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Abstract. This paper describes a methodology to analyze, in the frequency domain,
the steady-state control performances of the LISA Pathfinder mission. In particular, it
provides a technical framework to give a comprehensive understanding of the spectra of
all the degrees of freedom by breaking them down into their various physical origins,
hence bringing out the major contributions of the control residuals. A reconstruction of
the measured in-loop output, extracted from a model of the closed-loop system, is shown
as an instance to illustrate the potential of such a model breakdown of the data.

1. Introduction

The LISA Pathfinder mission [3] has been operating since March 2016 and has
demonstrated the feasibility of sub-femto-g free-fall of test masses necessary to build
a LISA-like gravitational waves observatory in space [2]. While the publication [2] is
mostly concerned by acceleration noise performances along the most sensitive z-axis, LISA
Pathfinder has shown impressive performances and stability for the other measurement
channels. Those extra degrees of freedom, though not the main channel of interest, are of
great importance for the satellite’s closed-loop control framework, the so-called Drag-Free
and Attitude Control System (DFACS) [6]. This core subsystem has been designed by
Airbus Defence € Space to achieve the specific requirements of LISA Pathfinder. To reach
such an acceleration sensitivity along z-axis implies a very quiet and stable environment,
and in particular, a very stable test-mass position and orientation, along and around all
the geometrical axes, in order to avoid coupling to the sensitive z-axis through cross-talks
and stiffnesses, for instance.

The left-hand diagram of the figure 1 shows the scheme of the experiment. Two cubic
test masses of around 2kg are almost free-floating inside housings whose inside walls have
electrodes facing the test masses. These electrodes, forming a set of capacitances with
the test mass surface, are solicited for sensing and control of the mass inside its housing.
While the test mass positions can be corrected through electrostatic actuation along xo-
axis and 0y, 1, ¢ angles (suspension control), the other degrees of freedom z;, y, z and
0 are controlled exclusively through spacecraft micro-propulsion (drag-free control). The
only exception to that is made for the attitude control, for which test masses are actuated
along y, z and 61, in order to induce a torque command on the spacecraft from drag-free
control. The role of the DFACS is to maintain the test masses parallel to the electrode
surfaces, and centered in their housing, except for test mass 2 along the z-axis which is
constrained to maintain null relative displacement w.r.t the test mass 1 (12 coordinate is
in-loop instead of x3).
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Figure 1: Left-hand figure: Simplified sketch of the experiment scheme, representing
essentially the system of the three bodies involved and the coordinate systems used to
describe the motion of the bodies one w.r.t the others. Right-hand figure: Diagram of the
closed loop system. The closed loop system is excited in 3 different channels: the guidance
signal g, the sensing noise n, and the external forces Fg.;.

2. Study of LISA Pathfinder closed loop system

2.1. The sensitivity closed-loop transfer functions

The LISA Pathfinder closed loop system, approximated as -a linear system in this
document, can be fully represented by a set of four (non-independent) closed loop transfer
function, often named as ”The Gang of Four” in the literature [4], denoting the influence
of system inputs coming from system environment (noise, disturbances) over the in-loop
controlled variables (measurements, commanded forces, system states...). These transfer
functiens are all functions of every open-loop transfer functions involved in the closed loop
system (Plant, Measurement and Actuation blocks, Controllers etc. see block diagram in
figure 1):

e The sensitivity function S(f), or S-gain, denotes the sensitivity of the in-loop sensors
outputs 0 to the sensing noise 7 of all the sensors. S(f) is a 15x15 matrix of transfer
functions in LISA Pathfinder’s case.

e The load disturbance sensitivity function L(f), or the L-gain, calls for the sensitivity
of the state variable Z (displacements for the dynamical states) to the direct force and
torque noises F.,, applied on the test masses (along every degree of freedom). L(f)
is a 15x18 matrix of transfer functions.

e The complementary sensitivity function T'(f), or the T-gain, stands for the sensitivity
of the state variable Z to the sensing noise 7 of all the sensors.. T'(f) is a 15x15 matrix
of transfer functions.

— The fourth and last one is not be used in the present analysis. The relationships
between these closed loop functions and the sub-blocks in figure 1 are given by equations
1:
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where it can be seen that the functions are not independent (for instance, S and T are
constrained by the identity S + 7 = 1).

From this definition, it follows that measuring this set of transfer functions allows
to fully characterize the closed loop behavior of the linear system. Conversely, having a
sufficiently reliable model of these characteristic functions allows one to predict the spectral
behavior of the (physical) in-loop variables, provided that one has some knowledge of the
external disturbing signals exciting the loop. Both those aspects will be considered in the
next section.

2.2. In-loop sensing outputs and states breakdowns

The LISA Pathfinder collaboration has implemented a full linear state space modeling of
the closed loop system [8], from which the closed loop functions discussed in section 2.1
can be extracted. Hence, an interesting comparison can be performed, using the state
space model and a measurement of the external signals to reconstruct an estimate of the
in-loop variables. By focusing on the sensing outputs Y (equation 2) and state variables X
(equation 3) , one can express those quantities w.r.t. the external signals in the diagram
of the figure 1:

\Va E ap P E ap 5P E qp  =p
Y - LgainFezt + Sgainn + Tgaing (2)
p=z,y,2,0,m,¢ p=x,y,%,0,n,¢ p=x,y,%,0,n,¢
a E a»  Lp E qap 5P § qp  =p
X - LgainFezt Tgainn + Tgaing (3)
p=2,y,2,0,1,¢ p=z,y,2,0,m,¢ p=z,y,%,0,m,¢
[a E v Tp E ap P E ap  ~p
Fc"wl - LgainFewt Tgainn + Tgaing (4)
p=x,Y,2,0,m,¢ p=z,Y,2,0,m,¢ p=x,Y,%,0,n,¢

One notes that the sensing noise does not influence Y and X in the same manner.
Indeed, while the double integrator behavior of the plant makes it respond efficiently at
low frequency, the control gain is also important at low frequency, resulting in a very low
S-gain at low frequency. Hence, one does not see any sensing noise in the low frequency
part of Y spectrum. However, for the very same reason, the T-gain is maximal at very
low frequency, thus suggesting a perfect correlation between the state X and the noise 7
in that domain. This can be viewed even more clearly in considering that the high control
gain in that frequency domain tends to ”shake” the test mass in order to cancel the sensing
noise, the latter being undistinguishable from real motion from DFACS’s point of view.

From equations 2, 3 and 4, one can extract two sorts of information. First, one
can identify where the sensing outputs and the commanded forces, both delivered by
the telemetry, can reflect the out-of-loop signals, i.e. the sensing and force noises, thus
constituting a direct measurement of those. As an example, at sufficiently high frequency
the plant gain is so large that any commanded forces applied on the masses will result
in no displacement at all, meaning that one directly observes the sensing noise from the
sensing output. That property is directly inferable from the value of the S-function at
high frequency, which tends towards unity. For the force noise though, one can equally
well subtract the calibrated commanded forces to retrieve the external noisy force, thus
avoiding control in-loop features.
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3. Output decomposition from model: instance of the angle ¢;

Once the out-of-loop signals have been measured or estimated, one can reconstruct assessed
versions of the outputs. One can also decomposed those quantities w.r.t. the contributions
from each individual noise sources. This technic is a very useful tool for diagnose purposes,
as will be seen below. In confronting these estimates to the actually observed quantities,
one verifies_that the behavior of each controlled degree of freedom is well understood.
The figure 2 exhibits such a comparison between modeled and measured displacement
spectrum, in the case of the ¢, degree of freedom (i.e. Cardan rotation angle around
the zj-axis, cf. figure 1), measured by the interferometer through differential wavefront
sensing [7]. In the same plot is drawn the estimated contributions to the spectrum from
the various noise sources.

LA IR A | | M
10*  10% 102 10! 10° 10 10° 107 10 10°
Frequency [Hz| Frequency |[Hz]
e 5qrt(PSD(DFACS_PREPROC_OMS phil)) mmmm State reproduction from model
mmmm Output reproduction from model = =S/C Force Noise Contribution
== = S/C Force Noise Contribution ™ For.ce Noise Con'trlbutlon
TM Force Noise Contribution = =IFO Noise Contribution
= =IFO Noise Contribution — =18 Noise Contribution
== = IS Noise Contribution ST Noise Contribution
ST Noise Contribution

Figure 2: Decomposition in the frequency domain of the measurement outputs (on the
left) and the modeled true dynamical states (on the right) into the various contributions
from the sensing noise and the external disturbances. The blue curve comes directly
from LPF data corresponding to the long noise run (i.e. free of any calibration signal) in
nominal science mode of April 2016 (dataset from 2016-04-04 00:00 UTC to 2016-
04-14 00:00 UTC!). The red curve is built from modeled closed loop transfer functions
(SSM model) with noise level listed in the table above. Dashed curves give the individual
contributions of each of the noise channels. These plots help to identify what are the
physical phenomena explaining the output spectrum in the different frequency band.

The case of ¢ angular displacement of the test masses is of particular interest. Indeed,
in analyzing what are the major contributing noise sources to ¢, observed displacement in
figure 2, one notes that various sources come equally into play, depending on the frequency
bandwidth of focus. At very low frequency, a large bump is clearly imputed to the star
tracker noise, which indeed, though very indirectly, affects the in-loop test masses angular

! The y-scales are voluntarily hidden to keep data exclusivity for an upcoming publication [5]
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variables. The attitude control strategy of LISA Pathfinder is such that the spacecraft
reacts to star tracker error signals, say around ®, by first pushing the test masses away
one from the other along 3, and y,. Then the Drag-Free control immediately sees the
induced differential motion between test masses, and commands the spacecraft to rotate
in order to compensate that small linear motion. The spacecraft rotation entails in its turn
a misalignment between the spacecraft and the test masses reference frame, and finally
the suspension control, i.e. the capacitive actuation system, commands torques on the
test masses to reorient them inside their housing. Hence, the link between the star tracker
signal and the test masses rotation is far from being direct, though obviously large in the
figure 2. The level of that contribution is both due to an increase of the star tracker noise
and a significantly high authority of the attitude control gain typically below 10 3Hz.
In the intermediate frequency band, i.e. between 10~?Hz and 10~ !'Hz, the Drag-Free
control gain decreases significantly and reaches its minimum, thus allowing spacecraft to
test masses relative displacements, both linear and angular. In the latter case, it will force
the suspension control to correct these noisy rotations. However, because the control gain
is also relatively weak in that frequency band, angular displacements are allowed to pass
through the loop. At very high frequency finally, the commanded forces become inefficient
because of the test masse inertia and one observes the interferometer sensing noise only
which provides, as already discussed in section 2.2, a way to measure it.

4. Conclusion

A strategy to analyze DFACS performances and interpret control residuals has been
developed and is presented in this paper. It allows for a full understanding of the
LISA Pathfinder general in-loop dynamics, which has a significant impact on the noise
performances along the optical sensitive axis, and more generally, on the future LISA
observatory [1]. According to figure 2, the state space model developed by the collaboration
is shown to be remarkably reliable in explaining the observed system in-loop behavior,
hence giving the state space model a very interesting power of diagnosis. The reliability of
the model seems to argue in favor of the assumptions of linearity and stationarity of the
system. This capacity of the model to reliably represent LISA Pathfinder’s closed loop
system is also very interesting in the LISA context, especially for the upcoming task of
transferring the knowledge acquired from LISA Pathfinder experiment to LISA simulations
and design.
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