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We study the the Euler-Lagrange equation of the dynamical Boulatov model, which is a simplicial
model for 3D gravity augmented by a Laplace-Beltrami operator. We provide all its solutions on
the space of left and right invariant functions that render the interaction of the model an equilateral
tetrahedron. Surprisingly, for a nonlinear equation, the solution space forms a vector space. This
space distinguishes three classes of solutions: saddle points, global and local minima of the action.
Our analysis shows that there exists one parameter region of coupling constants, for which the action
admits degenerate global minima.

I. Introduction

In three dimensions, gravity can be formulated
as a BF -theory [1]. Its functional integral quanti-
zation discretized over simplicial complexes leads
to the Ponzano-Regge model [2, 3], which can
be regarded as a quantum gravity model of dis-
crete geometry. A corner stone of this approach
is then to recover continuous geometry with all
desired requirements and properties of our space-
time. Such a description, however, as well as a
mechanism which could successfully lead to it,
remains an open problem in any background in-
dependent approach to quantum gravity.

The Boulatov model of group field theory
(GFT) [4, 5] provides one way to address this
issue. The model is formally defined by the gen-
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erating functional,

Z [J ] =

∫
Dϕe−S(ϕ)+

∫
Jϕ, (1)

where S (ϕ) denotes the Boulatov action [6]. The
striking fact about this generating functional is
that its Feynman graphs correspond to simpli-
cial complexes and its Feynman amplitudes co-
incide with Ponzano-Regge spin foam amplitudes
[2, 3]. This leads to the conclusion that a pertur-
bative expansion of (1) provides a discrete model
of quantum gravity. It is then expected, that a
description of continuous quantum geometry will
necessarily include effects beyond the perturba-
tive regime and will require a nonperturbative
understanding of (1).

The construction of a full nonperturbative
quantum field theory is rarely possible, but of-
ten it is already enough to construct a pertur-
bation theory around a nonperturbative vacuum
[7]. Moreover, if quantum fluctuations are not
too strong, a nonperturbative vacuum can be rea-
sonably well approximated by the minimum of
the classical action S, called the minimizer. In
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that case, the mean-field approximation around
the minimizer will lead to an effective field the-
ory that will capture the nonperturbative regime
of the model. For that reason, a study of min-
imizers of the Boulatov action is an important
step towards a better understanding of continu-
ous quantum geometry.

Despite their importance, however, the ex-
trema of the Boulatov action are poorly under-
stood in the literature. This is mostly due to
the fact that the Euler-Lagrange equations of the
Boulatov action are nonlinear differential equa-
tions that also involve integrals. Such equations
are called integro-differential equations; gener-
ally, they are notoriously difficult to solve. In the
Boulatov model these integro-differential equa-
tions can be formulated in terms of integral equa-
tions with an integral kernel given by the Wigner
6J-symbol. A solution of the extremal equa-
tions then requires full control of zeros of the 6J-
symbol, which remains an open problem despite
many decades of research [8–11]. This makes the
complete analysis of the full problem out of reach.

In addition to this, there seems to be no uni-
form agreement on the signs of the coupling con-
stants in GFT models. For instance, the con-
vention used in renormalization analysis [12] is
opposite to the one used in the context of the
condensate cosmology investigations [13–21]. De-
spite the differences in the sign convention both
analysis rely on the existence of global or at least
local minimizers and for that reason require a
good understanding of the extrema in GFT.

In this work, we address the minimizers of
the Boulatov action augmented by a Laplace-
Beltrami operator, hereafter called dynamical
Boulatov action [22]. To make the problem
tractable, we look for minimizers in the space
of left and right invariant fields corresponding to
equilateral triangles. Section II gives the defini-
tion of the model and the space of functions con-
sidered in this paper. On this space the Euler-
Lagrange equations of the action become solv-
able, allowing us to provide a full characteriza-
tion of solutions in section IIIA. We then iden-
tify the parameter regimes in which the action
admits minima and characterize the minimizers
in section III B. Our main result regarding the

extrema is presented in theorem 1 and the sub-
sequent discussion. The characterization of min-
imizers is provided in theorem 2. Implications of
our results on the quantum theory is discussed
in section IV. A closing appendix gathers useful
identities and the proofs of some statements in
the text.

II. The dynamical Boulatov action

Let C∞ (M) be the space of smooth, real-
valued functions defined on the compact Lie
group M = SU (2)

×3. The components of ele-
ments of M are denoted by a subindex such that

x = (x1, x2, x3) ∈M = SU (2)
×3
. (2)

Define the space of functions S, such that any
function f in S satisfies:

Right invariance: for any R ∈ SU (2) and any
x ∈M , f (x1R, x2R, x3R) = f (x1, x2, x3) .

Cyclicity: for any x ∈M ,

f (x1, x2, x3) = f (x2, x3, x1) = f (x3, x1, x2) .

We call the space S, the space of right and cyclic
invariant functions.

The dynamical Boulatov action is a function
Sm,λ on S, given by the integral

Sm,λ (ϕ) =
1

2

∫
M

dx ϕ (x)
(
−∆ +m2

)
ϕ (x) (3)

+
λ

4!

∫
M×4

dxdydzdw Tet (x, y, z, w)

× ϕ (x)ϕ (y)ϕ (z)ϕ (w) ,

where m2 and λ are real, possibly negative, cou-
pling constants, dx is the Haar measure onM , ∆
is the Laplace-Beltrami operator on M with the
canonical metric,1 and the integral kernel Tet is

1 We include the Laplace-Beltrami operator in the ac-
tion, for a consistent implementation of a renormaliza-
tion scheme [22].
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given by

Tet (x, y, z, w) = δ
(
x1y
−1
1

)
δ
(
x2z
−1
1

)
δ
(
x3w

−1
1

)
× δ

(
y2w

−1
3

)
δ
(
y3z
−1
2

)
× δ

(
z3w

−1
2

)
. (4)

This kernel encodes the combinatorics of a tetra-
hedron (fig. 1) and is symmetric under cyclic per-
mutations of its arguments.

x3

x1

y1

y3

z3

z2

w1 y2

w3

x2

z1

Figure 1: Combinatorics of a tetrahedron

To address the variational problem, we intro-
duce a topology on the space S, that is the one
given by the family of semi-norms

‖f‖n
.
= sup
x∈M
|∆nf (x)| . (5)

With this topology, S is a locally convex topolog-
ical space, with the neighborhood base given by
semi-balls [23],

Nε,n (0) = {‖f‖n < ε | f ∈ S} , (6)

for n ∈ N and ε > 0.
By the Peter-Weyl theorem, every f ∈ S can

be written as

f (x) =
∑
J∈J

fJ X J (x) . (7)

where J = (j1, j2, j3) belongs to J
.
=
(N
2

)×3,
the space of triplets of positive half-integers and{
X J
}
J∈J is a set of left and right invariant matrix

coefficients on M (see appendix A3 for the def-
inition of X J). By [23, theorem 3] the sequence

of coefficients
(
fJ
)
J∈J is a rapidly decreasing se-

quence of real numbers and the equality is un-
derstood such that the right hand side of the
equation converges to f (x) in the aforementioned
topology.

Leading the analysis further, we will restrict
the space S by requiring two additional condi-
tions:

Left invariance: for any L ∈ SU (2), x ∈M and
f ∈ S, f (Lx1, Lx2, Lx3) = f (x1, x2, x3) .

Equilateral condition: let f ∈ S, then f is
an equilateral function if its non-vanishing
Peter-Weyl coefficients are of the form(
f (j,j,j)

)
j∈N.

We denote the restriction of S to left invari-
ant equilateral functions by SEL and the space
of equilateral triples by JEL = {(j, j, j) | j ∈ N}.
Note, that JEL contains only integer multi-
indices, since for any half-integer j the matrix
coefficients vanish (see appendix A3),

X (j,j,j) = 0 with j =
2n+ 1

2
n ∈ N.

In the following we will sometimes use the nota-
tion f ∈ S(EL) and fJ with J ∈ J(EL) to signal
that the statement holds equally for S and SEL
and, correspondingly, with a set of indices belong-
ing to J or to JEL. For clearer notation we also
define the square of the triple J as

J2 .
= j1 (j1 + 1) + j2 (j2 + 1) + j3 (j3 + 1) ,

and its modulus as

|J | .= j1 + j2 + j3. (8)

Definition 1. A local minimizer of the action
Sm,λ on SEL is a field ϕ ∈ SEL, that for some
n ∈ N and ε > 0 satisfies

Sm,λ (φ) ≥ Sm,λ (ϕ) , (9)

for any φ ∈ Nε,n (ϕ) ∩ SEL. If condition (9) is
satisfied on the whole space SEL we call the min-
imizer global.
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In the following we will characterize all min-
imizers of the action Sm,λ on SEL for the four
different parameter regions

(a)m2 < 0 (b)m2 > 0 (c) m2 > 0 (d) m2 < 0

λ < 0 λ < 0 λ > 0 λ > 0.

For each of the parameter regions we will charac-
terize all extrema of the action Sm,λ on SEL and
identify, which of the extrema are minimizers.

A. Physical interpretation of the setting

We now briefly motivate the restrictions made
in our analysis and point out the geometrical con-
siderations behind the use of the space SEL.

The space S: The space S is the space of
field configurations of the Boulatov model. Its
graphical interpretation in terms of closed trian-
gles is well-known in the GFT literature [4]. By
the Peter-Weyl theorem we can decompose any
smooth field f on SU (2) in modes such that

f (x) =
∑
J∈J

J∑
α,β=−J

fJα,β D
J
α,β (x) , (10)

where DJ
α,β are the Wigner-matrix coefficients for

the product representation of M (see appendix
A 2). To gain an intuition on the construction,

j3 j1

j2

fj1,j2,j3α1,α2,α3

α3

α2

α1

j3 j1

j2

fj1,j2,j3α1,β1,α2,β2,α3,β3

α3

β3

α2 β2

α1

β1

Right
invariance

Figure 2: Graphical representation of right invariance.

we depict the Peter-Weyl coefficients by stranded
lines, emanating from a single point. Then the
right invariance of f ensures a closure of the dual
edges to form a triangle (fig. 2). Hence, the right

invariance is necessary to give a geometric inter-
pretation to the fields and it is thus crucial for
the connection between the Boulatov group field
theory and the Ponzano-Regge spin-foam model
[1, 2, 6]. For this reason, the original Boulatov
model, as well as any other geometrical model in
GFT, includes this symmetry in their definition.
In addition, the cyclic relabeling of the field ar-
guments ensures the invariance of the triangles
under cyclic relabeling of its edges (fig. 3).

j2 j3

j1

fj3,j1,j2α3,α1,α2

α2

α1

α3

j3 j1

j2

fj1,j2,j3α1,α2,α3

α3

α2

α1

Figure 3: Graphical representation of invariance of f
under cyclic permutations of its arguments.

The space SEL: The right invariance of smooth
functions saturates one magnetic index per spin
in the Peter-Weyl coefficients. The remaining
magnetic indices connect to the right-invariant
Wigner-matrix products. Hence, the associated
triangles still carry one magnetic index for each
j. This index “anchors” the triangle to the ref-
erence frame given by the Wigner-matrix coeffi-
cients (fig. 4), and therefore destroys the invari-
ance of the triangles under rotations. To enforce
rotational symmetry of the triangles, one requires
the additional left invariance of the field [15, 16],
such that for any h ∈ SU (2) the field f satisfies

f (hx1, hx2, hx3) = f (x) . (11)

This implements the invariance of f under rota-
tion of all its arguments, which is interpreted as
rotational invariance of the triangles described by
the Peter-Weyl coefficients.

Some applications of GFT to cosmology
demonstrated that this symmetry is needed to
identify the domain space of the fields with the
superspace of homogeneous spatial geometries
[15]. Hence, this restriction plays a pivotal role
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j2 j3

j1

fj3,j1,j2

j3 j1

j2

fj1,j2,j3α1,α2,α3

α3

α2

α1

Left
invariance

Figure 4: Graphical representation of left invariance.

to model the homogeneity of resulting cosmolo-
gies [13–17].

For such configurations, the equilateral condi-
tion of the triangles is then claimed to relate to
their isotropy. The argument for this restriction
states that we need to set all edges of the trian-
gle to equal length in order to ensure equality in
all directions (fig. 5). This condition is again re-
quired in the context of GFT condensate cosmol-
ogy and is crucial for the recovery of a Friedmann-
like dynamics [16, 17, 20, 21].

j j

j

fj,j,j

j3 j1

j2

fj1,j2,j3

Equilateral
condition

α2

Figure 5: Graphical representation of the equilateral
condition.

There are other reasons to consider the re-
stricted space SEL. In GFT the action Sm,λ de-
fines statistical weights of a generating functional
by means of a functional integral,

Z [J ] =

∫
Dϕe−Sm,λ(ϕ)+

∫
Jϕ. (12)

It has been shown, however, that on S the ac-
tion Sm,λ is generally not bounded from below,
regardless of the parameter region [24]. For this
reason, the above integral is dominated by those

field configurations that make the action Sm,λ ar-
bitrarily negative making (12) ill-defined. As we
will show below, this problem gets resolved on
SEL, where global minimizers of the action ex-
ist (at least for some parameter regions). This
allows us to define (12), at least perturbatively,
around these minimal field configurations. From
this perspective, a restriction to the space SEL
could lead to a well-defined statistical theory.

B. Extremal conditions and minimizers

Let I ⊂ R denote an interval containing zero;
for t ∈ I and ϕ, f ∈ SEL a necessary condition
for ϕ to be a local minimizer on SEL is given by

S
′

m,λ (ϕ, f)
.
= ∂tSm,λ (ϕ+ tf) |0 = 0, (13)

S
′′

m,λ (ϕ, f)
.
= ∂2t Sm,λ (ϕ+ tf) |0 ≥ 0, (14)

for any f ∈ SEL.
In the following we will investigate the ex-

tremal condition (13) for the model (3). We will
then check if some solutions are minimal and thus
fulfill (14) and the condition in definition 1.

Proposition 1. ϕ ∈ S(EL) is an extremum of S
if and only if the Peter-Weyl coefficients of ϕ —
denoted ϕJ — satisfy for any J ∈ J(EL),

0 = (J2 +m2)ϕJ (15)

+
λ

3!

∑
K∈J(EL)

ϕj1k2k3ϕj2k3k1ϕj3k1k2
{
j1 j2 j3
k1 k2 k3

}2

,

where K = (k1, k2, k3) ∈ J(EL).

Proof. see appendix B 1.

III. Extrema and minimizers

The extremal condition (15) is a nonlinear ten-
sor equation with an integral kernel given by the
6J-symbol squared. To this issue comes the fact
that the nontrivial zeros of the 6J-symbol are still
under investigation, making (15) inherently diffi-
cult to solve in full generality. Some specific so-
lutions for the case without the Laplace-Beltrami
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operator and λ < 0 have been introduced in [25],
but a systematic analysis of extrema was not per-
formed therein.

Although the extremal condition (15) is diffi-
cult to solve on S, it turns out to be solvable on
SEL, because in this case the 6J-symbol signifi-
cantly simplifies.

A. Extrema

In the following we will denote the Wigner 6J-
symbol for J ∈ J(EL) by

{6J} .=
{
j1 j2 j3
j1 j2 j3

}
, (16)

and define the space JS(EL) of J ’s such that

JS(EL) =
{
J ∈ J(EL) | with {6J} 6= 0

}
. (17)

In order to characterize the extrema of the ac-
tion, we define the space of extremal sequences.
Let C =

(
CJ
)
J∈J(EL)

denote the sequence of (pos-

sibly complex) numbers such that for J ∈ JS(EL)

CJ ∈

{
0,± 1

|{6J}|

√
−3!

λ
(J2 +m2)

}
(18)

and for J ∈ J(EL)/J
S
(EL).

CJ =

{
r ∈ R if J2 = −m2

0 otherwise
(19)

Since J2 > 0, the first case in (19) can happen
only whenm2 is negative and for J ∈ JEL,m2 has
to be an even integer. For simplicity, we will ex-
clude this case in the following analysis, because
it requires a strong fine-tuning on the parameter
m2. It is convenient to define the length ` of the
sequence C such that

` (C) =
∑
J∈JEL

∣∣sgn (CJ)∣∣ , (20)

with the convention sgn (0) = 0.

Definition 2. We define the space of extremal
sequences as

Em,λ =
{
C =

(
CJ
)
J∈JEL

|CJ ∈ R, ` (C) <∞
}
,

where the coefficients of each sequence are of the
form (18).

This space of course depends on the values of
m2 and λ, since different choices of these param-
eters may violate the reality condition CJ ∈ R.
Em,λ fully characterizes the space of extrema of

the action as states the following theorem.

Theorem 1. For any C ∈ Em,λ the field ϕ ∈ SEL

ϕ (x) =
∑
J∈JEL

CJ X J (x) (21)

is an extremum of the action Sm,λ. Moreover,
every equilateral extremum of Sm,λ is of the above
form.

Proof. see appendix B 2.

We denote the space of extremal functions by
Ẽm,λ. It is worth mentioning that, despite the
nonlinearity of the Euler-Lagrange equations, its
solutions form a vector space over (Z3,+, ·).

Corollary. The space Ẽm,λ is a vector space over
the discrete algebraic field (Z3,+, ·).

Proof. Denote the space of sequences with finitely
many non-zero elements over Z3 by c00 (Z3).
Clearly, it is a vector space over Z3. Consider
the map

I : Ẽm,λ → c00 (Z3)

ϕ 7→
(
sgn

(
C1
)
, sgn

(
C2
)
, . . .

)
,

with the convention sgn (0) = 0. I is one-to-
one on its image, however, it may not be onto
c00 (Z3) simply because the nontrivial zeros of
the 6J-symbol are not fully characterized. Nev-
ertheless, the image of I is algebraically closed
and forms a subspace of c00 (Z3). For any s =

(s0, s1, . . .) ∈ I
(
Ẽm,λ

)
, the inverse mapping is

given by

I−1 : s 7→ [I−1s](x) =
∑
j∈N

sgn (sj)
∣∣CJj ∣∣ X Jj (x) ,
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where Jj = (j, j, j), j ∈ N, with

∣∣CJ ∣∣ =
1

|{6J}|

∣∣∣∣∣
√
−3!

λ
(J2 +m2)

∣∣∣∣∣ . (22)

Since there are only finitely many non-zero co-
efficients, sj 6= 0, the sum trivially converges in
SEL. Since I is linear it is an isomorphism be-
tween Ẽm,λ and I (c00 (Z3)).

We define the sum on Ẽm,λ by

ϕ1 +Z3
ϕ2

.
= I−1 (I(ϕ1) + I(ϕ2)) (23)

We now discuss the space of extremal sequences
according to different parameter regions, whose
major difference is captured by the sign of the
radicand in (18). We obtain the four cases:

(a) m2 < 0, λ < 0: the radicand is positive only
if

J2 −
∣∣m2

∣∣ = 3j(j + 1)−
∣∣m2

∣∣ ≥ 0, (24)

which is the case when j satisfies

jmin =

⌈
1

6

(√
9 + 12|m2| − 3

) ⌉
≤ j, (25)

where d·e denotes the ceiling function. The
space of extremal sequences contains in-
finitely many sequences of the form(

0, . . . , 0, CJmin , CJmin+1, . . .
)
,

where we used the notation Jmin + n
.
=

(jmin + n, jmin + n, jmin + n) for n ∈ N,
with finitely many non-zero elements CJ .

(b) m2 > 0, λ < 0: all coefficients CJ are real.
The space of extremal sequences can be
written as

Em,λ =
{(
C(0,0,0), C(1,1,1), . . .

)
| ` (C) <∞

}
.

(c) m2 > 0, λ > 0: the reality condition CJ ∈ R
then requires CJ = 0 for all J ∈ JEL. The
space of extremal sequences contains a sin-
gle zero-sequence

Em,λ = {(0, 0, 0, . . .)} .

(d) m2 < 0, λ > 0: the radicand is positive only
if

3j (j + 1)−
∣∣m2

∣∣ ≤ 0, (26)

or equivalently for j satisfying,

0 ≤ j ≤

⌊
1

6

(√
9 + 12 |m2| − 3

) ⌋
= jmax (27)

where b·c denotes the floor function. In this
case Em,λ contains finitely many sequences
of the form(

C(0,0,0), . . . , CJmax , 0, 0, . . .
)
,

where Jmax = (jmax, jmax, jmax) ∈ JEL.

At this point, a few comments are in order: ac-
cording to the geometrical interpretation in the
previous section, each Fourier mode can be inter-
preted as a triangle with the edge length given by
j. The area of the triangle is then measured in
terms of J2. In the parameter regime (d) relation
(26) provides an upper bound on the possible j’s
for the extrema of the action. Hence, in this case
|m2| can be interpreted as the bound on the area
of the triangles determined by the extremal solu-
tions. This is an interesting geometrical fact that
deserves further investigation.

A second remark is that the method of resolu-
tion restricting to equilateral configurations used
to tackle (15) certainly exports to GFT models
on higher dimensional manifolds M = G×D with
G = SU(2),SO(4) and D ∈ N. We expect that a
similar results as in (18) will hold if we replace the
6J-symbol by the appropriate Wigner symbol and
replace the square root by the D − 2 root. How-
ever, the search of minimizers for these theories
as performed in the subsequent analysis might be
different.

B. Minimizers

We now seek the minimizers of the action
and show that only two parameter regions admit
global minimizers.
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First, notice that in the case, m2 < 0, λ >
0, the value of

∣∣m2
∣∣ can determine, whether or

not the action Sm,λ is bounded from below. To
agree with this, assume the first nontrivial zero
of the 6J-symbol to be at J0 ∈ JEL and choose a
function f (x)

.
= fJ0X J0 (x) with fJ0 ∈ R. Then,

for
∣∣m2

∣∣ > J2
0 the action evaluated at f yields

Sm,λ (f) =
(
fJ0
)2

(J2
0 −

∣∣m2
∣∣) < 0. (28)

Hence, the action can become arbitrarily nega-
tive and thus is unbounded from below. On the
other hand, for

∣∣m2
∣∣ < J2

0 the action has a global
minimum as we will show in the following.

In order to give a general classification of so-
lutions we need to exclude cases when the 6J-
symbol vanishes. A quick numerical analysis
shows that for

∣∣m2
∣∣ ≤ 109, the space of nontrivial

zeros of the 6J-symbol with J2 ≤
∣∣m2

∣∣ is empty,
Therefore, theorem 2 captures all possible solu-
tions up to this order. In fact, we conjecture that
for equilateral configurations, JEL/J

S
EL = ∅, and

our theorem holds for any value of
∣∣m2

∣∣.
Theorem 2. Let

∣∣m2
∣∣ be such that for j ≤ jmax

every J ∈ JSEL and such that there is no J ∈
JEL/J

S
EL such that J2−|m2| = 0. Then the equi-

lateral extrema of the dynamical Boulatov action
are of the following type:

(a) For m2 < 0, λ < 0, all extrema are saddle
points.

(b) For m2 > 0, λ < 0, all nontrivial extrema
are saddle points and the trivial extremum,
ϕ = 0, is a local minimizer on SEL.

(c) For m2 > 0, λ > 0 the unique trivial ex-
tremum is a global minimizer on SEL.

(d) For m2 < 0, λ > 0 there are 2jmax global
minimizers on SEL given by extremal se-
quences C ∈ Em,λ with maximal length,
` (C) = jmax. Any other extremum of
length ` (C) < jmax is a saddle point.

Proof of theorem 2. In the following, let ϕ (x)
denote an extremum and let f ∈ SEL be a
generic function with the Peter-Weyl decompo-
sition given by f (x) =

∑
J∈JEL

fJ X J (x). We

remind here that a necessary condition for an ex-
tremum ϕ (x) to be a minimizer (maximizer, re-
spectively) is given by

S
′′

m,λ (ϕ, f) ≥ 0
(
S
′′

m,λ (ϕ, f) ≤ 0, resp.
)
,

for any f ∈ SEL. In the Peter-Weyl decomposi-
tion the second variation recasts as

S
′′

m,λ (ϕ, f) =
∑
J∈JEL

(
fJ
)2(J2 +m2

)

−λ
2

∑
K∈JSEL

δJ,K ϕK {6K}2
 ,

where ϕK is the Peter-Weyl coefficient of the ex-
tremum ϕ. The above condition is necessary but
not sufficient, nevertheless, it turns out to be use-
ful to exclude some extrema.
Case (a) (m2 ≤ 0, λ ≤ 0): By theorem 1, ex-

tremal solutions contain only finitely many non-
zero Fourier coefficients. Therefore it is possible
to find J> ∈ JEL such that J2

> − |m|
2
> 0 and

ϕJ> = 0. Choosing f> (x)
.
= fJ>X J> (x) the

second variation gives

S
′′

m,λ (ϕ, f>) =
(
fJ>

)2 (
J2
> −

∣∣m2
∣∣) > 0, (29)

which violates the maximizer condition.
To see that the minimizer condition is also vi-

olated, choose f< (x)
.
= fJ<X J< (x) such that

J2
< −

∣∣m2
∣∣ < 0. Then the second variation is

written as

S
′′

m,λ (ϕ, f<) =
(
fJ<

)2 (
J2
< −

∣∣m2
∣∣) ≤ 0. (30)

Hence, each extremum in this parameter region
violates the minimizer and the maximizer condi-
tion and therefore is a saddle point.
Case (b) (m2 ≥ 0, λ ≤ 0): For the nontrivial

minimizer the above argument can also be ap-
plied in this case. Choosing the functions f> (x)
and f< (x) as above we find

S
′′

m,λ (ϕ, f>) =
(
fJ>

)2 (
J2
> +

∣∣m2
∣∣) > 0,

and

S
′′

m,λ (ϕ, f<) = −2
(
fJ<

)2 (
J2
< +

∣∣m2
∣∣) < 0.
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Hence, nontrivial extrema are saddle points. For
the trivial extremum the second variation of Sm,λ
reads for any f ∈ SEL

S
′′

m,λ (0, f) =
∑
J∈JEL

(
fJ
)2 (

J2 +
∣∣m2

∣∣) ≥ 0,

and the necessary condition is satisfied. Indeed,
the trivial extremum is a local minimum. To
prove this we first notice that the Peter-Weyl
transform is a topological isomorphism from SEL
to the space of rapidly decreasing sequences S (N)
with topology given by the family of semi-norms
[23, theorem 4],

‖
(
fJ
)
J∈JEL

‖n = sup
J∈JEL

∣∣JnfJ ∣∣ . (31)

The action evaluated at f becomes

Sm,λ (f) =
∑
J∈JEL

(
fJ
)2 (

J2 +m2
)

− λ

4!

∑
J∈JEL

(
fJ
)4 {6J}2 (32)

Since the Wigner-6J-symbol is upper-bounded by
1, we can estimate

Sm,λ (f) ≥∑
J∈JEL

(
fJ
)2((

J2 +
∣∣m2

∣∣)− λ

4!

(
fJ
)2)

≥
∑
J∈JEL

(
fJ
)2(

m2 − λ

4!

(
fJ
)2)

. (33)

Since Peter-Weyl transform is a topological iso-
morphism, we get for any f ∈ SEL with ‖f‖0 ≤√

4!m2

|λ| , an estimate on the Fourier coefficients

∣∣fJ ∣∣ ≤ ‖ (fJ)
J∈JEL

‖0 ≤

√
4!m2

|λ|
. (34)

Inserting this bound in (33) we obtain

Sm,λ (f) ≥ 0 = Sm,λ (0) . (35)

Hence, in the neighborhood Nε,0 ∩ SEL with ε =√
4!m2

|λ| the trivial extremum is a minimizer.

Case (c) (m2 > 0, λ > 0): In this case the
space of extremal sequences contains only the
zero-sequence, leading to the trivial extremum
ϕ (x) = 0. Denoting the quadratic part of the
action in (3) by Qm (f) and the interaction part
by λI (f) such that

Sm,λ (f) = Qm (f) + λI (f) , (36)

we have for any f ∈ SEL

Qm (f) =
∑
J∈JEL

(
fJ
)2 (

J2 +m2
)
≥ 0

λI (f) =
λ

4!

∑
J∈JEL

(
fJ
)4 {6J}2 ≥ 0.

Hence,

Sm,λ (0) = 0 ≤ Sm,λ (f) ∀f ∈ SEL. (37)

We obtain a global minimizer, since the minimal
condition is satisfied on the whole SEL.
Case (d) (m2 < 0, λ > 0): For any f ∈ SEL

the action evaluated at f gives

Sm,λ (f) =
1

2

∑
J∈JEL

(
fJ
)2 (

J2 −
∣∣m2

∣∣)
+
λ

4!

∑
J∈JEL

(
fJ
)4 {6J}2

Splitting f such that f (x) = f− (x)+f+ (x) with

f− (x) =

|J|≤3jmax∑
J∈JEL

fJ X J (x)

f+ (x) =

|J|>3jmax∑
J∈JEL

fJ X J (x) ,

we have

Sm,λ (f) = Sm,λ
(
f− + f+

)
≥ Sm,λ

(
f−
)
.

Hence, verifying the minimizer condition, it is
enough to show that

Sm,λ (ϕ) ≤ Sm,λ
(
f−
)
. (38)
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The space of functions of the form f− is finite-
dimensional and we can use the usual minimiza-
tion procedure for functions. More specifically,
let sJ : R→ R be a function such that

sJ
(
fJ
)

=
(
fJ
)2[1

2

(
J2−

∣∣m2
∣∣)+

λ

4!

(
fJ
)2{6J}2].

The action Sm,λ (f−) is smallest when each sJ
is minimal on R for each J ≤ Jmax. Taking the
first and second derivative of sJ we see that the
minimum is achieved by the coefficients CJ from
(18). Hence, an extremum given by an extremal
sequence of maximal length is a global minimizer
on the whole SEL.

If ϕ is given by an extremal sequence C of
length ` (C) < jmax, then there exists a X J0 with
J0 ≤ Jmax and ϕJ0 = 0. For δ ∈ R define the
function

g (x) = ϕ (x) + δ · X J0 (x) . (39)

Inserting g into the action we get

Sm,λ (g) = Sm,λ (ϕ)

+ δ2
[

1

2

(
J2
0 −

∣∣m2
∣∣)+

λ

4!
δ2 {6J0}2

]
.

If δ2 is in the range 0 < δ < 2CJ0 the square
bracket is negative and it follows

Sm,λ (g) ≤ Sm,λ (ϕ) . (40)

Moreover, for any ε > 0 and δ < ε
J2n
0

we have

‖g − ϕ‖n = δ sup
x∈M

∣∣∆n X J0 (x)
∣∣

= δ sup
x∈M

∣∣J2n
0 X J0 (x)

∣∣ < ε,

since the characters are bounded by one,∣∣X J0 (x)
∣∣ ≤ 1. Hence, g ∈ Nε,n (ϕ). For any

ε > 0 choosing δ < min
(

ε
J2n
0
, CJ0

)
we get

Sm,λ (f) < Sm,λ (ϕ) . (41)

This shows that we can find a function g in any
neighborhood of ϕ that decreases the value of the
action, and hence, ϕ is not a minimizer.

IV. Conclusion

We investigated the minimizers of the dynam-
ical Boulatov action in four different parameter
regions of the coupling constants. Our analysis is
restricted to the space of smooth, equilateral, left
and right invariant functions, also invariant under
cyclic permutations of its variables, SEL. This re-
striction ensures that the action is bounded from
below for some parameter regions. Moreover, it
is motivated by cosmology studies on GFT.

In this article, we have shown that the very
same restrictions allow us to solve the Euler-
Lagrange equations for the dynamical Boulatov
action and lead to a complete characterization of
minimizers on the restricted space. Our result
characterizes the space of solutions by extremal
sequences of finite length and shows that it forms
a vector space over Z3, which is surprising for the
set of solutions to a nonlinear integro-differential
equation. Furthermore, in the most interesting
parameter region (d), the non-vanishing Fourier
modes of extremal solutions are bounded by the
coupling constant m2, which suggests a connec-
tion between m2 and the area of the triangle of
the largest Peter-Weyl mode of the GFT field.

Our analysis shows that the region (a) does
not have any minimizers on SEL, which makes
this parameter region perhaps the least suitable
for the definition of the statistical measure in (1).
For the parameter regions (b) and (c) there is a
single (local respectively global) minimizer given
by the trivial extremum, ϕ = 0. Finally, in the
region (d) the action has 2jmax degenerate global
minimizers, where jmax is a function of the cou-
pling constant m2. The rich structure of global
minima makes this region most interesting for fur-
ther investigations, especially for the statistical
theory.

On the space of equilateral functions only two
possible parameter regions (c) and (d) allow for
the presence of global minimizers, and hence
could lead to a meaningful definition of a non-
perturbative statistical measure.

Case (c) admits a single global minimizer ϕ =
0. Perturbation theory around this minimizer
leads to the perturbation theory in the coupling
constant λ and is used in the GFT literature to
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draw a connection to spin-foam models. Hence,
our analysis would suggest that this regime is
suitable for such relation.

Case (d), on the other hand, may suggest more
structure for the quantum theory: a degenerate
global minimum could lead to instantons or sym-
metry breaking in the corresponding statistical
field theory in the following sense:
Instantons: The full nonperturbative formu-

lation of a model is given by the minimizer of
its quantum effective action. The latter is com-
monly assumed to be convex [26] and therefore
admits a single, unique minimizer. Hence, the
difference between the minimizers of the classical
and the quantum effective action becomes appar-
ent, especially in the case when the classical ac-
tion admits degenerate minimizers. In this case, a
perturbative description around any of the mini-
mizers of the classical action does not capture the
nonperturbative effects of the theory. In quantum
field theory these nonperturbative effects can be
understood as “tunneling” between the perturba-
tive vacua, where the tunneling probability is de-
scribed by the instanton action. Thus, the degen-
erate structure of global minimizers in our case,
suggests the necessity of instantons in the statisti-
cal formulation of GFT at least for the parameter
region (d) (for a similar result see [19]).
Symmetry breaking: this mechanism hap-

pens when the classical action admits degenerate
global minimizers — related by a symmetry of
the classical action — but the tunneling probabil-
ity between them vanishes. As we already men-
tioned, the tunneling probability is described by
the instanton action, which in ordinary field the-
ory is often proportional to the volume of the base
manifold. On a manifold with finite volume the
tunneling probability is therefore finite. This of-
ten leads to the statement that spontaneous sym-
metry breaking can not occur in quantum field
theories in a box. This realization, however, con-
tains further assumptions that are satisfied in or-
dinary field theories but do not hold for GFT.
In fact, it has been recently shown that even on
the compact base manifold,M = SU (2)

d the tun-
neling between different perturbative minima can
vanish [27], leading to a similar phenomenon of
symmetry breaking. In order to talk about sym-

metry breaking, we need to identify the symme-
try, which in our case, is given by a flip of the
sign of at least one of the modes in the Peter-
Weyl decomposition of the minimizer (this can
be modeled as a Z2-symmetry). Since the action
is of even power in the fields, such a flip will not
affect the value of the action and will correspond
to a discrete symmetry. For this reason it is pos-
sible that the global minimizers of the action lead
to the breaking of sign-flip symmetry. This needs
to be investigated more rigorously in future work.

For ordinary local quantum field theories, a
symmetry breaking mechanism can sometimes be
related to a phase transition and the formation
of a condensate. In particular, this could be the
signal of a Bose-Einstein condensation just as ex-
pected for cosmology studies in GFT. A closer
look at the solutions found for sector (d) shows
that these might lead to intriguing perspectives.
Indeed, the ‘particle’ number, used in cosmology,
is computable in terms of the L2-norm of the min-
imizer. In the present situation, that very num-
ber proves to be bounded by the parameter m2:

N
.
= ‖ϕ‖L2 =

3!

λ

|J|≤3jmax∑
J∈JSEL

1

{6J}2
∣∣J2 −

∣∣m2
∣∣∣∣

≤
3!
∣∣m2

∣∣
λ

|J|≤3jmax∑
J∈JSEL

1

{6J}2

≤
3!
∣∣m2

∣∣
λ

jmax Cmax,

with Cmax = maxJ∈JSEL

(
{6J}−2

)
. For

∣∣m2
∣∣� 1

we can approximate jmax further as jmax ≤ 2
∣∣m2

∣∣
and obtain a simpler bound on the L2-norm of the
minimizers

N ≤
12
∣∣m4

∣∣
λ

Cmax. (42)

The coupling constant m2 (or |m4|/λ� 1) could
be large but that itself is not enough to ensure
N = ∞. Nevertheless, starting from our solu-
tions, a divergent parameter m2 is a necessary
condition for the divergent L2-norm.

We should mention here that minimizers with a
divergent L2-norm are not captured by our anal-
ysis (dealing only with integrable functions), and
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some modifications will be in order to also take
into consideration these cases. One necessary
modification would be to relax the smoothness
condition of the minimizers and use the space
of tempered distributions instead. This could be
particularly interesting for GFT models without
Laplace-Beltrami operator, which correspond to
a topological BF-theory. Due to the distribu-
tional nature of minimizers their L2-norm will
sometimes diverge making them potentially inter-
esting for cosmological studies [19, 27] and spin-
foam models [25]. The solutions of these GFT
models must be addressed in a different way but
certainly deserve further attention.

There are several models using tensor fields
(with interesting properties such as perturbative
renormalizability) which do not impose strong
symmetry conditions on the fields. These models’
interactions could also be radically different from
that of Boulatov [28]. Their corresponding Euler-
Lagrange equation (without 6J-symbols) still in-
volves a nonlinear tensor like equation and it re-
mains a difficult task to solve them. In this case,
an approach to circumvent the nonlinearity and
to obtain solution fields which are more general
than equilateral configurations is to consider sym-
metric tensor fields and to decompose the field
into its traceless part and the rest, namely vector-
like components [29]. Such a decomposition could
help to solve the extremal conditions on S which
might find applications in GFT studies of inho-
mogeneous and anisotropic quantum cosmologies.

On the other hand, the existence of global min-
ima on SEL suggests that we can define a self-
consistent statistical theory using only this space.
This theory could potentially be well-defined due
to the bound of the action on SEL and may have
implications for cosmological studies of GFT.
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Appendix

A. Harmonic analysis on SU(2)

This appendix gathers the main identities on
the harmonic analysis on SU(2) repeatedly used
throughout the text.

1. Properties of the Wigner matrices

In the following we present a list of properties
for the Wigner matrix coefficients:

1. the Wigner matrices, denoted by Dj (x),
define an irreducible representation of x ∈
SU(2) of dimension dj = 2j + 1, with
j ∈

{
0, 12 , 1, . . .

}
. We denote the coefficients

of this matrix by Dj
mn (x) with m,n ∈

{−j, . . . , j};

2. the set of Wigner matrix coefficients{
Dj
mn (x)

}
j,m,n

forms an orthogonal basis
in L2 such that∫

dxDj1
m1n1

(x) D̄j2
m2n2

(x) =
1

dj1
δj1j2δm1m2δn1n2 ,

(A1)
where ◦̄ denotes the complex conjugation;

3. the Wigner matrix coefficients form a basis
of eigenfunctions for the Laplace-Beltrami
operator ∆ (defined with the canonical met-
ric), such that

−∆Dj
mn (x) = j (j + 1)Dj

mn (x) ; (A2)

4. the characters of the Wigner representa-
tion are defined by χj (x)

.
= tr

(
Dj (x)

)
=∑

mD
j
mm (x);

5. they are smooth real-valued functions that
satisfy χj (x) = χj

(
x−1

)
;
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6. for x1, x2 ∈ SU (2) they also obey the con-
volution relation∫
dh χj(hx1)χl(x2h) =

δjl
dj
χj(x2x

−1
1 ) (A3)

from which the orthogonality relation∫
dhχj(h)χl(h) = δjl follows;

7. the Wigner 6J-symbol can be defined in
terms of characters as [30],{
l01 l02 l03
l23 l13 l12

}2

=

∫
(dh)4

3∏
i<j

χlij (hjh
−1
i ).

(A4)

2. Peter-Weyl transform

We briefly recall the most important properties
of the Peter-Weyl transform and Wigner matri-
ces, needed for the harmonic analysis on SU(2).
Let C∞ (SU(2)) be the space of smooth functions
f on SU(2) which is equipped with the topology
given by semi-norms

‖f‖n = sup
g∈SU(2)

|∆nf (g)| , (A5)

with ∆ the Laplace-Beltrami operator and n ∈ N.
For any f ∈ C∞ (SU (2)) there exists a se-

quence of complex numbers
(
f jmn

)
with j ∈ N

2

and m,n ∈ {−j, . . . , j} and Dj
mn (x) denote the

Wigner matrix coefficients with dj = 2j + 1 such
that

lim
N→∞

N∑
j=0

j∑
m,n=−j

√
djf

j
mnD

j
mn = f, (A6)

in the above topology. The sequence of Fourier
coefficients

(
f jmn

)
is rapidly decreasing, i.e. for

any K ∈ N

sup
j

∣∣∣∣∣∣jK
j∑

α,β=−j

f̄ jαβf
j
αβ

∣∣∣∣∣∣ <∞. (A7)

If we call the space of rapidly decreasing se-
quences S (N) , then (A7) defines a family of

semi-norms on S (N) and in the corresponding
topology it becomes a Fréchet space. Then the
Peter-Weyl transform F : C∞ (SU (2)) → S (N)
is a topological isomorphism between the space
of smooth functions and the space of rapidly de-
creasing sequences [23].

In our work, we deal with functions on three
copies of SU(2). For this reason, we intro-
duce M = SU(2)×3 as a Lie group with points
(x1, x2, x3). The representations of M are given
by product representations such that

D(j1,j2,j3) : SU(2)×3 → L
(
V j1 ⊗ V j2 ⊗ V j3

)
(A8)

with

D(j1,j2,j3) = Dj1 ⊗Dj2 ⊗Dj3 , (A9)

where L (V ) denotes the space of linear maps on
V a vector space.

It follows by the Peter-Weyl theorem that the
matrix coefficientsDJ

α,β (x) are dense in the space
of smooth functions on M , where now J, α and
β are multi-indices such that J = (j1, j2, j3)
with j1, j2, j3 ∈ N

2 and α = (α1, α2, α3) , β =
(β1, β2, β3) such that αi, βi ∈ {−ji, . . . , ji} for
i ∈ {1, 2, 3}.

3. Basis for left and right invariant
functions

In the above notations, the left and right in-
variant functions on M = SU(2)×3 are given by
group averaging, such that for any f ∈ C∞ (M),
and any x = (x1, x2, x3) ∈M∫

dLdR f (Lx1R,Lx2R,Lx3R) , (A10)

with L,R ∈ SU(2). In the Peter-Weyl decomposi-
tion a left and right invariant function f assumes
the form

f (x) =
∑
J

fJ
√
dj1dj2dj3 (A11)

×
∫

dh χj1 (x1h)χj2 (x2h)χj3 (x3h) ,
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where J = (j1, j2, j3) ∈ (N
2 )×3, and χji denotes

the character of representation of SU (2) with di-
mension dji . We denote the integral of the prod-
uct of three characters by

X J (x)
.
=
√
dj1dj2dj3

×
∫

dh χj1 (x1h)χj2 (x2h)χj3 (x3h) .

It can be easily checked that X J has the following
properties:

1. Using (A3) and reality of characters, the
X J ’s are real valed and form an orthonor-
mal family with respect to the L2 (M,dx)
scalar product:∫

M

dx X J (x)XK (x) = δJ,K ; (A12)

2. X J is proportional to the 3J-Wigner sym-
bol with three equal j’s and sum over the
magnetic indices and hence vanishes if j is
not an integer;

3. Using (A11), the family of X J ’s is dense in
the space of left and right invariant func-
tions, such that any left and right invariant
function f can be written as

f (x) =
∑
J∈J

fJ X J (x) ; (A13)

4. Using (A4), the 6J-symbol is given by a X J
integral as

δj1,k1δj2,l1δj3,q1δq2,l3δk2,q3δk2,l3

{
j1 j2 j3
q2 l2 k2

}2

=

∫
dxdydzdwTet (x, y, z, w) (A14)

×X J (x)XK (y)XL (z)XQ (w) ,

with J = (j1, j2, j3), K = (k1, k2, k3), L =
(l1, l2, l3), Q = (q1, q2, q3).

Since we are interested in functions that are in-
variant under cyclic permutation we need to sym-
metrize the characters X J (x). To achieve this,

we introduce the symmetrization operator

PX J (x) =
1

3

∑
σ∈Cyc

X (jσ(1),jσ(2),jσ(3)) (x) , (A15)

where Cyc denotes the set of cyclic permuta-
tions of {1, 2, 3}. All aforementioned properties
of X J can be adapted to PX J (x) by includ-
ing a normalized sum over cyclic permutations
of indices. Since for the equilateral case we have
PX J (x) = X J (x), we simply use the notation
X J (x) for symmetric characters on SEL and on
S.

B. Proofs

1. Proof of proposition 1

Consider the action Sm,λ (3) and S′m,λ (13);
S(EL) means either S (space of right invariant
functions) or SEL (space of left and right invariant
and equilateral functions). The following state-
ment holds:

Lemma 1. The field ϕ ∈ S(EL) is an extremum
of Sm,λ iff

S
′

m,λ

(
ϕ,X J

)
= 0 (B1)

for all J ∈ J(EL).

Proof. Let ϕ be an extremum of Sm,λ, then the
“only if” direction is obvious since for any J ∈
J(EL) the functions X J are in S(EL).

For the “if” direction we observe the following:
since the set

{
X J
}
J∈J(EL)

is dense in S(EL), for
any f ∈ S(EL) there exists a family of real num-
bers

{
fJ
}
J∈J(EL)

such that the sequence of func-
tions given for all N ∈ N as

fN (x) =

|J|<N∑
J∈J(EL)

fJ X J (x) , (B2)

converges to f . Then

c = sup
x∈M

sup
N∈N
|fN (x)| , (B3)
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exists and dominates each fN such that, |fN | ≤ c.
Moreover, c, seen as a constant function on M , is
integrable since M is compact.

For any f ∈ S(EL) the extremal condition for
the action Sm,λ reads as

S
′

m,λ (ϕ, f) =

∫
M

dx f (x)
(
−∆ +m2

)
ϕ (x)

+
λ

3!

∫
M×4

dxdydzdw Tet (x, y, z, w)

× f (x)ϕ (y)ϕ (z)ϕ (w) .

Using the Peter-Weyl decomposition for f , we can
interchange the limit and the integral by the dom-
inant convergence theorem (using the bound c)
and obtain

S′m,λ (ϕ, f) = lim
N→∞

∑
J

fJ S
′

m,λ

(
ϕ,X J

)
= 0,

for any f ∈ S(EL), from which the statement fol-
lows.

Corollary. ϕ ∈ S(EL) is an extremum of S if and
only if the Peter-Weyl coefficients of ϕ— denoted
by ϕJ — satisfy for any J ∈ J(EL),

(J2 +m2)ϕJ

+
λ

3!

∑
ki

ϕj1k2k3ϕj2k3k1ϕj3k1k2
{
j1 j2 j3
k1 k2 k3

}2

= 0.

Proof. From lemma 1 the extremal condition is
given by the variation in the basis direction X J
for any J ∈ J(EL). Inserting the Peter-Weyl de-
composition of ϕ in the action Sm,λ (ϕ), inter-
changing the limit with the integral by the domi-
nant convergence theorem and using the relation
in (A14) we obtain the desired statement.

2. Proof of theorem 1

Theorem. For any C ∈ Em,λ the field ϕ ∈ SEL

ϕ (x) =
∑
J∈JEL

CJ X J (x) (B4)

is an extremum of the action Sm,λ. Moreover,
every equilateral extremum of Sm,λ in SEL is of
the above form.
Proof. To show that ϕ solves the extremal condi-
tion we need to show, by proposition 1, that each
CJ satisfies (15), which follows by direct calcula-
tion.

Conversely, every equilateral function can be
written as

f (x) =
∑
J∈JEL

AJ X J (x) , (B5)

with
(
AJ
)
J∈JEL

being a rapidly decreasing se-
quence [23]. Using proposition 1, we find that
the extremal solutions have coefficients AJ which
satisfy

AJ ∈

{
± 1

|{6J}|

√
−3!

λ
(J2 +m2), 0

}
, (B6)

or AJ ∈ R for J ∈ JEL/J
S
EL with J2 +m2 = 0. If

AJ is not trivial we can estimate its growth using
the asymptotic behavior of 6J-symbols [31] as

AJ ∼ j

|{6J}|
∼ j 5

2 . (B7)

However, for
(
AJ
)
J∈JEL

to be a rapidly de-
creasing sequence, the coefficients have to satisfy
for any n ∈ N,

lim
j→∞

|j|n
∣∣AJ ∣∣→ 0. (B8)

This is only possible if AJ = 0 for all but finitely
many J ∈ JEL.
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