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Abstract. Recently designed optimized stellarator experiments have suffered from

very tight construction tolerances, but some level of deviation of the coil system is

unavoidable during fabrication of the coils and assembly of the coil system. In this

paper, we present a new approach that incorporates reduced sensitivity to construction

tolerances of the coil system into the optimization sequence. The approach was tested

within the framework of the existing coil optimization scheme for Wendelstein 7-X. The

results are compared with those of a coil set obtained by the original optimization.

The result is a more optimal coil system with less stringent tolerances, such that

small deviations cause reduced deterioration of the properties important for fusion

performance.
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1. Introduction

Stellarators confine plasma in a ’magnetic cage’, which is produced by a set of external

coils. These coil systems need to be optimized to fit both the physics requirements of the
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corresponding vacuum field and the engineering requirements of the coil structure. The

accuracy of the constructed coil system is crucial for the performance of the stellarator

and is a cost and schedule driver as exemplified below.

The Wendelstein 7-X (W7-X) project required relative coil tolerances (defined as the

allowed tolerance divided by the average coil radius) between 0.1% - 0.17% [1] . These

strict tolerances were kept, and the device was put successfully in operation with a

remarkable precision of its magnetic field topology [2]. However, precision requirements

for the magnets were a major challenge and affected both cost and schedule negatively, as

stated in [3]: ”The assembly process which took about 1 000 000 man-hours up to March

2014, was essentially dominated by the high demands on tolerances for the position

of the superconducting coils”. The construction of the National Compact Stellarator

Experiment (NCSX), which started in 2003, required relative coil deviation tolerances of

about 0.08%. The associated difficulty and risk ”was recognized but underappreciated

at the project outset” [4]. Unfortunately, ”the budget increases, schedule delays and

continuing uncertainties of the NCSX construction project necessitate its closure” [5] in

2008.

For the design of the Columbia Nonneutral Torus (CNT), whose design started around

2001, well after the coil designs of W7-X and NCSX had started, the issue of tight coil

tolerances was addressed from the beginning of the coil design. A Monte-Carlo-type

perturbation analysis was performed as an integral part of determining the coil currents

and coil locations [6]. A configuration was chosen that exhibited large flux surfaces

even in the presence of minor coil displacements, over others that nominally had larger

confinement volumes but were much more sensitive to coil placement inaccuracies. The

chosen configuration had assembly tolerances of 0.5% - 1% for deviations in coil location

and orientation [7], ie. about an order of magnitude looser than W7-X and NCSX.

The resilience against error fields allowed the acceptance of several discrepancies. The

robustness of the volume of the magnetic surfaces was directly verified experimentally [8],

and significant coil displacements were later confirmed with state-of-the-art metrology

[9], proving that the device was not accurately built but rather that its design point

indeed was robust against coil manufacturing and installation errors.

Those results were promising, and very important for the successful construction of

CNT, but the optimization goals for CNT were simple: to maximize the volume of good

flux surfaces for a stellarator with only four circular coils. It was until now not clear if

the approach taken would be effective for the much more complicated and multi-faceted

optimization goals for stellarators designed for fusion energy research, and for the much

more complicated coils that result from state-of-the-art coil design codes. The approach

itself, described in more detail in [6], is one that optimizes a cloud of coil sets in the near

vicinity of a particular configuration that is being optimized. This configuration will

be referred to as the leading configuration and is in the center of the multidimensional

cloud of other configurations, a Monte-Carlo sample of the coil configurations that

could be realized within the uncertainties associated with construction and assembly of

an actual device. The average performance of this cloud of coil sets is ascribed to the
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leading configuration. By sampling neighboring states in this way, a penalty is given to

configurations whose performance could be well below that of the leading configuration.

In particular, this sample average avoids that a search ends up in a narrow ”peak”

(if maximizing) or trough (if minimizing) which is then, due to the narrowness, not

robust against errors in the range that is to be expected. This technique also effectively

smoothens the optimization landscape, as illustrated for a toy model in Figure 1. In

this case, the non-robust optimum for x ≈ 0.42 vanishes and the most stable optimum

emerges as the global optimum at x ≈ 0.3 in both locally averaged parameter spaces.

For the one using a broad Gaussian distribution, the function to be optimized is now

very smooth, and it even has just one maximum. For the one using a narrower Gaussian,

the smoothening is also evident, and the global maximum is the robust one, but several

other local maxima are still present.

0.2 0.25 0.3 0.35 0.4 0.45

Parameter Space

0

0.2

0.4

0.6

0.8

1

1.2

P
en

al
ty

V
al

u
e

Toy Model of Parameter Spaces

Original Parameter Space

Locally averaged parameter space (narrow)

Locally averaged parameter space (broad)

Figure 1: In stellarator optimization, the target function may be a non-smooth function of

control parameters, and may exhibit a global maximum that is not robustly attainable since

the control parameters (such as coil shapes) have finite tolerances. Taking the average of

normal distributed samples in a small region of control parameters has a smoothening effect

on the parameter space, and avoids getting stuck in non-robust optima. This is illustrated

here for a toy model.

The approach presented in this paper follows the same philosophy but is applied for

a much more fusion relevant problem addressed with state-of-the-art codes. Nonlinear

coil optimization is expanded by an iterative perturbation analysis, which aims to
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achieve higher engineering tolerances through the aforementioned technique. Instead

of optimizing a single coil set, we optimize the sample average of N + 1 coil sets,

where N is the number of additional samples. Its disadvantage, that N + 1 times more

computational resources are needed, is partly offset by the highly efficient parallelization

that is possible for this problem.

In Section 2, we transform the original optimization problem into a stochastic

optimization problem. We then expand upon the sampling technique first performed

for CNT, applying a more sophisticated version of it to a much more complicated

optimization problem, namely that of W7-X. Since the original optimization sequence for

the W7-X coil system is not available, a new coil optimization sequence was developed.

Additionally, in order to achieve a high amount of experimental flexibility, the W7-X

coil configuration was designed to produce multiple plasma configurations. The various

features resulted in a compromise between different, at times conflicting, optimization

targets. Consequently, the W7-X coil system does not correspond precisely to the

original plasma boundary designed by J. Nührenberg [10] and hence, we do not use

the present W7-X coil set as a reference case to validate how good our newly optimized

coil sets are. Instead, we compare our results with a coil set that was found with our

most recent standard optimization - one that only optimizes for a single coil set at a time

without averaging over a cloud of perturbed coils. The test is described and analyzed

in Section 3. We conclude in Section 4 and give an outlook on our future projects in

Section 5. More details about the optimization sequence can be found in Appendix A.

2. Stochastic Optimization Problem

In nonlinear coil optimization one starts with an initial coil configuration x ∈ X ⊂ Rn,

where n is the number of parameters describing the coil set, and tries to solve the

optimization problem

min
x∈X

f(x) (1)

with a nonlinear optimizer. The objective function f : X → R yields the fitness of

the corresponding coil set x and is the measure of optimization. It summarizes the

differences of the quality criteria qi(x) and their design value qdesigni in a sum of squares:

f(x) =
k∑

i=1

ωi

(
qi(x)− qdesigni

)2
. (2)

Here, the ωi denote the weight constants. Since on the one hand the coil geometry

and installation has a certain precision, and deviations within this precision in general

are not predictable, and on the other hand our goal is to be able to relax precision

requirements with minimal loss of plasma performance, the optimization problem is a

stochastic one, with the following formulation:

min
x∈X
{F (x) := EPx [f(ξ(x))]} ξ(x) = x+ ε with |ε| � |x|. (3)
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The expectation is taken with respect to the probability distribution Px of the random

vector ξ. This includes random deviations of a manufactured and installed coil set from

its as-designed geometry and placement. We therefore optimize for uncertainty of the

deformation of the coil set during construction. The probability distribution Px carries

the information of the likelihood of any possible geometric deviation of each particular

coil set x ∈ X. Px is assumed to follow a normal distribution.

We follow the approach taken in [11] and use a Monte Carlo sampling approach

to approximate the expected value EPx [f(ξ(x))]. Let ξ1(x), . . . , ξN(x) be i.i.d.

(independently and identically distributed) samples generated by the n-dimensional

normal distribution N (x,Σ). Here, the mean of the normal distribution is our initial

coil configuration x ∈ X and the standard deviation is equal in every dimension and

chosen appropriately to obtain the desired deviation in the euclidean space. Then by

the Law of Large Numbers, for a given x ∈ X, we have

FN(x) := (N + 1)−1
N∑
i=0

f(ξi(x)) −→ EPx [f(ξ(x))], for N →∞ (4)

almost surely, where ξ0(x) := x is the unperturbed coil set (leading configuration). The

sample average FN is an unbiased and consistent estimator of F (x) = EPx [f(ξ(x))].

The convergence in probability is of order Op(N
− 1

2 ), implying that a ten-fold increase

in accuracy of the estimate of the expectation requires a 100-fold increase in sample size.

3. Results

We test our stochastic optimization technique using a newly developed coil optimization

sequence for the W7-X plasma boundary [12]. The sequence consists of six optimization

runs (cf. Table A1) such that the previous optimization run is used as a new starting

point. The initial coil set is computed with NESCOIL [13] on a winding surface (WS)

located 45 cm beyond the outer plasma surface. The objective function f , which assigns

a penalty value to every coil set, is calculated by ONSET [14]. The evaluation criteria

used in ONSET are shown in Table A1. A coil is defined by 12 periodic spline points

and raised to 13 spline points in optimization run 4. Each spline point is defined by a

poloidal angle u and a toroidal angle v. The 5-fold symmetry of W7-X combined with

the stellarator symmetry reduces the primary coil set to 5 different coils. The WS is

interpolated with 13 parameters between two limiting surfaces and since the auxiliary

coils are not being considered we arrive at n = 133 or rather n = 143 parameters in total.

We have chosen Brent’s PRincipal AXIS algorithm [15] for the nonlinear optimization

without using derivatives.

We modified the objective function from calculating the penalty value f(x) of a

single coil set x ∈ X to generating a cloud of coil sets ξ1(x), . . . , ξN(x), which are

slight variations of the parameters x ∈ X, computing the corresponding penalty values

f(ξ1(x)), . . . , f(ξN(x)) and assigning the average value FN(x) to the unperturbed leading
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configuration. A deformation of the parameters used for the optimization results in coil

deformations that preserve the 5-fold and stellarator symmetry of W7-X and target

systematic errors that are equal for each coil of the same type during coil fabrication.

The way this stochastic optimization problem is approached, one must provide as input

a relevant scale length over which the coil deviations are distributed. We determined this

as follows: During fabrication of the W7-X winding pack, the average deviation of the

non-planar coils from their Computer-Aided-Design (CAD) shape were approximately

2 mm [16]. In the subsequent assembly, reference marks were used to guide and validate

the assembly. ”In total no reference mark co-ordinate deviated more than 5.7 mm from

its manufacture value” [17]. We take these values to define the rough length scale over

which we numerically displace coils in our stochastic optimization, since this was actually

achieved (and therefore achievable), but only achieved with a significant engineering

and metrology effort [3]. Thus, we chose the n-dimensional normal distribution N (x,Σ)

appropriately to optimize numerically for robustness against deviations that are 2 mm

on average, with greater than 6 mm deviations being present in roughly 10% of the

numerically tracked geometric points on the coils in the Euclidean space.

Each time the algorithm computes the modified objective function FN(x) and

evaluates the fitness of the coil set x, the perturbed coil sets ξ1(x), . . . , ξN(x) are defined

anew. Thus, the deviations are not only randomly assigned once at the beginning of

every optimization sequence but continue to be re-randomized for each evaluation of

FN(x). To provide a comparison basis, the optimization sequence was designed in the

classical way F1 = f with N = 1 samples, where only one coil set is evaluated in each

optimization step. We call this the reference coil set with cloud size of 1. We then

increased the sample size N and optimized with a cloud size of 100, 1000, 2000, 4000,

and 8000 perturbed coil sets, so as to determine if there is an optimum cloud size, and

some convergence or saturation of the results at very large cloud size. We restricted the

coil displacements to variations of the parameters that move the circular spline (coil)

along the two-dimensional WS, instead of allowing coil deviations also perpendicular

to this surface. This restriction was done in order to keep the computational effort

moderate for this first study and we expect to be able to lift this restriction in future

studies.

We compare the results of the first optimization run in Section 3.1 by comparing the

penalty values. In Section 3.2 we compare the results after the optimization sequence

has completed, ie. it has come to a stationary value of FN . The robustness of the newly

optimized coil sets is assessed by plotting the penalty value distributions. They are

obtained by deviating the coil sets multiple times at the aforementioned level (average

deviation 2 mm). A narrower histogram gives more confidence in the performance, ie.

it is more robust against coil deviations of the size assumed here. Another important

question arises if the histogram not only narrows (more robust), but also shifts to the

left (lower penalty values) indicating that a better optimum has been found, and that

the device would accordingly perform better than the device optimized with the classical

algorithm. Furthermore, the robustness can also be quantified in terms of relaxed
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tolerances, for a given performance. For that, we compare the classically optimized

coil set to the best coil set obtained with the new optimization technique.

3.1. Comparison after the 1st optimization run

In Table 1 we compare the results of the 1st optimization run quantified by the penalty

value. Since the algorithm is non-deterministic, we assess the results by running the

1st optimization multiple times, as suggested in [11]. Each dot in Figure 2 represents
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1 - 9.28 - -

100 5 13.55 19.56 4.56

1000 5 7.56 10.26 2.47

2000 5 6.91 7.81 0.69

4000 5 6.06 7.51 0.86

8000 5 6.00 7.21 0.95

Figure 2 & Table 1: Results of the 1st optimization run are listed in form of the best coil

set (Best), the average penalty value (∅) and the standard deviation (σ)

an independent 1st optimization run. The average penalty value is shown in the

blue line. It declines the more samples are used, as does the best result (red dots

& Best column). Using the stochastic optimization with a sample size less than or

equal to 1000, we observe that the average penalty value is worse than the reference

optimization. It indicates that in the transformed parameter space more local optima

are present when the sample size is low than in the parameter space of the reference

optimization, which causes the optimizer to halt even earlier. Increasing the sample

size leads to the intersection between the blue and dashed line, where both parameter

spaces have a similar landscape such that both optimization techniques show the same

performance. Increasing the sample size further intensifies the smoothing effect and

leads to a reduction of local optima which causes the optimizer to find even better

results than the reference optimization.

The standard deviation shows that the statistical noise of the penalty values after the 1st

optimization run is very high for low sample rates, in addition to the bad performance

of the coil sets. A plausible explanation of both negative behaviours is the combination

of random samples and the discrepancy between the dimension of the parameter space

(n = 133) and a sample size of the same magnitude. In each evaluation of the penalty

function, the chance is high that not every dimension is covered and the optimal path in
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the vicinity of the leading configuration is not visible for the optimizer. The stochastic

behaviour of our sampling technique guarantees that these situation happen, sometimes

more, sometimes less. In addition to the bad convergence rate of the expected value

mentioned in Section 2, this effect leads to an overall poor approximation of the expected

value when the sample size is low.

Unfortunately, we do not fully understand all of the effects and their interplay which

cause the parameter space to contain more local optima than the reference case for low

sample rates but we we intend to include a more detailed investigation in our future

studies. In general, all statistical measures converge as the sample size increases.

3.2. Comparison after completion of the optimization sequence

We compare the robustness of the design of the coil sets after their last optimization

run (cf. Table A1) by analyzing the penalty value distribution for clouds of 100 000

perturbed coil sets around the newly optimized leading coil sets. The entries of 100 000

provide enough statistics to compute the relevant variables of the histogram. The results

are shown in Figure 3. The coil shapes are parametrized such that the 2 mm average

deviation in the Euclidean is not automatically kept, even if the coil shape parameter

deviation is kept fixed. Since the WS is part of the optimization and changes its form, the

perturbation in the Euclidean space slightly increased over the course of the optimization

sequence in the cases with 100, 1000 and 2000 samples. The perturbations in Figure

3 are done with the same technique as described in Section 2 but normalized to reach

again an average deviation of 2 mm in the Euclidean space. The coil sets are compared

by their penalty value f(x0) and their robustness, which is seen by an increased height

and decreased width of the distribution function. Additionally, the high-end tails of the

penalty function distributions are analyzed.

In Figure 3 the leading configuration of the optimization with 8000 samples reaches

the best result of f(x0) ≈ 5.39, and it is nearly identical to the result for a cloud

size of 4000, indicating a possible convergence of the penalty values. The reference

coil set (using the classical, non-stochastic, optimization) has f(x0) ≈ 6.65. Thus, we

observe a systematic improvement of this nonlinear coil optimization - irrespective of

the issue of robustness, and we see that we need a cloud size above 2000 before the new

algorithm outperforms the old one. The width of the distribution is improved already

for the smallest cloud size (100), but then actually begins to get wider again for the

largest cloud sizes - the coil set optimized with a 2000 sample cloud reaches the highest

peak and together with the case of 1000 samples they reach the smallest widths (RMS)

of the distribution function. Therefore, the case with 2000 samples is more ”robust”

in the sense of stable quality criteria, but will have poorer performance than the 8000

sample optimization. Overall, both robustness and average performance are significantly

improved over the reference coil set. The double peak of the histogram of the reference

coil set is not understood in any detail at this point, but will be further investigated in

the future.
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Entries 100000
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Std Dev 0.1976
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5% 11.6515
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10% 7.91399
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2% 8.04301
1% 8.09524
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Figure 3: The result of all optimizations including the reference coil set (black) are randomly

perturbed 100 000 times and the penalty value distribution is displayed.

The results in Figure 3 are positive, despite this slight broadening of the distribution

function for the 4000 and 8000 sample sets relative to the results obtained with

the sample size of 2000. From an experimental/user perspective, what is desired is

confidence in good performance at tolerances that are relaxed enough that they do not

affect the cost or schedule of construction significantly. It is clear from Figure 3 that

this optimization is a significant win at the 2 mm accuracy level. This can be quantified

further, and put in relation to relaxed engineering tolerances by focusing on the high-end

tail of the histogram - the poorly performing configurations.

We plot in Figure 4 the development of the percentiles 10%, 5%, 2% and 1% of

the penalty function histogram, thereby quantifying what performance is guaranteed

at the 90%, 95%, 98% and 99% confidence level. We compare these percentiles of the

reference coil set (classical optimization) and the optimization with 8000 samples (our

most comprehensive stochastic optimization). For the 2 mm accuracy case which was

used for the optimization and achieved in W7-X (left side of graph) it is again clear,

as evident in Figure 3, that the new configuration will outperform the old with better

than 99% likelihood. In Figure 4 we now increase the coil tolerances progressively (x-

axis) and monitor how the penalty value for these percentiles increases (y-axis). At the

99% confidence level, the classical optimization would have led to a penalty value up

to about 8, given the 2 mm tolerances achieved in W7-X. For the new optimization,
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the same would be achieved with 99% confidence with coil tolerances of approximately

4.5 mm, more than a factor of two relaxation for the same risk taken. If we lower

the degree of confidence (90%, 95%, 98% confidence) the relaxation of tolerances is a

bit larger, approaching a factor of three, eg. 5.8 mm tolerances at the 90% confidence

level. These comparison points are given as stars. The very steep ascents beyond these

values are possibly due to the combination of low statistics and discontinuities in the

penalty function, but should be taken with some caution at this point. Regardless of

this issue, the data fully supports the statement that the stochastic optimization would

give significantly better performance at the same level of engineering tolerances (Fig 3),

and comparable if not better performance with a factor of two relaxed tolerances, for a

variety of confidence standards.
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Figure 4: Percentile development of the reference coil case and the optimization with 8000

samples.

3.3. Remark

The object of optimization in this study is the approximation of the expected value

which aims to represent the most likely realization of a stellarator. The relaxation of

precision requirements is no direct target of the optimization since it is no criterion in

the objective function. It is only indirectly represented in the sample average FN but

nevertheless leads to a coil configuration with significantly relaxed tolerances.
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The optimization suite ONSET is capable of optimizing the three-dimensional shape

of the WS within two constraining toroidal surfaces. This offers the possibility to

extend the coil displacements from a non-planar two-dimensional in-surface deviation to

also capture three-dimensional deviations. A first attempt at using this feature, which

demands significantly more computer resources, has been made and will be reported on

in a future publication. Initial results appear consistent with what has been reported

here, but convergence studies have not yet been completed.

4. Discussion and conclusion

A stochastic technique of nonlinear coil optimization for stellarators that includes

engineering tolerances has been developed and tested on a state-of-the-art optimization

problem. The technique shows significant promise. Improved performance is seen -

a 20% decrease in the targeted penalty function. The new optimization shows more

engineering robustness - the results are less sensitive to coil displacements, and one can

relax coil tolerances by at least a factor of two relative to a coil design created using

earlier techniques. The relaxation of engineering tolerances was expected. But it was

not necessarily expected that the algorithm found a better optimum - irrespective of

engineering tolerances. As illustrated in Figure 1, this technique can have a smoothing

effect in the otherwise rather spiky optimization space of stellarators, and this may have

allowed the algorithm to find a better global optimum than that found by the earlier

algorithm. Improved performance and then convergence with sample (cloud) size was

seen, with the results from cloud sizes of 4000 and 8000 being nearly identical.

5. Outlook

This work brings up several questions, some of which can be addressed soon. Coil

deviations in all three dimensions (not just within a prescribed toroidal surface, and

not just stellarator-symmetric) will be addressed next. Additionally, a penalty on the

width of the distribution will be included in the objective function in order to directly

target reduced precision requirements. The reason why the original algorithm got stuck

in a non-global minimum together with the origin of the double peak in the histogram

of the reference coil set will be investigated. The new, more optimal, configuration will

be compared to the configuration found with the earlier algorithm, in particular with

respect to each individual physics target lumped into the penalty function, and the coil

geometry will be investigated. At first glance, the geometry of the coils is somewhat

different for the newly found coil set but does not appear to be more complicated than

what was found with the standard algorithm.
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6. Pictures

We compare the shape of the coil set of the optimization with 8000 samples in blue

with the reference coil optimization in black in Figure 5 & 6. We show 2 perspectives of

one stellarator segment where two half modules are connected at the triangular plane.

Figure 5 visualizes the differences from the inside of the torus towards the outside and

Figure 6 shows the opposite direction from the outside towards the inside. In general,

the two coil sets are quite similar with a certain tendency that the blue coil set is slightly

less windy than the reference coil case in black.

Figure 5: View of two half modules connected at the triangular plane from the inside towards

the outside. The coil set in blue is the optimization with 8000 samples and the coil set in black

is the reference coil optimization.

Figure 6: View of two half modules connected at the triangular plane from the outside

towards the inside. The coil set in blue is the optimization with 8000 samples and the coil set

in black is the reference coil optimization.



Stellarator coil optimization towards higher engineering tolerances 13

7. Acknowledgement

This work has been carried out within the framework of the EUROfusion Consortium

and has received funding from the Euratom research and training programme 2014-

2018 under grant agreement No 633053. The views and opinions expressed herein do

not necessarily reflect those of the European Commission.

References

[1] Th. Rummel et al., Accuracy of the construction of the superconducting coils for Wendelstein 7-X,

IEEE Trans. Appl. Supercond. 14(2004)(2(June)), pp. 1394-1398

[2] T. Sunn Pedersen et al., Confirmation of the topology of the Wendelstein 7-X magnetic field to

better than 1:100,000, Nature Communications (2016) Vol. 7, 13493

[3] H.-S. Bosch et al., Final integration, commissioning and start of the Wendelstein 7-X stellarator

operation, Nuclear Fusion, Vol. 57, 116015 (2017)

[4] G.H. Neilson, Lessons Learned in Risk Management on NCSX, IEEE Transactions on Plasma

Science, (2010) Vol. 38, No. 3 pp. 320-327

[5] R.L. Orbach, Statement about the Future of the Princeton Plasma Physics Laboratory, Under

Secretary for Science and Director, Office of Science, U.S. Department of Energy, May 22, 2008

[6] Jason Paul Kremer (2006) The Creation and First Studies of Electron Plasmas in the Columbia

Non-neutral Torus (Doctoral dissertation) Retrieved from ProQuest Dissertations and Theses.

(Accession Order No. AAI3249101)

[7] T. Sunn Pedersen et al., Construction and initial operation of the Columbia Non-neutral Torus,

Fusion Science and Technology, Vol. 50, (2006) pp. 372

[8] T. Sunn Pedersen et al., Experimental demonstration of a compact stellarator magnetic trap using

four circular coils, Physics of Plasmas 13, 012502 (2006)

[9] K.C. Hammond et al., Experimental and numerical study of error fields in the CNT stellarator,

Plasma Physics and Controlled Fusion, Vol. 58, No. 7 (2016) pp. 074002

[10] Nührenberg J. and Zille R. 1988 Physics Letters A 129 113-117

[11] A. Shapiro, Stochastic programming by monte carlo simulation methods, ESAIM: PROCEED-

INGS, December (2003), Vol. 13 pp. 65-73

[12] J. Lobsien, M. Drevlak, Status of Coil Optimisation with ONSET, Manuscript in preparation.

[13] P. Merkel, Solution of stellarator boundary value problems with external currents Nucl. Fusion

(1987) 27 867

[14] M. Drevlak, 20th Symposium on Fusion Technology, Marseille, France (1998) pp. 883.

[15] K. Gegenfurtner, PRAXIS: Brent’s algorithm for function minimization, Behavior Research

Methods, Instruments, & Computers, (1992) Vol. 24, No. 4 pp. 560-564

[16] T. Andreeva et al., Influence of construction errors on Wendelstein 7-X magnetic configurations,

Fusion Engineering and Design, 84(2)(2009), p.408 - 412

[17] T. Andreeva et al., Tracking of the magnet system geometry during Wendelstein 7-X construction

to achieve the designed magnetic field, Nucl. Fusion, 55(6)(2015), p.063025.

[18] Michael Drevlak, Automated Optimization of Stellarator Coils, Fusion Technology, Vol. 33, No. 2,

Page 106-117, Year 1998



14

Appendices

Appendix A. Details about the optimization sequence

The optimization sequence is listed in Table A1, which illustrates the change of the

weight constants throughout the six optimization runs. Every entry consists of two

values (design value/ weight constant) which define the objective function f . Exceptions

are the limiting surfaces (inner surface / outer surface), and the number of spline points

which are defined per coil. The optimization sequence is divided into the optimization

of the field error under observance of the geometric restrictions (1-4) followed by the

optimization of the properties of the magnetic field. In the final step we compute

additionally the Fourier coefficients of a magnetic surface inside the plasma boundary.

The difference to the Fourier coefficients obtained from the target magnetic surface

inside the original plasma boundary designed by Nühreberg [10] is then minimized in

the last optimization run. The optimization of the field error took 4 runs. We refer to

[12] for a detailed description of the optimization sequence and the design criteria.

Table A1: Optimization Sequence

Optimization run: 1 2 3 4 5 6

Maximum Field Error 0/ 1.0 · 103 · · · · ·
Mean Field Error 0/ 1.0 · 105 · · · · ·
Clearance 0.35/1 0.3/1 0.27/1 · · ·
Curvature 3/0.7 · · · · ·
Distortion 0.3/0.4 · · · · ·

Magnetic Axis (bean) - - - - 5.93/4 ·
Magnetic Axis (triangle) - - - - 5.17/15 5.17/450

Magnetic Ripple on Axis - - - - 0.11/3 ·
Iota on Axis - - - - 0.88/1.0 · 103 ·
Magnetic Shear - - - - 1.56/0.4 1.56/0.8

Magnetic Well - - - - 0.007/1.0 · 103 ·
Fourier Coeff. of inner Surface - - - - - varies/1.0 · 102

Limiting Surfaces +30/+60 · +30/+65 +30/+70 · ·
Points per Coil 12 · · 13 · ·
Points of WS 13 · · · · ·

Description:

- Target not included in objective function.

· Value from the previous run was used.

Field Error Normal magnetic field on the plasma boundary.

Clearance Minimum distance between adjacent coils.

Curvature Maximum coil curvature d2x
ds2

.
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Distortion Weighted curvature defined in [18].

Magnetic Axis Major radius.
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