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Summary

The centrosome functions as the main microtubule-orga-
nizing center of animal cells and is crucial for several funda-

mental cellular processes [1]. Abnormalities in centrosome
number and composition correlate with tumor progression

[2, 3] and other diseases [4–6]. Although proteomic studies
have identified many centrosomal proteins, their interac-

tions are incompletely characterized [7, 8]. The lack of infor-
mation on the precise localization and interaction partners

for many centrosomal proteins precludes comprehensive
understanding of centrosome biology. Here, we utilize a

combination of selective chemical crosslinking and super-
resolution microscopy to reveal novel functional interac-

tions among a set of 31 centrosomal proteins. We reveal
that Cep57, Cep63, and Cep152 are parts of a ring-like

complex localizing around the proximal end of centrioles.

Furthermore, we identify that STIL, together with HsSAS-6,
resides at the proximal end of the procentriole, where the

cartwheel is located. Our studies also reveal that the
known interactors Cep152 and Plk4 reside in two separable

structures, suggesting that the kinase Plk4 contacts its
substrate Cep152 only transiently, at the centrosome or

within the cytoplasm. Our findings provide novel insights
into protein interactions critical for centrosome biology

and establish a toolbox for future studies of centrosomal
proteins.

Results and Discussion

The labeling of proteins in cells with synthetic probes is
a powerful approach to investigate protein function and local-
ization, which we decided to exploit to study centrosomal
proteins. We expressed 31 confirmed or predicted centroso-
mal proteins as fusions of self-labeling SNAP-tag [9] and
CLIP-tag [10] in U2OS cells (see Table S1 available online).
Such fusion proteins can be specifically labeled with a large
variety of chemical probes suitable for interrogating different
aspects of protein function [11]. For an initial characterization,
we adapted a triple-labeling procedure [12] for the localization
of the 29 SNAP-tag fusions (excluding a- and b-tubulins) rela-
tive to C-Nap1 and centrin, two proteins that mark the base
of the centriole and the distal ends of both centriole and
procentriole, respectively [13, 14]. As shown in Figure S1, we
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demonstrated that SNAP fusion proteins usually (i.e., in 17 of
23 cases) localize like the corresponding endogenous proteins
when this information is known. Importantly, our analysis also
uncovered the precise localization on centrosomes of six
proteins for which this information was previously not avail-
able (see Figure S1). For six other proteins, centrosomal local-
ization could not be detected. In some of these cases, this is
likely due to the fact that aggregates precluding detection of
centrosomal signal were formed upon overexpression (data
not shown), whereas in other cases the presence of the tag
may have interfered with localization. Overall, this initial anal-
ysis enabled us to localize 23 of 29 fusion proteins with preci-
sion at centrosomes.
Next, we set out to systematically identify interactions

among the 31 proteins through selective covalent crosslinking
(S-CROSS) between SNAP- and CLIP-tagged fusions [10], fol-
lowed by SDS gel electrophoresis and in-gel fluorescence
scanning. S-CROSS utilizes a bifunctional crosslinker that
contains the substrates of both tags linked by a chemical fluo-
rophore (Figure 1B); crosslinking efficiency depends critically
on the proximity of the two proteins (Figure 1C). The sensi-
tivity of S-CROSS in detecting protein-protein interactions is
comparable to affinity purification [15], but the experimental
simplicity of the former makes it more suitable for medium-
throughput screens. We expressed the 31 centrosomal
SNAP-tag and CLIP-tag fusion proteins in a pairwise fashion,
as well as SNAP-tag fusions of GFP and mCherry as negative
controls, and subjected the resulting 527 combinations to S-
CROSS. This allowed us to identify 17 protein-protein interac-
tions (Table S2). Seven of these interactions have been re-
ported previously, testifying to the fact that the S-CROSS
methodology can recognize bona fide associations (Table
S2). Furthermore, we identified ten novel potential interactions
(Table S2). By expressing the same protein as separate CLIP
and SNAP-tag fusions, we also identified 20 homotypic inter-
actions (Table S3). Besides previously reported instances of
homotypic interactions, including those for HsSAS-6, CPAP,
and Plk4 [16–18], our analysis unraveled many hitherto
unknown cases of oligomerization. We conclude that a signifi-
cant fraction of centrosomal proteins (i.e., 20 of 31 tested here)
have a propensity to oligomerize, possibly due to the high
abundance among centrosomal proteins of coiled-coil motifs
that can mediate homotypic interactions [19].
We focused further analysis on the proteins with the three

highest-scoring heterotypic interactions: the novel interac-
tion partners Cep63 and Cep57, the recently documented
interacting partners CPAP and STIL [20], and Cep152 and
Plk4 [21–23]. With the exception of Cep57 (also known as
translokin), all of these proteins have been implicated in pro-
centriole formation, a process that is crucial for determining
centrosome number. CPAP, STIL, Cep152, and Plk4 are
essential for procentriole formation [1, 24], whereas Cep63
appears to contribute to this process by ensuring the centro-
somal targeting of Cep152 [25]. In turn, Cep152 is thought
to act as a scaffold that binds CPAP and Plk4 and is also
phosphorylated by Plk4 [21–23]. Interestingly, mutations in
Cep63, Cep152, CPAP, or STIL can result in primary micro-
cephaly (MCPH), and mutations in Cep57 can result in mosaic
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Figure 1. Chemical Tools for Centrosome Characterization

(A) Centrosome organization in the S or G2 cell-cycle phase.

(B) Structure of crosslinker used for selective covalent crosslinking (S-CROSS).

(C) Outline of S-CROSS. Protein complexes of SNAPandCLIP fusions are crosslinked in cell lysates, and the trapped complexes are detected and quantified

after SDS gel electrophoresis by in-gel fluorescence scanning.

(D) Structure of SNAP-tag substrate used for stimulated emission depletion (STED) microscopy.

See also Figures S1 and S2 and Tables S1–S3.
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variegated aneuploidy (MVA), emphasizing the medical rele-
vance of this set of proteins [4, 6, 25].

We set out to further investigate the interaction between
Cep57, Cep63, and Cep152. First, we verified the direct inter-
action of Cep57 and Cep63 by performing the crosslinking
experiments with purified components (Figure S2A). We then
conducted small interfering RNA (siRNA) experiments to
investigate the functional significance of these interactions,
using two different siRNAs to deplete each component. As
a control, we first investigated whether depletion of Cep57,
Cep63, and Cep152 had an impact on centrosomal g-tubulin
and centrin; with the exception of one siRNA for Cep57 that
appeared to affect localization of g-tubulin for reasons that
remain to be determined, all other siRNAs did not alter centro-
somal g-tubulin or centrin distribution (Figures 2A and 2B).
Importantly, quantification of the Cep57, Cep63, and Cep152
centrosomal signals in the various siRNA conditions indicated
that Cep57 promotes, but is not essential for, Cep63 and
Cep152 centrosomal localization, whereas the latter two pro-
teins seem essential for each other’s presence at centrosomes
(Figures 2A and 2B).

Next, we investigated whether overexpression of either of
theaforementionedproteins resulted in increasedcentrosomal
localization of the others. Cells overexpressing SNAP-Cep57,
SNAP-Cep63, orSNAP-Cep152were labeledwithafluorescent
SNAP-tag substrate; the presence of the protein of interest
at the centrosomewas subsequently quantified through immu-
nofluorescence analysis using a different fluorophore, and the
resulting centrosomal signal intensities were then subjected
to correlation analysis. We found that overexpression of
SNAP-Cep57 resulted in increased centrosomal localization
of Cep57, and likewise that overexpression of SNAP-Cep63
or SNAP-Cep152 promoted the presence of Cep63 and
Cep152, respectively (Figure 2C). Importantly, we found also
that overexpression of SNAP-Cep63 resulted in further enrich-
ment of Cep152 at centrosomes. Lower correlations were
observed for SNAP-Cep63 and Cep57. Together, our siRNA
and overexpression experiments suggest that Cep57, Cep63,
and Cep152 are parts of a centrosomal protein complex, with
Cep63 playing a critical role in recruiting Cep152.
To further characterize the Cep57-Cep63-Cep152 complex,

we analyzed colocalizations among these proteins. Addition-
ally, we included Plk4, STIL, and CPAP in this analysis. In
each case, we combined chemical labeling of one SNAP-tag
fusion with antibody labeling of the potential interaction
partner. Using confocal microscopy, we found that SNAP-
Cep63 and Cep57 colocalize to the proximal end of the
centriole (Figure 3A), as do SNAP-Cep152 and Cep57 (Fig-
ure S3C). By contrast, we found that SNAP-Cep152 and Plk4
reside in two separable foci at the proximal end of the centriole
(Figure 3A). As reported previously [26], a second population
of Plk4 could be identified near the proximal end of the
centriole (Figure 3A). The apparent lack of colocalization of
Plk4 and Cep152 suggests that the kinase Plk4 contacts its
substrate Cep152 only transiently on the centrosome or within
the cytosol. SNAP-STIL and CPAP colocalized to the proximal
end of the procentriole (Figure S3C), althoughCPAP also local-
ized to the proximal end of the centriole [20, 27]. For the latter
experiment, we verified that SNAP-STIL colocalized with the
endogenous protein (Figure S3B) and was able to rescue the
phenotype induced by siRNA-mediated depletion of endoge-
nous STIL (Figure S2B–S2D).
Because the dimensions of centrioles are close to the reso-

lution limit of optical microscopy, we turned to stimulated
emission depletion (STED) superresolution microscopy (Fig-
ure S3A) [28] to gain further insights into the localization of



Figure 2. Codependency of Centrosomal Locali-

zation of Cep57, Cep63, and Cep152

(A) Representative images of indicated centroso-

mal proteins in siRNA-treated U2OS cells. Scale

bars represent 1 mm.

(B) Medians of fluorescence signal distributions

of centrosomal proteins in siRNA-treated U2OS

cells. For each protein, the median in the

siRNA-treated condition is normalized to that

of control siRNA or siLNA (locked nucleic

acid-based siRNA; Silencer Select siRNA, Life

Technologies). g-tubulin was used to locate the

centrosome. Each column represents mean of

duplicate or triplicate experiments with SD error

bars. Cells were analyzed after 72 hr, with the

exception of cells treated with Cep57 siRNA B

(marked #), which were analyzed after 48 hr due

to cell death at later time points.

(C) Coefficients of determination reflecting corre-

lation between the measured fluorescence sig-

nals of the overexpressed SNAP-tagged protein

and the indicated endogenous centrosomal

protein. FOP is a negative control that localizes

to a different part of the centriole. Centrin was

used to locate the centrosome. Each column

represents mean of duplicate or triplicate exper-

iments with SD error bars. In (B) and (C), signal

intensities were quantified using a CellProfiler

pipeline, which automatically identifies centro-

somes using g-tubulin (B) or centrin (C) staining

and measures the mean intensity corrected for

the background in that region of the other

channel.

See also Tables S4 and S5.
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the proteins at the heart of our study. For these experiments,
we developed a SNAP-tag substrate that permits the specific
labeling of SNAP fusion in fixed cells with Atto647N, a fluoro-
phore ideally suited for STED (Figure 1D) [29]. The design of
a permanently charged linker that connects BG to Atto647N
was crucial in this case, because it prevents unspecific binding
of the hydrophobic dye to cellular structures. STED imaging of
Cep57, SNAP-Cep63, SNAP-Cep152, and Plk4 each revealed
ring-like structures of 200–250 nm in diameter (Figure 3B).
This corresponds to the outer diameter of centrioles, sug-
gesting that these proteins reside next to centriolar microtu-
bules. Cep63 and Cep152 have also been shown to associate
and form a ring-like structure using structured illumination
microscopy [25, 30]. Using two-color
STED, we confirmed the colocalization
of Cep57 with Cep63 and Cep152,
whereas Plk4 and Cep152 were found
to localize separately (Figures 3C and
S3C). Together with our S-CROSS ex-
periments, these findings indicate that
a complex containing Cep57, Cep63,
and Cep152 resides near the proximal
end of the centriole. STED imaging
further revealed that the SNAP-STIL
signal is a small disc w160 nm in diam-
eter (Figures 3B and S3C), suggesting
that STIL localizes to the cartwheel
within the proximal end of the procen-
triole [1, 20, 31, 32]. A well-known cart-
wheel component is HsSAS-6 [33], and
we found similarly by STED microscopy
that the HsSAS-6 signal is a small disk (Figures S3B and S3C).
To test whether STIL and HsSAS-6 reside in the exact same
location, we conducted two-color STED of STIL and HsSAS-
6, which revealed a high degree of colocalization (Figure S3B
and S3C). Two-color STED of SNAP-STIL and CPAP indicated
that STIL is encompassed by a broader CPAP signal (Fig-
ure 3C). Together, these findings support the hypothesis that
STIL is a cartwheel component and suggest that CPAP also
resides at least in part within the procentriole.
We next set out to measure Förster resonance energy

transfer (FRET) between the proteins of interest at centro-
somes of fixed cells (Figures 4A and 4B). Efficient FRET
between interacting fluorophores requires distances below



Figure 3. Confocal Microscopy and Superresolution STED Microscopy of

Interacting Centrosomal Proteins

Images of endogenous and/or SNAP fusions are presented as indicated.

Centrin was used as amarker of the distal end of both centriole and procen-

triole. Scale bars represent 500 nm.

(A) Confocal images of indicated centrosomal proteins.

(B) STED images of the indicated centrosomal proteins (see also Figure S3

for a comparison between confocal and STED microscopy). Dimensions of

the structures are given below the images; data are presented as mean 6

SD. Measurements were taken on single optical sections, examples of

which are presented. The diameters of the structures were measured as

the distance between intensity peaks on the line profiles (rings) or by taking

the full width at half maximum of the structure on the line profile of the

images (disks). n equals the number of centrioles measured.

(C) Two-color STED images of interacting protein pairs identified by

S-CROSS screen. For the estimated extent of fluorescent signal overlap,

see Figure S3B.

See also Figures S1 and S2.
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10 nm [34]; consequently, FRET measurements offer an even
greater spatial resolution than colocalizations measured
through dual-color STED. We expressed Cep57, Cep63, and
Cep152 as SNAP-tagged fusions and labeled them with CP-
Atto565 as the potential FRET donor. Cells were then fixed
and the protein of interest was labeled with antibodies conju-
gated to Atto647N as the potential FRET acceptor. FRET was
then revealed through acceptor photobleaching, which re-
sulted in an increased fluorescence intensity of the FRET
donor. These experiments revealed close spatial proximities
of SNAP-Cep57 and Cep63, SNAP-Cep63 and Cep57, SNAP-
Cep57 and Cep152, as well as SNAP-Cep152 and Cep63 (Fig-
ure 4C). In contrast, no significant FRET was measured
between SNAP-Cep57 and C-Nap1 or between SNAP-
Cep152 and C-Nap1 (Figure 4C). These observations provide
further evidence that Cep57, Cep63, and Cep152 are parts of
a centrosomal protein complex.
We also performed coimmunoprecipitation experiments

to systematically monitor the interactions between Cep57,
Cep63, and Cep152 in the cytoplasm. Interestingly, these
experiments failed to detect an interaction between these
components (data not shown), which we interpret to reflect
the fact that they either do not interact in the cytosol or interact
only transiently. By contrast, we propose that Cep63, Cep57,
and Cep152 form a stable complex at centrosomes where
these proteins are present at high local concentrations,
a proposal fully supported by both our FRET data and the
fact that they exhibit the same ring-like structure by STED
microscopy.
Overall, our experiments demonstrate the utility of the spe-

cific labeling of centrosomal proteins with synthetic probes.
We exploited the potential of this approach for the identifica-
tion of novel protein-protein interactions through selective
crosslinking and for their characterization through multicolor
confocal imaging, superresolution microscopy, and FRET
microscopy. Thesemethods and reagents establish a powerful
toolbox for studying centrosomal proteins. One of the many
future applications includes the use of fluorophores suitable
for chromophore-assisted laser inactivation to inactivate pro-
teins of interest with high spatiotemporal resolution [35]. In
addition, our studies provide novel insights into centriole orga-
nization and procentriole formation (Figure 4D). Of note, we
report that STIL localizes to the region of the cartwheel in the
proximal end of the procentriole, as has also been reported
recently [30]. Moreover, together with the findings of others
[25], our results suggest that Cep57, Cep63, and Cep152
form a complex at the proximal end of centrioles. Finally, the
mutual effect of Cep57, Cep63, and Cep152 on their centriolar
localization raises the possibility that Cep63 and Cep152
mutations could also result in MVA, and reciprocally that
Cep57 mutations could also result in MCPH.
Supplemental Information

Supplemental Information includes three figures, five tables, and Supple-

mental Experimental Procedures and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2012.12.030.

Acknowledgments

The authors thank Eiji Nakata, Ivan R. Corrêa Jr., Petr Strnad, Gregor
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Figure 4. Confirmation of Colocalization of Centrosomal Proteins by FRET Measurements

(A) Schematic representation of Förster resonance energy transfer (FRET) detection by the acceptor photobleaching experiment. SNAP-Cep63 (labeledwith

the donor fluorophore) and Cep57 (stained via the antibodies with the acceptor fluorophore) are used as an example of interacting protein pair. Images of

donor and acceptor fluorophores before and after acceptor photobleaching are presented below. Scale bars represent 500 nm.

(B) Representative example of the acceptor photobleaching experiment. Upon photobleaching, the fluorescence intensity of the acceptor decreases and

the fluorescence intensity of the donor increases, indicating spatial proximity of proteins to which fluorophores are conjugated (i.e., Cep57 and SNAP-

Cep63). The fluorescence intensity of the control protein (centrin) remains unchanged. Experiment duration is w70 s and photobleaching duration is

w16 s with maximal microscope scanning speed.

(C) Apparent FRET efficiency for the selected protein pairs. The first two columns serve as negative controls, with differently localizing proteins pairs. Data

are shown as mean 6 SD (n R 5).

(D) Model of centrosomal localizations of Cep57, Cep63, Cep152 (all green), Plk4 (red), as well as STIL and HsSAS-6 (cyan). The yellow color indicates

a possible overlap in the localizations of Plk4 with Cep57, Cep63, and Cep152. The localization of the second population of Plk4 at the distal end of the

centriole is omitted for clarity.
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