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Static synthetic magnetic fields give rise to phenomena including the Lorentz force and the quan-
tum Hall effect even for neutral particles, and they have by now been implemented in a variety of
physical systems. Moving towards fully dynamical synthetic gauge fields allows, in addition, for
backaction of the particles’ motion onto the field. If this results in a time-dependent vector po-
tential, conventional electromagnetism predicts the generation of an electric field. Here, we show
how synthetic electric fields for photons arise self-consistently due to the nonlinear dynamics in a
driven system. Our analysis is based on optomechanical arrays, where dynamical gauge fields arise
naturally from phonon-assisted photon tunneling. We study open, one-dimensional arrays, where
synthetic magnetic fields are absent. However, we show that synthetic electric fields can be gener-
ated dynamically, which, importantly, suppress photon transport in the array. The generation of
these fields depends on the direction of photon propagation, leading to a novel mechanism for a
photon diode, inducing nonlinear nonreciprocal transport via dynamical synthetic gauge fields.

The field of cavity optomechanics, addressing the inter-
action between light and sound, has made rapid strides
in recent years [1]. Experiments have shown ground state
cooling [2, 3], measurements of motion with record sen-
sitivity [4], efficient conversion between microwave and
optical photons [5], dynamics of vibrations near excep-
tional points [6], and the control of single phonons [7], to
name but a few achievements.

Due to the optomechanical interaction, mechanical vi-
brations can change the light frequency. During this pro-
cess, the mechanical oscillation phase is imparted onto
the light field. In this way, optomechanics can be used
as a natural means to generate synthetic magnetic fields
for photons, as was first suggested in Refs. [8, 9]. To-
gether with reservoir engineering [10], these ideas form
the theoretical basis underlying a recent series of pio-
neering experiments on optomechanical nonreciprocity
[11–16]. While those still operate in few-mode setups,
future extensions to optomechanical arrays (of the type
proposed in [17–20]) will enable studies of photon trans-
port on a lattice in the presence of an arbitrary tunable
synthetic magnetic field [9]. A similar optomechanical
design underlies the first proposal for engineered topo-
logical phonon transport in any platform [21]. All of
these developments tie into the much wider field of syn-
thetic magnetic fields and topologically protected nonre-
ciprocal transport, first envisaged and implemented for
cold atoms [22–25] and then for photons [26–32], phonons
[21, 33–37], and other platforms [38, 39].

In these works, the gauge fields are fixed by external
parameters, e.g., the phases of external driving beams.
It was understood only recently that optomechanics pro-
vides a very natural platform for creating dynamical clas-
sical gauge fields [40]: if the mechanical resonator is not
driven externally but rather undergoes limit-cycle oscil-
lations, then the phase of those oscillations becomes a
dynamical gauge field. This field is a new degree of free-
dom that can be influenced by the photons instead of be-
ing fixed externally. The possibility to engineer artificial

dynamical gauge fields has recently attracted attention
also in different experimental platforms, such as ultra-
cold atoms in optical lattices [41, 42], superconducting
circuits [43, 44], cavity quantum electrodynamics [45],
and trapped ions [46, 47].

If the dynamics results in a time-dependent vector po-
tential, conventional electromagnetism dictates that this
describes an electric field. In the present work, we show
how a rather elementary optomechanical system offers
the possibility of observing a synthetic electric field. This
field is dynamically generated by the nonlinear coupled
dynamics of the photons and the vibrational gauge field.
It can arise even in a linear arrangement of coupled pho-
ton modes, a situation where a static vector potential
does not have any effect, since it can be gauged away.
Moreover, the appearance of the field turns out to de-
pend on the direction of photon propagation. In this way,
a novel mechanism for nonlinear nonreciprocal transport
of photons (a photon diode) is uncovered. This works
especially well in arrays, giving rise to a significant sup-
pression of transport in the blockaded direction.

Dynamical gauge fields for photons. — The op-
tomechanical interaction can be used to realize phonon-
assisted photon tunneling, which, as we have shown pre-
viously, offers a natural route towards classical dynam-
ical gauge fields for photons [40]. Photons hopping be-
tween optical modes â1 and â2 absorb or emit a phonon
from a mechanical mode b̂. A pictorial representation
of this process is shown in Fig. 1a. Many implemen-
tations are conceivable (including photonic crystal de-
vices, coupled toroids, and microwave circuits [1]), but
a suitable realization might simply consist of the well-
known membrane-in-the-middle setup [48, 49]. The basic
phonon-assisted photon tunneling process is described by
the Hamiltonian

Ĥ =

2
∑

j=1

νj â†
j âj + Ω b̂†b̂ + J

(

b̂â†
2â1 + h.c.

)

, (1)
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FIG. 1. (color) An optomechanical setup able to exhibit dy-
namically generated synthetic electric fields for photons. (a)
A cavity with a movable membrane (green rectangle) in the

middle. The mechanical mode b̂ undergoes self-oscillations
(e.g. by pumping another optical mode on its blue sideband).
Photons tunneling from the optical mode â1 to â2 (red arrow)
absorb a phonon from the mechanical oscillation, thereby ac-
quiring a phase shift set by the oscillation phase φ. Photon
transport through the setup can be probed by a laser injected
into the modes â1 or â2. The optical modes’ frequencies are
represented by the blue lines. (b) A one-dimensional array,
with optical modes âj of increasing frequency. Mechanical

modes b̂j assist tunneling between modes âj and âj+1. Some
mode in the middle, âd, is driven by a laser (blue arrow),
probing photon transport both towards the left and right.

where νj are the optical frequencies of modes âj, Ω is the
frequency of the mechanical oscillator and J is the tun-
neling amplitude. In the following, we set ~ = 1 (later
reinstated during our discussion of experimentally realis-
tic values). The optical frequencies are detuned from one
another to suppress direct tunneling between the optical
modes. To select the phonon-assisted photon tunneling,
the mechanical frequency is tuned to match the optical
frequency difference Ω ≈ |ν2 − ν1|. The Hamiltonian
(1) is valid within the rotating-wave approximation for
ν2 > ν1 and Ω ≫ κ, J ,JB, where κ is the photon decay
rate and B is the amplitude of the mechanical oscillations
B = |〈b̂〉|.

Optomechanical generation of static gauge fields was
first discussed in Ref. [9]. The “wavelength conversion”
scheme analyzed there features the Hamiltonian (1), and
it can be readily implemented in optomechanical crystals
[50, 51] or the membrane-cavity setup [48, 49].

To implement dynamical gauge fields for photons, the
mechanical mode has to perform limit-cycle oscillations
with a large fixed amplitude B and a free phase φ [40],

such that 〈b̂〉 = B eiφ. The limit-cycle oscillations can
be generated by pumping an ancillary optical mode, sit-
uated at a different frequency, on the blue sideband [52]
(see Fig. 1a). In a limit cycle, the mechanical oscillation
phase is able to evolve according to its own dynamics.
Thus the phase turns into a dynamical gauge field, be-
ing influenced by the photon transport and acting back
on the photons. This system, composed of two opti-

FIG. 2. Phase diagram for dynamically generated synthetic
electric fields in a two-site system. In the white region, the
electric field E vanishes in the steady state. If mode â1 with
the lower optical frequency is driven, the field E bifurcates
in the colored region to finite stationary values. Their abso-
lute values are indicated by the color scale. The blue insets
show the shape of the effective potential V (E) that determines
the steady-state value of E . The dashed black lines denote the
cuts along which the field and the optical amplitudes are plot-
ted in Fig. 3. The dashed orange line indicates a lower bound
for the laser amplitude required to observe nonzero fields.

cal modes and one mechanical mode, can be used as a
building block for optomechanical arrays with dynamical
gauge fields for photons [40]. In the membrane setup of
Fig. 1a, particularly efficient doubly-resonant pumping of
limit cycles is possible (see also Ref. [53]).

Dynamics and synthetic electric fields. — Let us start
by analyzing the dynamics of the gauge field in a two-
site system described by the Hamiltonian (1), with the
mechanical oscillator performing limit-cycle oscillations.
The optical mode âj can be driven by a laser of ampli-
tude Ej at frequency νD,j, to probe photon transport
through the system. The optical fields and the mechan-
ical amplitude will be assumed large enough such that
quantum noise effects can be neglected, which is an ex-
cellent approximation for all the existing optomechanical
experiments studying nonlinear dynamics.

Following Ref. [40], the coupled classical equations of
motion for the optical amplitudes aj = 〈âj〉 and the me-
chanical phase φ read

φ̇ = ∆M − J

B
Re

[

a∗
1a2e−iφ

]

, (2)

ȧ1 = i∆1a1 − iE1 − iJBe−iφa2 − κ

2
a1, (3)

ȧ2 = i∆2a2 − iE2 − iJBeiφa1 − κ

2
a2, (4)

where ∆j = νD,j − νj and ∆M = νD,2 − νD,1 − Ω are
optical and mechanical detunings, respectively (switching
to suitable rotating frames). Here the mechanical mode is
in the frame rotating with the frequency νD,2 −νD,1. The
limit-cycle amplitude B of the mechanical oscillator is
considered fixed, determined by the optical pump. These
equations form the starting point of our analysis.

To build physical intuition, let us first consider the
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case where both optical modes are driven. Then, the
resulting beat note gives rise to an oscillating force
F ∝ J |a1||a2| cos ((νD,2 − νD,1) t + θ1,2) acting on the
mechanical oscillator, as can be deduced directly from
the Hamiltonian (1). Here θ1,2 = θ2 − θ1 is the dif-
ference of the phases θj of the modes aj . While the
effect of this on the large mechanical amplitude B is
negligible, the mechanical phase feels a drift term φ̇ =
− J

B
|a1||a2| cos (φ − θ1,2), according to Eq. (2). As a re-

sult, one observes phase-locking [18]: the mechanical
phase φ tries to be close to the optical phase difference
θ1,2, provided the detuning ∆M between the mechanical
frequency and the optical frequency difference is suffi-
ciently small.

By contrast, if only one mode is laser-driven, no exter-
nal phase is imprinted. The mechanical oscillator is free
to pick any phase despite the interaction with the optical
modes. The phase now forms a classical gauge field with
U(1) symmetry. The gauge transformation

φ 7→ φ + χ2 − χ1, (5)

aj 7→ ajeiχj , for j = 1, 2, (6)

generates a new valid solution of the dynamical equa-
tions, for any real function χj(t). The transformation
also preserves the optical and mechanical frequencies
whenever is time-independent, i.e., χj = const. On the
other hand, if the χj are time-dependent, Eqs. (5) and
(6) have to be supplemented by a shift in the frequen-
cies: Ω 7→ Ω + χ̇1 − χ̇2 and νj 7→ νj − χ̇j . We note the
relation to conventional electromagnetism, where an elec-
tric field can be represented either as a time-dependent
vector potential or a scalar potential gradient. As a con-
sequence, any time evolution of the mechanical phase φ
can be viewed as generating a synthetic electric field

E = φ̇ (7)

for photons. For example, if mode 1 is laser-driven, we
can set χ1 = 0, χ2 = −φ, which will result in a de-
scription where the mechanical phase is now static, but
ν2 7→ ν2 +E . Thus, physically, this synthetic electric field
E describes an effective optical frequency shift generated
by an evolving mechanical phase. As we will show, this
has important consequences for the photon transport.

Dynamical phase diagram. — In the situation studied
here, E is not prescribed externally but is the result of a
dynamical process resulting from the coupling of the op-
tical and mechanical modes. The optical modes induce
the force F acting on the mechanical phase. The result-
ing phase evolution may cause a synthetic field E which
effectively modifies the optical frequency difference and,
consequently, the population of the optical modes.

The results of the dynamical analysis are shown in
Fig. 2. We depict the steady state value of the synthetic
field E , which can be zero or finite, delineating two qual-
itatively different types of behavior.

FIG. 3. Cuts in the parameter space denoted by the dashed
black lines in Fig. 2. The mechanical frequency shift E (orange
line) and the optical transmission T (blue line). Mode a1 with
the lower optical frequency is driven (solid line) or mode a2

with the higher optical frequency is driven (dashed line).

To understand this diagram, we first note that the
equations of motion are not symmetric under exchange
of the optical modes: it matters which direction a pho-
ton has to travel to absorb a phonon. As a consequence,
different asymptotic behaviors are reached depending on
which mode is driven by the laser (of amplitude E).
In Fig. 2, we assumed the lower-frequency mode to be
driven. Moreover, we consider the fully resonant situa-
tion where the physical effects are most pronounced, as
both the optical driving and the phonon-assisted photon
tunneling process are resonant (∆M = ∆1 = ∆2 = 0,
in the rotating frame νD,j = νj for the mode j that is
not driven by any laser). For this setting, the system
always converges to a steady state for any values of the
system parameters B, J , E, and κ and either mode being
driven. The steady-state value of E turns out to depend
only on two dimensionless parameters: the rescaled limit-
cycle amplitude BJ/κ and the rescaled laser amplitude
EJ/κ2.

The analysis of the nonlinear dynamics can be made
more intuitive by “integrating out” the optical modes.
This leaves us with an effective potential V (E), whose
minima determine the possible steady-state values of the
field E (see the supplementary material [54] for the full
analytical expression):

Ė = −dV (E)

dE = 0. (8)

In the white region of the phase diagram, Fig. 2, the
potential V (E) has a single minimum at E = 0 (see the
blue inset). There, the field E vanishes in the steady
state: the gauge field is stationary and can be gauged
away by a time-independent gauge transformation. This
state becomes unstable in the colored region of the phase
diagram, where the potential V (E) has two minima at
finite values of E . The field E can develop such a nonzero
value only for BJ/κ < EJ/κ2, i.e., B < E/κ (above the
dashed orange line). In terms of physical parameters, this
means that the photon occupation of the driven optical
mode has to exceed the phonon number in the limit-cycle
oscillation.

By contrast, if the mode with the higher optical fre-
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quency, a2, is driven, the potential V (E) always has a
single minimum at E = 0 for any values of the system pa-
rameters. The (static) gauge field can always be gauged
away. This situation corresponds to a direct photon tun-
neling between the two optical modes, with an effective
tunneling amplitude JB.

Linear stability analysis and numerical simulations of
the equations of motion were used to confirm convergence
to these steady states. The states are not qualitatively
changed for finite mechanical and laser detunings (see the
supplementary material [54]).

We now study the effects of the dynamically gener-
ated synthetic field on the light transport. To this end,
we define the transmission T as the ratio of the output
power leaking from the non-driven mode, which is equal
to κ|a2|2 (if mode 1 is driven) or κ|a1|2 (if mode 2 is
driven), and the driving power equal to E2/κ. We find
that

T =
B2J2

κ2

(

B2J2

κ2 + 1
4

)2
+ 1

4κ2 E2
, (9)

which is suppressed when a finite field E detunes the tun-
neling process from resonance. In Figs. 3a, 3b, the trans-
mission T (blue line) and the synthetic field E (orange
line) are depicted along cuts in the phase diagram (de-
noted by the dashed black lines in Fig. 2).

We have demonstrated for the two-site system that
when light propagates to higher optical frequencies the
phonon-assisted photon tunneling is suppressed due to
the synthetic electric field. On the other hand, we find
that the field always vanishes when light propagates to-
wards lower optical frequencies. In this way, dynamical
gauge fields give rise to a new mechanism for realizing
a “photon diode” where the nonlinear light transport is
nonreciprocal.

In the following, we show that this effect can also be
used to control light propagation in a one-dimensional
array.

Nonlinear nonreciprocal light transport in a one-

dimensional array. — We now consider an array, de-
picted in Fig. 1b in terms of a realization using a stack
of membranes inside a cavity. The sites of the array sup-
port optical modes aj whose frequencies νj increase with
the site index j = 1, .., n (the spacing between mem-
branes becomes progressively smaller). We assume that
the phonon-assisted photon tunneling processes are reso-
nant: Ωj = νj+1−νj , where Ωj is the frequency of the me-
chanical oscillator assisting tunneling between modes âj

and âj+1. Specifically, we will consider a situation where
some interior optical mode j = d is driven resonantly
from the side, to study the light propagation towards
the left (j < d), and towards the right (j > d). Alter-
natively to membrane stacks, suitably designed coupled
cavity arrays in optomechanical crystals could naturally
implement such a setup.

We study the dynamics of the one-dimensional array
by numerically solving the classical equations of motion

FIG. 4. Light transport in a 1D array with a dynamical gauge
field – generation of a barrier for photon transport induced by
a synthetic electric field. (a) The absolute values of the optical
amplitudes |aj | as a function of position for EJ/κ2 = 10,
and BJ/κ = 1. Note: the graph is plotted on logarithmic
scale. The solid red line denotes the driven site (The graph is
plotted for n = 50 sites, site d = 40 being driven). (b) Ratio
R = |ad−1/ad+1|2 of the optical amplitudes to the left and to
the right from driven site j = d. At m sites distance from the
driven site, the ratio is exponentially increased, to Rm. (The
graph is plotted for n = 79 sites, site d = 40 being driven).

for the optical amplitudes aj = 〈âj〉 and the mechanical
phases φj . The mechanical oscillators are again assumed

to perform limit cycle oscillations 〈b̂j〉 = B eiφj with free
phases and with a constant amplitude B equal for all
mechanical oscillators (the full equations of motion are
a straightforward extension of Eqs. (2), (3), and (4); see
the supplementary material [54]). The system converges
to a steady state for any values of the parameters EJ/κ2

and BJ/κ.

Fig. 4a shows the result of the simulations: for suffi-
ciently large laser drive, the system switches into a state
where a synthetic field E develops in the right part of
the array. This is the direction where photons need to
gain energy when tunneling, and where we already saw
in the two-site system that (i) a finite field can develop,
and (ii) it can detune and suppress photon transport. In
the array, this results in a rapid exponential suppression
of light intensity. By contrast, light easily propagates
towards the left, where E remains zero.

This results in a suppression of light propagation de-
pending on the direction. To quantify this effect, we plot
in Fig. 4b R = |ad−1/ad+1|2 corresponding to the ratio
of transmission to the sites adjacent to the driven site
j = d as a function of the laser amplitude EJ/κ2 for dif-
ferent limit-cycle amplitudes BJ/κ. The isolation ratio
increases exponentially with a distance from the driven
site (see Fig. 4a). At m sites distance from the driven
site, the ratio is exponentially increased, to Rm. The sup-
pression of light propagation to the right, i.e., R > 1, is
achieved only above a certain threshold value of the laser
amplitude. Below this threshold, R is equal to unity, and
light propagates symmetrically in both directions. The
threshold value depends on the value of the limit-cycle
amplitude. Above the threshold, larger suppression can
be achieved by increasing the laser amplitude.

The presented analysis shows that the asymmetry of
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the phonon-assisted photon tunneling can be used to im-
plement light propagation with a preferred direction.

Experimental parameters required for generating the

synthetic electric field. — We now estimate that the syn-
thetic electric field can be observed for experimentally
realistic parameters. For the membrane-in-the-middle
setup, feasible experimental parameters are κ ≈ 300 kHz,
J ≈ 1 Hz, a zero-point fluctuation amplitude of xZPF ≈
10−15 m and a number of photons in the cavity of order
(E/κ)2 ∼ 1010 [49]. A typical number of phonons in a
mechanical mode performing self-oscillations driven well
above the threshold is B2 ∼ (κ/J)2 ∼ 1010 and a corre-
sponding real oscillation amplitude is 2xZPFB ∼ 100 pm
[52]. The two optical modes considered in our model can
be represented by hybridized transverse modes of the cav-
ity with an avoided crossing [49]. The splitting of their
frequencies ≈ 200kHz can match the frequency of the me-
chanical mode. For these experimental parameters, the
laser amplitude EJ/κ2 ∼ 1 and the limit-cycle amplitude
BJ/κ ∼ 1 are promising for observing the finite synthetic
electric field (see the phase diagram in Fig. 2). The num-
ber of phonons can be decreased below the number of

photons in the driven optical mode by driving the me-
chanical self-oscillations closer to threshold [52], fulfilling
the necessary condition for obtaining a finite synthetic
electric field (Fig. 2).

Conclusions. — While synthetic gauge fields for pho-
tons have been investigated thoroughly in recent years,
little has been known about the dynamical situation.
In this work, we have uncovered how a synthetic elec-
tric field can be spontaneously created, in a readily re-
alizable optomechanical setup. The resulting nonlinear
photon-diode type of nonreciprocal transport can lead to
a large isolation ratio, especially in arrays. Our numer-
ical simulations indicate that similar effects can also be
observed in two-dimensional square arrays. In the fu-
ture, one might study how these phenomena can affect
the synchronization dynamics in lattices of coupled op-
tomechanical limit-cycle oscillators [18, 55, 56].
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manuscript. This work was supported by the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 732894 (FET Proac-
tive HOT).
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Science 358, 203 (2017).

[8] M. Hafezi and P. Rabl, Opt. Express 20, 7672 (2012).
[9] M. Schmidt, S. Kessler, V. Peano, O. Painter, and

F. Marquardt, Optica 2, 635 (2015).
[10] A. Metelmann and A. A. Clerk, Phys. Rev. X 5, 021025

(2015).
[11] J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl,

Nat. Phys. 11, 275 (2015).
[12] Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, Sci. Rep.

5, 8657 (2015).
[13] F. Ruesink, M.-A. Miri, A. Alù, and E. Verhagen, Nat.

Commun. 7, 13662 (2016).
[14] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Mar-

quardt, A. A. Clerk, and O. Painter, Nat. Phys. 13, 465
(2017).
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Dynamically generated Synthetic Electric Fields for Photons – Supplementary

material

STEADY STATES OF THE TWO-SITE SYSTEM

In this section, we analyze the steady states of the two-site system. They are stationary solutions of the equations
of motion (Eq. (2), Eq. (3), and Eq. (4) in the main text) constant in time. We first apply a time-dependent gauge
transformation to remove the time-evolution of the mechanical phase. Then we find a stationary condition for the
synthetic electric field E . Finally, we use an effective potential for the synthetic electric field to study the stability of
its stationary solutions.

As mentioned in the main text, we assume that only one mode is driven. We label the driven mode by the index
k = 1, 2. Driving strengths can then be expressed as Ej = E δj,k for j = 1, 2, where δj,k is the Kronecker delta.
The detuning of the non-driven mode can be set to zero, since there is no driving frequency. Therefore, the optical
detunings can be expressed as ∆j = ∆O δj,k. The time evolution of the mechanical phase can be completely removed
by the time-dependent gauge transformation

φ = φ̃ + χ, (S1)

a1 = ã1e−iχ δ2,k , (S2)

a2 = ã2eiχ δ1,k , (S3)

where χ is the time dependent gauge parameter, φ̃ = const. The time-dependent gauge transformation leaves the
absolute values of the optical amplitudes unchanged. The time evolution of φ causes a mechanical frequency shift
χ̇ = φ̇ representing the synthetic electric field E = χ̇ . Since the frequency of the non-driven optical mode is generated
as a side band to the driving frequency, it is shifted by (δ2,k − δ1,k) E . The mechanical frequency shift E represents
a synthetic electric field for photons. Note that the driven mode, ak, is forced to oscillate with the frequency of the
laser drive, and thus it does not experience any frequency shift.

To provide the fixed point analysis for the both cases k = 1, 2 at once, we use general indexes (k, l) ∈ {(1, 2), (2, 1)}
to label the optical modes and we use the notation φ̃ = φ̃1,2 = −φ̃2,1. According to the gauge transformation (S1),
(S2), and (S3), the equations of motion transform to

˙̃φk,l = (δ2,k − δ1,k)

(

E − ∆M +
J

B
Re

[

ã∗
kãle

−iφ̃k,l

]

)

, (S4)

˙̃ak = i∆Oãk − iE − iJBe−iφ̃k,l ãl − κ

2
ãk, (S5)

˙̃al = i (δ2,k − δ1,k) E ãl − iJBeiφ̃k,l ãk − κ

2
ãl. (S6)

As a direct consequence of the gauge choice, ˙̃φk,l = 0. Taking the time derivative of Eq. (S4), we obtain the equation
of motion for the mechanical frequency shift

Ė = −κ (E − ∆M) +
EJ

B
Im

[

ãle
−iφ̃k,l

]

+
J

B
((δ2,k − δ1,k) E − ∆O) Im

[

ã∗
kãle

−iφ̃k,l

]

. (S7)

To find stationary solutions of the equations of motion (S5), (S6), and (S7), we first use that the equations (S5)
and (S6) are linear in terms of optical amplitudes. For a given mechanical frequency shift E , the stationary optical
amplitudes read

ãk = E
(δ2,k − δ1,k) E + i κ

2

−J2B2 + (δ2,k − δ1,k) E∆O −
(

κ
2

)2
+ i κ

2
[(δ2,k − δ1,k) E + ∆O]

, (S8)

ãl =
JBeiφ̃k,l

(δ2,k − δ1,k) E + i κ
2

ãk. (S9)

Note that the ratio |al / ak| = 2JB/
√

4E2 + κ2 of the optical amplitudes only depends on the rescaled limit-cycle
amplitude, BJ/κ, and the mechanical frequency shift E . It does not explicitly depend on the optical and mechanical
detunings.

In following, we set ∆O = ∆M = 0 to present the important features of the steady states. These features are
not changed by finite detunings. We discuss the effects of including finite detuning at the end of this section. By
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FIG. S1. The potential for the mechanical frequency shift. It has a single minimum at E = 0 for k = 2 (dashed lines) when the
higher optical frequency is driven. For k = 1, when the lower optical frequency is driven, the single minimum E = 0 becomes
unstable with increasing EJ/κ2 as two minima with a finite frequency shift emerge (solid lines). (The potential is plotted for
BJ/κ = 0.5.)

substituting the stationary values of the optical amplitudes (S8), (S9) into Eq. (S7), we obtain the stationary condition
for the mechanical frequency shift

0 = Ė = −κE
(

E
κ

)2
+ 4

[

(

JB
κ

)2
+ 1

4

]2

+ 4 (δ2,k − δ1,k)
(

EJ
κ2

)2

(

E
κ

)2
+ 4

[

(

JB
κ

)2
+ 1

4

]2
. (S10)

For k = 2, the mode with the higher optical frequency, a2, is driven, only the trivial stationary solution, E = 0, exists.
For k = 1, the mode with the lower optical frequency, a1, is driven, stationary solutions with a finite mechanical
frequency shift

E± = ±2κ

√

√

√

√

(

EJ

κ2

)2

−
[

(

JB

κ

)2

+
1

4

]2

(S11)

exists, in addition to E = 0, for 4EJ/κ2 > 4 (BJ/κ)
2

+ 1.
To gain intuition about the stability of these stationary solutions, we find the potential

V (E) =
κ3

2





(E
κ

)2

+ 4 (δ2,k − δ1,k)

(

JE

κ2

)2

ln





(E
κ

)2

+ 4

[

(

JB

κ

)2

+
1

4

]2






 , (S12)

such that −dV (E)/dE is equal to the right hand side of Eq. (S10). The potential shows that the stationary solution
E = 0 is always a stable steady state for k = 2 when the optical mode with the higher optical frequency is driven (see
Fig. S1). The stability of the steady state does not depend on the system parameters. For k = 1, when the mode with
the lower optical frequency is driven, the stability of the steady state depends on the two dimensionless parameters
EJ/κ2 and BJ/κ. The potential in Fig. S1 shows that the steady state E = 0 is the only stationary solution and it
is stable in the white region of the phase diagram depicted in Fig. 2 of the main text. It becomes unstable as the
two steady states with a finite mechanical frequency shift emerge in the colored region of the phase diagram in Fig. 2
of the main text. Note that the potential does not provide conclusive information about the stability of the steady
states because it does not take into account the dynamics of the optical modes. Therefore, the linear stability analysis
was used to confirm that the stability of the steady states is determined correctly by the potential V (E).

A finite laser detuning modifies the steady states found for ∆O = 0. First of all, it suppresses the coherent driving,
which is reflected in smaller optical amplitude of the driven mode. Furthermore, the detuning changes the potential
for the mechanical frequency shift. However, the nature of its minima remains the same. There is always a unique
steady state, which becomes unstable as another pair of steady states emerges, when the mode with the lower optical
frequency is driven. The finite optical detuning shifts the region of bistability in the phase diagram. A new feature
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is that the mechanical frequency shift E is also finite in the unique steady state. The unique steady state is always
stable when the mode with the higher optical frequency is driven. The finite laser detuning does not destroy the
nonreciprocal property of the steady states.

A finite mechanical detuning, ∆M 6= 0, also modifies the mechanical frequency shift in the steady states. However,
it does not change their nature. There is always a unique steady state which becomes unstable as a pair of bistable
steady states emerges. This happens again only when the mode with the lower optical frequency is driven. The region
of bistability is shifted in the phase diagram by the finite mechanical detuning. The mechanical frequency shift E is
finite also in the unique steady state due to the finite mechanical detuning.

EQUATIONS OF MOTION FOR THE ONE-DIMENSIONAL ARRAY

Here we present the equations of motion for the one-dimensional array depicted in Fig. 1 of the main text. We
consider an array composed of n sites with site d being resonantly driven. The phonon-assisted photon tunneling
process is assumed to be resonant between all neighboring sites. The optical frequencies are chosen to increase with
the increasing index of the site j, i.e., νj < νj+1. The coupled equations of motion for the optical amplitudes and the
mechanical phases read

φ̇j = − J

B
Re

[

a∗
j aj+1e−iφj

]

, (S13)

ȧj = −iEjδj,d − iJBe−iφj aj+1 − iJBeiφj−1 aj−1 − κ

2
aj , (S14)

where δj,d is the Kronecker delta. The optical modes are expressed in the frames rotating with their frequencies νj

and the mechanical modes are in the frames rotating with the difference of optical frequencies on the neighboring
sites: νj+1 − νj .


