
Efficient Numerical Methods for Gas Network Modeling and

Simulation∗

Yue Qiu†, Sara Grundel‡, Martin Stoll§, Peter Benner¶

Abstract

We study the modeling and simulation of gas pipeline networks, with a focus on fast numer-
ical methods for the simulation of transient dynamics. The obtained mathematical model of
the underlying network is represented by a nonlinear differential algebraic equation (DAE). By
introducing the concept of long pipes, we can reduce the dimension of the algebraic constraints
in the resulting DAEs. We introduce a so-called flow direction following (FDF) ordering tech-
nique to order the long pipes of the network, and we obtain a block lower-triangular matrix
structure of the (1, 1) block for the system matrix of the DAE model. We further exploit
such a matrix structure in the DAE model and propose an efficient preconditioner for the
fast simulation of the network. We test our numerical methods on benchmark problems of
(well-)known gas networks and the numerical results show the advantage of our methods.

Keywords: gas networks modeling, isothermal Euler equation, differential algebraic equa-
tion (DAE), preconditioning

1 Introduction

Natural gas is one of the most widely used energy sources in the world, as it is easily transport-
able, storable and usable to generate heat and electricity. Even though research on the transient
gas network dates back to the 80s [1,2], the standard is to only compute stationary solutions of the
gas network. This is also reasonable as the variation in a classically operated gas transportation
networks sees no need for a truly transient simulation. However as we move from classical energy
source to renewable energy sources in which we may use the gas pipelines to deal with flexibility
from volatile energy creation, the need for fast transient simulation will increase. In recent years
research on natural gas networks focuses on a variety of topics: transient simulations [1–5], op-
timization and control [6–8], time splitting schemes for solving the parabolic flow equations [9],
discretization methods [10, 11], and model sensitivity study [12] to mention a few. It is obvious
that efficient simulation techniques are needed both for design and for control. The early research
in simulating gas flow in networks of pipes from the 80s and 90s, cf. [1–3] either made assumptions
to simplify the mathematical model [1,2], or made use of analogies between electrical networks and
fluids for the network simulation [3]. Recent work on transient simulation of gas pipe networks
either focus on the stationary or quasi-stationary computations [5,13], using model order reduction
technique to reduce the size of the network model [4,14,15], applying the explicit in time scheme to
simplify the simulation of nonlinear dynamics of the network [16], or exploiting the model hierarchy

∗This work is funded by the European Regional Development Fund (ERDF/EFRE: ZS/2016/04/78156) within
the center dynamic systems (CDS).

†Corresponding author. Max Planck Institute for Dynamics of Complex Technical Systems, SandtorStraße 1,
39108, Magdeburg, Germany. E-mail: qiu@mpi-magdeburg.mpg.de, y.qiu@gmx.us

‡Max Planck Institute for Dynamics of Complex Technical Systems, SandtorStraße 1, 39108, Magdeburg, Ger-
many. E-mail: grundel@mpi-magdeburg.mpg.de

§Technische Universität Chemnitz, Faculty of Mathematics, Reichenhainer Straße 41, 09107 Chemnitz, Germany.
E-mail: martin.stoll@mathematik.tu-chemnitz.de

¶Max Planck Institute for Dynamics of Complex Technical Systems, SandtorStraße 1, 39108, Magdeburg, Ger-
many. E-mail: benner@mpi-magdeburg.mpg.de

1

ar
X

iv
:1

80
7.

07
14

2v
1

 [
m

at
h.

N
A

]
 1

8
Ju

l 2
01

8

for model refinement in the simulation [17]. For other related work on gas networks, we refer to
the active research groups of TRR154 [18].

The objective of this paper is to study the modeling of the dynamics for the gas networks
and investigate fast numerical methods for the simulation of transient dynamics of gas networks.
We apply the isothermal incompressible Euler equation to model the dynamics of gas transported
through the network. We discretize the isothermal incompressible Euler equation using finite
volume method (FVM) for all the pipelines in the network. We then assemble the sub-models for
all the pipelines into a global model for the network. The obtained gas pipeline network model is
represented by a nonlinear differential algebraic equation (DAE), which follows the rules of mass
conservation, momentum conservation, and the conservation laws in the networks. We propose
the concept of long pipes, which reduces the size of the algebraic constraints in the DAE, and this
reduction also reduces the dimension of the DAE to be solved. We discretize the nonlinear DAE in
time using the implicit Euler method. At each time step, we need to solve a large-scale nonlinear
equation. We introduce the so-called flow direction following (FDF) ordering technique to order
all the long pipes to obtain a block lower-triangular matrix structure for the system matrix of
the DAE. By further exploiting the system structure, we propose a preconditioner that enables
fast solution of such a nonlinear equation using a preconditioned Krylov solver at each Newton
iteration.

The structure of this paper is as follows. We introduce the incompressible isothermal Euler
equation for the gas dynamics modeling of each pipeline of the network in Section 2, and we
apply finite volume method (FVM) to discretize the incompressible isothermal Euler equation in
Section 2. In Section 3, we introduce the details of gas networks modeling starting from assembling
all pipelines. This results in a set of nonlinear differential algebraic equation (DAE) for the network
model. We propose numerical algorithms to solve the resulting nonlinear DAE in Section 4 to
simulate the gas network. We use benchmark problems from gas pipeline networks to show the
efficiency and the advantage of our numerical algorithms in Section 5, and we draw conclusions in
the last section.

2 Gas Dynamics in Pipelines

In a typical gas transport network the main components are pipelines (or pipes, for short). In
this section, we will discuss the dynamics of gas transported along pipes.

2.1 1D Isothermal Euler Equation

The dynamics of gas transported along pipes is described by the Euler equation, which rep-
resents the law of the conservation of mass, the conservation of momentum, and the conservation
of energy. In this paper, we assume that the temperature is identical throughout the gas net-
work. Therefore, the energy equation can be neglected. This may seem unrealistic, but for onshore
gas networks, in which the pipes are berried underground, the temperature along pipes does not
change much. This assumption greatly reduces the complexity of modeling and is widely used in
the simulation of gas networks [5,13,14,19,20]. For the heterogeneous temperature setting, current
literature only focuses on the gas dynamics, i.e., the dynamics of the discretized PDE over a certain
spatial domain, but not on the dynamics of the network. We refer to [21,22] for further details.

Consider the 1D isothermal Euler equation over the spatial domain [0, L] given by

∂

∂t
ρ = − ∂

∂x
ϕ, (1a)

∂

∂t
ϕ = − ∂

∂x
p− ∂

∂x
(ρv2)− gρ ∂

∂x
h− λ(ϕ)

2d
ρv|v|, (1b)

p = γ(T)z(p, T)ρ. (1c)

Here ρ is the density of the gas (kg/m3), ϕ represents the flow rate and ϕ = ρv with v the velocity
of the gas (m/s), d is the diameter of the pipe (m), λ is the friction factor of the gas. Meanwhile,
p denotes the pressure of the gas (N/m2), T is the temperature of the gas (K), and z denotes
the compressibility factor. The conservation of mass is given by (1a), and the conservation of the

2

momentum is represented by (1b), while the state equation (1c) couples the pressure with the
density.

By using the mass flow q = aϕ to substitute into (1a) - (1b), where a is the cross-section area
of pipes, we get

∂

∂t
ρ = −1

a

∂

∂x
q, (2a)

1

a

∂

∂t
q = − ∂

∂x
p− 1

a2
∂

∂x

q2

ρ
− gρ ∂

∂x
h− λ(q)

2da2
q|q|
ρ
, (2b)

p = γ(T)z(p, T)ρ. (2c)

For the isothermal case, the temperature T equals T0 throughout the network, then γ(T) = γ(T0) =
γ0, and z(p, T) = z(p, T0) = z0(p). Therefore, the compressibility factor z(p, T) is only related to
the pressure p and we can rewrite (2a) - (2c) as

1

γ0

∂

∂t

p

z0(p)
= −1

a

∂

∂x
q, (3a)

1

a

∂

∂t
q = − ∂

∂x
p− γ0

a2
∂

∂x

q2z0(p)

p︸ ︷︷ ︸
inertia term

− g

γ0

p

z0(p)

∂

∂x
h︸ ︷︷ ︸

gravity term

− λ(q)γ0
2da2

z0(p)
q|q|
p︸ ︷︷ ︸

friction term

. (3b)

For the inertia term, we have
γ0
a2
q2z0(p)

p
=

v2

z0(p)γ0
p,

and the speed of sound in the gas or the acoustic wave velocity vs ≈
√
z0(p)γ0. For the subsonic

flow case, v � vs, which is widely used in the gas transportation since supersonic gas flow also
causes noise pollution, it is studied in [19] that

γ0
a2

∂

∂x

q2z0(p)

p
≈ 10−3

∂

∂x
p.

Therefore, the inertia term can be neglected and this neglection greatly simplifies the model,
which is standard in the study of gas networks [4, 7, 8]. In this paper, we also use this neglection.
Meanwhile, at the current stage, we assume that the elevation of pipes is homogeneous. The gravity
term in (3b) vanishes. Note that the gravity term does not change the structure of the model after
discretization of (3a) - (3b). This will be illustrated later in this section.

Now, we get the model that describes the dynamics of isothermal gas transported along homo-
geneous elevation pipes given by

∂

∂t

p

z0(p)
= −γ0

a

∂

∂x
q, (4a)

∂

∂t
q = −a ∂

∂x
p− λ(q)γ0

2da
z0(p)

q|q|
p
. (4b)

The details of modeling the compressibility factor z0(p) and the friction factor λ(q) are described
in [23].

2.2 Finite Volume Discretization

In this paper, the dynamics of the gas transported along pipes are described by the 1D iso-
thermal incompressible Euler equation (z0(p) = 1) over spatial domain [0, L] with homogeneous
elevation. According to (4a) - (4b) we have

∂

∂t
p+

c

a

∂

∂x
q = 0, (5a)

∂

∂t
q + a

∂

∂x
p+

cλ

2da

q|q|
p

= 0. (5b)

3

Here we denote γ0 as c and λ(q) as λ for short. The system (5a) - (5b) is nonlinear due to the friction
term. For gas transportation pipes, the boundary condition at the inflow point x = 0 is given by
the prescribed pressure ps while the boundary condition at the outflow point x = L is represented
by the given mass flow (gas demand) qd. Therefore, the boundary conditions for (5a) - (5b) are
given as {

p = ps, at x = 0,

q = qd, at x = L.
(6)

For the well-posedness and the regularity of the solution of the system (5) (6), we refer to [24].
In this section, we apply the finite volume method (FVM) to discretize (5a) - (5b) together with
the boundary conditions (6). For such an FVM discretization, we partition the domain as shown
in Figure 1.

e w

Figure 1: finite volume cells partition

In Figure 1, the left boundary of the control volume is denoted by ‘e’ while the right boundary
of the control volume is denoted by ‘w’. For the isothermal incompressible Euler equation (5a) -
(5b), we have two variables, i.e., the pressure p, and the mass flow q. Together with the boundary
condition (6), we use two different control volume partitions for the pressure and mass flow nodes,
which are shown in Figure 2.

e w

(a) control volumes partition for p

e w

(b) control volumes partition for q

Figure 2: control volumes partition for p and q

To apply the finite volume method (FVM) to discretize the PDE and the boundary condition,
we integrate (5a) - (5b) over each control volume. To be specific, we integrate (5a) over the pressure
control volume in Figure 2(a), and integrate (5b) over the mass flow control volume in Figure 2(b).

To integrate (5a) over the i-th control pressure control volume Ci, we have∫
Ci

(
∂tp+

c

a
∂xq
)
dx = 0.

The discretization point in Ci is either a virtual node along a pipe or a real node that connects
two different pipes. Therefore, the coefficient a of the PDE (5a) - (5b), which represent the cross-
section area of a pipe, may have a sudden change at the node in control volume Ci. Here we use
C−i and C+

i to partition the control volume Ci with Ci = C−i ∪ C
+
i , and the lengths of C−i and

C+
i are hi−1

2 and hi

2 , respectively. This partition is shown in Figure 3.

Figure 3: Separation of control volume Ci

Therefore, we get ∫
Ci

∂tp dx+

∫
C−

i

c

a
∂xq dx+

∫
C+

i

c

a
∂xq dx = 0.

Furthermore by applying the midpoint rule, we get

hi−1 + hi
2

∂tpi +
c

ai−1

(
qi −

qi−1 + qi
2

)
+

c

ai

(
qi + qi+1

2
− qi

)
= 0,

4

i.e.,
hi−1 + hi

2
∂tpi + c

(
− 1

2ai−1
qi−1 +

(
1

2ai−1
− 1

2ai

)
qi +

1

2ai
qi+1

)
= 0. (7)

Similarly, for the rightmost control volume of pressure in Figure 2(a), we have∫
C−

n

(
∂tp+

c

a
∂xq
)
dx ≈ hn−1

8
∂tpn−1 +

3hn−1
8

∂tpn +
c

2an−1
(qn − qn−1) = 0. (8)

For the i-th mass flow control volume Ci shown in Figure 2(b), we integrate (5b) over it and
get ∫

Ci

(∂tq + a∂xp) dx = − c
2

∫
Ci

λ

ad

q|q|
p

dx.

Applying the same partition of Ci in Figure 3, we have,∫
Ci

(∂tq + a∂xp) dx =

∫
C−

i

(∂tq + a∂xp) dx+

∫
C+

i

(∂tq + a∂xp) dx

≈ hi−1
2

∂tqi +
ai−1

2
(pi − pi−1) +

hi
2
∂tqi +

ai
2

(pi+1 − pi)

=
hi−1 + hi

2
∂tqi +

(
−ai−1

2
pi−1 +

ai−1 − ai
2

pi +
ai
2
pi+1

)
.

While ∫
Ci

λ

ad

q|q|
p

dx ≈ 1

2

(
hi−1λi−1
ai−1di−1

+
hiλi
aidi

)
qi|qi|
pi

.

Therefore, for the i-th mass flow control volume Ci, we have

hi−1 + hi
2

∂tqi +

(
−ai−1

2
pi−1 +

ai−1 − ai
2

pi +
ai
2
pi+1

)
= − c

4

(
hi−1λi−1
ai−1di−1

+
hiλi
aidi

)
qi|qi|
pi

. (9)

Similarly, for the leftmost mass flow control volume, we get

3h1
8
∂tq1 +

h2
8
∂tq2 +

a1
2

(−p1 + p2) = −ch1λ1
4a1d1

q1|q1|
p1

. (10)

Associating (7) - (10) with the boundary condition (6), we get

[
Mp

Mq

]
︸ ︷︷ ︸

M

[
∂tp
∂tq

]
=

[
0 Kpq

Kqp 0

]
︸ ︷︷ ︸

K

[
p
q

]
+

right BC︷ ︸︸ ︷[
Bq
0

]
︸ ︷︷ ︸
Bq

qd +

left BC︷ ︸︸ ︷[
0
Bp

]
︸ ︷︷ ︸
Bp

ps +

[
0

g(p, q)

]
, (11)

where the mass matrices Mp and Mq are given by

Mp =


h1+h2

2
h2+h3

2
. . .

hn−2+hn−1

2
hn−1

8
3hn−1

8

 , Mq =


3h1

8
h1

8
h1+h2

2
h2+h3

2
. . .

hn−2+hn−1

2

 ,

and

Kpq = − c
2



− 1
a1

1
a1
− 1

a2
1
a2

− 1
a2

1
a2
− 1

a3
1
a3

. . .
. . .

. . .

− 1
an−3

1
an−3

− 1
an−2

1
an−2

− 1
an−2

1
an−2

− 1
an−1

− 1
an−1


,

5

is an upper-triangular matrix with 3 diagonals and

Kqp = −1

2



a1
a1 − a2 a2
−a2 a2 − a3 a3

−a3 a3 − a4 a4
. . .

. . .
. . .

−an−2 an−2 − an−1 an−1


,

is a lower-triangular matrix with 3 diagonals. Meanwhile,

Bq = − c
2


0
...
0
1

an−1
1

an−1

 , Bp =
1

2


a1
a1
0
...
0

 , g(p, q) = − c
4



h1λ1

a1d1

q1|q1|
p1

(h1λ1

a1d1
+ h2λ2

a2d2
) q2|q2|p2

(h2λ2

a2d2
+ h3λ3

a3d3
) q3|q3|p3

...

(hn−2λn−2

an−2dn−2
+ hn−1λn−1

an−1dn−1
) qn−1|qn−1|

pn−1


.

The vectors
p =

[
p2 p3 · · · pn

]T
, q =

[
q1 q2 · · · qn−1

]T
,

represent the discretized analog of p and q to be computed, while p1 = ps, and qn = qd.
The discretized model for the dynamics of gas transported along pipes shown in (11) is a

nonlinear ordinary differential equation (ODE). The nonlinear term in this ODE comes from the
discretization of the friction term in the momentum equation (5b).

Remark 2.1. The obtained model in (11) is from the discretization of the incompressible iso-
thermal Euler equation of homogeneous elevation (5a) - (5b). However, we note that for the
heterogeneous elevation case, the gravity term in (3b) is linear in the pressure p. After discretiz-
ation, this term will introduces an additional term in the position of Kqp in (11). And this new
term does not change the structure of the model that we obtained in (11). The structure we refer to
here is the block structure of the matrices involved in describing the equation as well as the sparsity
pattern of all Jacobians of the nonlinear functions.

Note that we impose the boundary condition (6) by using the prescribed pressure at the inflow
point and the given mass flow at the outflow point. This setup also suits the case if we prescribe the
mass flow at the inflow point and the pressure at the outflow point. For such a case, only the sign
of qd is changed from positive to negative. Therefore, the settings of the boundary conditions (6)
can still be used and the framework for the FVM discretization still fits. Computational results in
the numerical experiment validate this.

3 Network Modeling

Within this paper, we focus on a passive network to demonstrate how advanced numerical
linear algebra can benefit the fast simulation of such a network. Here, passive network represents
that the network does not contain active elements such as compressors, valves, etc. [25]. This
simplification allows us to maintain a differential algebraic model without combinatorial aspects.
For the modeling of the network with compressors and valves we refer to [23, 26]. In this section,
we introduce the modeling of the networks, where the composition of the networks are pipes and
junction nodes that connect all these pipes together. Moreover, we assume that a supply node
provides gas to only one pipe and the pipe that gets gas injection only has one supply node. If
there is more than one supply node injecting the gas to one pipe, we assign each supply node a
short pipe that injects gas to such a pipe, and connect them together by using a junction node. We
also assume that a pipe, from which the users get gas, has only one demand node that distributes
the gas to the users and one demand node only extracts gas from one single pipe.

The abstract gas network is described by a directed graph

G = (E , N),

6

where E denotes the set of edges, which contains the pipes in the gas network. N represents the
set of nodes, which consist of the set of supply nodes Ns, demand nodes Nd, and junction nodes
Nj of the network. Here the supply nodes represent the set of nodes in the network where gas is
injected into the network, and the demand nodes are a set of nodes where the gas is extracted from
the network. In order to distinguish the junction nodes used in other works [15], we introduce the
following definition of junction nodes.

Definition 3.1. The junction nodes inside a network G are a set of nodes Nj that are neither
supply nodes nor demand nodes, but nodes that connect at least three edges (pipes) together.

1

2

3

4

5

6

7

8

9

10

Figure 4: A typical gas network

An example network is shown in Figure 4. Here, node 1 and 10 denote the supply nodes, node 6
represents the demand node, all the other nodes connect pipes and redistribute gas in the network.
According to Definition 3.1, only node 4 in Figure 4 is a junction node and the other nodes such
as node 2 and 3 are not junction nodes. With this definition of the junction node, the number of
junction nodes inside a network is reduced, and the number of algebraic constraints is also reduced,
since the nodal conditions introduced later are only applied to junction nodes.

3.1 Nodal Conditions

There are two types of constraints concerning the connection of pipes, i.e., the pressure con-
straint, and the mass flow constraint. These two types of constraints describe the dynamics of gas
at the junction nodes.

The so-called pressure nodal condition is given by

plin = prout, (12)

where plin denotes the pressure on the left boundary of the inflow pipes at the junction node i, and
prout represents the pressure on the right boundary of the outflow pipes at the same junction node
i. The pressure nodal condition states that the pressure at the end of the outflow pipes should
equal to the pressure at the beginning of the inflow pipes that connect to the same junction node.

The second type of nodal condition i.e., the mass flow nodal condition, states the conservation
of mass flow at the junction nodes, and it is given by∑

qiin =
∑

qiout. (13)

Here it states that the inflow at the junction node i should equal to the outflow at the same junction
node i.

3.2 Network Assembling

In Section 2.2, we have obtained the discretized model in (11) to describe the dynamics of
the gas transported along pipes through the gas network. Together with the nodal conditions
in Section 3.1, we can obtain the global network model that describes the dynamics of the gas
network. Before this, we would like to introduce the concept of the so-called long pipes, which
reduces the computational complexity of the network simulation.

7

Definition 3.2. The pipe in a gas network is called a long pipe, if it starts with a supply node,
ends up with a junction node or a demand node, or it starts with a junction node, ends up with
another junction node, or it starts with a junction node, and ends up with a demand node.

The advantage of introducing the concept of long pipes is that it will reduce the computational
cost for the network simulation, which will be shown by the numerical experiments. Here, we use
the network depicted in Figure 4 as a simple example to illustrate the long pipes. There are 3 long
pipes in the network. The first one is the pipe that starts with node 1 and ends up with node 4,
the second is the pipe starts with node 10 and ends up with node 4, while the third is the pipe
that starts with node 4 and ends up with node 6. The network in Figure 4 has 9 pipes that are
connected, and it is natural to use the long pipes instead of the “natural pipes” to represent the
network since the long pipes concept represents the network topology.

The discretized model (11) describes the dynamics of gas transported along one single pipe.
To obtain such a model, we need two boundary conditions (6) for each pipe, i.e., the prescribed
pressure at the input node, and the prescribed mass flow at the demand node. However, for the gas
network, there are not enough boundary conditions. Take the network in Figure 4 for example, we
only have the prescribed pressure at the supply nodes 1, 10, and the prescribed mass flow at the
demand node 6. However, we have three long pipes, while we need 2 boundary conditions for each
long pipe. Therefore, we need to introduce extra variables to get enough boundary conditions. We
need extra equations by applying (12) - (13) for the extra introduced variables to obtain a proper
model. We take the network in Figure 4 as an example to introduce such a procedure.

1 2

3

Figure 5: long pipes of network in Figure 4

The long pipe 1 and 2 are supply pipes, and the pressure at the inflow node is prescribed.
Therefore, we need to introduce the mass flow at the outflow node for each pipe, which is repres-
ented by q1 and q2, respectively. The long pipe 3 is the demand pipe, and the mass flow at the
outflow node is given. We need to introduce the variable p3 to represent the pressure at the inflow
node of long pipe 3. We can apply the nodal condition (12) without introducing a new variable
p3, which reduces the number of introduced variables and the computational cost. By using the
single pipe model (11), we obtain the mathematical model for network in Figure 4,

M1

M2

M3

0
0


︸ ︷︷ ︸

M

∂

∂t


u1
u2
u3
q1

q2

 =


K1 B1q

K2 B2q
B̄3p K3

e3 1 1
e1 e2 0


︸ ︷︷ ︸

K


u1
u2
u3
q1

q2



+


B1p

B2p


︸ ︷︷ ︸

Bp

[
p1s
p2s

]
+


0
0
B3
q

0
0


︸ ︷︷ ︸

Bq

q3d +


G1(u1, p

1
s)

G2(u2, p
2
s)

G3(u3, p
3)

0
0


︸ ︷︷ ︸

g(∗)

.

(14)

Here u1, u2, u3 represent the variables to be resolved for pipe 1, 2, 3, respectively, and B̄3p =[
0, 0, . . . , , 1, 0, . . . ,

]
⊗B3

p. The mass flow nodal condition is represented by the 4th block
row in (14), and the pressure nodal condition is given by the 5th block row and also the (3, 1)
block of K in (14). The row vectors e1, e2, and e3 are just elementary vectors with 1 or −1

8

on a certain position and zeros elsewhere, which select the corresponding variables for the nodal
conditions (12) - (13).

Note that the matrix K in (14) is not unique. This is because that we make p3 = p1e, where p1e
is the pressure at the end node of long pipe 1, and the second pressure nodal condition is obtained
via making p1e = p2e at the fifth block row in (14). We can also make p3 = p2e, and this in turn
moves B̄3p from the (3, 1) block to the (3, 2) block of K.

Although we need extra variables for both the pressure and mass flow to assemble a global
network model, we only introduce extra mass flow variables explicitly while the extra pressure
variables can be obtained via applying the pressure nodal conditions. This reduces the redundancy
in the network modeling.

There is a degenerate case that a network has only one long pipe, i.e., this network has one
supply node and one demand node, but no junction node. For such a degenerate network, we do
not need to introduce extra variables since we already have the left and right boundary conditions.
For a non-degenerate network, we have the following proposition.

Proposition 3.1. Suppose that the network G = (E ,N) is a connected graph, and has ns supply
pipes, nd demand pipes, and nj junction pipes. Here junction pipes are long pipes that both start
with and end up with junction nodes. Then the following relation between the number of extra
variables ne and the number of extra algebraic constraints na hold,

ne = na = ns + nj .

Proof. As stated before, we only introduce extra variables for the mass flow of each long pipe
when necessary, since the extra pressure variables are directly included at the process of network
assembling. Then we have

ne = ns + nj ,

which is due to the fact that the mass flow at the demand pipes are already prescribed. The
number of extra variables are the mass flows at the end of each pipe that is not a demand pipe.

The algebraic constraints are obtained via applying nodal conditions at the junction nodes.
Suppose that the junction node i has niin injection pipes, and niout outflow pipes, then we need
(niin − 1) equality constraints to apply the pressure nodal conditions for injection pipes since the
pressure nodal conditions for outflow pipes are directly applied at the network assembling. We have
one algebraic constraint to prescribe the mass flow nodal condition for junction node i. Therefore,
we need niin algebraic constraints for junction node i. The sum over all the junction nodes of the
network gives the overall number of algebraic constraints.

na =
∑
i

niin,

algebraic constraints. Meanwhile, ∑
i

niin = ns + nj ,

as incoming pipes are never demand pipes and the sum over all incoming pipes are the number of
all supply and all junction pipes.

Proposition 3.1 states that the total number of extra variables equal to the total number of
algebraic constraints. This is very important for us to simulate the network model in the form
of (14), which will be shown in the next section.

4 Fast Numerical Methods for Simulation

By introducing the concept of long pipes and assembling all the long pipes of the network, we
obtain the model to represent the gas network with such a structure as in (14). In this section, we
will introduce fast numerical algorithms for the simulation of such a model.

9

4.1 Numerical Algorithms to Solve Differential Algebraic Equations

Here, we reuse notations of (14) and simplify them. We obtain the general mathematical model,

M∂tx = Ax+Bu(t) + f(x, u(t)), (15)

where the mass matrix M is singular when there is at least one junction node, and the right hand
side function f is nonlinear. In general, the mathematical model (15) is a large nonlinear differential
algebraic equation (DAE). Meanwhile, the size of the DAE (15) is also huge, since it contains
several discretized isothermal Euler equations (5) over the network domain. To solve/simulate
such a DAE model is challenging. Related work either focuses on exploiting the DAE structure
such that the differential part and the algebraic part are decoupled, and one can solve these two
parts separately [4], or reducing the so-called tractability index [15]. However, these methods are
problem dependent, and demand deep insight into the network. Here, we propose a fast numerical
method that is general for the gas network without decoupling the DAE or reducing the DAE
tractability index.

To simulate the DAE model (15), we discretize in time using the implicit Euler method, and
at time step k we have,

M
xk − xk−1

τ
= Axk +Buk + f(xk, uk),

i.e., we need to solve the following nonlinear system,

F (x) = (M − τA)x+ τf(x, uk)−Mxk−1 − τBuk = 0, (16)

at each time step k to compute the solution xk. To solve such a nonlinear equation for the
simulation of gas networks, some related work [16,27] treat the nonlinear term f(x, uk) explicitly,
i.e., f(xk, uk) ≈ f(xk−1, uk) since the input uk is known. This explicit approximation of the
nonlinear term reduces the computational complexity, and yields a linear system. However, this
approximation typically does not accurately represent the nonlinear dynamics of the network.
Here, we treat this nonlinear term implicitly and apply Newton’s method to solve the nonlinear
system (16) to study the nonlinear dynamics of the network. Newton’s method is described by
Algorithm 1.

Algorithm 1 Newton’s method to solve (16)

1: Input: maximal Newton steps nmax, stop tolerance ε0, initial guess x0
2: m = 0
3: while m ≤ nmax & ‖F (x)‖ ≥ ε0 do
4: Compute the Jacobian matrix DF (xm) = ∂

∂xF |x=xm

5: Solve F (xm) +DF (xm)(x− xm) = 0
6: xm ← x, m← m+ 1
7: end while
8: Output: solution x ≈ xm

The biggest challenge for Algorithm 1 is to solve the linear system in line 5 at each Newton
iteration, since the Jacobian matrix DF (xm) is large. Krylov subspace methods such as generalized
minimal residual (GMRES) method [28] or induced dimension reduction (IDR(s)) method [29] are
then appropriate to solve such a system. To accelerate the convergence of such a Krylov subspace
method, we need to apply the preconditioning technique by exploiting the structure of the Jacobian
matrix DF (x).

4.2 Preconditioning Technique

The Jacobian matrix

DF (x) = (M − τA) + τ
∂

∂x
f(x, u), (17)

where the matrices M and A are two-by-two block matrices, and

M =

[
M̄

0

]
, A =

[
A11 A12

A21 A22

]
. (18)

10

Here M̄ is block-diagonal, and the second block row of A comes from the algebraic constraints
of the networks by applying the nodal conditions introduced in Section 3. Meanwhile, the size
of A11 is much bigger than the size of A22 since A11 comes from the discretization of isothermal
Euler equations over all the long pipes of the network, while the size of A22 is equal to ns + nj
according to Proposition 3.1. Moreover, the partial derivative of the nonlinear term ∂

∂xf(x, u) has
the following structure

∂

∂x
f =

[
Df 0
0 0

]
, (19)

since the nonlinear term only acts on the differential part of the DAE (14). This can also be verified
by checking the structure of the nonlinear term in (14). By additionally introducing the concept
of flow direction following (FDF) ordering of the long pipes of the network, we can further exploit
the structure of DF (x) for fast computations.

Before applying the flow direction following ordering, we assume that the directed graph that
we use to represent the gas network is already re-directed so that there are no directed cycles
inside the network. When there are directed cycles, this re-direction can be made by changing the
prescribed flow direction at the corresponding edges of the cycle to eliminate the directed cycle.
This is feasible because the directions of the edges in the graph are set to represent the pre-defined
flow direction inside the network, which makes the modeling easier, while the real gas flow direction
at some edges may be opposite to the pre-defined direction. Numerical experiments in the next
section illustrates this. However, by re-directing the graph to eliminate cycles, we can exploit the
structure of the mathematical model to make fast computations, which reduces the computational
complexity for the simulation of such a gas network.

Definition 4.1 (Flow direction following (FDF) ordering). Given a directed graph such that all
long pipes are directed in such a way that we do not have cycles in the graph and we can order the
pipes along the directions that point away from supply and towards demand nodes. This means for
any path one can take starting from a supply node to a demand node following the direction of the
graph, the index of the pipes have to increase along that path.

After the FDF ordering, the pipe that is in the downstream direction of the flow automatically
gets a bigger number for the indexing of all the long pipes of the gas network. Note that the FDF
ordering is not unique, and to perform such an ordering of all the pipes, we can start from any of
the supply pipes. Then we have the following proposition to illustrate the structure of the partial
derivative of the nonlinear term (19).

Proposition 4.1. By applying the FDF ordering, Df in (19) has a block lower-triangular struc-
ture.

Proof. The i-th block in f has the structure,

fi =

[
0

g(x(i), pin)

]
,

where the structure of g(x(i), pin) is given by (11). Here, x(i) =
[
p(i)

T
q(i)

T
]
, and

pin =

{
ps, when i-th pipe is a supply pipe

p
(j)
out, when i-th pipe is connected by a junction node with pipe j

.

Then the diagonal block of ∂
∂xi

fi becomes,[
0 0

g(x(i),pin)
∂p(i)

g(x(i),pin)
∂q(i)

]
,

while

g(x(i), pin)

∂pin
=

0, when i-th pipe is a supply pipe
∂g(x(i),pin)

∂p
(j)
out

, when i-th pipe is connected by a junction node with pipe j
,

11

is the (i, j) block of Df . Here p
(j)
out is the pressure at the end of the pipe j. According to

Definition 4.1, we have i > j. Therefore, the nonzero off-diagonal block lies in the lower-triangular
part.

Similar to Proposition 4.1, we can also show that the (1, 1) block of A in (18) has a lower-
triangular block structure.

Proposition 4.2. After the FDF ordering, A11 in (18) also has a block lower-triangular structure.

Proof. For the i-th block row of A11, the off-diagonal blocks are zero if the i-th pipe is a supply
pipe. If the i-th pipe is not a supply pipe and connected with other pipes, then the off-diagonal
block (i, j) is nonzero if the j-th pipe corresponds to one of the flow injection pipes of the i-th
pipe. This is because the pressure nodal condition (12) is applied for the i-th pipe. According to
Definition 4.1, we have i > j, and this completes the proof.

If we partition the Jacobian matrix (17) by a 2-by-2 block structure in (18), then we have the
following theorem to illustrate the structure of the (1, 1) block of the Jacobian matrix.

Theorem 4.3. By applying the FDF ordering to all the long pipes of the network, the (1, 1) block
of the Jacobian matrix (17) has a block lower-triangular structure.

Proof. According to (17) (18) (19), the (1, 1) block of the Jacobian matrix DF (x) is,

M̄ − τA11 + τDf .

According to Proposition 4.1 and Proposition 4.2, A11 and Df are block lower-triangular matrices
after the FDF ordering. Since M̄ is a block diagonal matrix, this completes the proof.

Next, we use a benchmark network in [30] to show the structure of the Jacobian matrix DF (x)
of the first Newton iteration for the first time step, i.e., DF (x11) before and after applying the FDF
ordering. The network parameters are also given in [30], and we use the concept of long pipes in
this paper to discretize the network. We set the mesh size for the FVM discretization to be 20
meters, i.e., h = 20. The sparsity pattern of DF (x11) before and after the FDF ordering are given
by Figure 7.

Figure 6: Big benchmark network in [30]

Figure 7 shows that the Jacobian matrix DF (x) is a sparse matrix. After applying the FDF
ordering, the (1, 1) block has a block lower-triangular structure, and the size of the (1, 1) block is
much bigger than the (2, 2) block. For the case when the mesh size is 20 meters, the (1, 1) block
is a 200348 × 200348 block lower-triangular matrix while the size of the (2, 2) block is 417 × 417.
In general for a certain network after discretization, the size of the (2, 2) block of the Jacobian
matrix is fixed since it equals the number of algebraic constraints. According to Proposition 3.1,
it equals ns + nj where ns are the number of supply pipes and nj is the number of junction pipes.

12

These two variables are fixed for a certain network. The size of the (1, 1) block equals two times
the grid points of the network. Therefore, it is much bigger than ns + nj , which is clearly shown
in Figure 7.

0 0.5 1 1.5 2
nz = 601476 10 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 5

(a) without FDF ordering

0 0.5 1 1.5 2
nz = 601476 10 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 5

(b) with FDF ordering

Figure 7: Sparsity pattern of J without and with FDF ordering

The specific structure of the Jacobian matrix can be exploited to solve the Jacobian system
fast for the simulation of the gas network. Recall that to simulate the discretized gas network
model, we need to apply Algorithm 1, while we need to solve a Jacobian system at each Newton
iteration for each time step k (k = 1, 2, · · · , nt). To solve the Jacobian system, we exploit the
2-by-2 structure of the Jacobian matrix. Here we write the Jacobian matrix DF (x) as

DF (x) =

[
DF11 DF12

DF21 DF22

]
.

Note that the Jacobian matrix DF (x) has a special structure, which is called the generalized
saddle-point structure [31]. This enables us to make use of the preconditioning techniques designed
for the generalized saddle-point systems to solve the Jacobian system. Generalized saddle-point
systems come from many applications, such as computational fluid dynamics [32], PDE-constrained
optimization [33], optimal flow control [34]. Many efforts have been dedicated to the efficient
numerical solution of such systems using preconditioning techniques [35–39], we recommend [31,40]
for a general survey of the preconditioning generalized saddle-point systems.

We can compute a block LU factorization by

DF (x) =

[
DF11

DF21
S

] [
I D−1F11

DF12

I

]
. (20)

Here S = DF22 − DF21D
−1
F11
DF12 is the Schur complement of DF (x). According to Theorem 4.3,

DF11
has a block lower-triangular structure, and the size of DF22

is much smaller than DF11
.

Therefore, we can compute the Schur complement S by block forward substitution, and apply the
following preconditioner,

P =

[
DF11

DF21 S

]
, (21)

to solve the Jacobian system using a preconditioned Krylov solver. Associated with the block LU
factorization (20), we can immediately see that the preconditioned spectrum λ(P−1DF (x)) = {1}.
Moreover, the preconditioned matrix P−1DF (x) has minimum polynomial of degree 2, so that a
method like generalized minimum residual (GMRES) [28] would converge in at most two steps [31].

At each iteration of the Krylov solver, we need to solve the system[
DF11

DF21 S

] [
y1
y2

]
=

[
r1
r2

]
,

13

which can be solved easily since DF11
is a block lower-triangular system, and S = DF22

−
DF21

D−1F11
DF12

can be computed directly since the size of S is much smaller than DF11
. Note

that at each time step k, we need to solve a nonlinear system using Newton’s method, and we
need to apply preconditioned Krylov subspace method to solve a Jacobian system at each Newton
iteration. For such a preconditioned Krylov solver, we need to compute the Schur complement S
at each Newton iteration. This can still be computationally expensive for gas network simulation
within a certain time horizon. We can further simplify the preconditioner by applying a fixed
preconditioner P1 for all Newton iterations and all time steps, i.e., we choose

P1 =

[
D1
F11

D1
F21

S1

]
, (22)

where P1 comes from the block LU factorization of the Jacobian matrix D1
F (x1) of the first Newton

iteration for the first time step, and S1 = D1
F22
− D1

F21
(D1

F11
)−1D1

F12
. Note that for the precon-

ditioner P1, we just need to compute the Schur complement once and use it for all the Newton
iterations of all time steps.

Since P1 is a good preconditioner for D1
F (x1), and if the Jacobian matrix DF (x) at the other

Newton iterations and other time steps is close to D1
F (x1), then P1 is also a good preconditioner

for solving the Jacobian systems at other Newton iterations of other time steps. This is true
for the gas networks since the Jacobian matrix (17) has two parts, i.e., the linear part and the
linearized part. The linear part is dominant since it models the transportation phenomenon of
the gas while the nonlinear term acts as the friction term for such a transportation. This makes
P1 a good preconditioner for solving the Jacobian systems for all Newton steps of all time steps,
and it will be shown by numerical experiments in the next section. Note that if we keep updating
the preconditioner (21) more often than simply using a single preconditioner P1 in (22), we will
obtain better performance for the preconditioned Krylov solver, which in turn needs more time for
preconditioner computation. A compromise has to be made to achieve the optimal performance
for the gas network simulation in the term of total computational time.

Algorithm 1

next time step

Nopreconditioned
Newton's method

applying the
preconditioner P1

pre-compute
S1

Yes

end

DAE model (17)

nonlinear model
(18)

time step Nt reached

time discretization

start

FVM discretization
of (7a)(7b)

FDF ordering of
"long pipes"network

assembling

Figure 8: Computational diagram for gas network simulation

14

By applying the preconditioner P1 in (22), we show the computational diagram to illustrate
the process of gas network simulation in Figure 8.

5 Numerical Results

In this section, we report the performance of our numerical algorithms for the simulation of
the gas networks. We apply our numerical algorithms to the benchmark problems of several gas
networks given in [4, 14–16] to show the performance of our methods. All numerical experiments
are performed in MATLAB 2017a on a desktop with Intel(R) Core(TM)2 Quad CPU Q8400 of
2.66GHz, 8 GB memory and the Linux 4.9.0-6-amd64 kernel.

5.1 Comparison of Discretization Methods

In this section, we compare the performance of the finite volume method (FVM) with that of
the finite difference method (FDM) for the discretization of the gas networks. We apply both the
FVM and FDM to a pipeline network illustrated in Figure 5.1. Parameter settings for this pipeline
network are given in [4].

Figure 9: Pipeline network in [15]

We discretize the pipeline network using FVM and FDM with different mesh sizes, and the
discretized pipeline networks result in ordinary differential equations (ODEs) since there is no
algebraic constraint. We simulate the ODE systems using the routine ode15s in MATLAB over the
time horizon [0, 105] with the same setting of the initial condition for the ODEs. The computational
results are given in Figure 10, where the x-axis represents the mesh sizes in meters.

1000 250 100 50 25

0

2,000

4,000

6,000

8,000

mesh sizes

#
ti
m
e
st
ep
s

FVM FDM

(a) time steps

1000 250 100 50 25

0

100

200

300

400

500

mesh sizes

ti
m
e
(s
)

FVM FDM

(b) total timing

Figure 10: Comparison of FVM and FDM for a single pipe network

Figure 10(a) shows the number of time steps that ode15s uses to simulate the ODEs given by
FVM and FDM discretization over the time horizon [0, 105]. It is clear that for every mesh size,
we need less time steps for the ODE given by the FVM discretization than the ODE given by the
FDM discretization while the cost of the simulation for each time step is the same for the two
ODEs since the same mesh size for discretization yields the ODEs of the same size. This makes
the total computation time for the simulation of ODE given by the FVM discretization shorter
than that of the ODE given by the FDM discretization, which is also shown in Figure 10(b).

The results in Figure 10 show that the ODE model given by the FVM discretization is faster to
be solved by the ode15s routine in MATLAB than the ODE model given by the FDM discretization.

15

However, the background mechanism is still not clear since ode15s behaves like a black-box.
Next, we use another network to show that with the same mesh, the model given by the FVM
discretization gives more accurate results than the FDM discretization. The test network is given
in Figure 11, where the network parameters are given in [15].

We use the FVM and FDM method to discretize the network in Figure 11 and apply the
computational method depicted in Figure 8. We choose different mesh sizes for the discretization,
and fix the step size for the time discretization to be one second, i.e., τ = 1. We plot the mass
flow at the supply node 57 in Figure 12.

The mass flow at node 57 computed by using different discretized DAE models (16) is plotted in
Figure 15(a), and they have similar dynamical behavior. However, when we look at the dynamics
of the mass flow at the first 5 seconds, we can see quite a big difference in Figure 15(b). With the
mesh refinement, the solutions of the model given by both the FVM and the FDM discretizations
converge. Moreover, we can infer that we can use a bigger mesh size for the FVM discretization
than for the FDM discretization to get the same accuracy.

57

31
37

Figure 11: Medium size network

The computational results given by Figure 10 and Figure 11 show that when we use the same
mesh size to discretize the network, the model given by the FVM discretization is more accurate
than the model by the FDM discretization. To get the same model accuracy, we can use a bigger
mesh size to discretize the network by FVM than that by FDM. This in turn yields a smaller
model given by the FVM discretization than the model given by the FDM discretization. This in
turn means that the FVM discretized model is easier to solve than the FDM discretized model.

0 20 40 60 80 100
time(s)

50

100

150

200

250

300

350

400

(a) supply flow at node 57

1 2 3 4
time(s)

310

320

330

340

350

360

370

380

(b) zoomed supply flow at node 57

Figure 12: Comparison of FVM and FDM for a medium network

We also plot the condition number of the Jacobian matrix (κ(DF)) of all the Newton iterations

16

for the first time step with a mesh size h = 60 to discretize the DAE, which are given in Figure 13.
It illustrates that the condition number of the Jacobian matrix of the FVM discretized model is
about 10 times smaller than the condition number of the Jacobian matrix of the FDM discretized
model, which makes solving such a FVM discretized model easier than solving a FDM discretized
model.

Computational results in Figure 10 - 13 show that the finite volume method has a bigger
advantage over the finite difference method. When using the same mesh size for discretization,
FVM gives a more accurate model than the FDM discretization. Moreover, the Jacobian matrix
from the FVM discretized model has a better condition number than the Jacobian matrix from
the FDM discretized model, which makes it easier to simulate the FVM discretized model. To
get the same model accuracy, the size of FVM discretized model is smaller than the size of the
FDM discretized model, and it is therefore computationally cheap. For the comparison of the
finite element method (FEM) with FDM for the gas network simulation, we refer to an early study
in [11], where the authors preferred FDM due to the comparable accuracy with FEM and less
computational time.

1st 2nd 3rd 4th

107.5

108

Newton iter.

κ
(D

F
)

FVM FDM

Figure 13: Condition number of the Jacobian matrix, 1st time step, h = 60

5.2 Robustness of Modeling

The flow direction inside the gas network plays an important role for the modeling and fast
simulation of such a network. This is because the setup of the algebraic constraints, i.e., applying
the nodal conditions (12) - (13), and the flow direction following (FDF) ordering are closely related
with the flow direction. However, the flow direction may change due to the change of operation
conditions of the gas networks. In this part, we show that we only need a prescribed flow direction
for our numerical methods, and the flow direction change does not influence the performance of
our methods. This is because the FDF ordering at the pre-processing stage only needs a prescribed
flow direction and helps us to rearrange the algebraic constraints so that we can exploit the system
structure for fast computation. The change of the flow direction does not change the mathematical
formulation of algebraic constraints. Therefore, the structure of the system stay unchanged with
respect to the change of the flow direction. This means that we do not require the foreknowledge of
the flow direction, which sometimes is also difficult to know for the large network, and our methods
are robust with respect to the change of flow direction.

First, we test two different cases, which corresponds to two different flow direction profiles of
the network, cf. Figure 4. Case 1 corresponds to p1s = p2s = 30 bar, and qd = 30 kg/s while case 2
corresponds to p1s = 30 bar, p2s = 20 bar, and qd = 30 kg/s. We plot the mass flow at the supply
pipe 1 and 2 in Figure 14 - 15.

Figure 14 shows that the mass flow at both supply nodes approaches to the steady state after
oscillation for a short while, and both input mass flows have a positive sign. This represents that
both supply nodes inject gas flow into the network to supply gas to the demand node 6. After
changing the operation condition of the network, e.g., changing the pressure at supply nodes, the

17

mass flow is redistributed as shown in Figure 15. The mass flow at the supply node 10 becomes
negative after a few seconds and remains negative after the network reaches steady state. For this
case, the supply pipe at node 10 acts as a demand pipe since it gets gas flow from the network.
For both cases, the equality q1s + q2s =

∑
qd holds at the steady state.

0 200 400 600 800 1000
time(s)

-40

-20

0

20

40

60

80

100

120

(a) mass flow at node 1

0 200 400 600 800 1000
time(s)

-40

-20

0

20

40

60

80

100

(b) mass flow at node 10

Figure 14: Mass flow at supply nodes for case 1

0 200 400 600 800 1000
time(s)

0

50

100

150

200

250

300

350

400

450

k
g
=s

qs

qd

(a) mass flow at node 1

0 200 400 600 800 1000

time(s)

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

k
g
=s

qs

qd

(b) mass flow at node 10

Figure 15: Mass flow at supply nodes for case 2

We also apply two different cases to a more complicated network given in Figure 11 to test the
robustness of our methods. Case 1 corresponds to p55s = p56s = 50.5 bar, p57s = 50.8 bar while case
2 has p55s = p56s = 50.5 bar, and p57s = 50.0 bar. The demand of gas at the demand nodes are the
same for both cases. We show the mass flow at the pipe that connects node 31 and 37, which also
connects two sub-networks. The mass flow for the pipe 31 → 37 for different cases are given by
Figure 16. The initial conditions of the gas network for the simulation of the two different cases
are set the same.

The simulation results in Figure 16 show that the flow direction at pipe 31 → 37 changes for
the above two cases. The steady state of the mass flow for the two cases show that the flow can
travel in a direction opposite to the prescribed flow direction, and the inflow at node 31 equal to
the outflow at node 37 for the steady state. The imbalance between the inflow and outflow in the
transient process is necessary to build the pressure profile of the network.

Computational results in Figure 14 - 16 show that our methods are robust with respect to the
change of flow direction. We do not need the detailed information of the flow direction profile of
the network, instead we can just assume a predefined flow direction of the network and use this
predefined flow direction for the modeling and simulation. The computations will update the flow
direction automatically.

18

0 200 400 600 800 1000
time(s)

-60

-40

-20

0

20

40
in
out

(a) case 1

0 200 400 600 800 1000
time(s)

-60

-40

-20

0

20

40
in
out

(b) case 2

Figure 16: Mass flow for the pipe 31→ 37

The mechanism of the robustness of the modeling with respect to gas flow direction contains
two parts. First, the algebraic constraints for the modeling are invariant under the change of flow
direction in the network. Second, the boundary conditions given by (6) also suit the case when
the flow changes direction. Therefore, the additional variables, which make all long pipes in the
network have both left and right boundary conditions, are also invariant under the change of flow
direction. We do not need to introduce another set of variables and switch to another model when
the flow changes direction. This is the key for us to apply the FDF ordering at the pre-processing
stage to get a block lower-triangular structure of the (1, 1) block of the system matrix.

5.3 Convergence Comparison

After the FDF ordering, we apply Algorithm 1 to solve the nonlinear equation (16) at each
time step. Newton’s method requires the computation of the Jacobian matrix at each iteration,
which is typically expensive. We try to reduce the cost of computing the Jacobian matrix, and we

approximate the nonlinear term
qkm|q

k
m|

qkm
at the m-th Newton iteration of time step k as,

qkm|qkm−1|
pkm−1

≈ qkm|qkm|
pkm

.

This approximation avoids computing the partial derivatives of the nonlinear term, and results
in a diagonal coefficient matrix for the linearization. We apply this approximation to solve the
nonlinear equation iteratively, and this is the Picard iteration. Here, we study the convergence
of both Newton’s method and the Picard method for solving (16). We plot the 2-norm of the
nonlinear residual, i.e., ‖F‖2 of the first and 50-th time step at each Newton and Picard iteration.
Both Newton and Picard iteration start with the same initial condition and the time step size for
both methods are set as τ = 1.

We first study the convergence for the simulation of the network shown in Figure 11. We
discretize this network using the finite volume method with mesh size h = 50, and both Newton’s
method and the Picard method are stopped when ‖F‖2 ≤ 10−5. The results given in Figure 17
show that both the Newton and Picard iteration have a fast convergence rate. However, the Picard
method takes more than 2 times the number of iterations to reach the same stopping criterion.
This means that we need to solve more than 2 times the linear systems for the Picard method
than the Newton’s method, while solving such a linear system is the most time consuming part of
such a nonlinear iteration. Moreover, the sizes of the linear systems at each Newton and Picard
iteration are the same. The additional cost from the Picard method is much bigger than the cost
saved from the simplification of the derivatives computation. This makes the Picard method not
as practical as the Newton’s method for solving such a nonlinear system.

Next, we test on a bigger network given in Figure 6. We also discretize such a network with
the finite volume method with h = 50m, and we stop both the Newton and Picard iteration when
‖F‖2 ≤ 10−4. The results are given by Figure 18. Again, we observe similar convergence behavior

19

for Newton’s method and the Picard method with the convergence results shown in Figure 17. The
Picard method needs more than double the number of linear system solves than Newton’s method.
When we need more accurate simulations of a gas network, smaller mesh sizes are necessary
increasing the difference in the computational effort.

0 5 10 15

10−7

10−4

10−1

102

105

iter.

‖F
‖ 2

Newton
Picard

(a) 1st time step

0 2 4 6 8
10−8

10−5

10−2

101

104

iter.

‖F
‖ 2

Newton
Picard

(b) 50th time step

Figure 17: Convergence comparison for network in Figure 11

Computational results in Figure 17 and 18 show that for the simulation of gas networks, New-
ton’s method is superior to the Picard method in both the computational complexity and the
convergence rate.

0 10 20 30 40

10−5

10−2

101

104

107

iter.

‖F
‖ 2

Newton
Picard

(a) 1st time step

0 2 4 6

10−7

10−4

10−1

102

105

iter.

‖F
‖ 2

Newton
Picard

(b) 50th time step

Figure 18: Convergence comparison for network in Figure 6

5.4 Preconditioning Performance

As introduced in the previous section, the biggest challenge for applying Algorithm 1 to simulate
a gas network lies in the effort spent to solve the linear system at each Newton iteration. For large-
scale networks, we need smaller mesh size to discretize such networks and this results in larger
sizes of the DAEs. Therefore, we need to employ iterative solvers to compute the solution of
such a large-scale linear system at each Newton iteration, while preconditioning is essential to
accelerate the convergence of such iterative solvers. In this part, we study the performance of the
preconditioner (22).

We test the performance of the preconditioner on the network in Figure 6 using different mesh
sizes for the finite volume discretization. At each Newton (outer) iteration, we solve a linear system
by applying an (inner) Krylov solver, e.g., the IDR(s) solver [29, 41], and this is called Newton-
Krylov method. Note that the Newton-Krylov method is an inexact Newton method, and at each

20

Newton iteration, we apply the IDR(s) method to solve the linear system up to an accuracy εtol,
i.e.,

‖F (xm) +DF (xm)(x− xm)‖ ≤ εtol‖F (xm)‖,
where εtol is related with the forcing term for inexact Newton’s method [42]. Here, we show the
convergence of the Newton-Krylov method with respect to different εtol, i.e., ‖F‖2 with respect
to different settings of εtol. We use the “true” residual computed by using direct method, i.e.,
the backslash operator implemented in MATLAB for comparison. We report the computational
results for the FVM discretization with mesh sizes of 50 and 40, and the time step size τ is set to
be 1. For the convergence rate of the inexact Newton method with respect to εtol, we refer to [43].

The computational results of the nonlinear residual ‖F‖2 in Figure 19 for two different mesh
sizes show that the accuracy of the inner iteration loop can be set relatively low while the conver-
gence of the outer iteration can still be comparable with more accurate inner loop iterations. The
convergence properties of the Newton iteration for the first time step are the same if the inner loop
is solved accurately, or the inner loop is solved up to an accuracy of 10−6 or 10−4. If the inner
loop is solved up to an accuracy of 10−3, only one more Newton iteration is needed. Moreover,
the convergence behavior of the Newton iteration for different inner loop solution accuracy are
the same for the 10-th time step. If lower inner loop accuracy is used, less computational effort is
needed. This reduces the computational complexity. The number of IDR(4) iterations for different
inner loop accuracy are reported in Figure 20 - 21.

0 2 4 6 8 10
10−6

10−3

100

103

106

Newton iter.

‖F
‖ 2

direct method

IDR(4), εtol = 10−6

IDR(4), εtol = 10−4

IDR(4), εtol = 10−3

(a) h = 50, 1st time step

0 1 2 3 4

106

104

102

100

10−2

10−4

Newton iter.

‖F
‖ 2

direct method

IDR(4), εtol = 10−6

IDR(4), εtol = 10−4

IDR(4), εtol = 10−3

(b) h = 50, 10-th time step

0 2 4 6 8 10
10−6

10−3

100

103

106

Newton iter.

‖F
‖ 2

direct method

IDR(4), εtol = 10−6

IDR(4), εtol = 10−4

IDR(4), εtol = 10−3

(c) h = 40, 1st time step

0 1 2 3 4

106

104

102

100

10−2

10−4

Newton iter.

‖F
‖ 2

direct method

IDR(4), εtol = 10−6

IDR(4), εtol = 10−4

IDR(4), εtol = 10−3

(d) h = 40, 10-th time step

Figure 19: Nonlinear residual at the first and tenth time step

The computational results in Figure 20(a) show that the total number of IDR(4) iterations (47)
for εtol = 10−6 is almost twice of the total number of IDR(4) iterations (24) for εtol = 10−3. This
represents that the computational work for the first time step can be reduced to almost 50% since
the most time consuming part inside each Newton iteration is the IDR(4) solver. Similar results

21

are shown by Figure 20(b). As the system gets closer to steady state, less Newton iterations are
needed, and the IDR(4) solver also needs less iterations, as shown in Figure 21. At this stage,
IDR(4) with εtol = 10−3 still needs less work than the IDR(4) with εtol = 10−6 but is no longer as
significant.

0 1 2 3 4 5 6 7 8 9 10

2

4

6

Newton iter.

#
ID

R
(4
)
it
er
.

εtol = 10−6 εtol = 10−4 εtol = 10−3

(a) h = 50

0 1 2 3 4 5 6 7 8 9 10

2

4

6

Newton iter.

#
ID

R
(4
)
it
er
.

εtol = 10−6 εtol = 10−4 εtol = 10−3

(b) h = 40

Figure 20: Number of IDR(4) iterations at the first time step

1 2 3 4

2

3

Newton iter.

#
ID

R
(4
)
it
er
.

εtol = 10−6 εtol = 10−4 εtol = 10−3

(a) h = 50

1 2 3 4

2

3

Newton iter.

#
ID

R
(4
)
it
er
.

εtol = 10−6 εtol = 10−4 εtol = 10−3

(b) h = 40

Figure 21: Number of IDR(4) iterations at the 10-th time step

We have already observed that the performance of our modeling is robust and convergence
of the preconditioned Krylov solver happens quickly. There are no other alternatives currently
found in the literature. Next, we report the computational time for computing the preconditioner
P1 and applying the preconditioned IDR(4) solver of the first Newton step for the first time step
for different FVM discretization mesh sizes. We solve the Jacobian system up to an accuracy of
10−4, and the computational results are given by Table 1. Here “-” represents running out of
memory, #DF represents the size of the Jacobian system, tS1 denotes the time to compute the
Schur complement in P1, and all the time are measured in seconds.

22

The computational results in Table 1 show the advantage of our preconditioner in solving the
large-scale Jacobian system over the direct solver. The time to solve the preconditioned system
using the IDR(4) solver scales linearly with the system size, and is much smaller than the time to
apply the direct solver when the mesh sizes are smaller than 20. For large-scale Jacobian systems,
the direct solver either takes up too much CPU time or fails to solve the Jacobian system due
to running out of memory. For smaller Jacobian systems, the direct solver shows the advantage
over preconditioned Krylov solvers. This is primarily because that there is a big overhead when
applying the preconditioned IDR(4) solver while the backslash operator is highly optimal for
smaller systems. The time to compute the Schur complement in preconditioner P1 scales almost
linearly with the system sizes.

Table 1: Computational time for the 1st Newton iteration

h #DF tS1 IDR(4) backslash

40 1,03e+05 3.85 0,25 0,13

20 2,01e+05 8, 12 0,52 0,36

10 3,97e+05 17, 84 1,06 1,18

5 7,91e+05 38, 44 2,13 1054,62

2.5 1,58e+06 81, 42 4,34 -

6 Conclusions

In this paper, we studied the modeling and simulation of pipeline gas networks. We applied
the finite volume method (FVM) to discretize the incompressible isothermal Euler equation, and
compared with the finite difference method (FDM). Numerical results show the advantage of the
FVM over the FDM. To model the gas networks, we introduced the concept of long pipes, which
represents the topology of the network interconnection and reduces the size of the algebraic con-
straints of the resulting differential algebraic equation (DAE). To simulate such a DAE system, we
proposed the flow direction following (FDF) ordering of the long pipes of the network. Through
such an FDF ordering, we exploited the structure of the system matrix and proposed an efficient
preconditioner to solve the DAE. Numerical results show the advantage of our algorithms.

References

[1] A. Osiadacz. Simulation of transient gas flows in networks. Internat. J. Numer. Methods
Fluids, 4(1):13–24, 1984.

[2] A. Osiadacz. Simulation and analysis of gas networks. Gulf Publishing, Houston, TX, 1987.

[3] W. Q. Tao and H. C. Ti. Transient analysis of gas pipeline network. Chem. Eng. J., 69(1):47
– 52, 1998.

[4] S. Grundel, N. Hornung, and S. Roggendorf. Numerical aspects of model order reduction for
gas transportation networks. In Simulation-Driven Modeling and Optimization, volume 153
of Springer Proceedings in Mathematics & Statistics, pages 1–28. 2016.

[5] M. Gugat, F. M. Hante, M. Hirsch-Dick, and G. Leugering. Stationary states in gas networks.
Netw. Heterog. Media, 10(2):295–320, 2015.

[6] M. C. Steinbach. On PDE solution in transient optimization of gas networks. J. Comput.
Appl. Math., 203(2):345 – 361, 2007.

[7] A. Zlotnik, M. Chertkov, and S. Backhaus. Optimal control of transient flow in natural gas
networks. In 2015 54th IEEE Conference on Decision and Control (CDC), pages 4563–4570,
Dec 2015.

23

[8] F. M. Hante, G. Leugering, A. Martin, L. Schewe, and M. Schmidt. Challenges in optimal
control problems for gas and fluid flow in networks of pipes and canals: from modeling to
industrial applications, pages 77–122. Springer Verlag, Singapore, 2017.

[9] J. Zhou and M. A. Adewumi. Simulation of transients in natural gas pipelines using hybrid
TVD schemes. Internat. J. Numer. Methods Fluids, 32(4):407–437, 2000.

[10] H. Egger. A robust conservative mixed finite element method for isentropic compressible flow
on pipe networks. SIAM J. Sci. Comput., 40(1):A108–A129, 2018.

[11] A. J. Osiadacz and M. Yedroudj. A comparison of a finite element method and a finite
difference method for transient simulation of a gas pipeline. Appl. Math. Model., 13(2):79–85,
1989.

[12] M. Chaczykowski. Sensitivity of pipeline gas flow model to the selection of the equation of
state. Chem. Eng. Res. Des., 87(12):1596 – 1603, 2009.

[13] M. Herty, J. Mohring, and V. Sachers. A new model for gas flow in pipe networks. Math.
Methods Appl. Sci., 33(7):845–855, 2010.

[14] S. Grundel, N. Hornung, B. Klaassen, P. Benner, and T. Clees. Computing surrogates for gas
network simulation using model order reduction. In Surrogate-Based Modeling and Optimiz-
ation, Applications in Engineering, pages 189–212. 2013.

[15] S. Grundel, L. Jansen, N. Hornung, T. Clees, C. Tischendorf, and P. Benner. Model or-
der reduction of differential algebraic equations arising from the simulation of gas transport
networks. In Progress in Differential-Algebraic Equations, Differential-Algebraic Equations
Forum, pages 183–205. 2014.

[16] S. Grundel and L. Jansen. Efficient simulation of transient gas networks using IMEX integ-
ration schemes and MOR methods. In 2015 54th IEEE Conference on Decision and Control
(CDC), pages 4579–4584, 2015.

[17] P. Domschke, A. Dua, J. J. Stolwijk, J. Lang, and V. Mehrmann. Adaptive refinement
strategies for the simulation of gas flow in networks using a model hierarchy. Electron. Trans.
Numer. Anal., 48:97–113, 2018.

[18] SFB Transregio 154: Mathematical modelling, simulation and optimization using the example
of gas networks. https://trr154.fau.de/index.php/en/.

[19] A. Herrán-González, J. M. De La Cruz, B. De Andrés-Toro, and J. L. Risco-Mart́ın. Modeling
and simulation of a gas distribution pipeline network. Appl. Math. Model., 33(3):1584 – 1600,
2009.

[20] A. Fügenschuh, B. Geißler, R. Gollmer, A. Morsi, J. Rövekamp, M. Schmidt, K. Spreckelsen,
and M.C. Steinbach. Chapter 2: Physical and technical fundamentals of gas networks, pages
17–43. Society for Industrial and Applied Mathematics, Philadelphia, 2015.

[21] K. S. Shterev and S. K. Stefanov. Pressure based finite volume method for calculation of
compressible viscous gas flows. J. Comput. Phys., 229(2):461 – 480, 2010.

[22] K. S. Shterev. Iterative process acceleration of calculation of unsteady, viscous, compressible,
and heat-conductive gas flows. Internat. J. Numer. Methods Fluids, 77(2):108–122, 2015.

[23] P. Benner, S. Grundel, C. Himpe, C. Huck, T. Streubel, and C. Tischendorf. Gas network
benchmark models. Technical Report 184, Humboldt-Universität zu Berlin (TRR154), 2017.

[24] H. Egger, T. Kugler, and N. Strogies. Parameter identification in a semilinear hyperbolic
system. Inverse Probl., 33(5):055022, 2017.

[25] T. G. Grandón, H. Heitsch, and R. Henrion. A joint model of probabilistic/robust constraints
for gas transport management in stationary networks. Comput. Manag. Sci., 14(3):443–460,
Jul 2017.

24

[26] M. Herty. Modeling, simulation and optimization of gas networks with compressors. Netw.
Heterog. Media, 2(1):81–97, 2007.

[27] U. M. Ascher, S. J. Ruuth, and B. Wetton. Implicit-explicit methods for time-dependent
partial differential equations. SIAM J. Numer. Anal., 32(3):797–823, 1995.

[28] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, 2003.

[29] P. Sonneveld and M. B. van Gijzen. IDR(s): A family of simple and fast algorithms for
solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput., 31(2):1035–
1062, 2008.

[30] S. Roggendorf. Model order reduction for linearized systems arising from the simulation of gas
transportation networks. Master’s thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn,
Germany, 2015.

[31] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta
Numer., 14:1–137, 2005.

[32] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative Solvers. Oxford
University Press, New York, June 2014.

[33] T. Rees. Preconditioning Iterative Methods for PDE-Constrained Optimization. PhD thesis,
University of Oxford, 2010.

[34] Y. Qiu. Preconditioning Optimal Flow Control Problems Using Multilevel Sequentially
Semiseparable Matrix Computations. PhD thesis, Delft Institute of Applied Mathematics,
Delft University of Technology, 2015.

[35] J. W. Pearson. On the development of parameter-robust preconditioners and commutator
arguments for solving Stokes control problems. Electron. Trans. Numer. Anal., 44:53–72,
2015.

[36] M. Porcelli, V. Simoncini, and M. Tani. Preconditioning of active-set Newton methods for
PDE-constrained optimal control problems. SIAM J. Sci. Comput., 37(5):S472–S502, 2015.

[37] M. Wathen, C. Greif, and D. Schötzau. Preconditioners for mixed finite element discretizations
of incompressible MHD equations. SIAM J. Sci. Comput., 39(6):A2993–A3013, 2017.

[38] J. Pestana and A. J. Wathen. Natural preconditioning and iterative methods for saddle point
systems. SIAM Rev., 57(1):71–91, 2015.

[39] M. Stoll and T. Breiten. A low-rank in time approach to PDE-constrained optimization. SIAM
J. Sci. Comput., 37(1):B1–B29, January 2015.

[40] A. J. Wathen. Preconditioning. Acta Numer., 24:329–376, 2015.

[41] M. B. van Gijzen and P. Sonneveld. Algorithm 913: An elegant IDR(s) variant that efficiently
exploits biorthogonality properties. ACM Trans. Math. Software, 38(1):5:1–5:19, 2011.

[42] C. Kelley. Solving Nonlinear Equations with Newton’s Method. Society for Industrial and
Applied Mathematics, Philadelphia, 2003.

[43] R. Dembo, S. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal.,
19(2):400–408, 1982.

25

	1 Introduction
	2 Gas Dynamics in Pipelines
	2.1 1D Isothermal Euler Equation
	2.2 Finite Volume Discretization

	3 Network Modeling
	3.1 Nodal Conditions
	3.2 Network Assembling

	4 Fast Numerical Methods for Simulation
	4.1 Numerical Algorithms to Solve Differential Algebraic Equations
	4.2 Preconditioning Technique

	5 Numerical Results
	5.1 Comparison of Discretization Methods
	5.2 Robustness of Modeling
	5.3 Convergence Comparison
	5.4 Preconditioning Performance

	6 Conclusions

