predictions may be
supported by brain regions that perform related basic computations
outside the context of language input. Interpreting such effects in terms
of computations that are dedicated to processing language (or inferring
that deficits in these abilities relate to a language system) should
therefore be approached with caution. In the next section we target a
different reason for careful consideration of language-essential ex-
planations for activity patterns during NLC, which is that activity
fluctuations during comprehension reflect other processes that occur
within the same networks thought to mediate language comprehension.

2.2. On the neurobiological separability of interpretation, memory encoding
and contextual re-instantiation

The relation between comprehension of and memory for discourse
level content is complicated, and has received considerable treatment in
the behavioral literature (e.g., Gurevich, Johnson, & Goldberg, 2010).
Memory for linguistically communicated information is largely medi-
ated by construction of higher-level situation models that are abstracted
from the linguistic input, and it is these models that are encoded to
memory rather than the sensory signal itself (Bransford, Barclay, &
Franks, 1972). Some models of discourse memory argue it is re-
presented via conceptual networks where nodes stand for events men-
tioned or implied by the text (Zwaan, Langston, & Graesser, 1995). The
strength of the connections between these nodes reflects whether the
events in question share dimensions (e.g., a shared character, location,
etc.). The Landscape Model of comprehension (e.g., Tzeng, van den
Broek, Kendeou, & Lee, 2005) is a computational model in which
comprehension consists of recurring update-cycles with each new
statement. In each cycle, prior concepts are strengthened or weakened.
This allows modeling dynamic changes in concept accessibility as well
as the final episodic representation. The model accurately predicts
human recall, order of recall and the activation of textual concepts.
Thus, when modeling memory for discourse content, it is natural to
merge the processes of comprehension and the construction of episodic
representations, as the latter reflect connection strength between ele-
ments in the discourse model (e.g., agents, goals, events, or more
general concepts).

Given the opaque boundary between comprehension and memory
encoding in cognitive processing and computational modeling, it is
natural to inquire to what extent there exists a separation, at the neu-
robiological level, between systems related to discourse-level compre-
hension and systems linked to encoding. In addressing this issue, we
evaluate two possibilities. The first is that discourse-level comprehen-
sion is implemented in systems mediating semantic processing, but that
its encoding to memory is mediated by separate systems (the “segre-
gation hypothesis”). The second possibility, which is consistent with the
findings we mentioned above, is that memory for discourse content just
is a reflection of activity in the areas mediating interpretation (the
“single- process” hypothesis). As we review below, there is substantial
support for the single-process hypothesis, in addition to some partial
support for the segregation hypothesis, both in terms of the timeline of
memory formation for semantic content, and the brain regions med-
iating encoding.

EEG studies show similar timelines for memory formation and

semantic integration: activity patterns within 400–700ms following
word presentation are indicative of whether people will subsequently
correctly recognize or recall that word, suggesting a strong temporal
proximity to the semantic integration timeline (see Paller & Wagner,
2002 for review). Neuroimaging studies have found that brain regions
whose activity predicts successful memory for language content
strongly overlap with those typically taken to mediate discourse in-
tegration per se. Memory encoding for discourse content involve bi-
lateral temporal and left inferior frontal regions (Hasson, Nusbaum, &
Small, 2007). In these regions, higher activity during story compre-
hension is associated with better subsequent memory for story content
(see also, Hasson, Furman, Clark, Dudai, & Davachi, 2008). From a
neurolinguistic perspective, it might appear surprising to find that
higher activation in language areas is associated with better memory, as
these regions are not typically reported in studies examining memory
encoding, and are not considered (by neurobiologists of language) to
mediate memory functions. Crucially, the same study (Hasson et al.,
2007) also found that beyond the relation of lateral temporal regions to
subsequent memory, these regions also responded more strongly to
contextually inconsistent vs. consistent story endings. Beyond sup-
porting the single-process hypothesis, such findings are merely one of
many examples showing that successful memory formation does not
depend solely on a general (hippocampal, medial-temporal) memory
system, but also on brain regions specifically involved in processing the
task stimuli. In a pivotal study, Otten and Rugg (2001) showed that
when written words were presented for a phonological-judgment task,
activity in one group of brain regions predicted subsequent memory,
whereas when the exact same words were presented for a semantic task,
activity in a different group of regions predicted subsequent memory.
This and many subsequent studies show that the networks implicated in
memory encoding differ on the basis of the processing performed
during task (see also Duarte, Henson, & Graham, 2011; Gottlieb & Rugg,
2011; Gottlieb, Uncapher, & Rugg, 2010).6

A similar argument for a single memory/comprehension process can
be made for the position that comprehension and memory-related ac-
cess to prior discourse content are subserved by the same neurobiolo-
gical system. It has been shown that during comprehension, the pro-
cessing of incoming information triggers an automatic re-instantiation
of entire chunks of prior context related to this information (e.g., Gerrig
& McKoon, 2001). Currently, the brain regions that mediate access to
recently encountered content or the re-instantiation of prior episodes
during discourse comprehension are not known. However, two research
paradigms, that of contextual reinstatement and that of repetition of
language content, suggest that lateral temporal and inferior frontal
regions may be involved in these processes.

Studies of contextual reinstatement use pattern classifiers to de-
termine whether processing a stimulus produces a brain activity pattern
that is indicative of the episodic context in which this stimulus was
previously encountered. That is, can the specific context in which an
item was initially presented be ‘read off’ from activity prompted by
recall (see Danker & Anderson, 2010, for review of various contexts
manipulated)?7 Using fMRI, Johnson, McDuff, Rugg, and Norman

6 This should not be taken to imply that memory for verbal information is
independent of brain regions (hippocampal and ventromedial prefrontal cortex)
that mediate short-term encoding and longer-term consolidation. The hippo-
campus (particularly the anterior section) is sensitive to semantic manipula-
tions (Daselaar, Fleck, & Cabeza, 2006), and structural studies have shown that
individuals with greater verbal memory ability have particular thickness profile
in the region (Pohlack et al., 2014).
7 In this paradigm, individuals’ brain activity is first recorded with fMRI

while they encode items to memory via different strategies. For example, they
can be asked how an artist would draw the object, or alternatively, how the
name of the object would be pronounced. Then, a pattern classifier is trained to
distinguish between fMRI brain-activity patterns during these encoding con-
texts. Later, fMRI data are collected while the same individuals make old/new
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(2009) showed that recognition activity in several left hemisphere re-
gions often linked to language comprehension contained information
about the encoding context (inferior frontal gyrus, posterior superior
temporal sulcus, posterior middle temporal gyrus, but also superior
frontal gyrus). Thus, upon re-encountering an item, brain activity
contained signatures of the context in which it was initially encoded,
indicating access to a memory trace of prior context. This conclusion is
consistent with neuroimaging studies investigating repeated compre-
hension of sentence content. Repetition of a sentence, even when its
content is repeated non-verbatim, results in decreased activation in
lateral temporal regions and left inferior frontal regions (e.g., Dehaene-
Lambertz et al., 2006; Devauchelle, Oppenheim, Rizzi, Dehaene, &
Pallier, 2009; Hasson, Nusbaum, & Small, 2006). The magnitude of this
activity reduction in lateral temporal cortex is inversely related to the
temporal interval between the initial and repeated sentence presenta-
tions (Hasson et al., 2006), suggesting these regions have access to
memory traces of recently encountered content, which decay over time.

To summarize, lateral temporal and frontal regions, which are
usually associated with linguistic rather than memory functions have an
important role in both memory encoding and contextual re-instatement
during discourse comprehension.

3. Taking context seriously

Broadening the notion of context is necessary for explaining the
neurobiology of naturalistic language comprehension. We first review
studies suggesting there exists a domain-general mechanism responsible
for integrating incoming language content against multiple contextual
aspects. We then argue that studying comprehension in context is es-
sential for obtaining valid neurobiological accounts of language, and is
not a mere enhancement. Asking individuals to comprehend sentences
outside context requires them to explicitly ignore those communicative
aspects of language that are core to everyday comprehension. This
could lead to underutilization of brain networks important for com-
prehension. Finally, neurobiological accounts must deal with a different
form of context – neural context – through which prior brain states as
well as contemporaneous activity in certain brain networks affect on-
going comprehension (Section 3.4).

3.1. Context rapidly impacts comprehension

Language comprehension is affected by different types of contexts.
We describe three: semantic context, social context, and personal con-
text, and first address neurobiological data showing that they are in-
tegrated within the same time window. We draw on evidence from an
electrophysiological measure that has been shown to be extremely
useful for studying the timeline of semantic processing: the N400 (al-
ready mentioned in Section 2; for reviews see Hagoort & van Berkum,
2007; Kutas and Federmeier, 2011; van Berkum et al., 2005).

Semantic context is any prior knowledge evoked by the incoming
text. This prior knowledge can be part of long-term world knowledge,
or knowledge conveyed by earlier narrative or discourse content.
Relevant world knowledge has been shown to evoke a stronger N400
when it is inconsistent with the meaning of a sentence. For example,
among Dutch readers, who know that Dutch trains are yellow, the final
word in the sentence Dutch trains are white evokes a greater N400 than
the final word in the sentence Dutch trains are yellow (Hagoort, Hald,
Bastiaansen, & Petersson, 2004). Thus, world knowledge is quickly
brought to bear on current sentence integration (see Hagoort & van

Berkum, 2007; van Berkum et al., 2005 for reviews). Prior narrative
context that is related to incoming information is also rapidly in-
tegrated. For example, narratives that predicate a certain attribute
about a character (e.g., being slow) modulate the N400 amplitude when
this character is later referred to in congruent or incongruent terms
(slow/quick; van Berkum, Hagoort, & Brown, 1999; van Berkum,
Zwitserlood, Hagoort & Brown, 2003).

Interestingly, when narrative context and world knowledge collide,
narratives can have priority in integration. For example, Nieuwland and
van Berkum (2006) studied narratives in which a critical word was
congruent with world knowledge but incongruent with narrative con-
text. By studying the N400 component, they concluded that such words
were more difficult to integrate than words congruent with narrative
context. To illustrate, in a story about an animated peanut, under-
standing that the peanut was in love was easier than understanding that
the peanut was salted, as evident by a greater N400 for the latter. There
is also analogous evidence from cartoon narratives, where seemingly
impossible actions appear to be understood fluently (e.g., Filik &
Leuthold, 2008). Thus, context, narrowly defined even within limited
scopes, strongly impacts online integration.

Social context also influences semantic processing as measured by
the N400. It includes features of the linguistic exchange that go beyond
the linguistic structure and content and that are part of everyday lan-
guage use in social settings. These include co-speech gestures, emo-
tional intonation, and the speaker’s identity or social status. For ex-
ample, iconic gestures mismatching the meaning of a critical word in a
sentence are associated with a greater N400 than matching gestures
(e.g., mimicking walking vs. rolling for a sentence describing falling off
a roof; Özyürek, Willems, Kita, & Hagoort, 2007). A child’s voice ut-
tering a sentence fit for an adult (e.g., about drinking wine) elicits a
greater N400 effect than an adult’s voice uttering the same sentence
(van Berkum et al., 2008). Other work shows that being embedded in a
social context per se can also impact processing, for instance the specific
identity of the speaker or the presence of a fellow addressee rapidly
impact language comprehension, within the time frame previously
linked to semantic integration (Bornkessel-Schlesewsky, Krauspenhaar,
& Schlesewsky, 2013; Rueschemeyer, Gardner, & Stoner, 2014).

Personal context includes factors that are independent of any lin-
guistic exchange studied and are related to the comprehender’s value
system or self-perception. For example, statements that clash with
personal values (e.g., positive or negative judgments about abortion)
elicit a greater N400 than value-matching statements (van Berkum,
Holleman, Nieuwland, Otten, & Murre, 2009). Similarly, self-referential
words inconsistent with one’s self-view elicit greater a N400 than
consistent words (Watson, Dritschel, Obonsawin, & Jentzsch, 2007). In
addition, whether negative or positive information is conveyed in a way
that is more or less relevant to the reader (e.g. a man knocking on your
or someone else’s door with a gift or a gun) also affects the N400 re-
sponse (Fields & Kuperberg, 2015).

Among these personal contexts, particular attention has been given
to comprehenders’ mood. Happy and sad moods influence a host of
cognitive processes (for reviews see Clore & Huntsinger, 2007; Forgas &
Koch, 2013). In general, they promote the processing of information
congruent with their valence (e.g., Fiedler, 2001; Forgas & Locke,
2005). Happy mood is also thought to promote more comprehensive
and top-down processing, whereas sad mood a more analytic and
bottom-up processing style (e.g., Clore & Huntsinger, 2007; Fiedler,
2001).

Mood has been shown to impact comprehension of single sentences
or sentence pairs (Chwilla, Virgillito, & Vissers, 2011; Federmeier,
Kirson, Moreno, & Kutas, 2001; van Berkum, De Goede, Van Alphen,
Mulder, & Kerstholt, 2013). In broader discourse, listeners induced into
a happy or sad mood show increased N400 amplitude for mood-in-
congruent story endings, even when these endings are consistent with
prior linguistic context (Chung et al., 1996; Egidi & Nusbaum, 2012).
Chung et al. (1996) found that positive and negative story endings

(footnote continued)
recognition judgments for these items. The crucial test is applying the classifier
(constructed from the encoding data) to the data collected during recognition.
This determines if there are brain areas whose activity during recognition
contains information diagnostic of the encoding context.
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elicited a greater N400 when they mismatched the valence of the mood,
but the absence of a neutral mood control condition made it impossible
to specify the impact of each mood on comprehension. This issue was
addressed by Egidi and Nusbaum (2012) who showed that happy and
sad moods induce different processing of negative information than
neutral mood. Compared to the neutral group, N400 amplitudes to
negative information were increased in the happy group and reduced in
the sad group.

In all, these wide-ranging studies on the impact of semantic, social
and personal context point to an exciting and non-intuitive conclusion,
which is that multiple sorts of contextual features affect comprehension
within the same time frame. This poses difficulty for a functional se-
paration between semantic, social and personal contexts. Yet, both so-
cial and personal contexts are often viewed as extra-linguistic, despite
the increasing evidence from the studies cited above (and others) which
show that such contexts influence comprehension in a similar manner
and timing to that of sentence-level cloze probability or semantic-as-
sociation strength.

3.2. Syntax in context

While it may appear that taking context seriously is of most im-
portance to neurobiological theories of semantic processing, in this
section we argue that taking context seriously is also important for
neurobiological accounts of syntactic processing. Behavioral studies
have shown that syntactic operations are influenced by contextual
factors and, to some extent, the debate on whether there exist en-
capsulated syntactic processes that are context independent is one that
has been settled in the behavioral literature. The main neurobiological
interest is in whether there are brain regions that code for syntactic
features alone (in a context independent way), and if not, what would
be the best way to investigate the neurobiology of syntactic processing.
As we review below, it is difficult if not nonsensical to draw conclusions
about purported syntactic processing in the brain in a way that is in-
dependent of context. Beyond the specific implications for neuro-
linguistic theories of syntax, this raises the issue of how to best address
this neurobiological question, and highlights the fact that some con-
clusions drawn to date from context-independent studies of syntax may
lack explanatory power for understanding syntactic processing as it
occurs in natural, contextualized language.

The history of this debate in the behavioral literature is well known
and discussed extensively elsewhere (see Altmann, 2013). However, as
there are parallels to the debate in the neurobiology of language, we
briefly recap it here. In their landmark study, Ferreira and Clifton
(1986) concluded that syntactic comprehension is informationally en-
capsulated, in the sense that providing context, e.g. semantic informa-
tion supportive to a certain reading of the sentence, did not alter early
processing of sentences containing non-minimal attachment. However,
it was later shown that the difficulty of these sentences is reduced by
disambiguating contexts, as contextual information implemented via
discourse influences the resolution of such syntactic ambiguities
(Altmann & Steedman, 1988; Spivey-Knowlton & Sedivy, 1995). For
instance, relative clauses might have a preferred reading when pre-
sented in isolation but another reading when used in context (see
Spivey-Knowlton, Trueswell, & Tanenhaus, 1993 for related discus-
sion). The very large literature on the Visual World Paradigm shows just
how rapidly and effectively contextual features impact language com-
prehension, and some of these constraints operate on the discourse level
indicating that individuals quickly refine senses of verbs and preposi-
tions based on contextual dependencies (see Huettig, Rommers, &
Meyer, 2011, for review). That said, some researchers (e.g., Friederici,
2017) suggest that meaning construction consists of a ‘bottom-up’,
syntax-driven phrase structure construction (captured by an early left
anterior negativity component; ELAN) that is thought to be automatic
and to precede semantic analysis. For both psychologists and neuro-
biologists, the consideration of context is not merely an experimental

technicality, but an issue that calls into question the type of conclusions
that can be drawn from decontextualized studies. If understanding such
sentences out of context omits a natural factor that impacts compre-
hension, what is the status of conclusions drawn from brain responses
to those isolated sentences? This concern is oftentimes overlooked in
cognitive neuroscience of language where findings obtained from
studying isolated sentences are assumed to hold for language compre-
hension in everyday life.

An example that shows the problem with this assumption and that
specifically targets the influence of prior context on neural activation is
an fMRI study of syntax by Kristensen, Engberg-Pedersen, and
Wallentin (2014). In that study, participants were presented with sub-
ject-initial sentences (He noticed her) and object-initial sentences (Her,
he noticed). Both are grammatically correct in Danish, the language in
which the study was performed. However, according to syntactic the-
ories, object initial sentences are more complex and are more difficult
to process. These sentences were presented in two conditions: one ab-
sent of context, and one where a brief preceding context rendered the
(more complex) object initial sentence as more acceptable. For instance,
when preceded by the sentence Peter overlooked all the shoplifters except
Anne, it is the object initial continuation Her, he noticed that is more
natural. The authors found that activity in left IFG was strongly reduced
when context licensed the object initial continuation. These results il-
lustrate that findings from single-sentence, out-of-context studies of
language, do not necessarily extend to findings obtained with language
materials that are contextualized, even if the context is rather minimal
(see also Mak, Vonk, & Schriefers, 2008). Another study suggesting that
syntax is processed differently when comprehenders encounter more
mundane language is fMRI work by Brennan and colleagues (Brennan
et al., 2012), in which the left IFG showed no sensitivity to syntactic
distance when participants listened to stories. Rather, the anterior
temporal pole was sensitive to this established marker of syntactic
difficulty.

Ongoing (e.g., Leiken & Pylkkanen, 2014) and future neurobiolo-
gical work examining phenomena considered at the semantic-syntax
interface is very likely to identify to what extent syntactic manipula-
tions interact with semantic features of the stimuli. In any case, existing
findings already show how difficult it is to account for brain activation
patterns solely via syntactic-based explanations (e.g., Keller, Carpenter,
& Just, 2001; Leiken & Pylkkanen, 2014). For these reasons, the study
of de-contextualized, complicated sentences cannot be treated as a valid
small-scale model of natural comprehension, as it may simply be a
wrong model of semantic and syntactic processing in natural contexts.

The need to isolate syntactic processes has produced a field of study
often examining very artificial stimuli. In the extreme, this produces
comparisons between well-formed sentences and ill-formed sentences
that contain syntactic violations. The underlying assumption is that
processing a syntactic violation taxes the syntactic processing system
just quantitatively more than syntactically well-formed ones rather than
instantiating a qualitatively different mode of processing. But even
when outright syntactic violations are avoided, participants may still be
asked to deal with complex sentences high on syntactic load, such as
those with long distance dependencies. One can spend some time un-
derstanding who pinched whom and who loves whom in Kate loves the
woman who the mailman and the mother of Jim pinched (Santi &
Grodzinsky, 2007). Garden path sentences such as The horse raced past
the barn fell (Bever, 1970) are similarly taxing due to the need to revise
an initial syntactic interpretation. In neuroimaging studies, such com-
plex sentences invoke greater activity in left IFG (for review, see Kaan &
Swaab, 2002). This has been taken to suggest a role for this area in
syntactic processing. However, it has been known from relatively early
neuroimaging work (Caplan et al., 2008) that responses to more vs. less
syntactically complex sentences are themselves modulated by semantic
constraints.

In short, the two strategies of ignoring context in the study of syntax
and of pushing the system to the limits are backfiring. Their
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generalizability is called into question, as it is not clear to what extent
findings obtained with these strategies reflect processes that take place
during everyday language comprehension. This of course does not
mean that it is impossible for findings from traditionally controlled
studies to generalize to more naturalistic settings (e.g., see Demberg &
Keller, 2008). But which will or will not remains an open question until
more research is done using the naturalistic approaches advocated here.

Another limitation of constructing manipulations along dimensions
derived from traditional generative linguistic approaches is that it does
not adequately consider either approaches that are usage-based
(Goldberg, 2003; Ibbotson, 2013) or theoretical approaches for ex-
plaining language that are essentially syntax free, of the sort we de-
scribe in Section 5. As recently reviewed by Frank and Christiansen
(2018), their is substantial recent work suggesting that the presence of
hierarchical syntactic structures should not be assumed a priori, and
that sequential explanations may suffice (for recent neurobiological
work, see Lopopolo, Frank, Van den Bosch, & Willems, 2017). Fur-
thermore, as suggested recently (Frégnac, 2017) rather than choosing
stimuli that can produce strong firing rates, presenting a larger spec-
trum of input statistics and examining the system’s response to those
may be more appropriate.

3.3. Context bridges the gap between the processing of language and
communicative intent

While language can be used for many purposes, perhaps its most
important function is for communication. It has been argued that on-
togenetically and phylogenetically, the urge to communicate precedes
linguistic abilities (Liszkowski et al., 2006; Sperber & Wilson, 1995;
Tomasello, 2003). The common theme is that language has evolved as a
highly efficient code for sharing information, driven by the need to
communicate. Research shows that producing and recognizing com-
municative intent at least partially relies on brain areas outside of the
traditional language network.

Despite the importance of successful communication as a core
function of language, studies in the cognitive neuroscience of language
tend to focus on the core properties of language as traditionally defined
in linguistics: phonology, semantics, and syntax; what has sometimes
been referred to as the ”faculty of language in the narrow sense” (Fitch,
Hauser, & Chomsky, 2005). However, from a broader perspective, it is
important to consider that successful communication only takes place
when someone, by means of acting in a certain manner, conveys his or
her intention to someone else, and when that second person under-
stands the intention (Levinson, 2006; Sperber & Wilson, 1995). Even
when no speaker is present, such as in written texts, people attempt to
model the state of mind of characters or of the author (Gerrig, 1993).
Typically, the study of this deciphering/coding of communicative intent
is delegated to the domain of pragmatics, which is not considered at the
heart of the cognitive neuroscience of language (but see Bara, 2010;
Galantucci et al., 2011; van Berkum, 2009, for counterexamples). In-
deed, in a typical study, language content is presented under the as-
sumption that participants can process only what has been called the
‘descriptive aspect’ of a sentence (roughly corresponding to the state of
affairs referred to), while ignoring the other aspects that make sen-
tences effective (‘speech acts’). Namely, it is assumed that participants
can put aside what has been called the purpose of the speech act, which
entails recognizing the intention of the speaker, his/her attitude to-
wards the listener, and the implied request to respond to the statement.
The way in which core linguistic processes lead to actual communica-
tion is something that has been largely overlooked in the cognitive
neuroscience of language. Recently however, several studies have ex-
amined how the generation or understanding of communicative in-
tentions is processed in the brain.

From relatively early on, neuroimaging work provided clues that the
areas that are involved in deciphering intentional abilities are different
from those typically associated with linguistic computations narrowly

defined. This line of work took as its starting point the study of ‘Theory
of Mind’, which pertains to an individual’s ability to understand
someone else’s state of mind. While initial studies used linguistic sti-
muli, areas identified in those studies are activated by non-verbal
paradigms, such as watching video animations of simple geometrical
shapes (see Schurz, Radua, Aichhorn, Richlan, & Perner, 2014, for re-
view) or viewing comic strips, suggesting they perform common func-
tions for both linguistic and non-linguistic contexts. These studies show
that reflecting upon, deciphering, or making inferences about another
person’s belief activates areas outside of the classical language network,
but the studies do not speak to the issue of whether core linguistic and
communicative abilities are separable or not.

In an fMRI study addressing this issue (Willems et al., 2010), par-
ticipants engaged in a variant of the ‘Taboo game’, in which one person
describes a concept to another person, but without using certain words.
For instance, one tries to describe ‘beard’ without using the words: man,
face, hair or shave. The experimental design had two factors. First,
communicative intent was manipulated by having participants con-
struct a description when the other person already did or did not know
the answer. When the interlocutor did not know the answer, the par-
ticipant had to produce a description for this specific concept. When the
interlocutor did know the answer in advance, no targeted description
was necessary. The second experimental factor manipulated the se-
mantic distance between the target word and the taboo words, with
increased distance necessitating managing lexical competition. Plan-
ning and speaking durations were indeed influenced by the latter factor,
with greater lexical similarity producing slower behavior, and this was
accompanied by differential activation in areas classically related to
core language processes, such as the left inferior frontal cortex. The
communicative manipulation, on the other hand, did not impact be-
havior, but produced different activations in the MPFC, part of the
mentalizing network. The main conclusion is that linguistic and com-
municative functions rely on distinct neurocognitive substrates (see
Willems and Varley, 2010, for review).

From the perspective of comprehension, deciphering intent (within
and outside linguistic communication) may similarly rely on systems
not core to language comprehension. This was evaluated in a study
(Walter et al., 2004) that distinguished between interpretations of
private intentions and communicative intentions. Participants viewed
short cartoon narratives where protagonists performed actions moti-
vated by private, non-communicative intentions (e.g., changing a
broken light bulb to allow reading) or narratives where protagonists
acted with a clear communicative intent (e.g., pointing to a bottle to
request it). They found greater activity in MPFC for the communicative
than for the non-communicative stories (see also Ciaramidaro et al.,
2007). Kuhlen, Bogler, Brennan, and Haynes (2017) examined brain
activity patterns in two speech-production conditions: one where par-
ticipants thought a conversational partner would hear them, and an-
other introduced as a technical calibration in which a conversational
partner was absent. Analyzing activity in the seconds that preceded the
speech itself, they found that activity in MPFC and ventral prefrontal
cortex (bilaterally) differentiated the two conditions. We note however
that this is a newly explored issue and some work has implicated
perisylvian regions in such interpretive functions (Egorova, Shtyrov, &
Pulvermuller, 2016).

What is important for present purposes is the neurocognitive se-
parability of understanding linguistic information and (implanting or
recognizing) communicative intent. One could argue that this neuro-
biological fact necessitates separating the study of language from the
study of communication-related aspects. However, we argue that given
that communication is a core function of language, a full account of the
neural basis of language should address systems involved in under-
standing communicative intent, and their potential interactions with
systems mediating traditional language functions, rather than limit it-
self to the study of core linguistic processes using studies that essen-
tially strip them of communicative purpose.
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3.4. Neural contexts

In prior sections we emphasized that diverse types of external
contexts should be taken seriously as a source of constraint on brain
activity during language. Here we argue that, independently of inter-
pretive concerns pertaining to online activity, understanding the neural
basis of ongoing comprehension would strongly benefit from con-
sidering not only activity evoked by linguistic input, but also the fact
that comprehension occurs in a neural context. That is, in our brains,
activity in the ‘here and now’ is not determined solely by input features
and computations triggered by it, but also by the prior brain state and
by activity in areas unrelated to processing input features per se. There
are at least two mechanisms by which this context can affect compre-
hension: (i) non-stationary activity fluctuations prior to stimulus pre-
sentation impact sensory and higher-level processes, and (ii) several
functional brain networks implicated in the generation of internal
content interact with comprehension in complicated ways.

The emerging view in cognitive neuroscience is that brain activity
during stimulus processing reflects an interaction between stimulus-
triggered processing and the endogenous neural state prior to stimulus
appearance (for review, see Sadaghiani & Kleinschmidt, 2013). To il-
lustrate, sensitivity to auditory stimuli is linked to intrinsic activity
levels in lower-level auditory regions prior to stimulus appearance (e.g.,
Hesselmann, Sadaghiani, Friston, & Kleinschmidt, 2010), and phonemic
restoration effects in noise are impacted by the state of the system prior
to presentation of the ambiguous stimulus (Leonard, Baud, Sjerps, &
Chang, 2016). Similar pre-stimulus activation patterns (as measured by
EEG or fMRI) have been linked to stimulus memory (e.g., Otten,
Quayle, Akram, Ditewig, & Rugg, 2006) and attentional performance
(e.g., Li, Yan, Bergquist, & Sinha, 2007). The implication of such find-
ings for neurobiological models of language – as for other higher-level
cognitive functions – is that comprehension is likely not determined
solely by computations triggered by the linguistic input.

More specifically, pre-stimulus fluctuations can impact linguistic
computations because the functional networks implicated in language
comprehension are not simply brought online in response to language
input but maintain connectivity even during resting states (e.g.,
Hampson et al., 2006; Muller & Meyer, 2014). Endogenous fluctuations
in cortical networks, which are rapid and highly non-stationary
(Hutchison et al., 2013), could affect comprehension by altering the
connectivity of these networks.8 Thus, these networks’ state prior to
comprehension could impact their state during stimulus processing. The
off-line maintenance of functional networks during rest may be due to
the need to preserve the brain’s capacity to react in a coordinated
manner to frequently encountered types of stimuli, or could be related
to the internal generation of semantic content; i.e., rumination or mind-
wandering (Mason et al., 2007).

In summary, brain activity at any given point during comprehension
likely reflects a combination of stimulus-triggered information proces-
sing, as well as prior constraints on comprehension instantiated in the
form of activity in different brain networks.

4. Reconsidering the utility of a neurobiological language
network as an explanatory construct

4.1. Neurobiological networks for comprehension

From a neurobiological perspective, several brain networks are
implicated in contextual integration. These include one network typi-
cally considered fundamental to central language functions (left lateral

temporal regions and left inferior frontal gyrus [IFG]), and a second
network consisting of posterior and anterior midline regions implicated
in the generation of associations, memory retrieval and situation
models.

The IFG and lateral temporal regions have been associated, across
different studies, with processing of semantic, syntactic, social, and
personal information across contexts. For example, semantic predict-
ability in discourse influences activity in left IFG, lateral temporal re-
gions and right IFG (Ferstl et al., 2008; Hasson et al., 2007; Menenti,
Petersson, Scheeringa, & Hagoort, 2009). Perisylvian regions are also
associated with drawing inferences (Kuperberg, Lakshmanan, Caplan, &
Holcomb, 2006; Mason et al., 2004) and detecting inconsistencies with
world knowledge (Hagoort et al., 2004). Inconsistency in social signals
such as between iconic gestures and speech (e.g., Dick, Mok, Raja
Beharelle, Goldin-Meadow, & Small, 2014; Willems et al., 2008), or the
emotional prosody of speech (Kotz et al., 2003) also impacts these re-
gions. Finally, comprehenders’ mood (Egidi & Caramazza, 2014) or the
types of information people look for in a text (Cooper, Hasson, & Small,
2011) also impacts activation in these regions.9

Importantly, some contextual manipulations impact activity in
brain areas outside the core language network, highlighting their im-
portance for discourse integration. This has been shown in several
neuroimaging studies that have employed a well-established behavioral
paradigm (Bransford & Johnson, 1972) to identify brain systems asso-
ciated with the construction of a coherent representation of narrative
content. In this paradigm, an ambiguous text may or may not be ac-
companied by a disambiguating title or picture. When the title or pic-
ture is absent, the comprehension of the text is very difficult, to the
point that even linking one sentence to the next becomes impossible
(e.g., Once you are settled, your thumbs should be pointing up. Sometimes
there is no security but the animal’s hair, which is only clear when un-
derstood as horse-riding instructions; e.g., Martin-Loeches, Casado,
Hernandez-Tamames, & Alvarez-Linera, 2008; St. George, Kutas,
Martinez, & Sereno, 1999).

Brain regions showing greater involvement when discourse is pre-
ceded by a disambiguating title are of particular interest, as they are
related to the normal process of linking incoming with prior informa-
tion, and several studies have identified a specific network using this
contrast. Martin-Loeches et al. (2008) documented greater activity in a
set of posterior midline regions in the disambiguated condition (e.g.,
precuneus, posterior cingulate cortex, anterior cingulate cortex, but
also angular gyrus, dorsolateral prefrontal cortex and insula) and as-
sociated those to “linking incoming information with a repository of
activated knowledge” (Martin-Loeches et al., 2008, p. 620). Other work
(Smirnov et al., 2014) did not replicate these patterns, but found that
connectivity of several of those regions (posterior cingulate cortex,
angular gyrus, superior frontal gyrus) with the mid- and posterior-left
IFG was stronger during the disambiguating condition. The importance
of these regions was also documented by research showing that, across
individuals, temporal patterns of brain activation were more similar in
the presence of the disambiguating title (specifically: anterior- and
posterior-cingulate and medial prefrontal cortex; Ames, Honey, Chow,
Todorov, & Hasson, 2014).

The networks used during integration also depend on semantic
factors such as the relation between an incoming sentence and more- or
less-recently introduced narrative context. In a study by Egidi and
Caramazza (2013), participants heard stories whose final sentences
were either consistent or inconsistent with the immediately preceding
context (a local consistency relation). Independently, the earlier, initial

8 This appears to be the general pattern for task-related networks: similar
findings have been found for networks involved in social cognitive processes
and tool use (Simmons & Martin, 2012) and action observation (Molinari et al.,
2013).

9We note that although studies often mention the same region label, such
references across different studies could refer to functionally dissimilar dis-
tributions. That is, normalization of fMRI data and the commonly employed
practice of spatially smoothing the data renders it difficult to say with certainty
that exactly the same region was activated in two separate experiments.
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sentences in each story were also relevant or irrelevant to the final
sentence (distal relevance relation). The study demonstrated that while
people listened to the final sentence, three different networks were
involved in comprehension. One signaled the relevance of the distal
context, a second signaled the consistency of the ending with its local
context, and a third was sensitive to the interplay of both the relevance
of the distal context and the consistency of the ending with the local
context. Other work (Egidi & Caramazza, 2014) showed that the pro-
cessing of consistent vs. inconsistent discourse content was performed
in very different networks depending on comprehenders’ mood. This
implies the existence of alternative routes to the basic language net-
work for comprehension.

It is important to note that it has been clear for more than a decade
at this point that language comprehension engages large-scale brain
systems beyond those associated with “classical” perisylvian schemes.
Ferstl et al. (2008) termed these an “extended language network”, en-
compassing the anterior lateral temporal regions bilaterally, posterior
superior temporal sulcus bilaterally, ventral and dorsal medial pre-
frontal cortices, anterior left IFG, and the precuneus. An even broader
network was documented by Wilson, Molnar-Szakacs, and Iacoboni
(2008) who identified brain regions that co-varied in a similar manner
across individuals during auditory language comprehension. Beyond
the regions identified by Ferstl et al., this study implicated regions such
as posterior cingulate gyrus, right fusiform and parahippocampal gyrus
that are involved in visual processing and memory.

Of course, discourse-level manipulations may impact activity out-
side a ’core’ network via more generic processes that are unrelated to
language processing. For instance, inter-subject correlations may reflect
variations in “global levels of engagement”, rather than language-re-
lated computations, as noted by Wilson et al. (2008). Some findings are
consistent with these objections: Wide-spread activity changes in lower
level auditory and visual regions is triggered by memory recall (Azulay,
Striem, & Amedi, 2009), and large-scale changes in interactions be-
tween well-defined brain networks are linked to increased memory load
(Liang, Zou, He, & Yang, 2015). Nonetheless, as our examples above
show, there is extensive literature linking regions outside the core
language network to specific semantic processes at the core of linguistic
competence. As a case in point, in the next section we focus on the
lingual gyrus, a region in the occipital cortex, which is traditionally
associated with visual processing.

4.2. Outside the language network: The lingual gyrus as an example

The lingual gyrus is an occipital region, adjacent to the calcarine
sulcus. It has a unique anatomical feature in that it is one of few non-
perisylvian regions whose cortical thickness covaries with that of a
cluster of lateral temporal, inferior parietal and inferior frontal regions
often implicated in language functions (Chen, He, Rosa-Neto, Germann,
& Evans, 2008). That is, individuals with greater cortical thickness in
the left lingual gyrus also show greater thickness in many regions linked
to language processing. Such correlations have been interpreted as in-
dicating that these regions experience common activation (Chen et al.,
2008; Zielinski, Gennatas, Zhou, & Seeley, 2010). In several neuroim-
ging studies, it is the only region or one of few outside perisylvian re-
gions to show speech-related activity (Rodd, Davis, & Johnsrude, 2005;
Zekveld, Heslenfeld, Festen, & Schoonhoven, 2006) or involvement in
evaluation of grammaticality (Hoen et al., 2006).

This region also tracks rapidly changing semantic and structural
features of language input. Brennan et al. (2012) used fMRI to identify
brain areas that showed similar temporal fluctuation patterns across
participants while listening to auditory stories. Many perisylvian re-
gions showed this inter-subject correlation, but also the lingual gyrus
and nearby regions. Further analyses showed this region’s activity
tracked lexical frequency of the auditory inputs. This does not however
mean that the lingual gyrus mediates an essentially linguistic function,
and related work (Tobia, Iacovella & Hasson, 2012) using non-linguistic

stimuli suggests otherwise. In that study, listening to simple tonal series
was associated with inter-subject correlations in the lingual gyrus and
several posterior midline regions (posterior cingulate cortex, pre-
cuneus). Furthermore, in these regions, the time course of common
activity profiles, across participants, tracked changes in tonal transition
structure. Thus, the involvement of this region in processing of a tem-
porally extended stimulus could be generally related to integration of
incoming and recently encountered information. The region might be
mediating lower level memory processes as seen in the fact that it
shows repetition suppression for words but not non-words (Fiebach,
Gruber, & Supp, 2005), and for simple sentences but not complex ones
(Hasson et al., 2006).

The mechanisms underlying the involvement of this region in lan-
guage are yet to be fleshed out. What is important is that it is possible to
identify brain regions outside the language network that can support
important language related functions. To date, identifying such regions
has been left as an exercise to those readers inclined to comb through
the literature, while the main focus has been maintained on those re-
sults found within regions considered core to the language network. In
this way, a large knowledge base has been accumulated for perisylvian
regions, but remarkably less is understood about the role of other
networks or regions.

4.3. Core language networks: stable, unstable, or non-existent?

In previous sections we have questioned the putative centrality of a
‘language network’ for understanding NLC. Here we ask whether it is at
all reasonable to assume that discourse-level comprehension relies on a
stable set of regions (a stable functional network) that implements
discourse-level functions beyond those needed for lower-level speech
perception. There are two reasons for the assumption that a stable
functional language network exists, and we evaluate both in the fol-
lowing sections. First, lateral temporal and inferior frontal regions are
strongly connected via white matter fiber tracts (Dick & Tremblay,
2012). Some have suggested that these structural pathways can be as-
signed language functions (Friederici & Gierhan, 2013), and that they
form a general constraint on functional connectivity patterns (Honey,
Thivierge, & Sporns, 2010). Second, several studies have documented
synchronized activity between lateral temporal and frontal regions,
both during the resting state and during language comprehension (e.g.,
Hampson et al., 2006).

Cognitive neuroscience has made great progress by identifying
functional networks in the human brain. These, non-technically
speaking, consist of brain regions whose time series are correlated
during wakeful rest or during perception. This discovery has constituted
a significant advance, with many tools devised for characterizing these
networks. However, several implicit suppositions in this field have
come under increasing scrutiny, with important implications for the
study of NLC. Specifically, as we detail below, several studies have
questioned:

1. Whether functional networks do reflect structural connectivity,
2. Whether these networks are stationary over time,
3. Whether the temporal correlations that define these networks can be

taken to reflect continuously synchronized activity within the net-
works (as opposed to, e.g., rare coordinated spiking).

4.3.1. Does structural connectivity constrain functional connectivity?
Initial studies emphasized that structural (anatomical) connectivity

between brain regions can predict patterns of resting-state functional
connectivity (e.g., Honey et al., 2010), and that resting-state con-
nectivity patterns themselves may serve as a substrate for organization
of different sorts of computations (e.g., Smith et al., 2009). But later
studies showed that both these constraints are moderate. Specifically,
structural connectivity accounts for 30–60% of the variance in func-
tional connectivity (e.g., Messe, Rudrauf, Benali, & Marrelec, 2014),
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and different tasks evoke markedly different organization of whole-
brain coordinated activity (e.g., Mennes, Kelly, Colcombe, Castellanos,
& Milham, 2012). Thus, the structural white-matter pathways linking
lateral temporal, inferior parietal and inferior frontal regions do not
necessarily support a stationary functional network, as brain structure
is a constraint on functional activity, but far from a deterministic one.

Instead, these moderate structural constraints allow for the possi-
bility that during comprehension, the ‘core’ functional network (typi-
cally implicated in lexical and sentence level processing) alters its
connectivity with additional regions/networks depending on context.
Regions supporting language-related working-memory operations (IFG,
intraparietal sulcus) change their strength and directionality of con-
nectivity with perisylvian regions depending on the syntactic com-
plexity of sentences (Makuuchi & Friederici, 2013). Syntactic com-
plexity is accompanied by stronger connectivity between inferior
frontal and lateral temporal regions (den Ouden et al., 2012). In a study
of discourse comprehension (Chow et al., 2013), participants heard
stories that contained, in separate sections, strong action-, emotion- or
visually-related content. Functional connectivity between temporal re-
gions and other brain regions changed dynamically depending on the
content heard. Similar findings are found for music perception: fMRI
and MEG studies have shown that functional connectivity between
auditory cortex and the medial temporal lobe (a region traditionally
linked to memory encoding and retrieval) varies as function of famil-
iarity with a musical piece (Müller et al., 2013; Wilkins, Hodges,
Laurienti, Steen, & Burdette, 2014).

In fact, context-sensitive changes to functional connectivity appear
to be the norm, rather than an exception. A large literature shows that
even simple changes to cognitive state produce changes in functional
connectivity networks. For instance, increasing working memory de-
mands induces fundamental changes to functional connectivity in spe-
cific brain networks (e.g., Fransson, 2006; Fransson & Marrelec, 2008),
and different types of discourse content impact connectivity of nodes in
the default mode network (Hasson, Nusbaum, & Small, 2009). In a
study of movie perception (Raz et al., 2014), connectivity of the limbic
system with other brain network changed dynamically and tracked
fluctuations in autonomic activity on timescales of around 30sec. Thus,
rapid, content-driven changes in arousal covary with network dy-
namics. Altogether, the findings we have mentioned suggest that dy-
namic network reconfiguration is a basic feature of brain activity
during comprehension.

4.3.2. The gap between functional connectivity and continuous information
exchange

Functional connectivity is most frequently quantified via the cor-
relation between time-series sampled from pairs of brain regions. The
initial studies that identified large-scale functional connectivity net-
works in the brain (Fox et al., 2005) emphasized that connectivity is
driven by low-frequency oscillations, accompanying those data by fig-
ures depicting similar time series across different brain regions. How-
ever, researchers have begun revising this implicit conceptualization of
connectivity as reflecting continuous synchronization over time, and
instead suggest that time-series correlations reflect infrequent bouts of
joint activity. In a surprising demonstration that has been repeatedly
replicated, it has been shown that the same functional connectivity
networks identified via correlation procedures can be identified by a
procedure that discards more than 90% of the data in the time series,
and that instead is based on finding infrequent but spatially synchro-
nized activity spikes across brain regions (Tagliazucchi, Balenzuela,
Fraiman, & Chialvo, 2012). Conversely, removing the variance attri-
butable to such spikes results in reduced correlations in well-defined
networks (Petridou, Gaudes, Dryden, Francis, & Gowland, 2013). The
second point has already been touched on when we mentioned studies
(reviewed in Hutchison et al., 2013) showing that even within well-
defined networks connectivity is non-stationary, with profiles changing
at a rapid pace. This reconfiguration is not random, but can be

systematically described via a set of spatio-temporal activation patterns
cycled through over time (Rashid, Damaraju, Pearlson, & Calhoun,
2014; Robinson, Atlas, & Wager, 2015).

Thus, the most appropriate level of explanation for functional con-
nectivity is not that of correlations derived from temporally extended
periods (typically on the scale of several minutes), but a much shorter
scale. Technically, this is completely feasible and studies have shown
that it is possible to quantify correlated activity in the brain on scales of
30 s or so (e.g., Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012).
To summarize, while studies of correlated activity will probably con-
tinue to be of major interest in future work on NLC, it is important to
reconsider whether quantifying functional connectivity within re-
stricted networks as currently performed holds the key to under-
standing the information processing in brain networks during language
comprehension. Alternatively, it may be that relatively infrequent co-
occurring spikes driven by very particular input features drive such
correlations. Identifying what are these features is an interesting di-
rection for future work.

4.3.3. Questioning the concept of a functional language network
In the prior two subsections we argued that a better understanding

of NLC could be gained by examining high frequency patterns of non-
stationary correlated activity. Still, that discussion was premised on the
idea that there is a set of regions that can be called a ”language net-
work”, which supposes that, formally defined, such a functional net-
work can be meaningfully said to exist. There is little doubt that peri-
sylvian regions are more involved in processing language inputs than
some other brain systems (see, e.g., Blank & Fedorenko, 2017), and may
be particularly involved in language tasks (e.g., Fedorenko, Behr, &
Kanwisher, 2011). This however is not sufficient for treating these re-
gions as a functional network. This would be challenged if it were
shown that core features of connectivity between brain regions linked
to this network change with context. For example, if it were shown that
depending on textual features, core topological features10 of functional
connectivity change in a way that leads to re-defining the network, it
would be formally inaccurate to state that a fixed network implements
comprehension. Instead, it would be accurate to say that different
networks are established depending on the goals of comprehension.

To our knowledge, this argument has not been evaluated to date, or
at least not reported in the literature on language comprehension. But
outside the domain of language, there is an ongoing debate on whether
functional connectivity networks do, or can, fundamentally change
depending on context. Arguing for the relative fixedness of such net-
works, are reports showing that the modular partitioning of these net-
works, as quantified from fMRI connectivity, is not altered in sleep as
compared to wakefulness (Uehara et al., 2014) and remains unchanged
during processing of sensory inputs in different modalities (Moussa
et al., 2011). Similarly, MEG work documented immutability of global
network features during task vs. during rest (Bassett, Meyer-
Lindenberg, Achard, Duke, & Bullmore, 2006). On the other hand, very
simple manipulations of information content in input streams have
been shown to impact a range of core topological features of functional
networks, including their modularity, module number, partition struc-
ture, and node degree distribution (Andric & Hasson, 2015), and other
work has shown that simple manipulations such as repeated presenta-
tion of narrative content has the strongest effect on perisylvian regions
(Andric, Goldin-Meadow, Small, & Hasson, 2016). A productive direc-
tion for future research would be examining how connectivity features
(either of a restricted set of regions, or on the whole-brain level) change
with language content and language task, or even naturally with the
progress of discourse (see e.g., Chai, Mattar, Blank, Fedorenko, &

10 These include features such as partition modularity, partition structure,
and node degree distributions and various quantifications of small world fea-
tures.
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Bassett, 2016). More generally, constructing research paradigms and
analysis methods that question the notion of a stable functional lan-
guage network can provide findings that will, at minimum, expose the
relative flexibility of functional (re)organization within perisylvian re-
gions.

5. Statistical models as an explanatory framework for processing
costs

To this point, we have shown that different types of contextual
constraints (or knowledge) share similarities with respect to the
timeline by which they are integrated and the brain systems they
impact. From a neurobiological perspective, treating these disparate
information sources, that is contextual constraints, as a single category
would be supported if it were possible to specify computational ar-
chitectures that could accommodate long-term knowledge, situational
constraints, and textual constraints within the same architecture. In
recent years, the advancement of convolutional neural networks for
the processing of language and co-occurring information suggests vi-
able computational implementations for acquiring and representing
such contextual effects. For example, from co-presented visual and
language information, such systems can automatically produce image
captions for novel images (Vinyals, Toshev, Bengio, & Erhan, 2015), or
align book and video contents (Zhu et al., 2015). These architectures
work on unlabeled data and do not require any sort of mid- or high-
level labeled information. These architectures, as well as simpler ones
based on recurrent neural networks, can account for the contextual
effects we described using mechanisms that code for corpus-based
proximity and statistical co-occurrence. In presenting this issue we
draw on several advances in computational linguistics, artificial in-
telligence, and psycholinguistics (for related discussions, see, Andrews
et al., 2014; Armeni et al., 2017). Such advances have allowed mod-
eling contextual effects on learning and processing in ways that were
not conceivable even a few years ago.

5.1. Distributional data, lexical predictability and semantics

Recent years have seen a resurgence of computational and experi-
mental studies addressing how statistical models may account for on-
line incremental language comprehension. These models show that
computational mechanisms exploiting lexical, part-of-speech, or other
corpus-based-distance metrics perform well in accounting for online
processing during comprehension, and can account for what are tra-
ditionally considered as semantic or syntactic effects. For instance, es-
timating the processing cost of upcoming information is the chief goal
of models based on statistical constraints between words or groups of
words, such as the ones developed by Frank and Bod (2011). These
architectures, comprising Markov models and recurrent neural net-
works (RNNs), can predict the processing cost of an upcoming word
based on the previous sentence context. Their predictions of processing
costs are estimated using information-theoretic measures such as en-
tropy and surprisal, and have been found to correlate with the ampli-
tude of the N400 as well as with reading times (Frank, 2013;Frank,
Otten, Galli, & Vigliocco, 2015; Delogu, Crocker, & Drenhaus, 2017;
Murphy, Wehbe, & Fyshe, 2018). Processing costs (as reflected in an
ERP N400) are also accounted for by a model that scales cost with the
dissimilarity between a words meaning and that of the preceding con-
text, when those are quantified via multidimensional vector re-
presentations (Broderick et al., 2018). Neuroimaging work shows that
these models’ estimations of processing cost predict neural activity
fluctuations in temporal regions during language comprehension (e.g.,
Fruchter & Marantz, 2015; Willems, Frank, Nijhof, Hagoort, & Van den
Bosch, 2016). An EEG study (Frank & Willems, 2017) has further shown
that lexical predictability (contextual surprisal) and semantic similarity
(in terms of cosine distance between the vector of the target word and
the combined vector of the preceding words) elicit distinct patterns of

neural activity in participants that are processing naturalistic language.
Importantly, these models do not require any explicit syntactic struc-
ture or rule-based system to obtain their good performance.

The models described so focused on predicting how likely a word is
in a given sentence, but not how plausible a certain meaning will be in a
given context. However, the very same statistical metrics can be used to
model word meanings by means of multidimensional spaces, as in
distributional semantic models. At the basis of distributional semantics
is the distributional hypothesis stating that words occurring in the same
contexts tend to have similar meanings (Harris, 1954). This principle
has been used to develop successful models of the semantic system,
such as Latent Semantic Analysis (Landauer & Dumais, 1997) and Topic
Models (Griffiths, Steyvers, & Tenenbaum, 2007), in which word
meanings are represented as their occurrence vectors across large col-
lections of text documents (i.e., corpora).

These computational models correspond with a family of psycho-
logical models of semantic memory (conceptual knowledge) that do not
assume a conceptual core for concepts (words) but hold that concepts
are inextricably linked to the multiple contexts in which they appear
(e.g., Kemmerer, 2015; Yee & Thompson-Schill, 2016). These hold that
access to conceptual knowledge during language comprehension de-
pends on multiple factors such as comprehension context and the long
term co-occurrence patterns. Kemmerer (2015) notes that contextual
features might account for which features are activated, and shows this
can account for findings reported in the study of motor verbs, where
activation of motor features is not deterministic but depends on task
and context features.

5.2. Integrating linguistic and non-linguistic information

This brief introduction to distribution-based models highlights the
typical focus on language data that characterize these approaches.
However, for the purpose of our argument, it is important to realize that
the tendency to limit these types of analyses to linguistic contexts (i.e.,
linguistic co-occurrences) was mainly driven by availability of large
text databases, rather than by theoretical constraints. In fact, any kind
of data for which it is possible to draw associations between informa-
tion units can be integrated into distributional representations, thus
making the boundary between linguistic and extra-linguistic informa-
tion less rigid than researchers usually assume. In other words, the co-
occurrence of elements, irrespective of the “cognitive category” one
assigns them (lexeme, phoneme, visual element), could serve as foun-
dation for a comprehensive statistical model of language representa-
tions. Although there are clearly levels of representation where these
are distinct units, for purposes of neurobiological computations under-
lying language comprehension, such multi-modal elements may be
bound together.

There are several computational frameworks that share the capacity
to integrate both linguistic and non-linguistic aspects of incoming sti-
muli, and that in this way can elegantly account for contextual effects in
language. For the sake of clarity in exposing these models, we will use
as an example the interesting finding reported in van Berkum et al.’s
(2008) study in which a sentence such as Every evening I drink some wine
before I go to sleep evoked a stronger EEG response when pronounced
with a child’s voice than an adult voice.

Given that a child’s voice is unlikely to state a preference for wine,
that kind of voice is an unlikely context for the “drinking wine” con-
cept. The incongruence between these pieces of information can be
captured by a distributional model based on co-occurrences between
acoustic and semantic features, in which the physical features of a
“young voice” (vs. any other age of voice) will not be a prominent di-
mension in the “drinking wine” vector. Visual-semantic distributional
models (Bruni, Tran, & Baroni, 2014) construct semantic representa-
tions that combine text-based linguistic properties (as defined, e.g., by
Turney & Pantel, 2010) with low-level visual features obtained from
image databases and show how merging co-occurrence of linguistic and
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non-linguistic features boosts modeling of language comprehension.
Moreover, models combining text- and image-based information, as
opposed to their textually-specific counterparts, provide the best fit to
brain data (Anderson, Bruni, Lopopolo, Poesio, & Baroni, 2015) and to
behavioral performance in novel-word learning (Lazaridou, Marelli, &
Baroni, 2017). These architectures can potentially integrate other kinds
of information, including conversational elements, speaker properties,
and world-knowledge aspects. Indeed, distributional models based on
acoustic information has already been proposed (Lopopolo & van
Miltenburg, 2015), as well as approaches combining textual an ex-
periential statistical data in the same distributional architecture
(Andrews, Vigliocco, & Vinson, 2009). The main challenge is hence a
practical one, as training data would need to capture co-occurrences
between and within different levels of description (linguistic, visual,
discourse, contextual, speaker-associated, etc.) in complex scenarios.

5.3. A learning-centered perspective

Co-occurrence-based systems capture not only the end-state of
learning but also the learning process by which the distributional
structure is established. Indeed, the way co-occurrences are re-weighted
in distributional semantic models is quite close to the outcome of a
Rescorla-Wagner learning procedure (Rescorla & Wagner, 1972), even
more so in recent neural-network-based systems (see Mandera,
Keuleers, & Brysbaert, 2017). In the Rescorla-Wagner equations, con-
text plays a crucial role in determining the final link weights between
the model units. During learning, a cue (e.g., a phoneme) appearing
along with an outcome (e.g., a lexeme) will lead to a stronger link
between the two corresponding representations. However, when many
cues appear together, they share the entire amount of discriminative
power: the link between each cue and the outcome will still be
strengthened, but to a lesser degree than if the outcome were associated
with a single cue. Consequently, the final state of the model is not only
influenced by the cue-outcome associations, but also by the cue co-
occurrence patterns themselves (for a description in probabilistic terms,
see Danks, 2003). In this way, the Rescorla-Wagner equations account
for the influence of complex contexts in a general learning framework.

The Rescorla-Wagner equations have been applied to language,
within the general approach of Nave Discriminative Learning (NDL,
Baayen, Milin, Durdević, Hendrix, & Marelli, 2011). In NDL, word
meanings are considered outcomes, whereas simpler aspects/features
(e.g., graphemes representing meaning-devoid language units, raw
phonetic features, visual elements included in a learning scenario, etc.)
are considered cues. The 2-layer NDL model is based only on a feature-
based input layer (typically coding for sublexical features such as
phonemic or orthographic features) and a target semantic layer, and is
trained without feedback. The model provides a unified account for a
wide range of phenomena in online word recognition (Baayen et al.,
2011). NDL also permits modeling predictive processes in language
comprehension, with NDL weights determining how a given word re-
stricts the uncertainty of upcoming information. Indeed, model simu-
lations in this sense can account for results of priming effects, ERPs, and
fixation times in reading (Hendrix, Nick, & Baayen, 2014). Multiple-
layer NDL networks have been shown to simulate semantic effects in
priming studies (Milin, Feldman, Ramscar, Hendrix, & Baayen, 2017).
These cases provide a clear demonstration of how a powerful and ru-
dimentary learning mechanism can explain phenomena that have been
typically addressed by linguistic (language-essential) formalisms.

NDL naturally accommodates the impact of non-linguistic features
on comprehension. Considering the example of the wine-enthusiastic
child, from an NDL perspective, vocal features can be represented as
(negative or positive) cues for concepts or semantic features. A child’s
voice is likely a positive cue for the concept “drinking milk”. In con-
trast, it is likely a negative cue for the concept of “drinking wine”,
leading to inhibition of the corresponding representation units, and
hence increased cognitive cost when said unit are de facto activated by

the stimulus content. This result, captured in the adult state of the
system, would emerge from the vocal/semantic co-occurrences across
repeated learning events. Computational developments within the NDL
framework show that meaning access can indeed be informed by simple
acoustic features, providing an architecture in which the association
between sound and meaning is learned through statistics from natural
conversation data (Arnold, Tomaschek, Sering, Lopez, & Baayen, 2017).
In conclusion, NDL and similar approaches position language compre-
hension within a very general learning perspective, in which the focus
is on the elements of the context, with no need for distinction between
linguistic and non-linguistic aspects.

5.4. From words to sentences

Clearly, simple models of this sort cannot capture structural de-
pendencies, which has been a longstanding argument against their
viability as models of linguistic competence (Chomsky, 1959). Still, the
importance of findings like the ones reviewed here is in showing just
how much can be accounted for by such (non-hierarchical-based) sys-
tems. In fact, Christiansen and Chater (2015a) have shown how a
simple recurrent network can produce signatures matching sensitivity
to recursion in absence of any grammar model. Whether linear ap-
proaches offer a sufficient account (for most of naturally occurring
sentences) or are hierarchical models necessary is an ongoing debate,
which is addressed, for example, in Frank and Bod’s (2011) work
comparing the latent knowledge coded in recurrent neural-network vs.
phrase-structure systems.

As discussed above, feature co-occurrence, at different levels, offers
a powerful account for online processing. The models mentioned here
and similar ones are typically trained on a large text corpus to derive a
representation for word meanings or lexical items (either as a set of
values in multidimensional space, or as a set of links to input features),
and it is this representation that is used to model behavioral data.
Beyond that, the last several years have introduced breakthroughs in
understanding how such distributional semantic representations can be
compositionally combined, thus affording an even better account for
how the large scale statistical knowledge acquired over the life span can
be further used for comprehension in a specific context. Mitchell and
Lapata (2010) have proposed algorithms that can generate vector re-
presentations for high-order word combinations (phrases and sen-
tences) as function of the features of their constituents. Extensions of
these models (Baroni & Zamparelli, 2010) can account for the fact that
corpus unattested combinations such as legendary province are judged as
sensible, whereas equally unattested combinations such as empty fungus
are perceived as non-sensible. Even when applied at the morphological
level, such models account for core behavioral effects that are con-
sidered gold standards for semantic theories. Marelli and Baroni (2015)
have shown that such a model can predict that nonce forms such as re-
browse, re-provoke and re-matter have graded acceptability and also
account for semantic transparency effects. Marelli, Gagné, and Spalding
(2017) have further shown that compositional distributional models
can account for chronometric data, such as response times in priming
paradigm and word comprehension, in the processing of novel noun
combination (e.g., snow shovel or mountain magazine). In these tasks, the
model simulations are able to replicate the speaker sensitivity to the
(unexpressed) semantic relations binding the constituent nouns (e.g.,
shovel_FOR_snow or magazine_ABOUT_mountain).

Crucially, distributional models based on input statistics can explain
and predict whether a new expression would be judged as sensible,
which has been the main challenge posed to these approaches
(Chomsky, 1959). This has traditionally been argued to be a core
weakness of co-occurrence based systems (albeit the argument was
made against the simpler models that existed in the mid-twentieth
century). In sum, vector-based models capture essential properties of
terms, which can be further related to how sensible they are when
combined. Predictions of these models have been examined empirically
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(Marelli & Baroni, 2015; Vecchi, Marelli, Zamparelli, & Baroni, 2017),
showing that quantitative properties of the resulting vectors (e.g., their
entropy, the density of their semantic neighborhoods) correlate with
human intuitions concerning the plausibility of the associated word
combinations. We emphasize that these are aspects of sensibility that
are not accounted for by semantic models based on simple co-occur-
rence frequency or information-theoretic metrics such as Mutual In-
formation.11

5.5. Statistical models as an interpretative framework for language
comprehension

The models we have reviewed offer a parsimonious yet powerful
and general explanation for the wine-drinking child result (as a re-
minder: a child’s voice uttering a sentence about drinking wine elicits a
greater N400 effect than an adult’s voice uttering the same sentence van
Berkum et al., 2008). In explaining their findings, van Berkum et al.
(2008) persuasively argued against the position that message level
content is initially computed independently from vocal features
(speaker identity and emotional tone), and only then evaluated against
those features. Instead, they suggested that social dimensions are ap-
preciated so quickly and that “Language users very rapidly model the
speaker to help determine what is being said” (p. 586). Statistical
models of the sort we described above offer a more general explanation
for this finding, as large-scale statistical knowledge, based on co-oc-
currence between different types of features (linguistic and non-lin-
guistic), can in principle account for this effect. At the same time, these
models offer an explanation that is based on a general computational
framework, does not assume that modeling the speaker’s features (e.g.,
age, gender, social class) is obligatory and does not necessitate a
dedicated linguistic apparatus (see Frank and Bod, 2011, for a detailed
discussion).12

In conclusion, cognitive and brain scientists now have a collection
of computational approaches for modeling non-linguistic influences on
language comprehension. We have focused the discussion on distribu-
tional semantics, naive discriminative learning, Markov models, and
recurrent neural networks. The list is far from exhaustive. Rather, it is
meant to highlight a few approaches that share desirable properties.
First, the context in which information is acquired plays a central role
in all these models. Second, they are not systems specifically designed

for language, but can be adapted to other kinds of information sources.
Third, they do not assume ad hoc structures or precompiled categories,
but rely on statistical patterns in the input data. Fourth, they are not
aimed at establishing the grammaticality of a given combination, but
rather measure to what extent that combination appears plausible or
surprising to the speaker and can account for the relative sensibility of
completely new content. To this end, model performances are assessed
on the psycholinguistic ground, with human-generated data (explicit
judgments, behavioral responses, brain activation) taken as gold stan-
dards. All these aspects are strictly associated to each other, and pro-
vide a framework that is consistent with the programmatic points of the
present paper.

6. Oscillations as a neurobiological framework for brain activity
and connectivity

Though the rhythmic nature of human electro-encephalogram
(EEG) data is perhaps their defining characteristics, the possibility that
oscillations are associated with specific high-level language operations
is a much more recent development (see Meyer, 2017 for review).
Notwithstanding, a substantial number of studies already suggest links
between theoretically-specified computations and EEG oscillatory fea-
tures such as power, coherence, and cross-frequency coupling. Ap-
proaching language comprehension from the perspective of neural os-
cillations is theoretically advantageous: it allows grounding temporal
and spatial patterns of brain activity during language comprehension in
general computations, and also naturally emphasizes consideration of
large-scale networks rather than small isolated regions.

Decades of research have identified general processes linked to
major EEG frequency bands, including gamma, alpha, theta, and delta.
This vast knowledge both constrains interpretation and provides a
natural theoretical interface between the computations carried out
during language to more general ones. This produces a better grounding
of novel results, and opens new directions for theoretical development.
Because our purpose here is to speak to how this development bridges
between the interpretive principles we have presented and neuro-
biology, rather than provide a general review, we refer the reader to
Meyer’s (2017) extensive review, which outlines the following possible
links (the following is necessarily a coarse summary). Delta-band ac-
tivity is related to chunking words into syntactic phrases, possibly re-
lated to basic chunking mechanisms evident outside language. Alpha is
linked to verbal memory demands and storage of phrases in verbal
working memory, and its well-studied link to inhibition could indicate
that processing syntactic dependencies engages more general mechan-
isms. Theta relates to memory retrieval during language, potentially in
virtue of its more general role in retrieving elements from sequences.
Finally, Beta and Gamma are interpreted in relation to predictions and
their evaluation, with Beta linked to forward looking operations (or
maintenance of status quo; Lewis & Bastiaansen, 2015) and gamma to
backward-oriented integration processes, with higher gamma in-
dicating more successful integration (see also Bastiaansen & Hagoort,
2015). While these are only provided as examples, such high-level
mapping statements can ground interpretations of brain activity during
language comprehension in basic principles.

Focusing on oscillations allows examining issues related to coupled
activity across brain regions and thus naturally lends itself to a network-
based rather than region-based perspective. Because the same brain
areas may be involved in networks with different frequency char-
acteristics this forms a logical model for linking single regions to mul-
tiple, parallel computations. Finally, different sorts of stimuli or tasks
can interact with ongoing oscillatory patterns in complex ways, for
example, either by impacting the power of ongoing oscillations, or by
inducing phrase reset of the sort captured by averaged ERP compo-
nents. This provides an insight into how language comprehension in-
teracts with background oscillatory activity, and how phase-reset or
modulated changes are linked to successful comprehension.

11 Several features of these models make them psychologically appealing.
First, a word’s meaning is obtained from its distribution in a corpus, but is not
captured by a fuzzy distribution-like representation (e.g., by a Dirichlet dis-
tribution with n hyper-parameters). Instead, each term is represented via a uni-
dimensional vector, with no uncertainty attached to that specific representa-
tion. These models also offer much flexibility for accounting for how a sense of
a word might change in context, as compositionality is reflected by vector
addition or multiplication (this applies both at the sub-lexical and lexical level).
This obviates the need to assume a singular meaning for each word that is stable
across usages (see Lebois, Wilson-Mendenhall, & Barsalou, 2015, and references
therein for discussion), and is consistent with Cruse’s (1986, p. 50) observation
that the meaning of any word form is in some sense different in every context in
which it occurs.
12We note that the models we have presented are well suited to explain

match/mismatch effects between any two communicative cues, computations
that have also been linked to activity in lateral temporal regions. For example,
activity in these regions is greater when a tone of voice does not match a
speaker’s facial expression. However, the mechanism behind these incon-
gruence effects is unclear, and has been suggested to be related to mismatch
detection or implementation of executive control (Watson et al., 2013). On a
statistical approach, two rarely co-occurring stimuli (e.g., happy voice+ sad
face) can be associated with increased processing due to either (1) increased
competition, as each cue activates alternative representations that typically co-
occur with it i.e., a happy face or sad voice respectively, or, (2) increased
processing due to the fact that the mutual inhibition between the cue and target
results in a longer time necessary to instantiate target representation.
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Oscillatory activity can provide information regarding integration
on multiple timescales relevant to language comprehension, from few
milliseconds (gamma) to much slower processes. A straightforward
example is the finding (Bastiaansen, Magyari, & Hagoort, 2010) that
reading syntactically correct sentences, but not random word se-
quences, produces a linear increase in beta power, which is disrupted
when encountering a minor syntactic violation. Given that these pat-
terns developed gradually over a relatively long interval (here, 5 s), the
authors suggested they might be related to syntactic unification op-
erations. In addition, reading syntactically structured sentences, either
with or without violations, produced a gradual increase in theta power.
The linear trend found for theta, jointly with its insensitivity to syn-
tactic violation is compatible with its relation to construction of
working-memory traces for language.

Using MEG, it is possible to localize brain areas where oscillatory
changes are induced. This allows linking frequency bands to their
spatial sources. For instance, Kielar, Panamsky, Links, and Meltzer
(2015) found that both semantic and syntactic violations induce weaker
activity in the alpha and Beta (8–30 Hz) bands for a duration of around
1 s. A striking result is that the spatial origins of these effects was
widespread, including left perisylvian regions but also large areas in
occipital cortex and across the superior frontal gyrus. In addition, a left-
lateralized N400 response was time locked to the violations (i.e., linked
to a phase reset of oscillatory activity). As discussed by the authors
drawing on diverse literature, the occipital cortex effects may suggest
natural feedback interactions, whereby alpha and beta power regulates
information flow in the brain by deactivation of task irrelevant regions.
Thus, changes in these oscillations, and the localization of these
changes may point to coordination of activity in functionally co-
ordinated areas.

Electrocorticography data can be merged to contribute to under-
standing these questions. Recently, Nelson et al. (2017) obtained data
from intracranial recordings of sentence comprehension. They docu-
mented a gradual increase in high-gamma power during single word
reading of sentences, which decreased at points where words could be
merged into a constituent phrase. While word-yoked gamma power was
explained using computational models that estimated forward-entropy
and word-surprisal, (similar to Willems et al., 2016), grammatically
motivated predictions derived from a phrase-structure parser provided
the best fit to gamma fluctuations. Addressing a similar question, Ding,
Melloni, Zhang, Tian, and Poeppel (2016) showed that it was possible
to identify ECoG signal in the high gamma band that tracked sentential,
phrasal, or syllabic level rate fluctuations. The mechanisms producing
these signatures are under debate, with some (Ding et al., 2016) sug-
gesting they are a product of processes sensitive to hierarchical syn-
tactic structure, but other work suggesting that such neuroelectric
patterns can be derived from purely linear statistical co-occurrence
history (Frank & Yang, 2018). In related work, Rommers, Dickson,
Norton, Wlotko, and Federmeier (2017) evaluated EEG oscillatory ac-
tivity during comprehension of sentences that strongly or weakly con-
strained the terminal word in the sentence and found that prior to onset
of the critical word, strongly constraining contexts were associated with
greater alpha decrease in the alpha band.

A network/oscillatory perspective raises multiple novel questions.
The potential link between Beta and Gamma naturally leads to ques-
tions regarding the temporal relationships between regions that code
for predictions and those that evaluate them, and well-studied memory
principles related to gamma/theta precession provide an analytic ap-
proach for investigating correlates of successful encoding of verbal
content to memory and later access to those memory traces. It also
suggests that the medial temporal lobe plays a more central role in
online comprehension than typically considered. The fact that the de-
gree to which prior context constrains future complements appears to
mediate both Gamma (Nelson et al., 2017) and alpha (Rommers et al.,
2017) activity suggests their interplay is crucial, and that coupled
changes in alpha and gamma power may be a signature of efficient

forward-looking predictions. In fact, this very issue was recently ad-
dressed (Wang, Hagoort, & Jensen, 2017), in a study whose departure
point was that the relationship between different frequency bands ac-
tive in different brain regions may act as a way of neural information
exchange between brain areas. Wang et al. examined this sort of ’cross-
frequency coupling’ in the domain of sentence comprehension using
sentences in which a critical word was more or less predictable given
the earlier part of the sentence. They observed greater alpha power
suppression for more predictable words in a set of areas typically
though to be involved in language comprehension. Most interestingly,
they found that the alpha power suppression in temporal areas was
negatively correlated with gamma band in left inferior frontal cortex.
The authors suggest that there is anticipatory influence from left in-
ferior frontal cortex onto temporal regions, which is instantiated in a
cross-frequency coupling between frequencies that these brain regions
operate on when performing language comprehension. While future
work may refine these conclusions, a major importance of the study is
showing how grounding explanations in oscillatory principles con-
tributes to making specific predictions about interactions between dif-
ferent brain regions.

Schoffelen et al. (2017) extended this approach by showing that it is
possible to determine the direction of information flow across brain
regions during language comprehension. Participants read sentences or
scrambled word lists and Granger causality (a measure of causal in-
fluence here applied for different frequency bands) was used to com-
pute interactions between a large set of regions linked to language
processing. It was found that left inferior frontal and left anterior
temporal cortices mainly received input from other areas, whereas
middle temporal cortex mainly sent out information to other regions.
They observed efferent information from temporal or parietal areas to
peak around 12 Hz (beta frequency range), whereas directed influences
from frontal to temporal areas was most prominent at a higher fre-
quency (∼27 Hz). What is interesting about this approach is that it
suggests the existence of frequency-specific subnetworks, which can
operate dynamically to instantiate language comprehension.

With advances in multimodal brain imaging, joint studies of oscil-
latory activity and BOLD signals can be carried out in parallel, which
can offer significant insights into the computations underlying lan-
guage. Such investigations can code for points of cross-frequency cou-
pling, oscillatory changes and coherence across brain regions in the
EEG band, and identify brain areas whose activity tracks these changes
during language comprehension.

Considering language from this perspective is consistent with the
position developed in prior sections which argued against assuming
that a given network subserves language functions, and in favor of
considering that specific context-dependent computations may shift
network configuration. While extant data do not allow strong conclu-
sions about which networks may be identified in such analyses, it is
already possible to think of how to go about constructing such de-
scriptions, as these will have different structures than current ones.
Rather than linking a function to a region or to a set of regions, these
descriptions will link sets of functions to a region (or to sets of regions)
in a quantitative and continuous way. In a conceptual review of func-
tional networks, Pessoa (2014) outlined the foundations for such a
vocabulary. These include functional fingerprints that capture the many-
to-many relation between regions/networks and functions, and diversity
maps that quantify the relative heterogeneity of functions that any
putative functional network is involved in. Clearly this is complicated
endeavor, but the very utility of such descriptions and the information
they capture belies the usefulness of assigning cognitive functions to
single brain regions (see also Anderson, 2010 for a similar argument).
While some anatomical structures will undoubtedly be linked to certain
computations (e.g., lower level sensory regions), and some networks
could be strongly constrained by anatomical structure (e.g., resting
state connectivity of cingulate gyrus follows cytoarchitectonic bound-
aries, Beckmann, Johansen-Berg, & Rushworth, 2009), context
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dependent connectivity will nonetheless be a dominant factor (see
Spunt & Adolphs, 2017 for a related discussion).

7. Where from here?

As evident from our evaluation to this point, understanding how the
brain implements language comprehension in naturalistic everyday
circumstances is not a simple matter. Moreover, answering this ques-
tion in a non-myopic or language-centric manner is crucial not only to
cognitive neuroscientists that are interested in the brain per se, but to
diverse disciplines including clinical psychology, neuropsychology,
computational modeling of language, and of course experimental psy-
chology for which brain data often provide useful constraints in theory
construction.

Our aim here was not to sketch a neurobiological model of language
comprehension. If anything, our review shows that there is insufficient
data to address this issue. Instead, we aimed to present a constructive
conceptual framework or research approach toward delineating such
models. Our core arguments address the following issues: (1) the dif-
ficulty in extending language-centric explanations to discourse, as such
explanations ignore the potential role of basic information integration,
segmentation and predictive functions and, for various reasons, assume
separation of language from other, related functions; (2) the necessity
of taking context as a serious topic of study, modeling it formally, and
acknowledging the limitations on external validity when studying lan-
guage comprehension outside context; (3) the fact that neural compu-
tations at any given point are strongly related to the state of brain
function prior to that point; and (4) the status of the language network
as an explanatory construct in future work on NLC. In this final section
we identify the challenges introduced by this approach, and then de-
scribe which subfields of science will benefit most from it.

7.1. Challenges

First, one unpalatable point is that conclusions derived from prior
work within the neurobiology of linguistics (neurolinguistics) or the
neurobiology of psycholinguistics may not hold at the level of NLC. For
instance, the assumption that measures of syntactic complexity can
explain brain activity patterns during natural comprehension hinges on
the (often implicit) proviso that there are brain regions whose activity
reflects a pure effect of syntactic complexity, immune to contextual
interaction. We have reviewed current work in neurobiology and prior
work in psycholinguistics that shows how tenuous this assumption is.
Compounding this difficulty, the fact that much of the neurobiological
knowledge to date has been obtained from studies devoid of commu-
nicative intent may mean that at this point, the field holds a very de-
tailed and comprehensive knowledge of a highly particular and non-
default mode of comprehension, which may be associated with a unique
pattern of brain activity. The chiasm between comprehension of simple,
experimentally-derived texts and natural texts/discourse has been a
lingering concern (see Graesser, Millis, & Zwaan, 1997 who criticized
the use of experimenter-constructed “textoids”). The first challenge is
abandoning a restrictive view of studying language with overly artifi-
cial or simplified texts and devoid of context.

A second, related challenge is that, even in domains where current
knowledge can arguably be extended, via induction, to naturalistic
comprehension, it may be insufficient for this purpose: NLC cannot be
assumed to engage the same brain areas, reflect similar network in-
teractions, or operate over similar time scales as those found for single-
sentence processing. Consequently, prior work within the neurobiology
of language, while making important contributions for lexical and
single-sentence processing, cannot be expected to provide a complete
account of NLC, or even account for how single words or sentence are
understood in ongoing context. Instead, the impact of concurrent ac-
tivity in other brain networks, the interaction between networks im-
plicated in semantic processing and other networks, the impact of

contextual information (both textual and para-textual), and the effect of
the recent neural context, will jointly determine the process and out-
come of comprehension. This has significant implications for the prac-
tice of science, because training within psycholinguistics or neuro-
biology of language as currently defined may be insufficient for tackling
these questions. Instead, it will be important to rely more extensively on
collaborations with other domains in the cognitive neurosciences. In
particular, we foresee that insights from computational linguistics
(Frank, 2013; Frank and Bod, 2011; Wehbe et al., 2014; Willems et al.,
2016), the interface of mood and cognition (Egidi & Caramazza, 2014),
and from research in network theory will be essential for characterizing
NLC. What this means (and this elephant in the room should be ac-
knowledged) is that the neurobiology of NLC, while sharing the word
“language” with neurolinguistics will constitute a substantially dif-
ferent research topic. NLC will be less committed to the goal of mapping
of activity patterns to well defined, pre-established cognitive categories,
and instead will formulate basic (neurobiological) principles that or-
ganize activity during comprehension.

A technical challenge will be devising experimental methods that
allow researchers to study how natural language is understood in the
brain (Andric & Small, 2015). One option is to adapt the standard
modeling approaches in which certain events are treated as conditions,
while participants listen to continuous speech (Hsu, Jacobs, Citron, &
Conrad, 2015; Nijhof & Willems, 2015; Yarkoni, Speer, Balota, McAvoy,
& Zacks, 2008). Another set of tools constitutes model-free techniques
such as independent component analysis, graph-construction and clas-
sification methods (Takerkart, Auzias, Thirion, & Ralaivola, 2014),
intra-participant correlations (Levin & Uftring, 2001) or inter-partici-
pant correlations (Hasson et al., 2008). These methods can document,
with minimum functional assumptions, which brain regions are asso-
ciated with language processing. For example, Honey, Thompson,
Lerner, and Hasson (2012) used inter-participant correlation to identify
brain areas that response similarity to discourse segments presented in
different languages thus identifying processing at a certain level of
abstraction. However, such paradigms are accompanied by interpretive
difficulties, as brain activity may track discourse for several reasons,
including not only linguistic computations, but due to content-related
fluctuations in attention, sensitivity to lexical valence, lexical or word-
cluster (N-gram) frequency, changes to breathing or cardiac activity,
and several other factors. Nonetheless, such methods are useful for
generating more constrained hypotheses about functional networks and
their potential information processing roles. These hypotheses in turn
can be tested with creative adaptations of existing methods, which are
more suited towards hypothesis-testing experiments. The study of
neuroelectric oscillatory activity in these paradigms may turn out to
provide further constraints on data interpretation. Though at present,
our understanding of various oscillatory dynamics might preclude re-
lying on them as explanatory foundations for naturalistic language
comprehension, that domain of study is rapidly developing, and it
would be important for language research to interface with it both in
terms of developing integrative theories and adoption of suitable
methods.

One method that is already proving very useful is modeling brain
activity during language comprehension using distributional models, or
dependency structures (e.g, Alday, Schlesewsky, & Bornkessel-
Schlesewsky, 2017; Cibelli, Leonard, Johnson, & Chang, 2015; Ettinger,
Linzen, & Marantz, 2014; Frank et al., 2015; Frucheter et al., 2015;
Leonard, Bouchard, Tang, & Chang, 2015; Nelson et al., 2017; Wehbe
et al., 2014; Willems et al., 2016). Such studies allow modeling EEG,
MEG, electrical recording and fMRI data using quantities derived from
corpora, which include transition probabilities, base-rate frequencies,
or forward entropy measures. This same approach has been used in
several behavioral studies as well, notably where eye tracking data
during reading were modeled using constructs derived from different
linguistic theories (e.g., Demberg & Keller, 2008; Frank & Bod, 2011).

U. Hasson et al. Cognition 180 (2018) 135–157

150



7.2. How neurobiology impacts functional theories and produces new
hypothesis

Cognitive scientists interested in language belong to either of two
groups: (i) those who believe that behavioral studies and sturdy logic
are sufficient for obtaining an understanding of language function, or
(ii) those who think that neurobiological data can additionally inform
this issue. The first group may find our preoccupation with valid neu-
robiological models of language to be of little relevance. However, most
practicing cognitive scientists likely fall in the second category (as
evident, for example, in the extensive report of brain data in the journal
Trends in Cognitive Sciences in the recent 5 years or more recently in
Nature Human Behavior). And members of this group, by definition,
have some idea of what data are consistent or inconsistent with dif-
ferent cognitive accounts (see Chatham & Badre, 2014, for discussion of
these two positions). The data we have reviewed indicate that this
group is already faced with findings that urge shifts in functional
models of language.

First, as reviewed, recent neurobiological data do not support the
often-espoused distinctions between prior linguistic/discourse context
(co-text), situational context (e.g., speaker features), long-term knowl-
edge, and intrinsic beliefs/mood as constraints on language compre-
hension. Instead, it appears that all these types of knowledge or con-
straints impact online processing within a similar time frame and in the
same brain regions. This suggests there is no initial “context in-
dependent” reading, nor a priority for co-text constraints, and that
proper modeling of language-in-context needs to take such factors into
account.

Second, emerging and influential models of language attribute a
major role to the capacity to acquire distributional linguistic in-
formation (e.g., transition probability, entropy of potential word-
completions or sentence completions, Frank & Bod, 2011), and treat
this as a fundamental linguistic competence (Baroni & Zamparelli,
2010). In support of this view, an emerging body of neurobiological
work suggests that such statistical features of the language input are
neurally represented, and rapidly impact comprehension (e.g.,
Cibelli et al., 2015; Ettinger et al., 2014; Frank & Bod, 2011;
Fruchter & Marantz, 2015; Leonard et al., 2015; Lopopolo et al.,
2017; Willems et al., 2016).

Third, the fact that so-called “language regions” are implicated
in distributional learning, segmentation and prediction for non-
linguistic stimuli (as reviewed in Section 2) suggests that the sta-
tistics of language are acquired via inherently non-linguistic func-
tions. Arguing from first principles, it makes little sense to just as-
sume that there exist distributional-learning or predictive processes
unique to language. Instead, it is important to actively test, em-
pirically, whether there are simpler functions that language may
build on, and think of how to ask neurobiological questions about
those. It is therefore the workings of these more basic functions that
should move to the forefront of behavioral and neurobiological
investigation as this may shed light on why language is processed
the way it does. Unexpected insights can develop from such work:
for instance, current models of statistical learning of language do
not separate sensitivity to marginal frequencies (base rate) from
sensitivity to transition probabilities. Brain data, however, suggest
that these features are tracked by different systems (e.g., Tobia,
Iacovella & Hasson, 2012). Neurobiological research that contrasts
information processing in linguistic and non-linguistic domains
within the same study can provide useful insights into these issues
(e.g., Christiansen, Conway, & Onnis, 2012). Our conclusion on this
issue is consistent with an increased emphasis in cognitive science
on explaining language – both acquisition and online parsing – via
much more basic processes that are based on chunking, local-re-
play, prediction, or abstraction (compression, gist extraction) as
opposed to assuming sophisticated higher-level linguistic functions

(Christiansen & Chater, 2015a, 2015b).13 These developments align
with our argument for studying basic neurobiological computations
that support both language acquisition and other forms of online
parsing.

Finally, neurobiological studies suggest a rethinking of the nature of
semantic operations. As we have reviewed, cognitive operations con-
sidered at the core of the psychology of semantics (e.g., integration of
input against schematic knowledge, Bransford & Johnson, 1972) are
subserved by brain systems that are not typically considered as a core
part of a language processing system (narrowly defined; Bein, Reggev,
& Maril, 2014; van Kesteren, Fernández, Norris, & Hermans, 2010).
Furthermore, integration of incoming information locally against the
immediate preceding text vs. globally against more remote text engages
different brain systems, rather than engaging a single system in dif-
ferent ways (Egidi & Caramazza, 2013). These latter findings argue
against the putative equivalence of semantic operations at the sentence
and discourse level, and cannot be easily brushed aside as being
“consistent with” or “complementary to” theories that hold on to the
notion of an encapsulated language system. This is because such neu-
robiological findings are in fact tearing away at the set of functions
purportedly assigned to the classic language areas (or language
module/system). In addition, such findings could have clinical im-
plications. For instance, deficits in paragraph-level comprehension or
schema integration, as opposed to sentence-level integration, may not
be related to linguistic operations or work of ‘language’ systems and
have little in common with deficits linked to single-sentence compre-
hension.

In this way, neurobiological data are already suggesting important
revisions to how we should think of language. This means acknowl-
edging the strong similarity between processes previously thought as
separate (e.g., the impact of different contexts), while at the same time
breaking up what were thought to be single constructs (e.g., semantic
integration).

Modifications to functional models of language, which are informed
by neurobiological findings, will in turn influence the sorts of hy-
potheses made about brain systems. As mentioned in the Introduction,
influential approaches to language still aim to link brain regions to
particular language functions. The neurolinguistic approach has been
described as follows (Grodzinsky & Friederici, 2006): each subpart of the
linguistic system – whether it is phonology, syntax or semantics – can be
neurologically decomposed into subcomponents, and Friederici (2011)
notes that a neurolinguistic model, …relates a particular function to a
particular brain region within the language system, leaving the option open
that this same brain region serves another function in another domain than
language (underlines mark our emphasis). In this sense, neurolinguistics
encapsulates positions that see an inherent value in the ontology sug-
gested by (typically generative) linguistics for purposes of under-
standing how the brain processes language, and assume it should be
possible to identify the “precise anatomical locations of higher level
syntactic computations” (see recent review by Skeide & Friederici,
2017). This work continues, for example, by attempting to identify
brain areas that mediate a syntactic merge operation (Zaccarella,
Meyer, Makuuchi, & Friederici, 2017). There is little concern with
discourse level processes. The idea of a language/linguistic system is
treated as a core organizational principle, which guides the construc-
tion of a functional ontology and, consequently, a search for its neu-
robiological realization. These ideas permeate even recent studies, as
seen in a strong focus on perisylvian regions for modeling language.

13 Christiansen and Chater (2015a, p. 41) have argued that even the as-
sumption that the operation of recursion is strictly linguistic (i.e., “not emerging
from general-purpose cognitive mechanisms or constraints”) is one that should
be abandoned. Instead, they take the position that language processing, im-
plemented by domain-general mechanism – not recursive grammars – is what endows
language with its hallmark productivity.
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Several examples make the point. For instance, a recent study of lan-
guage function recovery after stroke (Del Gaizo et al., 2017) used
Connectome-Dynamics Lesion Symptom Mapping to identify changes to
network structure that are caused by lesions and their correlation with
language function. Probabilistic tracking was applied at the whole-
brain level, but the connections evaluated were only those between
“eight language-network nodes”. In a study of long-term plasticity of
language organization in the blind (Lane et al., 2017), the regions
chosen for investigation were five frontotemporal language areas con-
sisting of pars orbitalis and triangularis and anterior, middle and pos-
terior lateral temporal cortex. And from a theoretical perspective, a
recent review (Hagoort, 2017) still shows the field’s focus on temporal
and inferior frontal regions.

As we have argued throughout, there are good reasons to critically
assess whether presenting the research question this way is a viable
model for understanding how the brain organizes naturalistic language
comprehension. A serious challenge is that cognitive models of lan-
guage processing would need to be inspired by neurobiological data
rather than attempting to fit the data within current linguistics-influ-
enced frameworks. As we showed in Section 2, research is showing that
our brains don’t divide their processing repertoire according to these
pre-defined partitions. For example, memory encoding of linguistic si-
tuation models may not be a result of an ‘encoding’ operation but just be
a reflection of the activation state at the end of comprehension, which
can be read off from lateral temporal regions and reflects the strength of
a memory trace (consistent with several functional theories, e.g., Tzeng
et al., 2005). A separate challenge to neurobiological theories is to
make contact with multiple relevant linguistic theories and relevant
pragmatic theories. These include increased focus on probabilistic in-
formation in Artificial Intelligence NLP models, and usage based ac-
counts of language acquisition and use.

Feedback from brain studies to cognitive theory is already taking
place in other domains of language research. To illustrate, in a highly
detailed analysis (Pickering & Garrod, 2013), neurobiological data have
been used to support a model in which there is no clear dichotomy
between the functional machinery used for speech production and
comprehension. Drawing on examples from sublexical and single word
processing, Price (2018) argues that neuroimaging data can hint to
processes not previously considered in cognitive models, and “redefine
old cognitive functions”. It is argued that such re-definitions can pro-
vide more general explanations for involvement of a region in a cog-
nitive task, and Price argues that observing common components for
different cognitive tasks will provide unique insights into the biological
organization of cognitive function. An openness to revisions of func-
tional ontologies on the basis of neurobiological data could lead to
more precise cognitive models and a better understanding of brain data.
Of course, distinctions such as those between phonetic, semantic and
syntactic processing will be accompanied by activity in different brain
systems (see Vigneau et al., 2006; Vigneau et al., 2011 for meta-ana-
lyses) especially if those are studied independently rather than sy-
nergistically. However, the fact that similar statistical computations can
explain information-integration at the phonetic, morphemic and lexical
level (mainly in lateral temporal cortex and inferior frontal gyri, e.g.,
Cibelli et al., 2015; Ettinger et al., 2014; Frucheter et al., 2015; Leonard
et al., 2015; Willems et al., 2016), points to the utility in studying
common computations across these levels. In the future, it will also be
important to focus more strongly on the role of subcortical regions in-
cluding the basal ganglia, hippocampus and cerebellum in these pro-
cesses, as there is a large body of work implicating these regions in
related operations (i.e., chunking, prediction, evaluation of prediction;
see Hasson & Tremblay, 2016, for review).

While our position has a neurobiological focus, it is not a call for
giving prominence to neuroscience findings at the cost of insights ob-
tained from cognitive theory. Some scholars argue for a marked dis-
tinction and a specific relationship between neural and cognitive the-
ories, for example, by proposing that “cognitive theory guides

neuroscience” (Frank & Badre, 2015). On such an approach (e.g.,
Chatham & Badre, 2014) behavioral researchers should embellish their
theories with testable neuroscientific predictions/correlates. These in
turn can be supported or weakened by neuroscientific data. However,
on this view, neurobiological data have little role in generating full-
fledged cognitive approaches, and are insufficient for revising cognitive
ontologies. While we agree with many elements in this perspective, we
argue it cannot reflect the entirety of the relationship between cognitive
theory and neuroscience data (see also Price, 2018, for a similar ar-
gument). There are multiple ways in which neurobiological data can
impact functional accounts. These include providing general, qualita-
tive support for one functional account or another, formally ad-
judicating between cognitive accounts (see, e.g., Kragel, Morton, &
Polyn, 2015), suggesting new functions and redefining older functions
(see Price, 2018). In fact, as our review shows, a synthesis of neuro-
biological findings from language research already suggests revisions to
how we conceive of language functions (e.g., semantic operations at the
discourse level, encoding, and recall) and the ways these functions are
inter-related. It will be impossible to understand how the brain supports
language comprehension if we were to only study the responses of a
“language network” to linguistic stimuli. Clearly, one of our premises is
that brain data can generate novel cognitive insights in an emergent,
bottom-up manner, rather than just be used to test extant cognitive
notions or help adjudicate between cognitive theories (see Spunt &
Adolphs, 2017, for a similar argument in the study of domain specifi-
city). Recent advances in convolutional neural networks offer an ana-
logue for these impacts: in some domains, these networks are so strik-
ingly effective in predicting human behavior (e.g., work by Kümmerer,
Wallis, & Bethge, 2016 on modeling eye fixation patterns) that scien-
tists are studying these networks’ representations (in what is called
“explainable AI”) to understand what coding principles may underlie
this performance. All this shows how progress on the neuro/cognitive
fronts can be made in parallel (see Embick & Poeppel, 2015 for a similar
conclusion but from a different argument). For this reason, it strikes us
as uncontroversial that neural and cognitive insights for research
should go hand in hand. This does not entail dominance of one over the
other, but the openness to have insights from the one field of enquiry to
constrain the other (see Fitch, 2014, for a similar development).

The study of NLC opens an interesting age of scientific research and
opportunity. The challenges we have outlined are substantial but sur-
mountable and have the potential for producing massively positive
developments in neurobiology, cognitive psychology and cognitive
science. We expect that such developments will catalyze dialogues be-
tween linguists, psycholinguists and cognitive neuroscientists and pro-
duce new research directions at the nexus of those fields.
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