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Abstract

We introduce a data-driven model order reduction (MOR) approach which can be viewed
as the generalization of the Loewner framework for quadratic-bilinear (QB) control systems.

For certain types of nonlinear systems, one can always find an equivalent QB model
without performing any approximation.

Proceed with appropriately defining generalized higher order transfer functions for QB
systems. These multi-variate rational functions play an important role in the MOR process.
We construct reduced order systems for which the associated transfer functions match those
corresponding to the original system at selected interpolations points.

The generalizations of the Loewner matrices can be directly computed by solving gener-
alized Sylvester equations with quadratic terms.

The advantage is that the approach is data-driven since one would only need com-
puted/measured samples to construct a reduced order QB system. We illustrate the practical
applicability of the proposed method by means of several numerical experiments resulting
from semi-discretized nonlinear partial differential equations.

1 Introduction

In broad terms, model order reduction (MOR) is used to replace large, complex models of time
dependent processes into much smaller, simpler models that are still capable of accurately repre-
senting the behavior of the original process under a variety of conditions.

The motivation for MOR stems from the need for accurate modeling of physical phenomena
that often leads to large-scale dynamical systems which require long simulation times and large
data storage. The reduced order models can be efficiently used as surrogates for the original model,
i.e., by replacing it as a component in large scale simulations.

Generally, large systems arise due to accuracy requirements on the spatial discretization of par-
tial differential equations for fluids, structures, or in the context of lumped-circuit approximations
of distributed circuit elements. For some applications, see [3, 7].

Model reduction methods can be classified in several broad categories, ranging from SVD-
based (e.g. balanced truncation), Krylov-based or moment matching methods, proper orthogonal
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decomposition (POD) and reduced basis (RB) methods. Most of these methods are included in the
broad family of projection based methods for which the internal state variable x is approximated
by the projected variable x̂ into a particular subspace. For details we refer the reader to the book
[3], the book chapter [4] and the surveys [5, 7, 13].

Many smooth nonlinear control systems can be rewritten as QB systems by taking derivatives
and adding algebraic equations [21]. In this way, no approximation is performed, the transformation
being exact. Nevertheless, this procedure generates a linear increase in the state dimension even
before the MOR step. Applications range from the Burgers’, Chafee-Infante and Navier-Stokes
equations to nonlinear RC circuits.

In particular, we are going to focus on data driven model order reduction methods and specif-
ically on the Loewner method (as was introduced in [27]).

Using rational functions, compute models that match (interpolate) given data sets of measure-
ments. In the context of linear systems, we start from data sets that contain frequency response
measurements and we seek reduced systems that models these measurements. This particular
property will be generalized for the QB nonlinear systems.

Since the proposed approach is data-driven, one would only need samples of the so-called
generalized transfer functions corresponding to the underlying system, to construct a reduced
order QB system. This corresponds to the case for which an original state-space model is not
available.

A main ingredient of the Loewner methodology is represented by the Loewner matrices L and
Ls. They are divided difference matrices which can be exclusively written in terms of the given
measured/computed data. It turns out, that for linear systems, these matrices can be factored in
terms of the E and A matrix corresponding to the underlying system.

The structure of the paper is described as; after the introduction in Section 1, we continue
with a short background on QB systems and some general properties of the Kronecker product in
Section 2. In Section 3 we introduce the generalization of the Loewner framework to QB systems
by constructing system matrices using computed data (samples of specifically chosen higher order
transfer functions). Then the theoretical discussions are illustrated in Section 4 via three numerical
examples.

1.1 Literature overview

In the following we present a short historical account of some contributions made towards reduction
of quadratic-bilinear systems by means of various methods (most of them projection-based).
• One of the first tries of reducing this class of dynamical systems was made by Chen. He

adapted the Arnoldi algorithm for building one sided projectors which can be applied to the
dimension reduction of QB systems by using a Krylov subspace generate from linearized analysis
(see [18, 19]).
• Li and Pileggi introduced a compact nonlinear MOR method (known as NORM) suitable

mostly to weakly nonlinear systems that can be well characterized by low-order Volterra functional
series. It is based on moment matching of nonlinear transfer functions by projection of the original
system onto a set of minimum Krylov sub-spaces (see [25]).
•Gu introduced the QLMOR framework which is basically a projection based moment matching

MOR approach that uses the quadratic-linear representation of nonlinear systems. The method
was proven to preserve local passivity and also to provide an upper bound on the number of
quadratic DAE’s derived from a polynomial system (see [21, 22, 23, 24]).

2



• Van Beeumen and Meerbergen adapted the widely use balanced truncation method to the
class of linear systems with quadratic output ([8]).
• Benner and Breiten extended the results from Gu by introducing Rational Krylov-subspace

based methods for quadratic-bilinear approximations of nonlinear systems. In particular, applica-
tion to QB differential algebraic equations (see [9, 10, 15]). Their work is continued in [1].
• We mention the more recent publications that cover the MIMO case (see [29, 30]).
• In recent years, increased attention has been allocated to MOR by means of (symmetric)

tensor decomposition. Such methods were applied for reducing QB systems (see [26, 20]).
• Recent breakthroughs were made by Benner, Goyal and collaborators who managed to adapt

two very well established MOR techniques, i.e., balanced truncation as well as the IRKA method,
to the class of QB systems (see [11, 12]). Also mention new results on reducing Stokes-type QB
systems in descriptor format (see [2]).

2 Quadratic-bilinear systems

We analyze quadratic-bilinear control systems ΣQB = (C,E,A,Q,N,B) characterized by the
following equations

ΣQB :
{

Eẋ(t) = Ax(t) + Q
(
x(t)⊗ x(t)

)
+ Nx(t)u(t) + Bu(t), y(t) = Cx(t), (1)

where E, A, N ∈ Rn×n, Q ∈ Rn×n2
, B,CT ∈ Rn and x ∈ Rn, u, y ∈ R. We discuss the

approximation of systems in (1), by constructing reduced-order models Σ̂QB = (Ĉ, Ê, Â, Q̂, N̂, B̂),
described by

Σ̂QB :
{

Ê̂̇x(t) = Âx̂(t) + Q̂
(
x̂(t)⊗ x̂(t)

)
+ N̂x̂(t)u(t) + B̂u(t), ŷ(t) = Ĉx̂(t), (2)

where Ê, Â, N̂ ∈ Rn×n, Q̂ ∈ Rn×n2
, B̂, ĈT ∈ Rk and x̂ ∈ Rk, ŷ ∈ R.

For simplicity of exposition, we will treat the single-input, single-output (SISO) case. The
multi-input case is technically more involved but it is based on the same ideas.

By splitting the internal variable x(t) corresponding to the original system ΣQB in an addi-
tive manner, i.e. , x(t) =

∑∞
i=1 xi(t), one can show that the differential equation in (1) can be

equivalently written as infinitely many equations corresponding to a set of coupled pseudolinear
sub-systems written in the following formatEẋ1(t) = Ax1(t) + Bu(t), i = 1

Eẋi(t) = Axi(t) + Q
( i−1∑
k=1

xk ⊗ xi−k
)

+ Nxi−1(t)u(t), i > 2,
(3)

where the solution of the subsystem at level i−1 is used as an additional input for the subsystem at
level i. This approach is widely known as the variational analysis approach and it was introduced
in [28]. It is assumed that the system ΣQB consists of a series of homogeneous subsystems, which
in turn follows that the solution to the differential equation when feeding the input au(t) can be
written as xa(t) =

∑∞
i=1 a

ixi(t) (where a > 0).
By explicitly computing the solution of the (i − 1)th equation in (3), and substituting it onto

the ith equation, the Volterra series expansion of x(t) is constructed (see [28]).
Next, generalized transfer functions can be computed by applying the multivariable Laplace

transform to the generelized impulse responses or kernels that form the expansion of the output
y(t). For explicit derivations of the symmetric transfer functions, we refer the readers to ([10, 1]).
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Out of the multitude of transfer functions that can be defined following the procedure described
above, we select some that follow a set of specific rules. For that, we introduce the next definitions.

Definition 2.1 Let Υ = {N,Q} and consider the functions c : Υ→ {1, 2}, Γ : Υ× Rc → Rn×n:

c(w) =

{
1, if w = N

2, if w = Q
, and Γ(w,S) =

{
Φ(s1), if w = N and S = {s1}
Φ(s1)B⊗Φ(s2), if w = Q and S = {s1, s2}

.

where Φ(x) = (xE−A)−1 is the resolvent of the pencil (A,E).

Denote with Υ` the set of all tuples of length ` with entries from Υ, i.e., for all ` > 1, write
Υ` = {(w1, w2, . . . , w`)|wk ∈ Υ, 1 6 k 6 `}. Moreover, let Υ0 = {ε} contain only the null symbol.

Definition 2.2 Let w ∈ Υ`, ` > 0. Then introduce the following functions

Hw
` (s1, s2, s3, . . . , sh) =

{
CΦ(s)B, ` = 0, w = ε

CΦ(s1)w(1)Γ(w(1),S1) · · ·w(`)Γ(w(`),S`)B, ` > 1
(4)

These newly introduced functions are divided in sub-categories or levels. Each level contains a
number of 2k functions, for k > 0. The transfer function corresponding to the linear counterpart
of ΣQB (level 0) is Hε

0(s) = C Φ(s) B; then continue to level 1, for which we write

H
(N)
1 (s1, s2) = C Φ(s1) N Φ(s2)B, H

(Q)
1 (s1, s2, s3) = C Φ(s1) Q

(
Φ(s2)B⊗Φ(s3)B

)
.

Thus, in general a kth level transfer function defined in (4) is a multivariate rational function
depending on h variables {s1, · · · , sh}, for k + 1 6 h 6 2k + 1.

Definition 2.3 Let Xk be the kth column of of the matrix X ∈ Rm×n. The vectorization of X is
represented by the mapping vec : Rm×n → Rmn obtained by including all the columns of X into a
column vector. It is represented by the mapping vec : Rm×n → Rmn. Additionally, introduce the
inverse vectorization operation as vec−1

m,n : Rmn → Rm×n

vec(X) =
[

XT
1 . . . XT

n

]T
, vec−1

m,n

(
vec(X)

)
= X.

If m = n, the notation vec−1
n (x) is going to be used instead.

Proposition 2.1 Given the following matrices, X ∈ Rm×n, Y ∈ Rp×q, Z ∈ Rn×r, V ∈ Rq×s and
W ∈ Rr×o, the identities hold

1. vec(XZW) =
(
WT ⊗X

)
vec(C),

2.
(
X⊗Y

)(
Z⊗V

)
=
(
XZ
)
⊗
(
YV

)
,

3.
(
X⊗Y

)(
V
)

= X⊗
(
YV

)
, for X ∈ Rm×1 (for n = r = 1 and Z = 1 in 2.),

4.
(
X⊗Y

)(
Z
)

=
(
XZ
)
⊗Y, for Z ∈ Rn×1 (for q = s = 1 and V = 1 in 2.).

Some of the results stated in Proposition 2.1 were also mentioned in [14]. They will used to
prove certain results in section 3.
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Proposition 2.2 The Kronecker product of two unit vectors is also an unit vector. When multi-
plying ej,m ∈ Rm and ek,n ∈ Rn, the product will be an unit vector of size mn, i.e.,

ej,m ⊗ ek,n = e(j−1)n+k,mn. (5)

The process of reshaping a 3-tensor X ∈ Rn×n×n into a matrix X(µ) ∈ Rn×n2
is known as the

matricization of the tensor X . Depending on the mode-µ fibers that are used for the unfolding,
there are three different ways to unfold the tensor (see [14]). This procedure is often called mode-µ
matricization of the the tensor.

Definition 2.4 Let X ∈ Rn×n2
be a matrix that scales the Kronecker product of the internal

variable x(t) with itself for a certain QB system. Consider X to be the mode-1 matricization of a
3-tensor X ∈ Rn×n×n. The frontal slices Xi ∈ Rn×n, i = {1, 2, . . . , n} corresponding to this tensor
are also a component of X, i.e., X = X (1) =

[
X1 X2 . . . Xn

]
The mode-µ matricizations (for

µ ∈ {2, 3}) of tensor X are defined as follows,

X (2) =
[ (
X1

)T (
X2

)T
. . .

(
Xn
)T ] , X (3) =

[
vec(X1) vec(X2) . . . vec(Xn)

]T
.

Definition 2.5 Given X ∈ Rn×n2
, define the matrix X(−1) ∈ Rn×n2

as follows

X(−1) =
[

vec−1
n

(
XTe1

)
vec−1

n

(
XTe2

)
· · · vec−1

n

(
XTen

) ]
. (6)

Example 2.1 Let Q = [Q1 Q2] ∈ R2×4 where the frontal slices Qk, k = 1, 2 correspond to the
tensor Q ∈ R2×2×2.

Q1 =

[
1 3
2 4

]
, Q2 =

[
5 7
6 8

]
.

Then it follows that

Q(1) =

[
1 3 5 7
2 4 6 8

]
, Q(2) =

[
1 2 5 6
3 4 7 8

]
,Q(3) =

[
1 2 3 4
5 6 7 8

]
, Q(−1) =

[
1 5 2 6
3 7 4 8

]
.

Proposition 2.3 Let Q ∈ Rn×n2
be a matrix and Q(−1) be defined in terms of Q as in (6). Then,

it follows that

Q(−1)
(
In ⊗ v

)
=
(
vT ⊗ In

)
QT , ∀ v ∈ Rn. (7)

3 The Loewner framework for QB systems

As already stated, our goal is the generalization of the Loewner framework to quadratic-bilinear
systems. This section presents the theoretical foundations of this approach while section 5.4
provides numerical simulations illustrating the theory.

3.1 The generalized controllability and observability matrices

Consider a quadratic-bilinear system ΣQB = (C,E,A,Q,N,B). Let S = {ω1, ω2, . . . , ωm} be the
set of interpolation points. First partition this set into two disjoint sets corresponding to left and
right points: S = {µ1, µ2, . . . , µq} ∪ {λ1, λ2, . . . , λk}, where q + k = m. Moreover, consider that
both q and k are multiples of 3.
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Definition 3.1 We define the nested right multi-tuples and the nested left multi-tuples

λ =
{
λ(1),λ(2), . . . ,λ(k†)

}
, µ =

{
µ(1),µ(2), . . . ,µ(q†)

}
, (8)

composed of the right ith tuples and the left jth tuples:

λ(i) =


(λ

(i)
1 ),

(λ
(i)
2 , λ

(i)
1 ),

(λ
(i)
3 , λ

(i)
1 , λ

(i)
1 ).

, µ(j) =


(µ

(j)
1 ),

(µ
(j)
1 , µ

(j)
2 ),

(µ
(j)
1 , λ

(j)
1 , µ

(j)
3 ).

, (9)

where λ
(i)
1 , λ

(i)
2 , λ

(i)
3 , µ

(j)
1 , µ

(j)
2 , µ

(j)
3 ∈ C and 3k† = k, 3q† = q. Here we denote with k† and q† the

number of ’ladder’ structures corresponding to the right and left multi-tuples respectively.

Note that these indices satisfy a nestedness property, namely, each row in λ(i) (µ(j)) is contained
in the subsequent ones. To these tuples the following matrices are associated

R(i) =
[
Φ(λ

(i)
1 ) B, Φ(λ

(i)
2 ) N Φ(λ

(i)
1 ) B, Φ(λ

(i)
3 )NΦ(λ

(i)
2 ) N Φ(λ

(i)
1 ) B

]
,

for i = 1, . . . , k† where R(i) ∈ Cn×3 is attached to λ(i). The matrix

R =
[
R(1), R(2), · · · , R(k†)

]
∈ Cn×k, (10)

is defined as the generalized controllability matrix of the bilinear system Σ, associated with the
right multi-tuple λ. Similarly, to the left tuple we associate the matrices

O(j) =

 C Φ(µ
(j)
1 )

C Φ(µ
(j)
1 ) N Φ(µ

(j)
2 )

C Φ(µ
(j)
1 ) Q

(
Φ(λ

(j)
1 )B⊗Φ(µ

(j)
3 )
)
 ∈ C3×n,

and the generalized observability matrix, as

O =

 O
(1)

...

O(q†)

 ∈ Cq×n. (11)

Example 3.1 For instance, by taking q = 6, q† = 2, the corresponding O can be written:

O =



C Φ(µ
(1)
1 )

C Φ(µ
(1)
1 ) N Φ(µ

(1)
2 )

C Φ(µ
(1)
1 ) Q

(
Φ(λ

(1)
1 )B⊗Φ(µ

(1)
3 )
)

C Φ(µ
(2)
1 )

C Φ(µ
(2)
1 ) N Φ(µ

(2)
2 )

C Φ(µ
(2)
1 ) Q

(
Φ(λ

(2)
1 )B⊗Φ(µ

(2)
3 )
)


Definition 3.2 Consider two tuples composed of elements (symbols) α1, ..., αi, and β1, ..., βj that
are part of the finite set Ω. Introduce the concatenation of such tuples as the mapping } : Ωi×Ωj →
Ωi+j with the following property(

α1, α2, . . . , αi
)
}
(
β1, β2, . . . , βj

)
=
(
α1, α2, . . . αi, β1, β2, . . . βj

)
.
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The following lemma extends the rational interpolation idea for linear systems approximation
(see e.g. [3] Chapter 11.3) to the quadratic-bilinear case.

Lemma 3.1 Interpolation of QB systems; let ΣQB = (C,E,A,Q,N,B) be a quadratic-bilinear
system of order n and assume that Q is written in the format from Proposition 2.2.14. Consider
that ΣQB is projected to a kth order system by means of X = R and YT = O (as defined in (10)

and (11)). The reduced system Σ̂ = (Ĉ, Ê, Â, Q̂, N̂, B̂), of order k, where

Ê = YTEX, Â = YTAX, Q̂ = YTQ
(
X⊗X

)
, N̂ = YTNX, B̂ = YTB, Ĉ = CX,

satisfies the following interpolation conditions (where w = (ε,N,Q), ŵ = (ε, N̂, Q̂), i, j ∈
{1, 2, . . . , k†}, `, h, h1, h3 ∈ {1, 2, 3} with h1 ∨ h2 = 1):

k conditions:


Hε

0(µ(j)(1)) = Ĥε
0(µ(j)(1))

HN
1 (µ(j)(2)) = ĤN

1 (µ(j)(2))

HQ
1 (µ(j)(3)) = ĤQ

1 (µ(j)(3))

, or H
w(`)
|w(`)|(µ

(j)(`)) = Ĥ
ŵ(`)
|ŵ(`)|(µ

(j)(`)), (12)

k conditions:


Hε

0(λ(i)(1)) = Ĥε
0(λ(i)(1))

HN
1 (λ(i)(2)) = ĤN

1 (λ(i)(2))

HQ
1 (λ(i)(3)) = ĤQ

1 (λ(i)(3))

, or H
w(h)
|w(h)|(λ

(i)(h)) = Ĥ
ŵ(h)
|ŵ(h)|(λ

(i)(h)), (13)

k2 conditions: H
w(`)}N}v(h)
|w(`)|+|v(h)|+1(µ(j)(`) } λ(i)(h)) = Ĥ

ŵ(`)}N̂} ˆw(h)
|ŵ(`)|+|ŵ(h)|+1(µ(j)(`) } λ(i)(h)), (14)

δ(k) conditions: H
w(`)}Q}w(h1)}w(h2)
|w(`)|+|w(h1)|+|w(h2)|+1(µ(j)(`) } λ(i)(h1) } λ(i)(h2))

= Ĥ
ŵ(`)}Q}ŵ(h1)}ŵ(h2)
|ŵ(`)|+|ŵ(h1)|+|ŵ(h2)|+1(µ(j)(`) } λ(i)(h1) } λ(i)(h2)), (15)

where δ(k) = (k+1)k2

2
− (2k+3)k2

9
. Additionally, a number of (2k+3)k2

9
interpolation conditions are also

satisfied which can not directly be written in terms of the functions introduced in (4). Thus, in

total 2k + k2 + (k+1)k2

2
moments (interpolation conditions) are matched.

Remark 3.1 Since the Q matrix satisfies the condition stated in Proposition 2.2.14, then the
identities in (??) hold. Hence, the total number of moments matched should be less than the
predicted number, i.e., 2k+k2 +k3. By excluding the moments which are counted twice, it follows

that the total number of moments matched using this procedure is instead 2k + k2 + (k+1)k2

2
.

3.1.1 Sylvester equations for O and R

The generalized controllabilty and observability matrices satisfy Sylvester equations. To state the
corresponding result we first need to define some quantities. Introduce the matrices

R =
[
eT1,3 · · · eT1,3

]
∈ R1×k, LT =

[
eT1,3 · · · eT1,3

]
∈ R1×q, (16)

and the block-shift matrices

ZR = Ik† ⊗ e1,3 ⊗ eT2,3 ∈ Rk×k, ZL = Iq† ⊗ eT1,3 ⊗ e2,3 ∈ Rq×q, (17)

YR =
k†∑
j=1

e3j−2,k ⊗ e3j−2,k ⊗ eT3j,k ∈ Rk2×k, YL =

q†∑
j=1

eT3j−2,q ⊗ eT3j−2,q ⊗ e3j,q ∈ Rq×q2 . (18)
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as well as the matrices,

Y
(j)
R = e3j−2,k ⊗ e3j−2,k ⊗ eT3j,k ∈ Rk2×k, Y

(j)
L = eT3j−2,q ⊗ eT3j−2,q ⊗ e3j,q ∈ Rq×q2 , (19)

and hence write YR =
∑k†

j=1 Y
(j)
R and also YL =

∑q†

j=1 Y
(j)
L . Next, arrange the interpolation points

in diagonal matrices format (as for the linear and bilinear cases), i.e.,

M = blkdiag [M1, M2, · · · , Mq† ], Λ = blkdiag [Λ1, Λ2, · · · , Λk† ]. (20)

where Mj = diag [µ
(j)
1 , µ

(j)
2 , µ

(j)
3 ] and Λi = diag [λ

(i)
1 , λ

(i)
2 , λ

(i)
3 ].

Additionally, introduce the following matrices (for j ∈ {1, 2, . . . , q†})

X(j) = ej,q† ⊗ eTj,q† ⊗ e1,3 ⊗ eT3,3 ∈ Rq×q, (21)

T(j) = In ⊗ e3j−2,k ∈ Rnk×n, (22)

U(j) = e3j−2,k ⊗ Ik ∈ Rk2×k. (23)

Lemma 3.2 The generalized reachability matrix R defined in (10) satisfy the following generalized
Sylvester equation:

AR+ Q
(
R⊗R

)
YR + NRZR + B R = ERΛ. (24)

Proof 3.1 Multiply equation (24) to the right with the unit vector e3j−2,k (1 6 j 6 k†)

AR3j−2 + B = λ3j−2ER3j−2 ⇔ R3j−2 = (λ3j−2E−A)−1B = Φ(λ3j−2)B. (25)

Thus the (3j − 2)th column of the matrix which is the solution of (24) is indeed equal to the
(3j − 2)th column of the generalized controllability matrix R. By multiplying the same equation
on the right with the unit vector e3j−1,k obtain

AR3j−1 + NR3j−2 = λ3j−1ER3j−1 ⇔ R3j−1 = (λ3j−1E−A)−1NR3j−2. (26)

By substituting (25) into (26), we get that

R3j−1 = (λ3j−1E−A)−1N(λ3j−2E−A)−1B = Φ(λ3j−1)NΦ(λ3j−2)B.

By again multiplying equation (24) to the right, this time with the unit vector e3j,k, write

AR3j + Q
(
R⊗R

)(
e3j−2,k ⊗ e3j−2,k

)
= λ3jER3j ⇔ (λ3jE−A)R3j = Q

(
R3j−2 ⊗R3j−2

)
⇔ R3j = (λ3jE−A)−1Q

(
R3j−2 ⊗R3j−2

)
= Φλ3jQ

(
R3j−2 ⊗R3j−2

)
. (27)

By substituting (25) into (27), we get that

R3j = Φ(λ3j)Q
(
Φ(λ3j−2)B⊗Φ(λ3j−2)B

)
.

By putting together all the results above, it follows that indeed, the generalized reachability matrix
R construcetd in (10) satisfies equation (24).

Lemma 3.3 The generalized observability matrix O defined in (11) satisfies the following gener-
alized Sylvester equation:

OA +

q†∑
j=1

X(j)OQ
(
R3j−2 ⊗ I

)
+ ZLON + L C = MOE, (28)

or equivalently

OA +

q†∑
j=1

X(j)OQ
(
I⊗R

)
T(j) + ZLON + L C = MOE. (29)
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Proof 3.2 Multiply equation (28) to the right with the row vector eT3j−2,k (1 6 j 6 k†)

OT3j−2A + C = µ3j−2OT3j−2E ⇔ OT3j−2 = C(µ3j−2E−A)−1 = CΦ(µ3j−2). (30)

Multiplying the same equation on the right with the row vector eT3j−1,k obtain:

OT3j−1A +OT3j−2N = µ3j−1OT3j−1E ⇔ OT3j−1 = OT3j−2N(µ3j−1E−A)−1. (31)

By substituting (30) into (31), we get that

OT3j−1 = C(µ3j−2E−A)−1N(µ3j−1E−A)−1 = CΦ(µ3j−2)NΦ(µ3j−1).

Finally, multiplying equation (28) to the right, this time with the row vector eT3j,k, write

OT3jA +OT3j−2Q
(
R⊗ I

)
= µ3jOT3jE ⇔ OT3j(µ3jE−A) = OT3j−2Q

(
R3j−2 ⊗ I

)
⇔ OT3j = OT3j−2Q

(
R3j−2 ⊗ I

)
(µ3jE−A)−1 = OT3j−2Q

(
R3j−2 ⊗Φ(µ3j)

)
. (32)

By substituting (30) into (32), we get that

O3j = CΦ(µ3j−2)Q
(
Φ(λ3j−2)B⊗Φ(µ3j)

)
.

By putting together all the results above, it follows that indeed, the generalized observability
matrix O construcetd in (11) satisfies equation (28). We can write for j ∈ {1, 2, . . . , k†}

Q
(
R3j−2 ⊗ I

)
= Q

(
I⊗R3j−2

)
= Q

(
I⊗Re3j−2,k

)
= Q

(
I⊗R

)(
I⊗ e3j−2,k

)
= Q

(
I⊗R

)
T(j).

Hence justify that the equation (28) can be rewritten as (29).

Proposition 3.1 Moreover, equation (28) can be further simplified by replacing the Q matrix with
Q(−1) (introduced in Definition 2.2.19) as follows,

OA + YL

(
O ⊗RT

)(
Q(−1)

)T
+ ZLON + L C = MOE. (33)

Proof 3.3 First show that, for all j ∈ {1, 2, . . . , q†}, we have that X(j) ⊗ eT3j−2,k = Y
(j)
L . Note

that, using the original definition of X(j) and Y
(j)
L from (21) and (19) as well as the the result in

(5), one can write the following

X(j) ⊗ eT3j−2,k = ej,k† ⊗ eTj,k† ⊗ eT1,3 ⊗ e3,3 ⊗ eT3j−2,k = ej,k† ⊗ eT3j−2,k ⊗ e3,3 ⊗ eT3j−2,k

=
(
ej,k†e

T
3j−2,k

)
⊗
(
e3,3 ⊗ eT3j−2,k

)
=
(
ej,k† ⊗ e3,3

)(
eT3j−2,k ⊗ eT3j−2,k

)
= e3j,k

(
eT3j−2,k ⊗ eT3j−2,k

)
,

Y
(j)
L = eT3j−2,k ⊗ eT3j−2,k ⊗ e3j,k = e3j,k

(
eT3j−2,k ⊗ eT3j−2,k

)
.

We apply the result in (7) for v = R3j−2, j ∈ {1, 2, . . . , k†}, i.e.,

Q
(
R3j−2 ⊗ I

)
=
(
I⊗RT

3j−2

)(
Q(−1)

)T
.

By multiplying to the left with X(j)O (for j ∈ {1, 2}), it follows that

X(j)OQ
(
R3j−2 ⊗ I

)
= X(j)O

(
I⊗RT

3j−2

)(
Q(−1)

)T
= X(j)

(
O ⊗RT

3j−2

)(
Q(−1)

)T
= X(j)

[(
IkO

)
⊗
(
eT3j−2,kRT

)](
Q(−1)

)T
= X(j)

(
Ik ⊗ eT3j−2,k

)(
O ⊗RT

)(
Q(−1)

)T
=
(
X(j) ⊗ eT3j−2,k︸ ︷︷ ︸

Y
(j)
L

)(
O ⊗RT

)(
Q(−1)

)T
= Y

(j)
L

(
O ⊗RT

)(
Q(−1)

)T
. (34)

By substituting (34) into (28), it follows that the equation which characterizes the observability
matrix O, can be rewritten as in (33).
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Corollary 3.1 The Sylvester equation in (33) has unique solution if the interpolation points in
(20)are chosen so that the Sylvester operator

LO = AT ⊗ In − ET ⊗M +
(
Q(−1) ⊗YL

)
J
(
vec(RT )⊗ In2

)
+ NT ⊗ ZL

is invertible, i.e., has no zero eigenvalues. Here, J ∈ Rn4×n4
is a permutation matrix that allows to

write the vectorization of the Kronecker product between any two matrices U,V ∈ Rn as follows

vec(U⊗V) = J
(
vec(V)⊗ In2

)
vec(U)

Here it is assumed that the reachability matrix R has been already computed.

3.2 The generalized Loewner pencil

Given the notations introduced in section 5.3.1, we introduce the appropriate generalizations of
the Loewner matrices.

Definition 3.3 Consider a quadratic-bilinear system ΣQB, and let R and O be the reachability and
observability matrices associated with the multi-tuples (8) and defined by (10), (11) respectively.
The Loewner matrix L, and the shifted Loewner matrix Ls are defined as

L = −OER, Ls = −OAR . (35)

In addition we define the quantities

Ω = OQ (R⊗R), Ψ = ONR, V = OB and W = CR . (36)

Note that L and Ls as defined above are indeed Loewner matrices, that is, they can be expressed
as divided differences of appropriate transfer function values of the underlying bilinear system, as
shown in the next example.

Example 3.2 Given the SISO quadratic-bilinear system ΣQB characterized by the collection of
matrices (C,E,A,Q,N,B), where E,A,N ∈ Rn×n,Q ∈ Rn×n2

and B,CT ∈ Rn, consider 6
interpolation points {ω1, ω2, . . . , ω6}. First partition this set into two disjoint sets corresponding
to left and right points, as {µ1, µ2, µ3}∪{λ1, λ2, λ3}. Next consider the ordered tuples of right and
left interpolation points, i.e.,

λ =
{

(λ1), (λ2, λ1), (λ3, λ1, λ1)
}
, µ =

{
(µ1), (µ1, µ2), (µ1, λ1, µ3)

}
.

The associated generalized observability and reachability matrices are constructed

R =
[

Φ(λ1)B Φ(λ2)NΦ(λ1)B Φ(λ3)Q
(
Φ(λ1)B⊗Φ(λ1)B

) ]
,

O =

 CΦ(µ1)
CΦ(µ1)NΦ(µ2)

CΦ(µ1)Q
(
Φ(λ1)B⊗Φ(µ3)

)
 .

Apart from the linear transfer function H(s) = CΦ(s)B, consider the following level 1 transfer
functions, as {

HN
1 (s1, s2) = CΦ(s1)NΦ(s2)B,

HQ
1 (s1, s2, s3) = CΦ(s1)Q

(
Φ(s2)B⊗Φ(s3)

)
B.

(37)
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Also mention the following level 2 transfer functions
HN,N

2 (s1, s2, s3) = CΦ(s1)NΦ(s2)NΦ(s3)B,

HN,Q
2 (s1, s2, s3, s4) = CΦ(s1)NΦ(s2)Q

(
Φ(s3)B⊗Φ(s4)

)
B,

HQ,N
2 (s1, s2, s3, s4) = CΦ(s1)Q

(
Φ(s2)B⊗Φ(s3)

)
NΦ(s4)B,

HQ,Q
2 (s1, s2, s3, s4, s5) = CΦ(s1)Q

(
Φ(s2)B⊗Φ(s3)

)
Q
(
Φ(s4)B⊗Φ(s5)

)
B.

(38)

Remark 3.2 The purely bilinear transfer functions were already used in chapter 4 in (??). To
make the notation consistent, one can use the following conversion formula

HN,N,...,N
j (s1, . . . , sj+1) = Hj+1(s1, . . . , sj+1).

Remark 3.3 The recovered system matrices corresponding to E,A,B and C can be directly writ-
ten using only samples coming from the 7 transfer functions mentioned above in (37) and in (38)
(including the linear one H(s)).

Next write the Loewner matrix L = −OER as a divided difference matrix as follows

L =


H(µ1)−H(λ1)

µ1−λ1

HN
1 (µ1,λ1)−HN

1 (λ2,λ1)
µ1−λ2

HQ
1 (µ1,λ1,λ1)−HQ

1 (λ3,λ1,λ1)
µ1−λ3

HN
1 (µ1,µ2)−HN

1 (µ1,λ1)
µ2−λ1

HN,N
2 (µ1,µ2,λ1)−HN,N

2 (µ1,λ2,λ1)
µ2−λ2

HN,Q
2 (µ1,µ2,λ1,λ1)−HN,Q

2 (µ1,λ3,λ1,λ1)
µ2−λ3

HQ
1 (µ1,λ1,µ3)−HQ

1 (µ1,λ1,λ1)
µ3−λ1

HQ,N
2 (µ1,λ1,µ3,λ1)−HQ,N

2 (µ1,λ1,λ2,λ1)
µ3−λ2

HQ,Q
2 (µ1,λ1,µ3,λ1,λ1)−HQ,Q

2 (µ1,λ1,λ3,λ1,λ1)
µ3−λ3


Similarly, the shifted Loewner matrix is written as a divided difference matrix of samples coming
from the same type of transfer functions.

Ls =


µ1H(µ1)−λ1H(λ1)

µ1−λ1 · · · µ1HQ
1 (µ1,λ1,λ1)−λ3HQ

1 (λ3,λ1,λ1)
µ1−λ3

µ2HN
1 (µ1,µ2)−λ1HN

1 (µ1,λ1)
µ2−λ1

. . . µ2HN,Q
2 (µ1,µ2,λ1,λ1)−λ3HN,Q

2 (µ1,λ3,λ1,λ1)
µ2−λ3

µ3HQ
1 (µ1,λ1,µ3)−λ1HQ

1 (µ1,λ1,λ1)
µ3−λ1 . . .

µ3HQ,Q
2 (µ1,λ1,µ3,λ1,λ1)−λ3HQ,Q

2 (µ1,λ1,λ3,λ1,λ1)
µ3−λ3

 .

Note that the V and W vectors can be written in terms of samples coming from level 0 and 1
transfer functions in the following way

V =

 H(µ1)
HN

1 (µ1, µ2)

HQ
1 (µ1, λ1, µ3)

 , W =
[

H(λ1) HN
1 (λ2, λ1) HQ

1 (λ3, λ1, λ1)
]
.

Consider the following level 3 transfer functions
HN,N,N

3 (s1, s2, s3, s4) = CΦ(s1)NΦ(s2)NΦ(s3)NΦ(s4)B,

HN,N,Q
2 (s1, s2, s3, s4, s5) = CΦ(s1)NΦ(s2)NΦ(s3)Q

(
Φ(s4)B⊗Φ(s5)

)
B,

HQ,N,N
2 (s1, s2, s3, s4, s5) = CΦ(s1)Q

(
Φ(s2)B⊗Φ(s3)

)
NΦ(s4)NΦ(s5)B,

HQ,N,Q
2 (s1, . . . , s6) = CΦ(s1)Q

(
Φ(s2)B⊗Φ(s3)

)
NΦ(s4)Q

(
Φ(s5)B⊗Φ(s6)B

)
.

(39)

Remark 3.4 The recovered N matrix, i.e., Ξ = ONR, can be written solely in terms of samples
coming from transfer functions of the first two levels and in terms of the four functions mentioned
in (39). Hence write the matrix Ξ ∈ R3×3 as
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Ξ =

 HN
1 (µ1, λ1) HN,N

2 (µ1, λ2, λ1) HN,Q
2 (µ1, λ3, λ2, λ1)

HN,N
2 (µ1, µ2, λ1) HN,N,N

3 (µ1, µ2, λ2, λ1) HN,N,Q
3 (µ1, µ2, λ3, λ2, λ1)

HQ,N
2 (µ1, λ1, µ3, λ1) HQ,N,N

3 (µ1, λ1, µ3, λ2, λ1) HQ,N,Q
3 (µ1, λ1, µ2, λ3, λ2, λ1)


Consider the other four transfer functions that correspond to level 3, i.e.,

HN,Q,N
2 (s1, . . . , s5) = CΦ(s1)NΦ(s2)Q

(
Φ(s3)B⊗Φ(s4)

)
NΦ(s5)B,

HN,Q,Q
2 (s1, . . . , s6) = CΦ(s1)NΦ(s2)Q

(
Φ(s3)B⊗Φ(s4)

)
Q
(
Φ(s5)B⊗Φ(s6)

)
B,

HQ,Q,N
3 (s1, . . . , s6) = CΦ(s1)Q

(
Φ(s2)B⊗Φ(s3)

)
Q
(
Φ(s4)B⊗Φ(s5)

)
NΦ(s6)B,

HQ,Q,Q
2 (s1, . . . , s7) = CΦ(s1)Q

(
Φ(s2)B⊗Φ(s3)

)
Q
(
Φ(s4)B⊗Φ(s5)

)
Q
(
Φ(s6)B⊗Φ(s7)

)
B.

(40)

Remark 3.5 The recovered Q matrix, i.e., Ω = OQR, can be written in terms of samples coming
from transfer functions previously mentioned in (37), (38) and (39) and, on top of that, in terms
of functions in (40).

Hence write the matrix Ω ∈ R3×9 as follows

Ω =


HQ

1 (µ1, λ1, λ1) HQ,N
2 (µ1, λ1, λ2, λ1) HQ,Q

2 (µ1, λ1, λ3, λ1, λ1) · · ·

HN,Q
2 (µ1, µ2, λ1, λ1) HN,Q,N

3 (µ1, µ2, λ1, λ2, λ1) HN,Q,Q
3 (µ1, µ2, λ1, λ3, λ1, λ1)

. . .

HQ,Q
2 (µ1, λ1, µ3, λ1, λ1) HQ,Q,N

3 (µ1, λ1, µ3, λ1, λ2, λ1) HQ,Q,Q
3 (µ1, λ1, µ3, λ3, λ1, λ3, λ1, λ1) · · ·


Remark 3.6 Some entries of the Ω matrix can not be directly written in terms of samples of
transfer functions defined in (4). Nevertheless, we can overcome this issue by altering the Q
matrix. In this way we successfully keep the simplified format of transfer functions from (4). For
example, we rewrite the entries of Ω as follows (for brevity choose only two examples)

Ω(1, 5) = O1Q
(
R2 ⊗R2

)
= CΦ(µ1)Q

(
Φ(λ2)NΦ(λ1)B⊗Φ(λ2)NΦ(λ1)B

)
= CΦ(µ1)Q

(
Φ(λ2)NΦ(λ1)B⊗Φ(λ2)

)
NΦ(λ1)B

= CΦ(µ1) Q
(
Φ(λ2)N⊗ I

)︸ ︷︷ ︸
Q̄

(
Φ(λ1)B⊗Φ(λ2)

)
NΦ(λ1)B = HQ̄,N

2 (µ1, λ1, λ2, λ1).

Ω(1, 9) = O1Q
(
R3 ⊗R3

)
= CΦ(µ1)Q

(
Φ(λ3)QΦ(λ1)B⊗Φ(λ1)B

)
⊗
(
Φ(λ3)QΦ(λ1)B⊗Φ(λ1)B

)
= CΦ(µ1)Q

[(
Φ(λ3)QΦ(λ1)B⊗Φ(λ1)B

)
⊗Φ(λ3)

]
Q
(
Φ(λ1)B⊗Φ(λ1)B

)
= CΦ(µ1) Q

[
Φ(λ3)Q

(
Φ(λ1)B⊗ I

)
⊗ I
]︸ ︷︷ ︸

Q̃

(
Φ(λ1)B⊗Φ(λ3)

)
Q
(
Φ(λ1)B⊗Φ(λ1)B

)
= HQ̃,Q

2 (µ1, λ1, λ3, λ1, λ1).

It readily follows that given the QB system ΣQB, a reduced QB system of order three, can be
directly obtained without computation (matrix factorizations or solves). This reduced system

matches 2k + k2 + (k+1)k2

3
− (2k+3)k2

9
= 24 (for k = 3) moments (of the original system) that

can be directly written in the format defined in (4). Below, enumerate these values as follows
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(two corresponding to the linear transfer function on level 1, six corresponding to level 1, eight
corresponding to level 2 and finally, eight corresponding to level 3), as

two of H : H(µ1), H(λ1),

three of HN
1 : HN

1 (µ1, µ2), HN
1 (µ1, λ1), HN

1 (λ2, λ1),

three of HQ
1 : HQ

1 (µ1, λ1, µ3), HQ
1 (µ1, µ2, λ1), HQ

1 (µ1, λ2, λ1),

two of HN,N
2 : HN,N

2 (µ1, µ2, λ1), HN,N
2 (µ1, λ2, λ1),

two of HN,Q
2 : HN,Q

2 (µ1, λ3, λ2, λ1), HN,Q
2 (µ1, µ2, λ1, λ1),

two of HQ,N
2 : HQ,N

2 (µ1, λ1, µ3, λ1), HQ,N
2 (µ1, λ1, λ2, λ1),

two of HQ,Q
2 : HQ,Q

2 (µ1, λ1, λ3, λ1, λ1), HQ,Q
2 (µ1, λ1, µ3, λ1, λ1),

eight of Hw
3 : HN,N,N

3 (µ1, µ2, λ2, λ1), HN,N,Q
3 (µ1, µ2, λ3, λ2, λ1),

. . . , HQ,Q,Q
3 (µ1, λ1, µ3, λ3, λ1, λ3, λ1, λ1), w ∈ Υ3.

as well as (2k+3)k2

9
= 9 (for k = 3) moments (of the original system) that can not be directly

written in the format from (4). Hence the total number of moments matched using this

procedure is 2k + k2 + (k+1)k2

2
= 33, for k = 3.

3.2.1 Properties of the Loewner pencil

We will prove that the quantities defined earlier satisfy various equations which generalize the ones
for the linear and bilinear cases.

Proposition 3.2 The Loewner and shifted Loewner matrices satify the following relations

Ls = LΛ + ΩYR + ΞZR + VR, (41)

Ls = ML +
k†∑
j=1

X(j)ΩU(j) + ZTΞ + LW. (42)

Proof 3.4 By multiplying equation (24) with O to the left, it follows that we can write:

OAR︸ ︷︷ ︸
−Ls

+OQ
(
R⊗R︸ ︷︷ ︸
Ω

)
YR +ONR︸ ︷︷ ︸

Ψ

ZR + OB︸︷︷︸
V

R = OER︸ ︷︷ ︸
−L

Λ.

Now by substituting the projected matrices defined in (35) and (36) onto the above equation,

it directly follows that the relation (41) is verified. Moreover, by multiplying equation (28)

with R to the right, it follows that we can write

OAR+
k†∑
j=1

X(j)OQ
(
R3j−2 ⊗ I

)
R+ ZTONR+ LCR = MOER. (43)

Using basic properties of the Kronecker product from Proposition 5.2.1, the following holds for
j ∈ {1, 2}(
R3j−2 ⊗ I

)
R = R3j−2 ⊗R = (Re3j−2,k)⊗ (RIk) = (R⊗R)(e3j−2,k ⊗ Ik) = (R⊗R)U(j).
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Now replacing this equality into (43), we write

OAR︸ ︷︷ ︸
−Ls

+
k†∑
j=1

X(j)OQ
(
R⊗R

)︸ ︷︷ ︸
Ω

U(j) + ZT ONR︸ ︷︷ ︸
Φ

+L CR︸︷︷︸
W

= MOER︸ ︷︷ ︸
−L

.

Again, by substituting the projected matrices defined in (35) and (36) onto the above equation, it
directly follows that the relation (42) is verified.

Proposition 3.3 The Loewner matrix satisfies the following Sylvester equation

ML− LΛ = (VR + ΞZ + +ΩY)− (LW + ZTΞ +
k†∑
j=1

X(j)ΩU(j)). (44)

Proof 3.5 This result directly follows by subtracting equation (41) from equation (42).

Proposition 3.4 The shifted Loewner matrix satisfies the following Sylvester equation:

MLs − LsΛ = (MVR + MΞZ + MΩY)− (LWΛ + ZTΞΛ +
k†∑
j=1

X(j)ΩU(j)Λ) (45)

Proof 3.6 This result directly follows by subtracting equation (42) multiplied with Λ to the right
from equation (41) multiplied with M to the left.

3.3 Construction of reduced order models

As was already specified, the interpolation data for the quadratic-bilinear case is more complex
than for the bilinear case, as higher order transfer function of purely quadratic as well as mixed
quadratic-bilinear transfer functions functions need to betaken into account. However, the rest of
the procedure remains more or less unchanged. As in the case of linear and bilinear systems, the
following result holds

Lemma 3.4 Assume that k = q, and let (Ls, L), be a regular pencil, such that none of the
interpolation points λi, µj are its eigenvalues. Then it follows that the matrices

Ê = −L, Â = −Ls, Q̂ = Ω, N̂ = Ψ, B̂ = V, Ĉ = W,

form a realization of a QB system that interpolates the data.

In the case of redundant data, the pencil (Ls, L) is singular, and if the condition (??) is satisfied,
we construct the projection matrices X,Y ∈ Rk×r as in (??).

Theorem 3.1 The sextuple (Ĉ, Ê, Â, Q̂, N̂, B̂) given by

Ê = −Y∗LX, Â = −Y∗LsX, Q̂ = Y∗Ω
(
X⊗X

)
, N̂ = Y∗ΨX, B̂ = Y∗V, Ĉ = WX,

is the realization of a reduced QB system that approximately interpolates the given data. If the
truncated singular values are all zero, then the interpolation is exact.

Remark 3.7 Thus, as in the linear case, if we have more data than necessary, we can either
consider (W,−L,−Ls, Ψ,V) as an exact but singular model of the data or

(WX,−Y∗LX,−Y∗LsX, Y∗Ω
(
X⊗X

)
, Y∗ΨX, Y∗V),

as an approximate (nonsingular) model of the data. The use of the Drazin or Moore-Penrose
pseudo inverses holds as in the linear case (see [?]).
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4 Numerical experiments

4.1 Burgers’ equation

The first example we present in this section is the viscous Burgers’ equation which was already
studied in the context of model reduction for Carleman linearized large-scale bilinear systems in
chapter 4, section 4.5.3.

We denote by Σ0 the original nonlinear system for which the state variable has dimesnion
n = 50; furthermore, ΣB denotes 2550th order approximation of Σ0, obtained by means of the
Carleman bilinearization, and ΣQB denotes the quadratic bilinear form of Σ0 (no approximation
involved) of order 50. The system will be reduced by means of the following four methods:

1. ΣB is reduced using Loewner to obtain Σ1 of order 30.

2. ΣQB is reduced using Loewner to obtain Σ2 of order 16.

3. Σ0 is reduced using standard POD method to obtain Σ3 of order 16.

4. Σ0 is reduced using discrete empirical interpolation method (or DEIM, see [16, 17]) to obtain
Σ4 of order 16.
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Figure 1: Singular values of the Loewner pencil; (a) bilinear; (b) quadratic-bilinear.

The first step is to collect samples from appropriately defined generalized transfer functions
and plot the singular values of the ensuing Loewner pencil. As illustrated in Fig. 5.1, we notice
that σ1 = 1, σ30 ≈ 10−15, i.e., the 30th singular value attains machine precision. We choose the
reduced order rb = 30 for the bilinear case. For the quadratic=bilinear case, a steeper drop in
singular values is noticed. The order rq = 16 was chosen instead.

In Fig. 5.2, the distribution of the poles corresponding to both ΣB and ΣQB is depicted. Note
that the A matrix corresponding to both reduced systems is Hurwitz (since all the poles are in
the left half of the complex plane).

Next, we compare the time-domain response of the original nonlinear system against the re-
sponses of the reduced models , when the input is u(t) = 0.2(cos(2πt) + cos(4πt)). For the
POD based approximation, collect snapshots of the true solution for the training input u1(t) =
10 sin(4t)e−t/2, and then compute the projection by taking the most 16 dominant basis vectors.

In Fig. 5.3 we depict the respective outputs. By examining the plot, observe that all but one
outputs seem to follow the same path; the one corresponding to the bilinear Loewner method
deviates from the original output, i.e., the dotted red curve does not follow the black curve.
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Figure 3: Time domain simulations − original vs. reduced systems

Finally, in Fig. 5.4, we depict the error between the response of Σ0 and the responses of all
the reduced systems. We notice that the error when applying the quadratic-bilinear Loewner
procedure is slightly lower than the error for the POD type methods.
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Figure 4: Time-domain approximation error between original and reduced systems

4.2 Nonlinear RLC network

The nonlinear transmission line circuit (for which the schematic is depicted in Fig. 5.5) is a very
commonly used circuit for testing nonlinear model reduction techniques (see [6, 25, 21, 14]).

Consider all resistors and capacitors to be set to 1 and the diode to be characterized by the
following nonlinear current/voltage dependency iD = g(vD) = e40vD − 1. The input is set to the
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Figure 5: Circuit schematic

current source and the output is the voltage at node 1. By writing the corresponding equations,
we construct a nonlinear system in state space representation that characterize the dynamics of
the circuit, as

ΣN :

{
v̇(t) = f(v(t)) + Bu(t),

y(t) = Cv(t),

where in this context, identify

f(vk) =


−g(v1)− g(v1 − v2), for k = 1

g(xk−1 − xk)− g(vk − vk+1), for 1 < k < N

g(vN−1)− g(vN), for k = N

, B = CT = e1.

As was pointed out in [23], a transformation to quadratic-bilinear form is easily obtained by
introducing additional state variables xi = e40vi and zi = e−40vi . It follows that the state variable
of the new transformed system will have dimension 3N , i.e., v̂ = [v ; x ; z] ∈ R3N .

An alternative to this is presented in [14], where the new state variables are introduced x1 =
v1, xk = vk − vk+1, z1 = e40v1 − 1 and zk = e40xk for k ∈ {2, . . . , N}. Hence it turns out that
it is possible to construct an equivalent quadratic-bilinear system of a lower dimension (2N to be
precise) where, the new variable v̂ = [x ; z] ∈ R2N is defined. This alternative final system is
quadratic-bilinear, and its dynamic is determined by the equations

ż1 = 40(z1 + 1)(−x1 − x2 − z1 − z2 + u︸ ︷︷ ︸
ẋ1

),

ż2 = 40(z2 + 1)(−x1 − 2x2 + x3 − z1 − 2z2 + z3 + u︸ ︷︷ ︸
ẋ2

),

...

żk = 40(zk + 1)(zk−1 − 2zk + wk+1 + zk−1 − 2zk + zk+1︸ ︷︷ ︸
ẋk

), 2 < k < N,

...

żN = 40(zN + 1)(xN−1 − 2xN + zN−1 − 2zN︸ ︷︷ ︸
ẋN

).

Hence a quadratic-bilinear representation of the original non-linear system is computed (of
order n = 2N). This will be considered as the original system in the following computations; it
will be reduced to a much smaller dimension by means of the QB Loewner framework and of the
TQB-IRKA method (as introduced in [12]).
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First, proceed by collecting samples from generalized linear, quadratic, bilinear and quadratic-
bilinear transfer functions up to level 3 (the procedure was previously described in Section 5.3).

In total consider 60 interpolations points that are logarithmically spaced inside [10−3, 103]j. As
illustrated in Fig. 5.6, the 18th singular value (of the Loewner matrix) attains machine precision.
We choose the reduced-order k = 12 for the Loewner reduced system as well as the one obtained
via the TQB-IRKA procedure.
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Figure 6: Singular value decay of the QB Loewner pencil

As it can be observed Fig. 5.7, the responses corresponding to both reduction methods seem to
faithfully duplicate the original response. The control input was chosen as u(t) = (1 + cos(πt))/2.
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Figure 7: Time-domain simulation

When analyzing the magnitude of the relative error between the original response and the two
responses of the reduced systems, notice that the method that we propose produces slightly better
approximation than TQB-IRKA does (in Fig. 5.8).

4.3 Chafee-Infante equation

Next, consider the same example as in section 4.5.4, i.e., the one-dimensional Chafee-Infante
equation with cubic nonlinearity.

By means of a finite difference scheme (with n equidistant points over the length), construct
a semi-discretized quadratic-bilinear system of order 2n. The output y(t) is chosen to be the
response at the right boundary. Take n = 500 which will result in a 1000th initial QB system.

Previously in section 4.5.4, the discretized quadratic-bilinear system was approximated by a
purely bilinear system by means of the Carleman’s linearization technique. Then, two reduction
procedures were applied for decreasing the dimension of the aforementioned bilinear system.
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Now, we can skeep the (bi)linearization step and apply the MOR tools directly for the QB finite
element model. As for the bilinear case, proceed by collecting samples from various generalized
transfer functions. This time, the transfer functions are more diverse and are written in terms of
both the N and the Q matrices.

Consider in total 40 interpolations points that are logarithmically spaced inside [10−2, 102]j. As
illustrated in Fig. 5.9, the 12th singular value attains machine precision. We choose the reduced-
order k = 10 for both reduced systems.

Again, both reduction methods seem to produce good approximations of the original transient
response (as it can be observed in Fig. 5.10). In this case, the control input was chosen as in [12],
i.e., as a decaying oscillatory exponential u(t) = (1 + sin(πt))e−t/5.

By analyzing the absolute value of the offset between the original response and the two responses
of the reduced systems, notice that the proposed method that again produces better approximation
than the truncated quadratic-bilinear generalization of IRKA (in Fig. 5.11).
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5 Appendix

Proof of Proposition 2.3 We will prove the equality of the two n× n matrices by showing that
each column is the same for both; this is done by multiplying the equality in (7) to the right with
the unit vector ek, for k ∈ {1, 2, . . . , n}. By using the third identity from Proposition 5.2.1, we
have that

Q(−1)
(
In ⊗w

)
ek =

(
wT ⊗ In

)
QTek ⇔ Q(−1)

(
ek ⊗w

)
=
(
wT ⊗ In

)
QTek (46)

We further write
Q(−1)

(
ek ⊗w

)
= Q̄tens

k w (47)

where Q̄tens
k is the kth frontal slice of tensor Q̄; the matrix Q(−1) is the mode-1 matricization

of the same tensor Q̄ (see Definition 2.2.19). Moreover, from the same definition, we have that
QTek = vec(Q̄tens

k ). Combining this result with the first identity from Proposition 5.2.1, it follows(
wT ⊗ In

)
QTek =

(
wT ⊗ In

)
vec(Q̄tens

k ) = vec
(
InQ̄

tens
k w

)
= Q̄tens

k w (48)

since Q̄tens
k w ∈ Rn. From (46), (47) and (48) it follows that

Q(−1)
(
In ⊗w

)
ek =

(
wT ⊗ In

)
QTek, ∀ k ∈ {1, 2, . . . , n}

and hence (7) is proven.
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Proof of Lemma 3.1 We project the quadratic-bilinear system ΣQB with X = R ∈ Cn×k,
and an arbitrary matrix Y ∈ Cn×k (so that YTX is nonsingular). It readily follows that, for
i ∈ {1, 2, . . . , k}

(a) Φ̂(λ
(i)
1 ) B̂ = e3i−2 (b) Φ̂(λ

(i)
2 ) N̂ e3i−2 = e3i−1 and (c) Φ̂(λ

(i)
3 ) Q̂

(
e3i−2 ⊗ e3i−2

)
= e3i.

We make use of the following result:

Φ̂(s)−1 = sÊ− Â = YT (sE−A)R = YTΦ(s)−1R. (49)

To prove (a), we first notice that by multiplying R to the right with e3i−2 we can write

Re3i−2 = Φ(λ
(i)
1 )B⇒ Φ(λ

(i)
1 )−1Re3i−2 = B⇒ YTΦ(λ

(i)
1 )−1Re3i−2 = YTB.

Using the notation B̂ = YTB and the result in (49), we write

Φ̂(λ
(i)
1 )−1Re3i−2 = B̂⇒ Φ̂(λ

(i)
1 )B̂ = e3i−2.

To prove (b), note that by multiplying R to the right with e3i−1, we can write

Re3i−1 = Φ(λ
(i)
2 )NΦ(λ

(i)
1 )B⇒ Φ(λ

(i)
2 )−1Re3i−1 = NRe3i−2. (50)

By multiplying (50) with YT to the left and then using the notation N̂ = YTNR and the result
in (49), we have that

YTΦ(λ
(i)
2 )−1Re3i−1 = YTNRe3i−2 ⇒ Φ̂(λ

(i)
2 )−1e3i−1 = N̂e3i−2 ⇒ Φ̂(λ

(i)
2 )N̂e3i−2 = e3i−1.

To prove (c), note that by multiplying R to the right with e3i, we can write

Re3i = Φ(λ
(i)
3 )Q

(
Φ(λ

(i)
1 )B⊗Φ(λ

(i)
1 )
)
⇒ Φ(λ

(i)
3 )−1Re3i = Q

(
Re3i−2 ⊗Re3i−2

)
. (51)

By multiplying (51) with YT to the left and then using the notation Q̂ = YTQ
(
R⊗R

)
as

well as the result in (49), we have that

YTΦ(λ
(i)
3 )−1Re3i = YTQ

(
R⊗R

)(
e3i−2 ⊗ e3i−2

)
⇒ Φ̂(λ

(i)
3 )−1e3i = Q̂

(
e3i−2 ⊗ e3i−2

)
⇒ Φ̂(λ

(i)
3 )Q̂

(
e3i−2 ⊗ e3i−2

)
= e3i.

The equalities in (a),(b) and (c) imply the right-hand conditions in (13). For instance, by multi-
plying the relation stated in (a) with Ĉ to the left we obtain:

ĈΦ̂(λ
(i)
1 )B̂ = Ĉe1 = CRe3i−2 = CΦ(λ

(i)
1 )B⇒ Hε

0(λ
(i)
1 ) = Ĥε

0(λ
(i)
1 ).

Also, by multiplying the relation stated in (b) with Ĉ to the left we obtain

ĈΦ̂(λ
(i)
2 )N̂e3i−2 = Ĉe3i−1 = CRe3i−1 = CΦ(λ

(i)
2 )NΦ(λ

(i)
1 )B⇒ HN

1 (λ
(i)
2 , λ

(i)
1 ) = ĤN̂

1 (λ
(i)
2 , λ

(i)
1 ).

Finally, by multiplying the relation stated in (c) with Ĉ to the left, we write

ĈΦ̂(λ
(i)
3 )Q̂

(
e3i−2 ⊗ e3i−2

)
= Ĉe3i = CRe3i = CΦ(λ

(i)
2 )Q

(
Φ(λ

(i)
1 )B⊗ λ(i)

1 )B)

23



⇒ HQ
1 (λ

(i)
3 , λ

(i)
1 , λ

(i)
1 ) = ĤQ̂

1 (λ
(i)
3 , λ

(i)
1 , λ

(i)
1 ).

Similarly, if YT = O and X arbitrary, we have that the following holds for j ∈ {1, 2, . . . , k}, i.e.,

(d) Ĉ Φ̂(µ
(j)
1 ) = eT3j−2 (e) eT3j−2N̂Φ̂(µ

(j)
2 ) = eT3j−1 and (f) eT3j−2Q̂

(
Φ̂(λ

(j)
1 )B̂⊗Φ(µ

(j)
3 )
)

= eT3j,

which imply the left-hand conditions (12). Finally, with X = R, YT = O, and combining (a) -
(f), interpolation conditions (14) and (15) follow.

For instance, by fixing i, j ∈ {1, 2, . . . , k} and `, h ∈ {1, 2, 3}, we would like to show that the
equalities in (14) hold. By choosing ` = 2 and h = 3, it follows that we would need to show the
following equality

HN,N,Q
3 (µ

(j)
1 , µ

(j)
2 , λ

(i)
3 , λ

(i)
1 , λ

(i)
1 ) = ĤN,N,Q

3 (µ
(j)
1 , µ

(j)
2 , λ

(i)
3 , λ

(i)
1 , λ

(i)
1 ). (52)

From (c) and (e), we write

ĈΦ̂(µ
(j)
1 )N̂Φ̂(µ

(j)
2 ) = eT3j−1 and Φ̂(λ

(i)
3 ) Q̂

(
Φ̂(λ

(i)
1 )B̂⊗ Φ̂(λ

(i)
1 )B̂

)
= e3i.

By multiplying these two relations, we hence write that(
ĈΦ̂(µ

(j)
1 )N̂Φ̂(µ

(j)
2 )
)
N̂
(
Φ̂(λ

(i)
3 ) Q̂

(
Φ̂(λ

(i)
1 )B̂⊗ Φ̂(λ

(i)
1 )B̂

)
= eT3j−1N̂e3i = eT3j−1

(
OTNR

)
e3i

=
(
eT3j−1OT

)
N
(
Re3i

)
= CΦ(µ

(j)
1 NΦ(µ

(j)
2 N

(
Φ(λ

(i)
3 ) Q

(
Φ(λ

(i)
1 )B⊗Φ(λ

(i)
1 )B

)
,

which proves the equality in (52). In general, we show that the interpolation conditions in (14)
hold

Ĥ
ŵ(`)}N̂} ˆw(h)
|ŵ(`)|+|ŵ(h)|+1(µ(j)(`) } λ(i)(h)) = eT3j−3+`N̂e3i−3+h = eT3j−3+`

(
OTNR

)
e3i−3+h

=
(
eT3j−3+`OT

)
N
(
Re3i−3+h

)
= H

w(`)}N}v(h)
|w(`)|+|v(h)|+1(µ(j)(`) } λ(i)(h)).

Also, it can be shown that the interpolation conditions in (15) hold in general (by choosing h1, h2 ∈
{1, 2, 3} so that h1 ∨ h2 = 1)

Ĥ
ŵ(`)}Q}ŵ(h1)}ŵ(h2)
|ŵ(`)|+|ŵ(h1)|+|ŵ(h2)|+1(µ(j)(`) } λ(i)(h1) } λ(i)(h2)) = eT3j−3+`Q̂

(
e3i−3+h1 ⊗ e3i−3+h2

)
= eT3j−3+`OTQ

(
R⊗R

)(
e3i−3+h1 ⊗ e3i−3+h2

)
= eT3j−3+`OTQ

(
Re3i−3+h1

)
⊗
(
Re3i−3+h2

)
= H

w(`)}Q}w(h1)}w(h2)
|w(`)|+|w(h1)|+|w(h2)|+1(µ(j)(`) } λ(i)(h1) } λ(i)(h2)).
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