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Abstract

Relational grammar was proposed in Suppes (1976) as a semantical grammar for natural language.

Fragments considered so far are restricted to distributive notions. In this article, relational grammar
is extended to collective notions.
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1 Introduction

The notion of a relational grammar was proposed by Suppes as a grammar with
a model-theoretic semantics for natural languages.1 It maps natural language ex-
pressions onto terms of relational algebra. The construction of algebraic terms from
constants by operations fits the constituent structure of a natural language expression
much better than conventional quantifier variable structures. Being rich enough to
express classical mathematics,2 the language of relational algebra turns out to be a
powerful and elegant tool for natural language semantics.

Relational grammars so far have been presented mostly for English fragments: A
fragment for sentences occurring in the syllogism was given in Suppes (1976). The
fragment was extended to attributive constructions and possessive NP constructions
in Suppes and Macken (1978) and to intonation in Suppes (1979). A fragment for
English imperatives was presented in Böttner (1992a). An analysis of copulative terms
is given in Böttner (1994). In Böttner (1992b) a proposal was made for the analysis
of English constructions with anaphorical pronouns. No precise rules of grammar had
been given. The purpose of this paper is to provide a relational grammar for the
constructions in question. Whereas in the earlier paper the thrust was on a variable-
free semantics for certain anaphoric structures, the main result of this paper is that
all the structures mentioned in Böttner (1992b) can indeed be accommodated in a
relational grammar.

All the notions considered in various fragments satisfy the following property: if
they hold of a class of individuals they also hold of each individual of that class.
Notions of this kind are called distributive. It is well-known that not all natural
language notions are of that kind. An example is John and Mary are a couple. Verb
phrases of this kind are called collective. In this paper, an extension of relational
grammar for collectives will be proposed and extended to anaphora.

1Suppes (1976).

2Tarski and Givant (1987).
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176 A Collective Extension of Relational Grammar

Our procedure will be as follows: We start from the calculus of sets and relations.
On the basis of standard operations we define some new operations. We then show
the usefulness of these operations for the analysis of certain English constructions,
in particular for collective verb phrases and certain anaphoric constructions that go
with them. The notions from the calculus of sets and binary relations are introduced
in 1. The notion of a relational grammar is illustrated by some example grammar in
2. In 3 this grammar is extended to capture collective notions. In 4 the grammar is
extended to capture some constructions with anaphoric pronouns. In a final section
5, some problems of the analysis are pointed out.

2 Calculus of Sets and Binary Relations

All we presuppose for the following is elementary set theory. Let us assume some set
D and consider subsets of D and binary relations on D. I assume familiarity with the
operations of set theory like intersection, union, complement, or difference. We use ∅
for both the empty set and the empty relation, I for the identity relation on D. We
use the conversion of a relation R defined

R̆ = {< x, y > | < y, x >∈ R},

and composition of two binary relations R and S defined

R; S = {< x, y > |(∃z)(xRz ∧ zSy)}.

There are two variants of the composition operation depending on whether one of the
arguments is a subset of D. If the first argument of composition is a subset of D, this
leads to the operation of upper image of a set A under a relation R defined

R“A = {y|(∃x)(x ∈ A ∧ xRy)}.

Familiar from set theory is also the operation of the Cartesian Product of sets A and
B:

A × B = {< x, y > |x ∈ A ∧ y ∈ B}.

From the elementary theory of binary relations the following theorems are known to
hold:
Theorem 2.1
1. A × −B ⊆ −(A × B)

2. R; (S; T ) = (R; S); T

3. (R, S)̆ = S̆; R̆

4. (R ∩ S)̆ = R̆ ∩ S̆

5. (A × B) ∩ R 6= ∅ ↔ A ∩ (R̆“B) 6= ∅
6. (−R)̆ = −R̆
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2. CALCULUS OF SETS AND BINARY RELATIONS 177

From our list of primitive operations many more operations can be defined, like,
for instance:

dom(R) = R̆“D
E(A) = dom(D × A)
U(A) = −E(−A)
N(A) = −E(A)

e(R, A) = R̆“A
u(R, A) = −e(−R, A)

Refl(R) = dom(R ∩ I)
IA = I ∩ (A × A)

Poss(A) = P “A
Poss(R, A) = −dom((P ; IA) ∩ −R)
Cole(R, A) = R; IA; R̆
Colu(R, A) = u(R, A) × u(R, A)

sym(R) = R ∩ R̆
Rec(R) = sym(R) − I

RecPoss(R, A) = sym(−(−R; IA ; P̆)) − I

Id(R, A) = −(R; IA;−R̆) ∩ −(−R; IA; R̆)
Div(R, A) = −(R; IA; R̆) ∩ −(−R; IA;−R̆)

The operations dom, E, U , N , e, u, Refl and Poss return a set, the other operations
return a binary relation. More specifically, dom returns the domain of its argument
relation. The operation e(R, A) is called the upper counterimage of set A under
relation R, also known by the name of Peirce Product of relation R to set A.3 The
operation u(R, A) had already been used by de Morgan and is known under the
term of ordinary involution.4 IA is the identity relation over set A.5 The operation
sym(R) returns the greatest symmetric subrelation of its argument relation R. In the
definition of Poss a relation P is used that does not occur in the parameters of the
operation Poss, since we think of P as a constant denoting the relation of possession
in all models.6

Theorem 2.2

E(A) =
{

D if A 6= ∅,
∅ otherwise.

Proof. i. A 6= ∅ ⇒ dom(D × A) = D.
ii. A = ∅ ⇒ dom(D × A) = dom(D × ∅) = dom(∅) = ∅. Q.E.D.

E is a two-valued operation. It returns D in case its argument is not the empty
set, and returns the empty set otherwise.

From elementary set theory we have the following theorem:

3cf. Brink (1981).

4cf. Brink (1978).

5cf. Suppes (1960).

6This was suggested in Suppes and Macken (1978).
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178 A Collective Extension of Relational Grammar

Theorem 2.3
A 6= ∅ → u(R, A) ⊆ e(R, A).

A binary relation R is called symmetrical if R̆ ⊆ R.

Theorem 2.4
sym(R) is symmetrical.

Proof. sym(R) = (R ∩ R̆)̆ = R̆ ∩ R̆̆ ⊆ R̆ ∩ R = R ∩ R̆ = sym(R).

Theorem 2.5
I is symmetrical.

Theorem 2.6
If R is symmetrical and S is symmetrical, then R ∩ S is symmetrical.

Proof. Follows from definition and Theorem 2.2.

Theorem 2.7
The relation Rec(R) is symmetrical.

Proof. Follows from Theorem 2.4, 2.5, and 2.6.

Theorem 2.8
RecPoss(R) is symmetrical.

Proof. Follows from Theorem 2.4, 2.5, and 2.6.

Theorem 2.9
Id(R, A) is symmetrical.

Proof. (−(R; IA;−R̆) ∩−(−R; IA; R̆))̆ (by Theorem 2.2)
= −(R; IA;−R̆)̆ ∩ −(−R; IA; R̆)̆ (by Theorem 2.2)
= −(−R; IA; R̆) ∩ −(R; IA;−R̆)(by Theorem 1, iii)
= −(R; IA;−R̆) ∩ −(−R; IA; R̆).

A binary relation R is called transitive if R; R ⊆ R.

Theorem 2.10
Id(R, A) is transitive.

Proof. < x, y >∈ Id(R, A), i.e. (∀u)(u ∈ A → (xRu ↔ yRu) (premise 1)
< y, z >∈ Id(R, A), i.e. (∀u)(u ∈ A → (yRu ↔ zRu) (premise 2)
Let u ∈ A. Then xRu ↔ yRu (from premise 1) and yRu ↔ zRu (from premise 2),
hence, xRu ↔ zRu, i.e. < x, z >∈ Id(R, A).

R is an equivalence relation iff R is transitive and symmetrical.

Theorem 2.11
The relation Id(R, A) is an equivalence relation.

Proof. Follows from Theorem 2.9 and Theorem 2.10.
Theorem 2.12
Div(R, A) = −Id(R, A).
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2. CALCULUS OF SETS AND BINARY RELATIONS 179

Proof. We show

1. Div(R, A) ⊆ −Id(R, A)
2. −Div(R, A) ⊆ Id(R, A)

1. Div(R, A) ∩ Id(R, A)
= −(R; IA; R̆) ∩ −(−R; IA; −̆R) ∩ −(R; IA;−R̆) ∩ −(−R; IA; R̆)
= −(R; IA; R̆) ∩ −(R; IA;−R̆) ∩−(−R; IA;−R̆) ∩ −(−R; IA; R̆)
= −((R; IAR̆) ∪ (R; IA;−R̆) ∩ −((−R; IA;−R̆) ∪ (−R; IA; R̆))
= −((R; IA; (R̆ ∪ −R̆)) ∩ −(−R; IA; (−R̆ ∪ R̆)))
= −(R; IA; (D × D)) ∩ −(−R; IA; (D × D))
= −((R; IA; D × D) ∪ (−R; IA; (D × D)))
= −((R ∪ −R); IA; (D × D))
= −((D × D); IA; (D × D))
= −(D × D)
= ∅

2. −Div(R, A) ∩ −Id(R, A)
= −(R; IA; R̆) ∩ −(−R; IA;−R̆) ∩ −(R; IA;−R̆) ∩ −(−R; IA; R̆)
= −(R; IA; R̆) ∩ −(R; IA;−R̆) ∩−(−R; IA;−R̆) ∩ −(−R; IA; R̆)
= −((R; IA; R̆) ∪ (R; IA;−R̆)) ∩−((−R; IA;−R̆) ∪ (−R; IA; R̆))
= −(R; IA; (R̆ ∪ −R̆)) ∩ −(−R; IA; (−R̆ ∪ R̆))
= −(R; IA; (D × D)) ∩ −(−R; IA; (D × D))
= −((R; IA; (D × D)) ∪ (−R; IA; (D × D)))
= −((R ∪ −R); IA; (D × D))
= −((D × D); IA; (D × D))
= −(D × D)
= ∅.

Theorem 2.13
R; IA; R̆ ⊆ e(R, A) × e(R, A).

Proof.

R; IA; R̆ = R; IA; IA; R̆
⊆ dom(R; IA) × dom((IA; R̆)̆)
= dom(R; IA) × dom(R; IA)
= e(R, A) × e(R, A) since R; S ⊆ dom(R) × dom(S̆)

Theorem 2.14
Colu(R, A) ⊆ Id(R, A).

Proof. 1. Let A = ∅. Then Colu(R, A) = D × D and Id(R, A) = D × D.
Hence Colu(R, A) = Id(R, A).

2. Let A 6= ∅. Therefore u(R, A) ⊆ e(R, A). From this we get:
(a) u(R, A) × u(R, A)

= −e(−R, A) × e(R, A) (by Definition of E)
⊆ −e(−R, A) × e(R, A) (by Theorem 2.3)
⊆ −(e(−R, A) × e(R, A)) (by Theorem 2.2)
= −(−R; IA; R̆) (by Theorem 2.13)
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180 A Collective Extension of Relational Grammar

(b) u(R, A) × u(R, A)
⊆ e(R, A) × u(R, A) (by Theorem 2.3)
= e(R, A) × −e(−R, A) (by Definition of E)
⊆ −(e(R, A) × e(−R, A) (by Theorem 2.2)
⊆ −(R; IA;−R̆) (by Theorem 2.13)

Since Colu(R, A) = u(R, A) × u(R, A),
and Id(R, A) = −(R; IA;−R̆) ∩ −(−R; IA; R̆),
assertion follows.

In our calculations we have made use of laws from the theory of sets and binary
relations. The laws of set-theory are captured under the notion of a Boolean algebra.
Many laws referring to binary relations can be captured under the notion of a relation
algebra. An equational definition of relation algebra was first given by Tarski.7 An
equational definition of the underlying structure was given under the notion of a
Peirce algebra.8

3 Relational Grammar

A relational grammar is a denoting grammar. A denoting grammar is a context-free
grammar with a model-theoretic semantics.9 With each production rule, a semantic
function is associated. The characteristic feature of a relational grammar is that its
denotations are restricted to subsets of the domain D and to binary relations on D,
i.e. to the hierarchy

H(D) = P(D) ∪ P(D × D) (3.1)

where D is some non-empty set.10

An example of a denoting grammar is the following:

S → PN + V P [S] = E([PN ]∩ [V P ])
S → UQ + N + V P [S] = U(−[N ] ∪ [V P ])
S → EQ + N + V P [S] = E([N ] ∩ [V P ])
S → NQ + N + V P [S] = N([N ] ∩ [V P ])
S → CPNP + V P [S] = U(−[CPNP ]∪ [V P ])

CPNP → PN + CC + PN ′ [CPNP ] = [PN ]∪ [PN ′]
CPNP → PN + CPNP [CPNP ] = [PN ]∪ [CPNP ]

NP → PN + PossInf + RN [NP ] = e([RN ], [PN ])
NP → PN + PossInf + N [NP ] = Poss([PN ])∩ [N ]
V P → Cop + NP [V P ] = [NP ]
V P → TV + PN [V P ] = e([V P ], [PN ])
V P → TV + UQ + N [V P ] = u([TV ], [N ])
V P → TV + EQ + N [V P ] = e([TV ], [N ])
V P → TV + Refl [V P ] = Refl([TV ])
V P → TV + Poss + N [V P ] = Poss([TV ], [N ])
V P → TV + CPNP [V P ] = U([TV ], [CPNP ])

7Tarski (1941).

8Brink, Britz, and Schmidt (1994).

9Suppes (1973).

10Suppes (1976).
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3. RELATIONAL GRAMMAR 181

where S (sentence), NP (noun phrase), VP (verb phrase), and CPNP (conjoined
proper noun phrase) refer to phrasal categories. We distinguish the following lexical
categories:

EQ existential quantifier some
UQ universal quantifier all
NQ negative quantifier no
PN proper noun John, Mary, Bill, Dick, Harry
N common noun books, houses, toys, students, guests
RN relational noun brother, brothers
TV transitive verb own, like
CC conjoining conjunction and
Cop copula is, are
Refl reflexive pronoun himself, herself, themselves
Poss possessive pronoun his, her, their
PossInf possessive inflexion ’s

The notion of a denoting grammar gives rise to the notion of a semantic tree. A
semantic tree of a denoting grammar G is a derivation tree of the context-free grammar
G with the root node having a denotation that is derived from the denotations of its
daughter nodes by semantic functions. The leaves of the semantic tree get their
denotation (in some model) by a function into the hierarchy H(D). For purposes of
illustration let us give a couple of examples of semantic trees that can be derived in
our grammar.

S: E({j} ∩ e(B, {b}))

VP: e(B, {b})

NP: e(B, {b})

PN:{j} Cop PN: {b} PossInf RN: B

John is Bill ’s brother

(3.2)

Recall from Theorem 2.2 that E is a two-valued operation. We can identify the
two values with the truth values: A sentence is called true with respect to a model
structure if the root node denotation is D otherwise false.

Downloaded from https://academic.oup.com/jigpal/article-abstract/6/2/175/645576
by MPI Psycholinguistics user
on 02 August 2018



182 A Collective Extension of Relational Grammar

S: E({j} ∩ e(L, Poss({b}) ∩B))

PN: {j} VP: e(L, Poss({b}) ∩ B)

NP: Poss({b}) ∩ B

TV: L PN: {b} PossInf N: B

John likes Bill ’s books

(3.3)

Our solution for Bill’s books is in line with the solution proposed by Suppes and
Macken.11 In the case of Bill’s brother that would be treated similarly by Suppes
and Macken, our solution does not use the possessive relation P . We think that the
words books and brother belong to different categories: books belongs to the category
N of a classificatory common noun, brother belongs to the category RN of a relational
common noun.

Our grammar derives the following constructions with proper noun coordinations:

John and Mary are students U(−({j} ∪ {m}) ∪ S)
like John and Mary u(L, {j} ∪ {m})

where John denotes {j}, Mary denotes {m} and S is the set of students and L is the
relation denoted by the verb like.

Notice that the language generated by these rules is not restricted to just two
constituents but can derive copulative terms with any number of constituents.

S: U(−{j, m} ∪ e(O, H))

CPNP: {j} ∪ {m} VP: e(O, H)

PN: {j} CC PN: {m} TV: O EQ N: H

John and Mary own some houses

(3.4)

S: E({j} ∩ dom(R ∩ I))

PN: {j} VP: dom(R ∩ I)

TV: L Refl

John likes himself

(3.5)

11Suppes and Macken (1978).
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4. COLLECTIVE EXTENSION 183

S: E({j} ∩ Poss(L, T ))

VP: Poss(L, T )

PN: {j} TV: L Poss N: T

John likes his toys

(3.6)

According to our grammar, the phrase likes his toys denotes the term

−dom((P ; IT ) ∩ −L). (3.7)

That (3.7) corresponds to the intuitive meaning of like his toys follows from the fact
that (3.7) is equivalent to the quantifier expression

{x ∈ D : (∀y)(y ∈ T ∧ xPy → xLy)}. (3.8)

4 Collective Extension

There are many constructions that cannot be analyzed with our grammar developed
so far. Our focus here will be on constructions like the following one:

John and Bill are brothers (4.1)

Although the structure of (4.1) closely resembles the structure of

John and Mary are students (4.2)

its meaning is equivalent to that of (3.2).
It has been proposed that denotations for collective predicates should be sets of sets

of objects.12 Within the confines of our set-theoretical hierarchy H(D) we cannot have
properties of that kind. For any such property would be a set X of elements of P(D),
i.e. X ∈ P(P(D)). I propose to construe collective predicates as binary relations.13

Notice that our analysis of collectives stays within the confines of the restricted set-
theoretical hierarchy H(D). This makes it different from proposals along the lines of
Montague grammar14, second order logic15, or mereological ontology.16

For the derivation of collectives our grammar is extended by the following rules:

S → PPNP + ColV P [S] = E([PPNP ]∩ ([ColV P ]))
S → UQ + N + ColV P [S] = U(−([N ] × [N ]− I) ∪ [ColV P ])
S → EQ + N + ColV P [S] = E([N ] × [N ] ∩ [ColV P ])

PPNP → PN + CC + PN ′ [PPNP ] = [PN ]× [PN ′]
ColV P → Cop + RN [ColV P ] = [RN ]
ColV P → TV + EQ + N ColV P = ColE([TV ], [N ])
ColV P → TV + UQ + N ColV P = ColU ([TV ], [N ])

12Hausser (1974), Hoeksema (1988), Keenan and Faltz (1985).

13This proposal can be traced back to Peirce (1880).

14Hausser (1974).

15Blau (1981).

16Link (1983).
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184 A Collective Extension of Relational Grammar

where ColVP = collective verb phrase and PPNP = paired proper noun phrase.
We therefore have the following semantic tree for (4.1):

S: E(({j} × {b}) ∩ B)

PPNP: {j} × {b} VP: B

PN: {j} CC PN: {b} Cop RN: B

John and Bill are brothers

(4.3)

We are now able to prove that (4.1) is equivalent is to (3.2):

E({j} ∩ e(B, {b}) = D ↔ {j} ∩ B̆“{b} 6= ∅ (Definition of E)
↔ {j} × {b} ∩ B 6= ∅ (by Theorem 2.1,v)
↔ E({j} × {b} ∩ B) (Definition of E)

The semantic function for the rule

S → UQ + N + ColV P

may be surprising for the reason that it explicitly excludes identical pairs. The reason
for doing so is that we want the sentence

All guests are brothers (4.4)

to be true in a model structure

G = {a, b, c}
B = {< a, b >, < a, c >, < b, c >, < b, a >, < c, a >, < c, b >}

where set G is the denotation of guests and binary relation B is the denotation of
brother. Without explicitly excluding I from G × G, however, the sentence will be
false, since < a, a >6∈ B for the relation denoted by brother is conventionally assumed
to be irreflexive.

In departure from our general convention, the semantic function Colu(R, A) is not
defined in line with the general transformation:

U(...) = −E(−...)

as one would expect. Applying this transformation to collective verb phrases would
leave us with the relation

{< x, y > |(∀z)(z ∈ A → (xRz ∨ yRz))} (4.5)

as the denotation for the phrase own all houses. We think that this is not strong
enough to account for the meaning of this phrase.

Some verb phrases can be used both distributively and collectively. Consider, for
instance, the predicate denoted by own a house. In John owns a house it can only be
used distributively. In John and Mary own a house it can be used both distributively
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5. ANAPHORIC EXTENSION 185

and collectively. The distributive reading admits of the possibility that there are two
houses: one belonging to John, the other belonging to Mary. The collective reading
does not admit of this possibility but requires that the houses be owned jointly by
John and Mary. The distinction between distributive and collective uses can be made
explicit by adding each in the case of the distributive reading and together in the case
of the collective reading.

The tree for the collective reading is:

S: E(({j} × {m}) ∩ Cole(O, H))

PPNP: {j} × {m} ColVP: Cole(O, H)

PN: {j} CC PN: {m} TV: O EQ N: H

John and Mary own some houses

(4.6)

Recall from previous section that the distributive reading (3.4) is true if

{j, m} ⊆ e(O, H). (4.7)

This is equivalent to the condition

(∃u)(jOu ∧ u ∈ H) ∧ (∃u)(mOu ∧ u ∈ H). (4.8)

The collective reading is true if

< j, m >∈ O; IH ; Ŏ. (4.9)

This is equivalent to the condition

(∃z)(z ∈ H ∧ xOz ∧ yOz). (4.10)

The collective reading is stronger than the distributive reading: (4.8) is a logical
consequence of (4.10), but (4.10) is not a logical consequence of (4.8).

5 Anaphoric Extension

In this section our grammar is extended to derive semantic trees for constructions
with anaphoric pronouns like each other, same and different. The rules are17

ColV P → TV + Rec [ColV P ] = Rec([TV ])
ColV P → TV + Rec + PossInf + N [ColV P ] = RecPoss([TV ], [N ])
CplV P → TV + DA + ID + N [ColV P ] = Id([TV ], [N ])
ColV P → TV + DIV + N [ColV P ] = Div([TV ], [N ])

where lexical category abbreviations are as follows:

17The first rule corrects the analysis given in Böttner (1992b).
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186 A Collective Extension of Relational Grammar

ID identity pronoun same
DIV diversity pronoun different
DA definite article the
Rec reciprocal pronoun each other, one another

Our grammar derives the following semantic tree:

S: E(({j} × {m}) ∩ Rec(L))

PPNP: {j} × {m} ColVP: Rec(L)

PN: {j} CC PN: {m} TV: L Rec

John and Mary like each other

(5.1)

Notice that it is necessary to have the verb phrase denote Rec(R) = sym(R) − I
rather than sym(R). The reason for this is as follows: in a model structure with a
singleton denoted by students and a singleton denoted by like like this

v(students) = {j}
v(like) = {< j, j >}

the sentence All students like each other would be predicted to be true, since

[like each other] = sym([like]) = {< j, j >}.

But intuitively, we would not be willing to call this sentence true in such a situation,
for we prefer to view like each other to involve at least two different individuals. Under
the assumption

[like each other] = sym([like]) − I = ∅
the above sentence will be predicted to come out false.

For the sentence
All students like each other (5.2)

our grammar derives the set-theoretical structure

S × S − I ⊆ Rec(L). (5.3)

(5.3) amounts to the following

(∀x)(∀y)(x ∈ S ∧ y ∈ S ∧ x 6= y → xLy ∧ yLx ∧ x 6= y). (5.4)

According to Langendoen’s notion of strong reciprocity,18 (5.2) would be true just in
case the following condition holds:

(∀x)(∀y)(x ∈ S ∧ y ∈ S ∧ x 6= y → xLz). (5.5)

18Langendoen (1978).
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Although our condition (5.4) may look more complicated in comparison with Langen-
doen’s condition (5.5), the two conditions are in fact equivalent. Firstly, it is obvious
that our condition implies Langendoen’s condition, since both conditions have the
same antecedents and Langendoen’s succedent occurs as a constituent of the succe-
dent of our condition. Secondly, our condition follows from Langendoen’s condition,
since

< x, y >∈ s× S ↔< y, x >∈ S × S

from which both xRy and xRy follows.
For the sentence

Some students like each other (5.6)

our grammar derives the set-theoretical structure

E((S × S) ∩Rec(L)) (5.7)

which is true just in case

(∃x)(∃y)(x ∈ S ∧ y ∈ S ∧ x 6= y ∧ xLy ∧ yLx). (5.8)

We think (5.8) to be in line with our intuition about the meaning of (5.6).
In contradistinction to the truth-condition for (5.4), no corresponding condition

can be derived for (5.8) from Langendoen’s definition of strong reciprocity. Bearing
in mind the equivalence

(∃x)α = ¬(∀x)¬α (5.9)

one could derive the following condition for particular affirmative sentences from
Langendoen:

¬(∀x)¬(∀y)(x ∈ S ∧ y ∈ S ∧ x 6= y → xLy) (5.10)

which is equivalent to

(∃x)(∀y)(x ∈ S ∧ y ∈ S ∧ x 6= y → xLy). (5.11)

But (5.11) is not equivalent to (5.8). Consider, for instance, a set of three students
a, b, and c with a relation L (represented by the arrow) holding between them:

a

b c

Then (5.11) would be true with respect to this model, since a is the element that
fulfils the condition, but (5.8) would be false, since there is no pair of elements x and
y such that xLy and yLx. On the other hand, the following model

a

b c

would be true in (5.8), since the pair of a and b fulfils the condition, but false in (5.11),
since there is no element from which every other element can “reached”. So Langen-
doen’s definition fails to account for particular sentences. Langendoen’s definition
suffers from being tailored for universal sentences.
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The grammar predicts the following inferences to be valid:

John and Mary like each other
Mary and John like each other

(5.12)

John and Mary like each other
John likes Mary

(5.13)

The proof for (5.12) follows from the fact that the relation denoted by the verb phrase
like each other is symmetrical according to theorem 5:

(A × B)̆ ∩ R = (B × A) ∩ R

Our grammar derives the following semantic tree for combinations of possessive and
reciprocal:

S: E(({j} × {m}) ∩ RecPoss(L, B))

PPNP: {j} × {m} ColVP: RecPoss(L, B)

PN: {j} CC PN: {m} TV: L Rec Poss N: B

John and Mary like each other ’s books

(5.14)

According to our grammar, the verb phrase like each other’s books denotes the fol-
lowing relation:

−(−L; IB ; P̆) ∩ −(P ; IB; −̆L) ∩ −I. (5.15)

And this is what it is supposed to denote, since

< x, y >∈ −(−L; IB ; P̆ ) ∩ −(P ; IB; −̆L)

is equivalent to

(∀z)(z ∈ B → ((yPz → xLz) ∧ (xPz → yLx))).

Our grammar predicts the following inference to be valid:

John and Mary like each other’s books
Mary and John like each other’s books

(5.16)

The proof follows from Theorem 8.
Notice that the sentence

John and Mary like each other’s books (5.17)

is true if the denotation of books is the empty set for the same reason why universal
sentences are true if the subject term denotes the empty set, which is in line with the
convention of standard interpretation.
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Contrary to our earlier pessimistic remarks,19 constructions of the kind John and
Mary like the same books can be accommodated within a relational algebra. This is
by no means surprising since any partition is equivalent to some equivalence relation.
That the relation denoted by read the same books is indeed an equivalence relation
on the set of book readers follows from Theorem 2.10.

Our grammar derives the following semantic tree:

S: E(({j} × {m}) ∩ Id(R, B))

PPNP: {j} × {m} ColVP: Id(R, B)

PN: {j} CC PN: {m} TV: R DA ID N: B

John and Mary read the same books

(5.18)

That Id(R, B) captures the intended meaning of the verb phrase is shown by being
equivalent to the following quantifier logic expression:

{< x, y > |(∀z)(z ∈ B → (xRz ↔ yRz))} (5.19)

Our grammar predicts the following inference to be valid:

John and Mary read the same books
Bill and Mary read the same books
John and Bill read the same books

(5.20)

The proof follows from Theorem 10.
A parallel case is the verb phrase read different books. According to our grammar

it denotes Div(R, B). That Div(R, B) construes the meaning of this verb phrase is
shown by its equivalence to the following quantifier logic expression:

{< x, y > |(∀z)(z ∈ B → (xRz ↔ ¬yRz)} (5.21)

There is an interesting duality between universal and negative quantifiers and same
and different:

Theorem 5.1
UQ + N + TV + DIV + N ↔ NQ + N + TV + DA + ID + N

Proof. From Theorem 2.12 we have

1. X ⊆ Div(R, B) → X ∩ Id(R, B) = ∅
2. X ∩ Id(R, B) = ∅ → X ⊆ Div(R, B)

Theorem 5.2
NQ + N + TV + DIV + N ↔ UQ + N + TV + DA + ID + N

19Böttner (1992b).
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Proof. Analogous to proof of Theorem 5.1.

Theorem 5.1 and Theorem 5.2 predict the following pairs of sentences to be equiv-
alent:

1.(a) All students read different novels
(b) No students read the same novels

2.(a) No students read different novels
(b) All students read the same novels

Our grammar predicts the following argument to be valid:

John and Mary own all houses together
John and Mary own the same houses

(5.22)

where by together we want to explicitly refer to the collective reading of this sentence.
From theorem 2.14

[own all houses together] ⊆ [own the same houses] (5.23)

follows, from which the assertion follows.
The important point about the validity of (5.23) is that it supports our definition

of Colu(R, A) rather than the standard definition in terms of Cole(R, A), since (5.23)
would not be valid with the weaker definition of this function.

Notice that our analysis of sentences

John and Mary like the same books
John and Mary like different books

preserves the verb phrases like the same books and like different books as constituents
of the natural language sentences. Therefore we think this solution is more natural
than the tree arising from the structure proposed by Carnap (1929) who proposed
the sentence

Ich habe denselben Lehrer wie du
(I have the same teacher as you) (5.24)

to have the logical form
L̆“ich = L̆“du (5.25)

where L is the denotation for Lehrer (teacher), ich and du are first and second person
singular personal pronouns. Adopting Carnap’s solution to our example would return
the following root denotation for semantic tree (5.18):

B ∩ R“{j} = B ∩R“{m}. (5.26)

This structure, however, does not match the syntactic structure of the respective
sentence: Assume we let same denote the identity relation. We then have to deal
with the fact that the constituent books occurs once in the syntactic structure but
twice in the semantic structure (5.26). The same is true of the constituent read. So the
processing of the denotation would not be able to account for the subject-predicate
structure of the sentence. Moreover, and what is by far worse, Carnap’s solution
cannot be generalized to

All students read the same books, (5.27)
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since its meaning requires a set of equations rather than a single equation:

B ∩ R“{s1} = ... = B ∩ R“{sn}. (5.28)

We also think our solution to be more natural than the analysis in terms of polyadic
quantifiers proposed in Keenan (1987) for the very same reasons as in the case of
Carnap’s analysis. Keenan’s structure:

(ALL,SAME)(STUDENT,READ,BOOKS) (5.29)

where the prefix is called a polyadic quantifier is too discrepant from the syntactic
structure and fails to identify the verb phrase constituent as a predicate.

We assume that the verb phrase read the same books denotes a binary relation.
Support comes from the fact that one can use it in a sentence like

John reads the same books as Mary.

And this sentence is clearly an instance of a relational sentence resembling compara-
tive sentences like

John is as old as Mary.

6 Conclusion

Let us conclude by pointing out two open problems of our analysis that deserve
further investigation. One problem has to do with the derivation of collective uses
of transitive verbs, the other problem has to do with the extension of proper noun
phrases from the combination of just two to more than two.

Our analysis predicts the following argument to be valid:

John and Mary own a house together
John owns a house

(6.1)

One might object against having this as a valid argument. But considering that
collective ownership is

have a share in the possession of (6.2)

rather than
share the possession of ... with (6.3)

this inference may not be too devastating.
With our grammar so far we are not in a position to derive sentences with more

than two proper noun combinations like

Tom, Dick, and Harry are brothers (6.4)

So our grammar is in need for extension. A straightforward way to do this is by
adding the rule-function-pair

PPNP → PN + CPNP
[PPNP ] = ([PN ]∪ [CPNP ])× ([PN ] ∪ [CPNP ]) (6.5)
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It would derive the following semantic tree

PNPN: {t, d, h}× {t, d, h}

CPNP: {d} ∪ {h}

PN: {t} PN: {d} CC PN: {h}

Tom Dick and Harry

(6.6)

The sentence (6.4) would be true iff

{t, d, h} × {t, d, h}∩ B 6= ∅. (6.7)

This condition could be fulfilled if there is a pair < x, y > that belongs to both the
denotations of Tom, Dick, and Harry and brothers, i.e. if, for instance, Tom is a
brother of Harry. But this is not what (6.4) asserts. What it rather asserts is that
any pair of the set of Tom, Dick, and Harry stands in the relation of being a brother
of. This rules out either (6.5) or the rule of grammar that accounts for expanding
S into PPNP + ColV P . Since we think (6.5) to be basically correct let us turn
to the second alternative and replace the semantic function associated with the rule
expanding S and replace it by

[S] = U(−[PPNP ]∪ [ColV P ]) (6.8)

This solution would at least return the desired result for (6.4). But this solution runs
into other problems. It would render any argument valid that has the form

X + V P, Y ⊆ X

Y + V P
(6.9)

But there are instances for which this form is not valid, like the following:

Tom, Dick, and Harry inhabit neighboring villages
Tom and Harry inhabit neighboring villages

(6.10)
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