
Comparing Index Structures
for Completeness Reasoning

Fariz Darari
Universitas Indonesia
Depok – Indonesia
fariz@cs.ui.ac.id

Werner Nutt
Free University of Bozen-Bolzano

Bozen-Bolzano – Italy
nutt@inf.unibz.it

Simon Razniewski
Max Planck Institute for Informatics

Saarbrücken – Germany
srazniew@mpi-inf.mpg.de

Abstract—Data quality is a major issue in the devel-
opment of knowledge graphs. Data completeness is a key
factor in data quality pertaining to how broad and deep is
information contained in knowledge graphs. As for large-
scale knowledge graphs (e.g., DBpedia, Wikidata), it is
conceivable that given the vast amount of information
contained in there, they may be complete for a wide
range of topics, such as children of Joko Widodo, cantons
of Switzerland, and presidents of Indonesia. Previous
research has shown how one can augment knowledge
graphs with statements about their completeness, stating
which parts of data are complete. Such meta-information
can be leveraged to check query completeness, that is,
whether the answer returned by a query is complete.
Yet, it is still unclear how such a check can be done in
practice, especially when many completeness statements
are involved. We devise implementation techniques to
make completeness reasoning in the presence of large sets
of completeness statements feasible, and experimentally
evaluate their effectiveness in realistic settings based on
the characteristics of real-world knowledge graphs.

I. INTRODUCTION

Real-world knowledge graphs may be very large.
DBpedia,1 for instance, contains at least 580 mil-
lion facts extracted from English Wikipedia alone,2

whereas Wikidata3 has over 370 million facts about
42 million entities.4 Given such a quantity, one
may wonder, what quality those knowledge graphs
possess?

Data quality plays an important role in the devel-
opment of knowledge graphs. Data completeness is
a key aspect of data quality that deals with how

1http://dbpedia.org
2http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html
3http://wikidata.org
4https://tools.wmflabs.org/wikidata-todo/stats.php

broad and deep is information contained in data
sources (or in our context, knowledge graphs) [1].
Generally speaking, data over knowledge graphs is
treated in either of the two ways: data is assumed to
be complete (i.e., the closed-world assumption), or
data is treated to be incomplete (that is, the open-
world assumption) [2]. In the real-world, however,
it is often necessary to employ a mix between the
two assumptions: for some parts of data, they are
complete; though for other parts, they are (still) po-
tentially incomplete.5 Managing data completeness
involves providing and making explicit metadata
pertaining to which parts of data can be regarded
as complete, and which parts cannot.

In practice, there is a substantial amount of Web
data sources providing (natural language) metadata
about completeness. For example, OpenStreetMap
provides around 2,300 pages with completeness
status,6 and Wikipedia contains nearly 15,000 pages
having the keywords “list is complete” and “com-
plete list of”. While such completeness metadata
can be helpful for data editors in order to be better
informed as to which data topics are complete,
the lack of formal, machine readable completeness
metadata hinders the automatic processing of such
metadata, which could otherwise enable advanced
usages such as completeness analytics, search opti-
mization, and query completeness checking.

Related Work. In previous research, Darari et
al. [3] proposed a completeness management frame-
work for (RDF-based [4]) knowledge graphs. They

5That is, those parts of data upon which the completeness is still
unknown.

6For example, see https://wiki.openstreetmap.org/wiki/Ahlen

formalized completeness descriptions over knowl-
edge graphs and provided a machine-readable rep-
resentation for those descriptions. Furthermore, they
investigated the problem of query completeness
checking: the check whether completeness state-
ments can guarantee the completeness of a query.
For instance, having the statements “complete for
all children of US presidents” and “complete for all
spouses of US presidents” would guarantee the com-
pleteness of the query “give all children and spouses
of US presidents”. Their work, however, concen-
trated on how such checking can be formalized,
without elaborating how it can be done in a scalable
manner. In [5], Prasojo et al. developed COOL-
WD, a completeness management tool for Wikidata
knowledge graph. The tool contains over 10,000
completeness statements about entities in Wikidata.
While some simple heuristics has been deployed for
the tool, there is still no optimization provided for
reasoning with (general) completeness statements.
In [6], Darari et al. demonstrated CORNER, a
system for checking query completeness based on
metadata about completeness, as formalized in [3].
Yet, the system is not able to handle large-scale
cases.

Contributions. In this paper we concentrate on the
engineering aspect of the problem of completeness
and expand upon the work of Darari et al. [3] by
optimizing query completeness checking. In partic-
ular, our contributions are twofold: (i) We propose
indexing techniques for completeness statements
based on our analysis that the problem of finding
completeness statements relevant for query com-
pleteness checking can be reduced to the established
problem of subset querying (Section III); and (ii)
based on realistic settings, we conduct experimental
evaluations for the problem of query completeness
checking (Section IV).

II. FORMAL FRAMEWORK

In this work, knowledge graphs are described
within the context of RDF (Resource Description
Framework) knowledge graphs, which have recently
gained increasing attentions [7].

A. Knowledge Graph Modeling and Querying

In this paper, we model knowledge graphs using
RDF, and query them using SPARQL. We assume

three sets L (literals), I (IRIs, short for Interna-
tionalized Resource Identifiers), and V (variables).
Literals and IRIs altogether can be referred to as
terms (or constants). An RDF triple (or simply a
triple) is an element (s, p, o) ∈ I × I × (I ∪ L). A
finite set G of triples is called an RDF graph.

SPARQL (SPARQL Protocol and RDF Query
Language) is the standard query language for
RDF [8]. It builds upon triple patterns, which are
like triples, but with the addition of variables. In
this paper, we concentrate on conjunctive SPARQL,
where sets of triple patterns, called BGPs (Basic
Graph Patterns), are used in querying. We call a
partial function µ : L→ I ∪V a mapping. Consider
a BGP P . The BGP µP denotes variable replace-
ment in P with terms based on µ. Evaluating a
BGP P over G, written as JP KG, results in a set
of mappings where for every mapping µ ∈ JP KG,
we have that µP ⊆ G. For a BGP P , we define
the freeze mapping ĩd as replacing each variable ?v
in P to a fresh IRI ṽ. From a freeze mapping, the
prototypical graph P̃ := ĩd P can be constructed
as a representative for any graph satisfying P .
Prototypical graphs will be used later on when
characterizing query completeness checking.

SPARQL queries are of three forms: SELECT, ASK,
and CONSTRUCT queries. We write a SELECT query
as (W,P) such that W is a set of variables and P
is a BGP. The evaluation of a SELECT query is by
evaluating JP KG, and then projecting the resulting
mappings over W . Such an evaluation is written as
JQKG = πW (JP KG). When W is empty, a SELECT

query can be called an ASK query. As for the
CONSTRUCT query, its form is (P1, P2) where P1 and
P2 are all BGPs. The evaluation of a CONSTRUCT

query over G results in a graph where the BGP P1

has been instantiated with all mappings in JP2KG.
This paper focuses on query evaluation using bag
semantics, where duplicates are not removed.

B. Knowledge Graph Completeness

Completeness Statements. Completeness state-
ments capture which topics of a knowledge graph
are complete. A completeness statement C has
the form Compl(PC) where PC is a non-empty
BGP. Say, we state that a graph is complete for
all triple pairs “?f is a film and ?f is writ-

ten by Spielberg” using the statement Cf =
Compl((?f , a,Film), (?f ,writtenBy , spielberg)).

To model the open-world assumption of RDF
graphs, we use the notion of available graph G,
which we actually have, and ideal graph G′, which
is a hypothetical, complete graph. We call a pair
(G,G′) of two graphs, where G ⊆ G′, an extension
pair.

Generally speaking, any graph can be an ideal
graph. Yet, the introduction of completeness state-
ments limits the possibilities of ideal graphs: only
graphs with no new information wrt. available
graphs for the parts covered by the statements can
be ideal graphs. For a statement C = Compl(PC),
there is the associated CONSTRUCT query QC =
(PC , PC). A statement C is satisfied by an exten-
sion pair (G,G′), written (G,G′) |= C, whenever
JQCKG′ ⊆ G. A completeness statement satisfaction
basically means that the available graph G is com-
plete for all the information as captured in C wrt.
the ideal graph G′. We naturally extend the above
definition to a set C of completeness statements:
(G,G′) |= C iff JQCKG′ ⊆ G for every C ∈ C.

Query Completeness. When querying a knowl-
edge graph, we may be interested to see whether
our query is complete wrt. the real world. For
example, when querying DBpedia for films written
by Spielberg, we may want to know if we actually
retrieve all such films. A query is complete over an
extension pair if the answers returned over the ideal
state are also there over the available state. Given a
SELECT query Q, we write Compl(Q) to state the
completeness of Q. Query completeness Compl(Q)
is satisfied by an extension pair (G,G′) whenever it
is the case that JQKG′ = JQKG. This case is written
as (G,G′) |= Compl(Q).

Completeness Entailment. From the notions of
completeness statements and query completeness,
we may naturally ask: when can information about
the completeness of knowledge graphs guarantee
query completeness? We approach the question by
‘quantifying’ over all extension pairs7 such that
whenever the completeness statements are satisfied
by an extension pair, then the extension pair also
satisfies the query completeness. We now define

7In this case, not only we abstract over ideal graphs, but also
available graphs.

completeness entailment. Let C be a set of com-
pleteness statements and Q be a SELECT query. The
statements C entail the completeness of the query Q,
denoted by C |= Compl(Q), if for every extension
pair satisfying C, it satisfies Compl(Q).

As an illustration, consider Cf as above.
Whenever Cf is satisfied by an extension
pair (G,G′), then G must contain all
triples about films written by Spielberg.
Now let us consider the query Qf =
({ ?f }, { (?f , a,Film), (?f ,writtenBy , spielberg),
(?f ,writtenBy ,miller) }) asking for films written
by both Spielberg and Miller. In this case, the
statement Cf is not sufficient to guarantee the
completeness of Qf . It might be that Miller wrote
a film (that was also written by Spielberg) but
this information is missing in the available graph,
leading to the non-inclusion of the film in the query
result. The query completeness can be guaranteed,
for instance, by having an additional statement
about the completeness of films written by Miller.

Checking if the completeness of a query Q =
(W,P) can be entailed by a set C of completeness
statements can be characterized as follows: first, all
the associated CONSTRUCT queries of the complete-
ness statements are evaluated over the prototypical
graph P̃ of the query, and second, we check if
the evaluation result contains P̃ . We construct the
transfer operator TC for the bulk evaluation of
completeness statements: TC(G) =

⋃
C∈CJQCKG. In

the following, we have our theorem of completeness
entailment:

Theorem 1: [3] C |= Compl(Q) iff P̃ = TC(P̃).

As query completeness checking corresponds to lin-
early evaluating CONSTRUCT queries over the frozen
BGP of the conjunctive query, its complexity is NP-
complete [3].

With respect to the above examples
of Cf and Qf , it is the case that
P̃f = {(f̃ , a,Film), (f̃ ,writtenBy , spielberg),
(f̃ ,writtenBy ,miller)}, while the application
of the transfer operator gives us T{Cf }(P̃f) =

{(f̃ , a,Film), (f̃ ,writtenBy , spielberg)}. Hence,
according to our theorem, it is the case that
{Cf } 6|= Compl(Qf).

III. INDEXING TECHNIQUES

A. Relevant Completeness Statements

Let us first provide an estimation of the complex-
ity of completeness reasoning. From Theorem 1,
the completeness reasoning task is the checking
whether TC(P̃) equals P̃ , where TC is the transfer
operator wrt. C, and P̃ is the prototypical graph
of Q. Note that the ‘⊆’ direction of the equality
can be seen immediately. We now focus on the ‘⊇’
direction, which corresponds to obtaining, for each
triple in P̃ , a statement C ∈ C s.t. the triple is
in JQCKP̃ (note that TC(P̃) =

⋃
C∈CJQCKP̃). Thus,

only statements that potentially match such a triple
(s, p, o) are required to be processed.

We now analyze the overall runtime of complete-
ness reasoning in realistic settings. Given a set C of
completeness statements and a query Q = (W,P),
the following three parameters are involved in the
reasoning: the maximum number of triple patterns
in a completeness statement, denoted by maxLn(C);
the number of completeness statements in C, de-
noted by |C|; and the number of triples in the
prototypical graph, denoted by |P̃ |. Note that in the
transfer operator TC, we apply for every statement,
its associated CONSTRUCT query over the prototypi-
cal graph of the query. Hence, the overall runtime
of completeness reasoning is: O(|C||P̃ |maxLn(C)).

As usual in the data complexity analysis for
relational database queries, we are assuming that the
query Q is given whereas the set of completeness
statements varies. Furthermore, since completeness
statements can be treated as queries, we assume
maxLn(C) to be bounded by a constant. Under these
assumptions, the complexity of completeness rea-
soning is a function of the number of completeness
statements. Using a plain completeness reasoner,
which considers all completeness statements, may
lead to non-optimal performance. Therefore, we
would like to find an approach to trim down the
number of completeness statements in completeness
reasoning.

Constant-Relevance Principle. Consider the
query asking for “Films written by Spielberg”
and the statement “All presidents of Indonesia.”
It is intuitive that the statement does have any
contribution as to whether the query is guaranteed

to be complete or not; namely, the statement is
irrelevant to the query.

We now introduce the constant-relevance princi-
ple as a direction to differentiate between irrelevant
and relevant completeness statements. The principle
asserts that whenever a completeness statement C is
found to be relevant for the completeness of a query,
then it must be that all completeness statement’s
constants are included in the constants of the query,
expressed formally as: const(C) ⊆ const(Q). A
statement satisfying this principle is called constant-
relevant. The following proposition says that when-
ever a statement is not constant-relevant, then the
statement does not contribute to completeness rea-
soning.

Proposition 1: Let Q = (W,P) be a query and C
a completeness statement. It holds that JQCKP̃ = ∅
if C is not constant-relevant wrt. Q.

The above proposition opens up the problem of
retrieving constant-relevant completeness statements
efficiently.

Problem Definition. Given a set C of complete-
ness statements and a query Q, we would like to
retrieve the set of constant-relevant completeness
statements wrt. the query. We denote this set as CQ,
that is,

CQ = {C ∈ C | const(C) ⊆ const(Q) }.

This computation of CQ is an instance of subset
querying problem, previously investigated by the
database and AI communities [9]–[11]. The problem
of subset querying is as follows: Let S be a set of
sets, and Sq query set. Subset querying is obtaining
all sets in S that are a subset of Sq. In our case,
the elements of S are sets of constants in the
completeness statements of C, whereas constants in
Q would be the query set Sq.

We investigate inverted indexes and tries, as index
structures to support subset querying, and standard
hashing as a baseline index structure.

Running Example. Throughout the description
below, we refer to a set C = {C1, C2, C3, C4 } of
statements having const(C1) = { a, b }, const(C2) =
{ a, b, c }, const(C3) = { a, b, c }, const(C4) = { d },
and a query Q having const(Q) = { a, b }. Here, we
have that CQ = {C1 }, as C1 is the only constant-
relevant statement wrt. Q.

B. Standard Hashing-based Retrieval
As for our baseline index structure, we provide a

translation of subset querying problem into (an ex-
ponential number of) set equality queries. Hashing
performs equality queries by retrieving objects using
keys. Using a hash map, completeness statements
are stored based on the statements’ constant sets.
There are thus 2|const(Q)| − 1 set equality queries
generated for non-empty subsets of const(Q). In our
above example, the generated set equality queries
are {a}, {b}, and {a, b}. It is immediate to see that
from these queries, only {a, b} returns a non-empty
set, that is, {C1}

As for the implementation, we rely on a standard
Java HashMap, where the key is constructed by
setting an ordering for completeness statement’s
constants, and the value is the set of all statements
with those constants.

C. Inverted Indexing-based Retrieval
Traditionally, inverted indexes are used in the

information retrieval domain [12]. In the domain
of object-oriented databases, inverted indexing may
help in subset querying. Helmer and Moerkotte [9]
conducted a comparative experimental evaluation
for different index structures for set operation
queries involving set-valued attributes. They showed
that inverted indexes generally performed best in
terms of retrieval costs.

Formalization. Let C be a set of completeness
statements and P =

⋃
C∈C const(C) the set of all

constants in C. An inverted index M provides a
mapping from constants in P to bags of complete-
ness statements in C, which records the number
of occurrences of completeness statements wrt. the
statement’s constants. With respect to our example,
the inverted index M is as follows.

Constants Completeness Statements

a C1, C2, C3

b C1, C2, C3

c C2, C3

d C4

Now, we define BQ =
⊎

p∈const(Q)M(p) as the
bag of completeness statements having (at least)
one constant appearing in Q, where the multi-
plicity is based on how many times the constants

of the statements occur in the query Q. In our
example, we have that BQ = M(a)] M(b) =
{|C1, C1, C2, C2, C3, C3 |}. From those statements,
only the statement C1 is constant relevant, since
it has two constants and occurs also two times
in BQ. Thus, it holds that that CQ = {C1 }. We
abstract over this example for characterizing the set
CQ. Let us denote the number of appearances of
a statement C in BQ by #C(BQ). Only statements
that appear as many times as the number of their
constants are constant-relevant. Here, we employ the
bag version of const(C). The set CQ satisfies the
following equation: CQ = {C ∈ BQ | #C(BQ) =
|const(C)| }.

The crucial operations for using the inverted
indexes approach we described above are count and
bag union. We use the Google Guava library8 which
provides the class HashMultiset with the methods
addAll (to support bag union) and count (to count
the number of occurrences of statements in a bag).

D. Trie-based Retrieval

A trie is an ordered tree that stores sequences
with the condition that the tree’s nodes are shared
between sequences having common prefixes. In the
AI community (e.g., [10] and [11]), tries have been
used for set-containment queries efficiently.

Formalization. Let C be a set of completeness
statements. The set SC is defined as the set consist-
ing of sequences of constants from each statement
in C. Over SC, we define TC as the tree where
its nodes are prefixes of the set SC, denoted as
Pref (SC), with the following condition: each node
s̄ in Pref (SC) has a child node s̄ · p where p is
a constant if and only if s̄ · p is in Pref (SC).
Furthermore, a trie is augmented with a mapping
M : Pref (SC) → 2C, that maps prefixes to state-
ments having the prefix constants.

In our example above, the set SC of sequences
is { (a, b), (a, b, c), (d) } and the mapping M is
{ (a, b) 7→ {C1 }, (a, b, c) 7→ {C2, C3 }, (d) 7→
{C4 } }. Mappings to the empty value are left out
for the sake of simplicity. A pictorial representation
of TC is shown as follows.

8https://github.com/google/guava

()

(d) : {C4 }(a)

(a, b) : {C1 }

(a, b, c) : {C2, C3 }

From the trie that we build from completeness
statements, we now develop a technique to retrieve
the constant-relevant completeness statements wrt.
a query. A non-empty sequence s̄ = (p1, . . . , pn)
can be decomposed into two parts: the head p1
and the tail (p2, . . . , pn). Given a sequence s̄ and
a trie T, the subtree of T rooted at the node s̄
is defined as T/s̄. Whenever a subtree does not
exist, T/s̄ returns the empty tree ⊥. The set of
statements in C with their constant sequences being
a (not necessarily contiguous) subsequence of s̄Q
is defined as cov(s̄Q,TC). From this definition, it
follows that cov(s̄Q,TC) = CQ. Our observation is
that cov, given a subtree T of TC and a subsequence
s̄ = p · s̄′ of s̄Q, satisfies the following property:

cov(s̄,T) =


∅ if T = ⊥
M(root(T)) if s̄ = ()

M(root(T))
∪ cov(s̄′,T/(root(T) · p))
∪ cov(s̄′,T)

otherwise.

In the above recurrence property, we can observe
two base cases: the empty set is returned, if the trie
is empty; and if the sequence s̄ is already empty,
cov returns the corresponding set of completeness
statements wrt. root(T). The recursive case consists
of three components, each has simpler forms than
the original trie. The cov function performs pruning,
as also noted in [10]: it trims down all recursive
possibilities whenever a subtree does not exist.

As for the trie implementation, we create a class
Trie where each of its nodes is labeled by some
prefix sequence. Prefix sequences are built from
constants in completeness statements and are imple-
mented using Java lists. We implement a recursive
method based on the cov function. For each node,
we use a Java HashMap for mapping the node’s
prefix sequence to the associated set of statements.
The union of the mapping results will be our set of
constant-relevant completeness statements.

IV. EXPERIMENTAL EVALUATION

We have presented in the previous section three
different indexing schemes that can be used for re-
trieving constant-relevant completeness statements.
In this section, we report on our experimental
evaluation investigating: (i) “How do the number
of statements, the length of statements, and query
length impact on the retrieval time under the three
indexing schemes?”; and (ii) “Which indexing ap-
proach performs best in which setting?”.

A. Experimental Setup

We randomly generate queries and sets of com-
pleteness statements based on three parameters:
(i) number of statements (Nc), (ii) max length of
statements (Lc), and (iii) query length (Lq).

Based on how we vary the parameter values, we
provide three distinct experiment scenarios. We take
DBpedia, one of the most prominent RDF knowl-
edge graphs, as our reference for the parameters’
default values. We extracted around 580 million
RDF triples from the English version of DBpedia.9

Assuming that 1
5

of those triples are covered by
completeness statements, and that every statement
captures 100 RDF triples, DBpedia would own
around 1 million completeness statements. Thus,
this sets the default value Nc = 1,000,000. The
parameter values for query length are also cho-
sen according to real-world statistics of DBpedia
SPARQL queries [13]. We therefore choose Lq = 3
as the default value for query length wrt. short
queries, and Lq = 6 for query length wrt. long
queries.

We implemented our experiment program using
Jena.10 We ran our experiments on a basic laptop
with a 2.5 GHz processor and 8 GB memory. Each
observation was taken from the median of 20 runs.

Random Generation of Statements and Queries.
To have some degree of freedom in adjusting our
parameters, we generated randomly the statements
and queries of the experiments based on realistic
settings, using (again) DBpedia as our reference
point. We set the IRI constant possibilities in the
predicate position to be 2500, and those in the
subject or object position to be 1,000,000. The

9http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html
10http://jena.apache.org/

completeness statements generated were of the form
Compl(P), while the queries were (var(P), P).
Our random generation was designed such that no
cross-product joins were produced, and that variable
and constant repetitions were allowed.

B. Experimental Results

1) Number of Completeness Statements: Here,
we vary the number of completeness statements
while fixing completeness statement length and
query length (recall that still there are two modes
of query length). The parameter Nc ranges from
100,000 to 1,000,000. Figure 1 shows the retrieval
times of different Nc treatments. We set the y-axis
in log-scale. We can clearly observe that inverted
indexing performs the worst. It is three times slower
than standard hashing for queries that are long, and
worse, 53× slower than tries when queries are short.
Both standard hashing and tries techniques have
their own strengths. While for queries that are short,
standard hashing is a little faster, tries perform better
for long queries.

Inverted indexing is the slowest here possibly
due to its processing of all completeness statements
having at least one overlapped constant with the
query. This would result in a higher probability
of a completeness statement to be ‘touched’ in
the retrieval processing than that with other index
structures.

2) Completeness Statement Length: Here the
maximum length of statements is varied at 1 − 6.
As shown in Figure 1, we see a contrast between
the retrieval time growth of inverted indexing and
tries. This is likely due to the higher probability
of completeness statements to be included in the
reasoning with inverted indexing when they become
longer. On the other hand, for tries the probability
decreases, since to be processed in tries, all the
constants in a statement need to be included in the
query. In this scenario, standard hashing performs
best for short queries, while tries are best for long
queries. Inverted indexing is not suitable here.

3) Query Length: In this case, the query length
is varied from 1 to 6. As seen from Figure 1,
the retrieval time of constant-relevant statements
increases as the query becomes longer, and that
standard hashing seems to suffer the most. At first,
standard hashing runs faster than tries. Yet, it starts

to perform worse from Lq = 4. While the time
growth of inverted indexing and tries is similar, tries
are better on an absolute scale. Standard hashing
does not provide good performance when queries
are long due to its exponential number of set equal-
ity queries. Tries have a pruning ability which could
cut down the number of search space in the retrieval
process.

4) Reasoning with the Constant-Relevant Filter-
ing: As opposed to the above scenarios, here we
provide a runtime comparison of reasoning with-
and without the indexing at all. Due to its good
performance for retrieving constant-relevant state-
ments, we use standard hashing as a representative
index structure. The default values are used here
as the experiment parameters: Lc = 6, Nc =
1,000,000, and the two query modes of short version
(Lq = 3) and long version (Lq = 6). We see below
a table reporting the reasoning time comparison for
the plain method and the indexed method (where
the retrieval time for constant-relevant statements is
already included).

Query Types Plain Reasoning Optimized Reasoning

Short 145,773 ms 1.3 ms
Long 146,095 ms 4.1 ms

We observe that our indexing technique can ef-
fectively reduce the completeness reasoning time
(i.e., from minutes to just milliseconds). Using
the constant-relevance principle (with the standard
hashing as the index structure) achieves a 110,000×
runtime improvement when queries are short, and
a 35,000× runtime improvement when queries are
long. The main reason is that for the optimized
technique, there are much fewer completeness state-
ments considered in the reasoning.

C. Discussion

For short queries, our baseline approach, the stan-
dard hashing, shows the best performance, while for
long queries, tries perform better. Inverted indexes
appear not suitable for the retrieval task. Further-
more, completeness reasoning using the constant-
relevant technique takes just a few milliseconds, as
opposed to minutes for the unoptimized reasoning.

100 250 400 550 700 850 1,000

102

103

Number of CS’s in Thousands (a)

R
et

ri
ev

al
Ti

m
e

in
µ

s

100 250 400 550 700 850 1,000

102

103

104

Number of CS’s in Thousands (b)

R
et

ri
ev

al
Ti

m
e

in
µ

s

1 2 3 4 5 6

102

103

Max Length of CSs (c)

R
et

ri
ev

al
Ti

m
e

in
µ

s

1 2 3 4 5 6

102

103

104

Max Length of CSs (d)

R
et

ri
ev

al
Ti

m
e

in
µ

s

1 2 3 4 5 6

101

102

103

104

Query Length (e)
R

et
ri

ev
al

Ti
m

e
in
µ

s

Standard Hashing Inverted Trie

Fig. 1. Increasing Nc for short (a) and long queries (b); Increasing Lc for short (c) and long queries (d); Increasing Lq (e)

V. CONCLUSIONS

We presented techniques for efficient complete-
ness reasoning over large sets of statements based
on the constant-relevance principle to filter out a
large number of irrelevant completeness statements.
We developed retrieval techniques for constant-
relevant statements based on different index struc-
tures: standard hashing, inverted indexes, and tries.
Our experiments showed that the proposed tech-
niques enable the deployment of completeness rea-
soning to large datasets. For future work, we plan
to investigate completeness reasoning optimizations
with even more number of completeness statements
(e.g., hundreds of millions of statements). Exploring
other potential index structures for completeness
reasoning is also of our interest.

ACKNOWLEDGMENTS

This work was partially supported by TaDaQua,
funded by the Free University of Bolzano, Italy.

REFERENCES

[1] R. Y. Wang and D. M. Strong, “Beyond accuracy: What
data quality means to data consumers,” J. of Management
Information Systems, vol. 12, no. 4, pp. 5–33, 1996.

[2] W. Fan and F. Geerts, Foundations of Data Quality Manage-
ment, ser. Synthesis Lectures on Data Management. Morgan
& Claypool Publishers, 2012.

[3] F. Darari, W. Nutt, G. Pirrò, and S. Razniewski, “Completeness
statements about RDF data sources and their use for query
answering,” in ISWC, 2013.

[4] G. Klyne and J. J. Carroll, Eds., Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C Recom-
mendation, 10 February 2004.

[5] R. E. Prasojo, F. Darari, S. Razniewski, and W. Nutt, “Managing
and Consuming Completeness Information for Wikidata Using
COOL-WD,” in COLD, 2016.

[6] F. Darari, R. E. Prasojo, and W. Nutt, “CORNER: A complete-
ness reasoner for SPARQL queries over RDF data sources,” in
ESWC Posters & Demos, 2014.

[7] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao,
“Semantic SPARQL similarity search over RDF knowledge
graphs,” PVLDB, vol. 9, no. 11, pp. 840–851, 2016.

[8] S. Harris and A. Seaborne, Eds., SPARQL 1.1 Query Language.
W3C Recommendation, 21 March 2013.

[9] S. Helmer and G. Moerkotte, “A Performance Study of Four
Index Structures for Set-Valued Attributes of Low Cardinality,”
VLDB Journal, vol. 12, no. 3, 2003.

[10] J. Hoffmann and J. Koehler, “A New Method to Index and
Query Sets,” in IJCAI, 1999.

[11] I. Savnik, “Index Data Structure for Fast Subset and Superset
Queries,” in CD-ARES, 2013.

[12] J. Zobel, A. Moffat, and R. Sacks-Davis, “An Efficient Indexing
Technique for Full-Text Databases,” in VLDB, 1992.

[13] M. Arias, J. D. Fernández, M. A. Martı́nez-Prieto, and P. de la
Fuente, “An Empirical Study of Real-World SPARQL Queries,”
in USEWOD, 2011.

