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Abstract. We study the modeling and simulation of gas pipeline networks,
with a focus on fast numerical methods for the simulation of transient dy-

namics. The obtained mathematical model of the underlying network is repre-
sented by a system of nonlinear differential algebraic equations (DAEs). With

our modeling approach, we reduce the number of algebraic constraints, which
correspond to the (2, 2) block in our semi-explicit DAE model, to the order of
junction nodes in the network, where a junction node couples at least three

pipelines. We can furthermore ensure that the (1, 1) block of all system matri-

ces including the Jacobian is block lower triangular by using a specific ordering
of the pipes of the network. We then exploit this structure to propose an

efficient preconditioner for the fast simulation of the network. We test our
numerical methods on benchmark problems of (well-)known gas networks and
the numerical results show the efficiency of our methods.

2010 Mathematics Subject Classification. Primary: 65F08, 37M05, 37N30; Secondary: 94C30.
Key words and phrases. gas networks modeling, isothermal Euler equation, directed acyclic

graph (DAG), differential algebraic equation (DAE), preconditioning.
This work is partially funded by the European Regional Development Fund (ERDF/EFRE:

ZS/2016/04/78156) within the Center Dynamic Systems (CDS)..
∗ Corresponding author: Yue Qiu.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 Y. QIU, S. GRUNDEL, M. STOLL, AND P. BENNER

1. Introduction. Natural gas is one of the most widely used energy sources in the
world, as it is easily transportable, storable and usable to generate heat and electric-
ity. Even though research on transient gas networks dates back to the 1980s [26, 27],
often only stationary solutions of the gas network are computed. This is also reason-
able as the variation in a classically operated gas transportation networks enforces
no need for a truly transient simulation. However, as we move from classical to re-
newable energy sources in which we may use the gas pipelines to deal with flexibility
from volatile energy creation, the need for fast transient simulation will increase.
In recent years, research on natural gas networks focuses on a variety of topics:
transient simulations [26, 27, 39, 14, 17], optimization and control [37, 45, 18], time
splitting schemes for solving the parabolic flow equations [44], discretization meth-
ods [8, 28], and model sensitivity [6] to mention a few. It is obvious that efficient
simulation techniques are needed both for design and for control.

The objective of this paper is to speed up the computations at the heart of each
simulation. For that we make use of a discretization that respects the hyperbolic
nature of the problem by using a finite volume method (FVM), as well as exploiting
the network structure to create good properties for the computations. The use
of the finite volume method is not entirely new in the literature [5], but typically
comes with a Riemann solver, which by definition is an explicit time integration and
therefore often slow. It is also not clear how to extend such a numerical scheme to
a network with circles, which is straightforward in our approach. We start as it is
standard for modeling gas transport in a pipeline by the one-dimensional isothermal
Euler equation, which is a coupled partial differential equation (PDE). We introduce
the necessary discrete variables for the pressure and the flux on each pipe and make
sure to use as little algebraic equations as possible when considering a network of
pipes. Other discretization schemes were studied in [3, 23], but our setup is favorable
for the speedup of the DAE simulation with an implicit time integration scheme.
By further exploiting the structure of the system, we propose a preconditioner that
enables fast solution of such a nonlinear equation using a preconditioned Krylov
solver at each Newton iteration.

The structure of this paper is as follows. We introduce the incompressible isother-
mal Euler equation for gas dynamics modeling of each pipeline of the network in
Section 2, where we also apply the finite volume method (FVM) to discretize the
incompressible isothermal Euler equation. In Section 3, we introduce the details
of gas network modeling starting from assembling all pipelines. This results in a
set of nonlinear DAEs for the network model. We propose numerical algorithms to
solve the resulting nonlinear DAE in Section 4 to simulate the gas network. We
use benchmark problems from gas pipeline networks to show the efficiency and the
advantage of our numerical algorithms in Section 5, and we draw conclusions in the
last section.

2. Gas dynamics in pipelines. In a typical gas transport network, the main
components are pipelines (or pipes, for short). In this section, we will discuss the
dynamics of gas transported along pipes. In Section 2.1, we discuss the isothermal
Euler equation, which is the partial differential equation used for modeling transport
in the pipe. Some standard simplifications lead to equation (4) and after some more
assumptions, equation (5) can be derived, which is the basis for our simulations. In
Section 2.2, equation (5) is discretized in space by a standard finite volume scheme
leading to (7).
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2.1. 1D isothermal Euler equation. The dynamics of gas transported along
pipes is described by the Euler equation, which represents the laws of mass conser-
vation, momentum conservation, and energy conservation. In this paper, we assume
that the temperature is constant throughout the gas network, leading to the isother-
mal Euler equations. Therefore, the energy equation can be neglected. This may
seem unrealistic, but for onshore gas networks, in which the pipes are buried under-
ground, the temperature along pipes does not vary much. This assumption greatly
reduces the complexity of modeling and is widely used in the simulation of gas
networks [19, 22, 13, 17, 11].

Consider the 1D isothermal Euler equation over the spatial domain [0, L] given
by

∂

∂t
ρ = − ∂

∂x
ϕ, (1a)

∂

∂t
ϕ = − ∂

∂x
p− ∂

∂x
(ρv2)− gρ ∂

∂x
h− λ(ϕ)

2d
ρv|v|, (1b)

p = γ(T )z(p, T )ρ. (1c)

Here, ρ is the density of the gas (kg/m3), ϕ represents the flow rate ϕ = ρv with
v the velocity of the gas (m/s), d is the diameter of the pipe (m), λ is the friction
factor of the gas, and g is the gravity constant. Meanwhile, p denotes the pres-
sure of the gas (N/m2), T is the temperature of the gas (K), and z denotes the
compressibility factor. The conservation of mass is given by (1a), and the conser-
vation of momentum is represented by (1b), while the state equation (1c) couples
the pressure with the density.

By using the mass flow q = aϕ to substitute into (1a)–(1b), where a is the
cross-section area of the considered pipes, we get

∂

∂t
ρ = −1

a

∂

∂x
q, (2a)

1

a

∂

∂t
q = − ∂

∂x
p− 1

a2
∂

∂x

q2

ρ
− gρ ∂

∂x
h− λ(q)

2da2
q|q|
ρ
, (2b)

p = γ(T )z(p, T )ρ. (2c)

For the isothermal case, the temperature T equals T0 throughout the network, hence
γ(T ) = γ(T0) = γ0, and z(p, T ) = z(p, T0) = z0(p). Therefore, the compressibility
factor z(p, T ) is only related to the pressure p and we can rewrite (2a)–(2c) as

1

γ0

∂

∂t

p

z0(p)
= −1

a

∂

∂x
q, (3a)

1

a

∂

∂t
q = − ∂

∂x
p− γ0

a2
∂

∂x

q2z0(p)

p︸ ︷︷ ︸
inertia term

− g

γ0

p

z0(p)

∂

∂x
h︸ ︷︷ ︸

gravity term

− λ(q)γ0
2da2

z0(p)
q|q|
p︸ ︷︷ ︸

friction term

. (3b)

For the inertia term, it is concluded in [19] that for realistic gas pipes

γ0
a2

∂

∂x

q2z0(p)

p
≈ 10−3

∂

∂x
p.

Therefore, the inertia term can be neglected and this neglecting greatly simplifies
the model, which is standard in the study of gas networks [18, 14, 45]. In this paper,
we also use this simplification. Meanwhile, we will often assume that the elevation
of pipes is homogeneous. The gravity term in (3b) then vanishes. However, this
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term is easily treatable within our framework, which we will illustrate later in this
section.

Now, we get the model that describes the dynamics of isothermal gas transported
along homogeneous elevation pipes given by

∂

∂t

p

z0(p)
= −γ0

a

∂

∂x
q, (4a)

∂

∂t
q = −a ∂

∂x
p− λ(q)γ0

2da
z0(p)

q|q|
p
. (4b)

The details of modeling the compressibility factor z0(p) and the friction factor
λ(q) are described in [3]. In this paper, we only consider incompressible gas, i.e.,
z0(p) = 1. For compressible gas dynamics, the compressibility factor z0(p) can often
be represented by a polynomial of the pressure p [3], which in turn makes (4a)–(4b)
a highly nonlinear transport problem and requires further investigation.

2.2. Finite volume discretization. In this paper, the dynamics of the gas trans-
ported along pipes are described by the 1D isothermal incompressible Euler equation
(z0(p) ≡ 1) over the spatial domain [0, L] with homogeneous elevation. According
to (4a)–(4b) we have

∂

∂t
p+

c

a

∂

∂x
q = 0, (5a)

∂

∂t
q + a

∂

∂x
p+

cλ

2da

q|q|
p

= 0. (5b)

For simplification of notation we introduce c = γ0 and we also assume λ(q) ≡ λ. The
system (5a)–(5b) is nonlinear due to the friction term. For gas transportation pipes,
the boundary condition at the inflow point x = 0 is given by the prescribed pressure
ps, while the boundary condition at the outflow point x = L is represented by the
given mass flow (gas demand) qd. Therefore, the boundary conditions for (5a)–(5b)
are given as {

p = ps, at x = 0,

q = qd, at x = L.
(6)

For the well-posedness and the regularity of the solution of the system (5)–(6), we
refer to [9].

More advanced numerical schemes for hyperbolic PDEs, such as the total varia-
tion diminishing (TVD) method [40], or the discontinuous Galerkin method (DG) [24],
could be implemented at the next step of our research to investigate more com-
plicated dynamics of the gas networks. The scope of our paper is to develop a
systematic numerical methodology for the fast simulation of the network dynamics
while taking numerical accuracy into account. Thus, here we stick to this simple
discretization scheme for the purpose of exposition.

To apply the FVM to discretize the PDE and the boundary condition, we inte-
grate (5a)–(5b) over each control volume. The i-th control pressure control volume
Ci is depicted in Figure 1. The discretization point in Ci is either a virtual node
along a pipe or a real node that connects two different pipes. Therefore, the coef-
ficient a of the PDE (5a)–(5b), which represents the cross-section area of a pipe,
may have a sudden change at the node in control volume Ci. Here, we use C−i and
C+
i to partition the control volume Ci with Ci = C−i ∪ C+

i , and the lengths of C−i
and C+

i are hi−1

2 and hi

2 , respectively.
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Figure 1. Separation of control volume Ci

After the FVM discretization, we get

[
Mp

Mq

]
︸ ︷︷ ︸

M

[
∂tp
∂tq

]
=

[
0 Kpq

Kqp 0

]
︸ ︷︷ ︸

K

[
p
q

]
+

right BC︷ ︸︸ ︷[
Bq
0

]
︸ ︷︷ ︸
Bq

qd +

left BC︷ ︸︸ ︷[
0
Bp

]
︸ ︷︷ ︸
Bp

ps +

[
0

g(ps, p, q)

]
, (7)

where the mass matrices Mp and Mq are given by

Mp =


h1+h2

2
h2+h3

2
. . .

hn−2+hn−1

2
hn−1

8
3hn−1

8

 , Mq =


3h1

8
h1

8
h1+h2

2
h2+h3

2
. . .

hn−2+hn−1

2

 ,
and

Kpq = − c
2



− 1
a1

1
a1
− 1

a2
1
a2

− 1
a2

1
a2
− 1

a3
1
a3

. . .
. . .

. . .

− 1
an−3

1
an−3

− 1
an−2

1
an−2

− 1
an−2

1
an−2

− 1
an−1

− 1
an−1


,

is an upper-triangular matrix with 3 diagonals and

Kqp = −1

2



a1
a1 − a2 a2
−a2 a2 − a3 a3

−a3 a3 − a4 a4
. . .

. . .
. . .

−an−2 an−2 − an−1 an−1


,

is a lower-triangular matrix with 3 diagonals. Meanwhile,

Bq = − c
2


0
...
0
1

an−1
1

an−1

 , Bp =
1

2


a1
a1
0
...
0

 ,

g(ps, p, q) = − c
4



h1λ1

a1d1

q1|q1|
ps

(h1λ1

a1d1
+ h2λ2

a2d2
) q2|q2|p2

(h2λ2

a2d2
+ h3λ3

a3d3
) q3|q3|p3

...

(hn−2λn−2

an−2dn−2
+ hn−1λn−1

an−1dn−1
) qn−1|qn−1|

pn−1


. (8)
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The vectors

p =
[
p2 p3 · · · pn

]T
, q =

[
q1 q2 · · · qn−1

]T
,

represent the discretized analog of p and q to be computed, while p1 = ps, and
qn = qd.

Remark 1. The obtained model in (7) results from the discretization of the incom-
pressible isothermal Euler equation of homogeneous elevation (5a)–(5b). However,
we note that for the heterogeneous elevation case, the gravity term in (3b) is linear
in the pressure p. After discretization, this term will introduces an additional term
in the position of Kqp in (7). This new term does not change the structure of the
model that we obtained in (7). The structure we refer to here is the block structure
of the matrices involved in describing the equation as well as the sparsity pattern
of all Jacobians of the nonlinear functions.

Remark 2. In this discretization, the cross-sectional area of the pipe does not have
to be constant. This will be needed later on in the modeling of the network.

Note that we impose the boundary condition (6) by using the prescribed pressure
at the inflow point and the given mass flow at the outflow point. However one can
also impose a negative mass flow at the outflow point making it an inflow point,
and for more complex topology of the network with more than one supply node,
it can happen that the gas flows out at a so called inflow point. Computational
results in the numerical experiments show this.

3. Network modeling. We have introduced the single pipeline model for the
gas dynamics in Section 2. In this section, we introduce the gas pipeline network
using a graph in which the pipelines are the edges (Section 3.1). We simplify this
graph by smoothing. This procedure is explained in detail for readers that are not
familiar with this concept in Section 3.2. The dynamics of gas transport through
this network are described by combining (7) on each edge with the nodal conditions
on each node (Section 3.3), which are then put together into one large differential-
algebraic system resulting in equation (13) in Section 3.4. The smoothing of the
graph gets rid of internal nodes, which are not junction nodes and in turn cuts down
the number of algebraic constraints for the global network model assembly so that
the complexity of the global network model is reduced.

Within this paper, we focus on passive networks to demonstrate how advanced
numerical linear algebra can benefit the fast simulation of such a network. When
we say passive network we mean a network that does not contain active elements,
such as compressors, valves, etc. [12]. This simplification allows us to maintain a
differential algebraic model without combinatorial aspects. For the modeling of the
network with compressors and valves we refer to [3, 20].

3.1. Pipeline network as graph. The abstract gas network is described by a
directed graph

G = (E , N ), (9)

where E denotes the set of edges, which contains the pipes in the gas network. N
represents the set of nodes, which consist of the set of supply nodes Ns, demand
nodes Nd, and interior nodes N0 of the network. Here, the supply nodes represent
the set of nodes in the network where gas is injected into the network or more
precisely where the pressure is given, and the demand nodes form a set of nodes
where the gas is extracted, i.e., an outgoing flux is described, and interior nodes
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account for the rest. We assume from now on that demand nodes and supply nodes
are the only boundary nodes. That means they are only connected to one pipe. If
supply or demand nodes exist that are connected to more than one edge, we add a
short pipe to that node and declare the new node as the demand or supply node and
the old one becomes an interior node. Sometimes interior nodes are called junction
nodes [16], but for us junction nodes are more specific.

Definition 3.1. The nodes inside a graph G, which connect at least three edges,
are called junction nodes.

Starting from the network, we use the so called smoothing of a graph to end up
with a smoothed graph in which all interior nodes are junction nodes.

3.2. Smoothed graph. Denote by Nj ⊂ N the set of junction nodes of a given
graph G. Since in our graph Ns ∪ Nd is equal to the set of boundary nodes, we
have Nj ⊂ N0. From now on we will assume that besides our original graph G, we

also have the graph G̃, which is the graph created from G by smoothing out the
vertices N0\Nj . Smoothing the vertex w, which is connected to the edges e1 and
e2, is the operation which removes w as well as both edges and adds a new edge to
the starting and end points of the pair. This edge can be given the direction of any
of the two removed edges. Here, it is emphasized that only vertices that connect
exactly two edges can be smoothed. This is however the case for the vertices in
N0\Nj . This means our new graph G̃ = (Ẽ , Ñ ) is a directed graph, which only has
demand nodes, supply nodes and junction nodes in the sense of Definition 3.1.

1

2

3

4

5

6

7

8

9

10

Figure 2. A typical gas network

An example network is shown in Figure 2. Here, nodes 1 and 10 denote the
supply nodes, node 6 represents the demand node. According to Definition 3.1,
only node 4 in Figure 2 is a junction node. This means we can replace this graph
by the smoothed graph given in Figure 3

1 2

3

Figure 3. Smoothed network of Figure 2 with an ordering of the pipes.

By making use of the smoothed graph, the number of algebraic constraints is kept
small, while the edges which represent several pipes become long. More details on
the number of algebraic constraints will be presented in Proposition 1 at the end of
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this section. For each such long pipe i ∈ Ẽ , we have the set of variables p
(i)
1 , . . . , p

(i)

n(i)

and q
(i)
1 , . . . , q

(i)

n(i) that represent the discrete analog of p and q, respectively. Here

n(i) is the number of discretization points in a certain edge and includes the number
of boundary points. To discretize a certain edge, we ensure that the nodes of the
original graph that were smoothed become a subset of the discretization points. We

will denote p
(i)
1 = p

(i)
s and q

(i)

n(i) = q
(i)
d , for now, as they are boundary conditions in

a one pipe system.

Remark 3. Our gas network is modeled by a directed graph G = (E , N ), where
the set of boundary nodes is equal to the union of supply nodes and demand nodes.
All edges E are pipes, and an edge attached to a supply node is called a supply pipe,
while an edge attached to a demand node is called a demand pipe. A supply pipe
is directed away from the supply node and a demand pipe is directed towards the
demand node. By smoothing this graph as explained above, we also get a directed
graph G̃ = (Ẽ , Ñ ), whose interior nodes are all junction nodes in the sense of

Definition 3.1. In G̃, supply edges and demand edges still exist, and they should be
directed as above, but are possibly longer.

Remark 4. An edge in the smoothed graph can represent more than one pipe.
This means that the cross-sectional area is not necessarily constant on one edge.

3.3. Nodal conditions. There are two types of constraints concerning the con-
nection of edges, namely the pressure constraint, and the mass flow constraint.
These two types of constraints represent the equality of the dynamic pressure and
conservation of mass at junction nodes [21].

The so-called pressure nodal condition describes the pressure continuity among
pipes connected at a joint junction node, which is given by

p
(i)

n(i) = p(j)s , if a node connects the incoming pipe i and the outgoing pipe j. (10)

The pressure nodal condition states that the pressure at the end of the outflow pipes
should equal the pressure at the beginning of the inflow pipes that connect to the
same junction node and ensures that there is only one pressure value at each node.

The second type of nodal condition i.e., the mass flow nodal condition, states the
conservation of mass flow at the junction nodes, and it is given by∑

i∈Ik
q
(i)
d =

∑
i∈Ok

q
(i)
1 for every node k, (11)

where Ik is the set of edges incoming the node k and Ok the set of edges outgoing
of node k. Equation (11) states that the inflow at the junction node k should equal
to the outflow at the same junction node k.

3.4. Network assembly. In the discretized model (7) describing the dynamics of
gas transported along one single pipe, the variables p1 = ps and qn = pd are given
by the boundary condition, i.e., the prescribed pressure at the input node, and the
prescribed mass flow at the demand node. For the network, all variables including

p
(i)
s and q

(i)
d are treated as variables and we add the algebraic constraints (10)–(11)

to the system. We take the network in Figure 2, whose smoothed graph, with edge
ordering is given by Figure 3 as an example to build the full DAE system. For each
pipe we have the pipe dynamics of the discretized system given by (7). The supply
pressure for pipe 1 and 2 is given as well as the demand flux for pipe 3. This means

we have the extra variables p
(3)
s , q

(1)
d , q

(2)
d . We will first use the fact that p

(3)
s is equal
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to p
(1)

n(1) and replace it in the equation. We will then still have to make sure that

p
(1)

n(1) = p
(2)

n(2) and also that the incoming flux at the junction is equal to the outgoing

flux. To summarize q
(1)
d , q

(2)
d are the added variables as p

(3)
s was replaced directly

and

q
(1)
d + q

(2)
d = q

(3)
1 ,

p
(1)
n1 = p

(2)
n2 ,

(12)

are the added algebraic constraints.
By using the single pipe model (7), we obtain the mathematical model for the

network in Figures 2–3,
M(1)

M(2)

M(3)

0
0


︸ ︷︷ ︸

M

∂

∂t


u(1)

u(2)

u(3)

q
(1)
d

q
(2)
d

 =


B(1)p

B(2)p


︸ ︷︷ ︸

Bp

[
p
(1)
s

p
(2)
s

]

+


0
0

B
(3)
q

0
0


︸ ︷︷ ︸

Bq

q
(3)
d +


K(1) B(1)q

K(2) B(2)q
B̄(3)p K(3)

e3 1 1
e1 e2 0


︸ ︷︷ ︸

K


u(1)

u(2)

u(3)

q
(1)
d

q
(2)
d

+


G1(u(1), p

(1)
s )

G2(u(2), p
(2)
s )

G3(u(3), ē3u
(1))

0
0


︸ ︷︷ ︸

g(∗)

.

(13)

Here u(i) = [p(i), q(i)] and,

B̄3p =
[
0, 0, . . . , , 1, 0, . . . ,

]
⊗ B3p,

Gi(u(i), p(i)s ) =

[
0

g(p
(i)
s , p(i), q(i))

]
. (14)

The mass flow nodal condition is represented by the 4th block row in (13), and the
pressure nodal condition is given by the 5th block row and also the (3, 1) block of
K in (13). The row vectors e1, e2, and e3 are just elementary vectors with 1 or −1
on a certain position and zeros elsewhere, which select the corresponding variables
for the nodal conditions (10)–(11).

Note that the matrix K in (13) is not uniquely defined. This is because we use

p
(3)
s = p

(1)

n(1) . We can also employ p
(3)
s = p

(2)

n(2) , and this in turn moves B̄(3)p from the
(3, 1) block to the (3, 2) block of K.

Although we need extra variables for both, the pressure and mass flow, to assem-
ble a global network model, we only introduce extra mass flow variables explicitly
while the extra pressure variables can be obtained via applying some pressure nodal
conditions directly. This reduces the redundancy in the network modeling.

There is a degenerate case that a network has only one long pipe, i.e., this
network has one supply node and one demand node, but no junction node. For such
a degenerate network, which is equivalent to one pipe, we do not need to introduce
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extra variables since we already have the left and right boundary conditions. For a
non-degenerate network, we have the following proposition.

Proposition 1. Suppose that the network G̃ = (Ẽ , Ñ ) is a connected graph as in
Remark 3, and has ns supply pipes, nd demand pipes, and nj junction pipes. Here
junction pipes are edges of the smoothed graph that are not supply pipes or demand
pipes. Then the following relation between the number of extra variables ne and the
number of extra algebraic constraints na of the mathematical model holds:

ne = na = ns + nj .

Proof. As stated before, we only introduce extra variables for the mass flow of each
supply and junction pipe, since the extra pressure variables are directly included at
the process of network assembling. Then we have

ne = ns + nj ,

which is due to the fact that the mass flows at the demand pipes are already
prescribed.

The algebraic constraints are obtained via applying nodal conditions at the junc-

tion nodes. Suppose that the junction node i has n
(i)
in injection pipes, and n

(i)
out

outflow pipes, then we need (n
(i)
in − 1) equality constraints to apply the pressure

nodal conditions for injection pipes since the pressure nodal conditions for outflow
pipes are directly applied at the stage of the network assembly. We have one al-
gebraic constraint to prescribe the mass flow nodal condition for junction node i.

Therefore, we need n
(i)
in algebraic constraints for junction node i. The sum over all

the junction nodes of the network gives the overall number of algebraic constraints:

na =
∑
i

n
(i)
in .

On the other hand, ∑
i

n
(i)
in = ns + nj ,

as incoming pipes are never demand pipes and the sum over all incoming pipes is
the number of all supply and all junction pipes.

Proposition 1 states that the total number of extra variables is equal to the
total number of algebraic constraints. This is very important for us to simulate the
network model in the form of (13), which will be shown in the next section.

4. Fast numerical methods for simulation. Based on the discretization of the
one-dimensional isothermal Euler equation, using the smoothed graph, we are able
to reduce the algebraic constraints to a very small number and obtain the nonlinear
DAE system (13).

In this section, we introduce the direction following ordering method to order
the edges of the smoothed graph to exploit the matrix structure of the DAE for fast
computations. We integrate the DAE by a simple implicit Euler method, such that
we have to solve a nonlinear system in each time step, which is done by Newton’s
method (Section 4.1). Looking closely at the matrix structure of the system that has
to be solved in each Newton iteration (Section 4.2), we develop a special ordering of
the nodes and edges in the graph such that the Jacobian is block lower triangular
(Section 4.3), which is then illustrated in an example (Section 4.4). Last but not
least, this linear system is solved with a preconditioned iterative method to achieve
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maximal speedup of the numerical computation (Section 4.5). The entire workflow
is shown in Figure 7.

4.1. Numerical algorithms for differential algebraic equations. Here, we
reuse the notation from (13) with simplifications. We obtain the general mathe-
matical model,

M∂tx = Kx+Bu(t) + f(x, u(t)), (15)

where the mass matrix M is singular when there is at least one junction node, and
the right hand side function f is nonlinear. In general, the mathematical model (15)
is a large system of nonlinear DAEs, where the size of the DAE (15) is proportional
to the combined length of the pipes in the network. To solve/simulate such a DAE
model is challenging and possibly time-consuming. Related work either focuses on
exploiting the DAE structure such that the differential part and the algebraic part
are decoupled, and one can solve these two parts separately [1], or reducing the so-
called tractability index [16]. Here, we propose a fast numerical method by directly
tackling the expensive numerical linear algebra. To simulate the DAE model (15),
we discretize in time using the implicit Euler method, and at time step k, we have

M
xk − xk−1

τ
= Kxk +Buk + f(xk, uk),

i.e., we need to solve the following nonlinear system of equations,

F (x) = (M − τK)x− τf(x, uk)−Mxk−1 − τBuk = 0, (16)

at each time step k to compute the solution xk. Here, we apply Newton’s method
described by Algorithm 1 to solve the nonlinear system (16) to study the nonlinear
dynamics of the network.

Algorithm 1 Newton’s method to solve (16)

1: Input: maximal number of Newton steps nmax, stop tolerance ε0, initial guess
x0

2: m = 0
3: while m ≤ nmax & ‖F (x)‖ ≥ ε0 do
4: Compute the Jacobian matrix DF (xm) = ∂

∂xF |x=xm

5: Solve F (xm) +DF (xm)(x− xm) = 0
6: m← m+ 1, xm ← x
7: end while
8: Output: solution x ≈ xm

The biggest challenge for Algorithm 1 is to solve the linear system in line 5 at
each Newton iteration, since the Jacobian matrix DF (xm) is large. Krylov subspace
methods such as the generalized minimal residual (GMRES) method [35] or induced
dimension reduction (IDR(s)) method [36] are then appropriate to solve such a
system. To accelerate the convergence of such a Krylov subspace method, we need
to apply a preconditioning technique by exploiting the structure of the Jacobian
matrix DF (x).
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4.2. Matrix structure. The Jacobian matrix is given by

DF (x) = (M − τK) + τ
∂

∂x
f(x, u), (17)

where the matrices M and K are two-by-two block matrices, and

M =

[
M̄

0

]
, K =

[
K11 K12

K21 K22

]
. (18)

Here M̄ is block-diagonal, and the second block row of A comes from the algebraic
constraints of the network by applying the nodal conditions introduced in Section 3.
The size of A11 is much bigger than the size of A22 since A11 comes from the
discretization of the isothermal Euler equations over all the edges of the smoothed
network, while the size of A22 is equal to ns + nj according to Proposition 1.

Moreover, the partial derivative of the nonlinear term ∂
∂xf(x, u) has the structure

∂

∂x
f =

[
Df 0
0 0

]
, (19)

since the nonlinear term only acts on the differential part of the DAE (13).

4.3. Edge and Node Ordering. In the following, we will present a concept that
allows us to order the nodes and edges of the graph G̃ such that the first block of
the Jacobian matrix is block lower triangular as presented in Theorem 4.5. In order
to get there, we need a few concepts first.

Definition 4.1. A directed acyclic graph (DAG) is a finite, directed graph, which
has no directed cycles, meaning there is no vertex from which we can start a path
along directed edges that ends up at that vertex again.

Lemma 4.2. Given a graph with directed and undirected edges, such that the di-
rected edges do not create cycles, we can always direct the undirected edges such that
the resulting graph is a directed acyclic graph (DAG).

Proof. Take a graph satisfying the assumptions and remove all undirected edges.
This results in a graph that may not be connected. However, it is a DAG so that we
can order the nodes in a topological ordering [2]. Applying such a topological order-
ing to the original graph, direct the undirected edges according to that topological
ordering, which induces another DAG.

This means, even by fixing the direction of the supply and demand pipes, we can
redirect all the other edges in our graph G̃ such that the resulting graph is a DAG.
T build such a DAG.

Lemma 4.3. Given a DAG, we can order the edges in such a way that at every node
all incoming edges have a lower order than all the outgoing edges, or it does not have
an incoming edge. We call this ordering direction following (DF) ordering.

Proof. Since we have a DAG, there exists a topological ordering of the nodes. This
means: if an edge goes from node a to node b, then b has a higher order than a. We
now order the edges, by their starting node. Hence, an edge has a higher order if
its starting node has a higher order. If two edges have the same starting node, then
it does not matter in which order we list them, we just pick one. Once we have this
ordering of the edges based on the order of the nodes we ensure that all outgoing
edges at a node have a higher order than all the incoming edges of a node.
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The network in Figure 4(a) is a smoothed graph that represents a gas network.
Only the directions of the supply and demand pipes are fixed. We start ordering
the nodes of the graph from the supply nodes, and end up with the demand nodes,
which gives a topological ordering of the nodes. Now, we can plot the graph along
a line as in Figure 4(b). The directions of the undirected edges of the graph are
picked up by pointing away from lower order nodes to higher order nodes, which
induces a DAG. This in turn leads to an ordering of the edges, which is the index
above each edge in Figure 4(b). Note that the DF ordering is not unique.

2 3

4 5

6 7

1

(a) DAG with

node ordering

31 2 3 4 5 6 71

2

4

8

7

6

5

(b) edges ordering and node ordering of DAG

Figure 4. An illustrative network example of a DAG

Definition 4.4. A smoothed direction following (SDF) gas network graph
is a directed acyclic graph, whose boundary nodes are supply or demand nodes,
directions are away from supply nodes and towards demand nodes. All edges are
sorted with the DF ordering and there are no nodes in the graph that connect
exactly two edges.

From now on, we assume that our modeling is such that G̃ is a SDF gas network
graph. Then we have the following proposition to illustrate the structure of the
partial derivative of the nonlinear term (19).

Proposition 2. Given a SDF gas network graph, we can construct the DAE system
in such a way that Df in (19) has a block lower-triangular structure.

Proof. The block of f corresponding to the i-th pipe has the structure,

fi = Gi =

[
0

g(pin, p
(i), q(i))

]
,

where the structure of g(pin, p
(i), q(i)) is given by (8). Here

pin =

{
ps, when the i-th pipe is a supply pipe,

p
(j)
out, when pipe j is an incoming pipe of the node where pipe i is outgoing.

By the selected ordering, we always have j < i. Then the upper triangular blocks
of Df are 0. The diagonal blocks are given by[

0 0 0

0 g(pin,p
(i),q(i))

∂p(i)
g(pin,p

(i),q(i))
∂q(i)

]
,

which is again block lower triangular and in particular, with an easy structure of

the diagonal blocks, since g(pin,p
(i),q(i))

∂q(i)
in our discretization is tridiagonal.

Similar to Proposition 2, we can also show that the (1, 1) block of K in (18) has
a lower-triangular block structure.



14 Y. QIU, S. GRUNDEL, M. STOLL, AND P. BENNER

Proposition 3. Given an SDF gas network graph, K11 in (18) is also block lower-
triangular.

Proof. For the i-th block row of K11, the off-diagonal blocks are zero if the i-th
pipe is a supply pipe. If the i-th pipe is not a supply pipe and connected with other
pipes, then the off-diagonal block (i, j) is nonzero if the j-th pipe corresponds to
one of the flow injection pipes of the i-th pipe. This is because the pressure nodal
condition (10) is applied to the i-th pipe. According to Definition 4.4, we can pick
the pressure condition for the i-th pipe by any one of the injecting pipes j, which
are all of lower order and therefore ensure i > j, and this completes the proof.

If we partition the Jacobian matrix (17) by a 2-by-2 block structure as in (18),
then we have the following theorem to illustrate the structure of the (1, 1) block of
the Jacobian matrix.

Theorem 4.5. Given an SDF gas network graph, we are able to model the system
in such a way, that the (1, 1) block of the Jacobian matrix (17) has a block lower-
triangular structure.

Proof. According to (17)–(19), the (1, 1) block of the Jacobian matrix DF (x) is,

M̄ − τK11 + τDf .

According to Proposition 2 and Proposition 3, K11 andDf are block lower-triangular
matrices. Since M̄ is a block diagonal matrix, this completes the proof.

4.4. Example for a large network. Next, we use a benchmark network from [34],
given by Figure 5, to show the structure of the Jacobian matrix DF (x) of the first
Newton iteration for the first time step, i.e., DF (x11) before and after applying the
DF ordering. The network parameters are also given in [34]. We set the mesh size
for the FVM discretization to be 20 meters, i.e., h = 20. The sparsity pattern of
DF (x11) before and after the DF ordering are given by Figure 6.

Figure 5. Big benchmark network in [34]

Figure 6 shows that the Jacobian matrixDF (x) is a sparse matrix. After applying
the DF ordering, the (1, 1) block has a block lower-triangular structure, and the size
of the (1, 1) block is much bigger than the (2, 2) block. For the case when the mesh
size is 20 meters, the (1, 1) block is a 200, 348 × 200, 348 block lower-triangular
matrix while the size of the (2, 2) block is 417 × 417. In general, the size of the
(2, 2) block of the Jacobian matrix is fixed since it equals the number of algebraic
constraints. According to Proposition 1, it equals ns + nj , where ns is the number
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of supply pipes and nj is the number of junction pipes. The size of the (1, 1) block
depends on the mesh size and equals twice the total pipeline length divided by the
mesh size. Therefore, it is much bigger than ns + nj , if the total length of the
pipelines is much larger compared to the mesh size.
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(a) without DF ordering
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(b) with DF ordering

Figure 6. Sparsity pattern of J without and with DF ordering

4.5. Preconditioning technique. The specific structure of the Jacobian matrix
can be exploited to solve the Jacobian system fast for the simulation of the gas
network. Recall that in order to simulate the discretized gas network model, we
need to apply Algorithm 1, where we need to solve a Jacobian system at each
Newton iteration for each time step k (k = 1, 2, . . . , nt). To solve the Jacobian
system, we exploit the 2-by-2 structure of the Jacobian matrix. Here we write the
Jacobian matrix DF (x) as

DF (x) =

[
DF11

DF12

DF21
DF22

]
.

Note that the Jacobian matrix DF (x) has a special structure, which is called gen-
eralized saddle-point structure [4]. This enables us to make use of the precondition-
ing techniques designed for generalized saddle-point systems to solve the Jacobian
system. Generalized saddle-point systems come from many applications, such as
computational fluid dynamics [10], PDE-constrained optimization [33], or optimal
flow control [32]. Many efforts have been dedicated to the efficient numerical so-
lution of such systems using preconditioning techniques [29, 31, 43, 30, 38], we
recommend [4, 42] for a general survey of preconditioning generalized saddle-point
systems.

We can compute a block LU factorization by

DF (x) =

[
DF11

DF21 S

] [
I D−1F11

DF12

I

]
. (20)

Here S = DF22
−DF21

D−1F11
DF12

is the Schur complement of DF (x). According to
Theorem 4.5, DF11 has a block lower-triangular structure, and the size of DF22 is
much smaller than that of DF11 . Therefore, we can compute the Schur complement
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S by block forward substitution, and apply the preconditioner

P =

[
DF11

DF21
S

]
, (21)

to solve the Jacobian system using a preconditioned Krylov solver. Associated with
the block LU factorization (20), we can immediately see that the preconditioned
spectrum satisfies λ(P−1DF (x)) = {1}. Moreover, the minimal polynomial of the
preconditioned matrix P−1DF (x) has degree 2, so that a method like generalized
minimum residual (GMRES) [35] would converge in at most two steps [4].

At each iteration of the Krylov solver, we need to solve the system[
DF11

DF21
S

] [
y1
y2

]
=

[
r1
r2

]
,

which can be solved easily since DF11
is a block lower-triangular system, and

S = DF22
− DF21

D−1F11
DF12

can be computed directly since the size of S is much
smaller than DF11

. Note that at each time step k, we need to solve a nonlinear
system using Newton’s method, and we need to apply a preconditioned Krylov sub-
space method to solve a Jacobian system at each Newton iteration. For such a
preconditioned Krylov solver, we need to compute the Schur complement S at each
Newton iteration. This can still be computationally expensive for gas network sim-
ulation within a certain time horizon. We can further simplify the preconditioner
by applying a fixed preconditioner P1 for all Newton iterations and all time steps,
i.e., we choose

P1 =

[
D1
F11

D1
F21

S1

]
, (22)

where P1 comes from the block LU factorization of the Jacobian matrix D1
F (x1) of

the first Newton iteration for the first time step, and S1 = D1
F22
−D1

F21
(D1

F11
)−1D1

F12
.

Note that for the preconditioner P1, we just need to compute the Schur complement
once and use it for all the Newton iterations of all time steps.

Next, we show the performance of the DF ordering for the Schur complement
S1 computation. Again, we use the network given in Figure 5 as an example and
perform a FVM discretization of the network using different mesh sizes. We re-
port the computational results in Table 1, where all timings are given in seconds.
Here, h is the mesh size, and #DF represents the size of the Jacobian matrix DF

given by (20). The applications of the operator (D1
F11

)−1 are performed using the
MATLAB backslash operator for both cases.

Table 1. Computational time (seconds) for Schur complement S1

h #DF with DF without DF

20 2.01e+05 8.12 8.75
10 3.97e+05 17.84 19.14

5 7.91e+05 38.44 41.75
2.5 1.58e+06 81.42 87.77

We have noticed that for medium problem sizes, the advantage of computing
S1 using the block lower-triangular structure obtained from the DF ordering over
that without using the DF ordering is not very prominent. This is due to the
fact that while computing S1 using the block lower-triangular structure of D1

F11

obtained from the DF ordering, MATLAB has an overhead calling the block forward
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substitution. This overhead is comparable with the hardcore computation time for
medium problem sizes. When the problem size gets bigger, this overhead is less
comparable with the hardcore computation time, which is demonstrated by the
results in Table 1. We believe that the advantage of computations with the DF
ordering over computations without the DF ordering will become more apparent
once we use a tailored high performance computation implementation.

Since P1 is a good preconditioner for D1
F (x1), it is only a good preconditioner for

the Jacobian matrix DF (x) at the other Newton iterations and other time steps, if
it remains close to D1

F (x1). This is often true for gas networks since the Jacobian
matrix (17) has two parts, i.e., the linear part and the linearized part. The linear
part is dominant since it models the transportation phenomenon of the gas while
the nonlinear term acts as the friction term for such a transportation. This makes
P1 a good preconditioner for solving the Jacobian systems for all Newton steps of all
time steps, as it will be demonstrated by numerical experiments in the next section.
Note that if we keep updating the preconditioner (21) more often than simply
using a single preconditioner P1 in (22), we will obtain better performance for the
preconditioned Krylov solver, which in turn needs more time for preconditioner
computation. A compromise has to be made to achieve the optimal performance
for the gas network simulation with respect to total computational time.

By applying the preconditioner P1 in (22), we show the computational diagram
to illustrate the process of gas network simulation in Figure 7.

Algorithm 1

next time step

Nopreconditioned
Newton's method

applying the
preconditioner P1

pre-compute
S1

Yes

end

DAE system (13)

nonlinear
system(16)

time step Nt reached

time discretization

start

FVM discretization
of (7a)(7b)

DF ordering of
smoothed edgesnetwork

assembling

Figure 7. Computational diagram for gas network simulation

5. Numerical results. In this section, we report the performance of our numerical
algorithms for the simulation of gas networks. We apply our numerical algorithms
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to the benchmark problems of several gas networks given in [13, 16, 15, 14] to
show the performance of our methods. All numerical experiments are performed
in MATLAB 2017a on a desktop with Intel(R) Core(TM)2 Quad CPU Q8400 of
2.66GHz, 8 GB memory and the Linux 4.9.0-6-amd64 kernel.

5.1. Comparison of discretization methods. In this section, we compare the
performance of the finite volume method (FVM) with that of the finite difference
method (FDM) for the discretization of the gas networks. We apply both the FVM
and FDM to a pipeline network illustrated in Figure 8. Parameter settings for this
pipeline network are given in [14].

Figure 8. Pipeline network in [16]

We discretize the pipeline network using FVM and FDM with different mesh
sizes, and the discretized pipeline networks result in ordinary differential equations
(ODEs) since there is no algebraic constraint. We simulate the ODE systems using
the routine ode15s in MATLAB over the time horizon [0, 105] with the same
setting of the initial condition for the ODEs. The computational results are given
in Figure 9, where the x-axis represents the mesh sizes in meters.
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Figure 9. Comparison of FVM and FDM for a single pipe network

Figure 9(a) shows the number of time steps that ode15s uses to simulate the
ODEs given by FVM and FDM discretizations over the time horizon [0, 105]. One
can see that for a given mesh size, we need less time steps for the ODE given
by the FVM discretization than for the ODE given by the FDM discretization
which results in less total computation time for the simulation of the ODE given by
the FVM discretization, which is also shown in Figure 9(b). Obviously, the error
control in ode15s leads to more time steps for the FDM discretization than for the
FVM discretization to reach the same accuracy, which is confirmed by the following
experiment.

Next, we use another network to show that with the same mesh, the model given
by the FVM discretization gives more accurate results than the FDM discretization.
The test network is given in Figure 10, where the network parameters are given
in [16]. We use the FVM and FDM methods to discretize the network in Figure 10
and apply the computational method depicted in Figure 7. We choose different
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mesh sizes for the discretization, and fix the step size for the time discretization to
be one second, i.e., τ = 1. We plot the mass flow at the supply node 57 in Figure 11.

57

31
37

Figure 10. Medium size network

The mass flow at node 57 computed by using different discretized DAE mod-
els (16) is plotted in Figure 11(a), showing similar dynamical behavior of the dif-
ferent models. However, when we look at the dynamics of the mass flow during the
first 5 seconds, we can see quite a big difference in Figure 11(b). With the mesh
refinement, the solutions of the model given by both the FVM and the FDM dis-
cretizations converge. Moreover, we can infer that we can use a bigger mesh size for
the FVM discretization than for the FDM discretization to get the same accuracy.
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(b) zoomed supply flow at node 57

Figure 11. Comparison of FVM and FDM for a medium network

The computational results given by Figure 9 and Figure 11 show that when we
use the same mesh size to discretize the network, the model given by the FVM
discretization is more accurate than the model by the FDM discretization. To get
the same model accuracy, we can use a bigger mesh size to discretize the network
by FVM than that by FDM. This in turn yields a smaller model given by the FVM
discretization than the model given by the FDM discretization. This in turn means
that the FVM discretized model is easier to solve than the FDM discretized model.

We also plot the condition number of the Jacobian matrix (κ(DF )) of all the
Newton iterations for the first time step with a mesh size h = 60 to discretize
the DAE, which are given in Table 2. It illustrates that the condition number of
the Jacobian matrix of the FVM discretized model is about 10 times smaller than
the condition number of the Jacobian matrix of the FDM discretized model, which
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makes solving such a FVM discretized model easier than solving a FDM discretized
model.

Table 2. Condition number of the Jacobian matrix DF from FVM
and FDM, 1st time step, h = 60

Newton iter. 1 2 3 4

FVM 1.56e+07 1.57e+07 1.57e+07 1.57e+07
FDM 1.24e+08 1.25e+08 1.25e+08 1.25e+08

Computational results in Figure 9 and Table 2 show that the FVM offers a big
advantage over the FDM. When using the same mesh size for discretization, FVM
gives a more accurate model than the FDM discretization. Moreover, the Jacobian
matrix from the FVM discretized model has a better condition number than the
Jacobian matrix from the FDM discretized model, which makes it easier to simulate
the FVM discretized model. To get the same model accuracy, the size of the FVM
discretized model is smaller than the size of the FDM discretized model, and it is
therefore computationally cheap. For the comparison of the finite element method
(FEM) with FDM for the gas network simulation, we refer to an early study in [28],
where the authors preferred FDM due to the comparable accuracy with FEM and
less computational time.

5.2. Change of flow direction. The basis of our modeling is a directed graph,
with the implicit assumption that the gas flow follows that direction. However, the
flow direction may change due to the change of operation conditions of the gas net-
work. In this part, we show that the direction is just a theoretical construction but
that the gas is allowed to flow in either direction meaning that the mass flow can
be negative and does not influence the performance of our methods. The change of
the flow direction does not change the mathematical formulation of algebraic con-
straints. Therefore, the structure of the system stays unchanged with respect to the
change of the flow direction. This means that we do not require the foreknowledge
of the flow direction.

Note that the nonlinear term q|q|
p which describes the damping law of gas net-

works is still differentiable with respect to the change of the flow direction. For
details of the regularity of the solution (p, q) of the PDE (5), we refer to Theo-
rem 3.2 given in [9]. It is also pointed out by Theorem 4.3 in [9] that the forward
PDE operator of (5) is Fréchet differentiable with Lipschitz continuous derivative.
Therefore, we can still apply Newton’s method to solve such a nonlinear system of
equations.

First, we test two different cases, which corresponds to two different flow direction

profiles of the network, cf. Figure 2. Case 1 corresponds to p
(1)
s = p

(2)
s = 30 bar,

and qd = 30 kg/s, while case 2 corresponds to p1s = 30 bar, p2s = 20 bar, and qd = 30
kg/s. We plot the mass flow at the supply pipe 1 and 2 in Figures 12–13.

Figure 12 shows that the mass flow at both supply nodes approaches the steady
state after oscillation for a short while, and both input mass flows have a positive
sign. This represents that both supply nodes inject gas flow into the network to
supply gas to the demand node 6. After changing the operation condition of the
network, e.g., changing the pressure at supply nodes, the mass flow is redistributed
as shown in Figure 13. The mass flow at supply node 10 becomes negative after a
few seconds and remains negative after the network reaches steady state. For this
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case, the supply pipe at node 10 acts as a demand pipe since gas flows out of the
network there. For both cases, the equality q1s + q2s =

∑
qd holds, which can be

easily seen by looking at the steady state solution.
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Figure 12. Mass flow at supply nodes for case 1
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Figure 13. Mass flow at supply nodes for case 2

We also apply two different cases to a more complicated network given in Fig-
ure 10 to test the robustness of our methods. Case 1 corresponds to p55s = p56s = 50.5
bar, p57s = 50.8 bar while case 2 has p55s = p56s = 50.5 bar, and p57s = 50.0 bar. The
demand of gas at the demand nodes is the same for both cases. We show the mass
flow at the pipe that connects node 31 and 37, which also connects two sub-networks.
The mass flow for the pipe 31 → 37 for different cases is shown in Figure 14. The
initial conditions of the gas network for the simulation of the two different cases are
the same.

The simulation results in Figure 14 show that the flow direction at pipe 31→ 37
changes for the above two cases. The steady state of the mass flow for the two cases
shows that the flow can travel in a direction opposite to the prescribed flow direction,
and the inflow at node 31 is equal to the outflow at node 37 for the steady state.
The imbalance between the inflow and outflow in the transient process is necessary
to build the pressure profile of the network. Computational results in Figures 12–14
show that the gas can flow in the opposite direction as the directed graph suggests.
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We do not need to introduce another set of variables and switch to another model
when the flow changes direction.
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Figure 14. Mass flow for the pipe 31→ 37

5.3. Preconditioning performance. As introduced in the previous section, the
biggest challenge for applying Algorithm 1 to simulate a gas network lies in the
effort spent to solve the linear system at each Newton iteration. For large-scale
networks, we need smaller mesh sizes to discretize such networks and this results in
larger sizes of the DAEs. Therefore, we need to employ iterative solvers to compute
the solution of such a large-scale linear system at each Newton iteration, while
preconditioning is essential to accelerate the convergence of such iterative solvers.
In this part, we study the performance of the preconditioner (22).

We test the performance of the preconditioner for the network in Figure 5 using
different mesh sizes for the FVM discretization. At each Newton (outer) iteration,
we solve a linear system by applying an (inner) Krylov solver, e.g., the IDR(s)
solver [41, 36], and this is called Newton-Krylov method. Note that the Newton-
Krylov method is an inexact Newton method, and at each Newton iteration, we
apply the IDR(s) method to solve the linear system up to an accuracy εtol, i.e.,

‖F (xm) +DF (xm)(x− xm)‖ ≤ εtol‖F (xm)‖,
where εtol is related to the forcing term for an inexact Newton’s method [25]. Since
the Newton-Krylov method is inexact, we show its convergence with respect to dif-
ferent tolerances of the Krylov solver, i.e., ‖F‖2 with respect to different settings
of εtol. We use the “true” residual computed by using a direct method, i.e., the
backslash operator implemented in MATLAB for comparison. We report the com-
putational results for the FVM discretization with mesh sizes of 50 and 40, and the
time step size τ is set to be 1. For the convergence rate of the inexact Newton
method with respect to εtol, we refer to [7].

The computational results of the nonlinear residual ‖F‖2 in Figure 15 for two
different mesh sizes show that the accuracy of the inner iteration loop can be set
relatively low while the convergence of the outer iteration can still be comparable
with more accurate inner loop iterations. The convergence properties of the Newton
iteration for the first time step are the same when the inner loop is solved accurately,
or when the inner loop is solved up to an accuracy of 10−6 or 10−4. If the inner
loop is solved up to an accuracy of 10−3, only one more Newton iteration is needed.
Moreover, the convergence behavior of the Newton iteration for different inner loop
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solution tolerances are the same for the 10-th time step. If lower inner loop accu-
racy is used, less computational effort is needed, which reduces the computational
complexity. The number of IDR(4) iterations for different inner loop tolerances are
reported in Figure 16–17.
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Figure 15. Nonlinear residual at the first and tenth time step

The computational results in Figure 16(a) show that the total number of IDR(4)
iterations (47) for εtol = 10−6 is almost twice the total number of IDR(4) iter-
ations (24) for εtol = 10−3. This demonstrates that the computational work for
the first time step can be reduced to almost 50% since the most time consuming
part inside each Newton iteration is the IDR(4) solver. Similar results are shown
in Figure 16(b). As the system gets closer to steady state, less Newton iterations
are needed, and the IDR(4) solver also needs less iterations, as shown in Figure 17.
At this stage, IDR(4) with εtol = 10−3 still needs less work than IDR(4) with
εtol = 10−6, but this is no longer as significant.
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Figure 16. Number of IDR(4) iterations at the first time step
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Figure 17. Number of IDR(4) iterations at the 10-th time step

We have already observed that the performance of our modeling is robust and
convergence of the preconditioned Krylov solver happens quickly. Next, we report
the computational time for computing the preconditioner P1 and applying the pre-
conditioned IDR(4) solver of the first Newton step for the first time step for different
FVM discretization mesh sizes. We solve the Jacobian system up to an accuracy of
10−4, and the computational results are given by Table 3. Here “-” represents run-
ning out of memory, #DF represents the size of the Jacobian system, tS1 denotes
the time to compute the Schur complement in P1, and all the timings are measured
in seconds.

Table 3. Computational time for the 1st Newton iteration
h #DF tS1 IDR(4) backslash

40 1.03e+05 3.85 0.25 0.13

20 2.01e+05 8.12 0.52 0.36
10 3.97e+05 17.84 1.06 1.18

5 7.91e+05 38.44 2.13 1054.62

2.5 1.58e+06 81.42 4.34 -

The computational results in Table 3 show the advantage of our preconditioner in
solving the large-scale Jacobian system over the direct solver. The time to solve the
preconditioned system using the IDR(4) solver scales linearly with the system size,
and is much smaller than the time to apply the direct solver when the mesh sizes
are smaller than 20. For large-scale Jacobian systems, the direct solver either takes
up too much CPU time or fails to solve the Jacobian system due to running out of
memory. For smaller Jacobian systems, the direct solver shows the advantage over
preconditioned Krylov solvers. This is primarily because there is a big overhead
when applying the preconditioned IDR(4) solver while the backslash operator is
highly optimized for smaller systems. The time to compute the Schur complement
in preconditioner P1 scales almost linearly with the system sizes.

6. Conclusions. In this paper, we studied the modeling and simulation of gas net-
works. We applied the finite volume method (FVM) to discretize the incompress-
ible isothermal Euler equation, and compared it with the finite difference method
(FDM). Numerical results show the advantage of the FVM over the FDM. To model
gas networks, we introduced the smoothed gas network concept, which represents
the topology of the network interconnection and reduces the size of the algebraic
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constraints of the resulting system of differential algebraic equations (DAEs) com-
pared with current research. To simulate such a DAE system, we proposed the
direction following (DF) ordering of the edges of the smoothed network. Through
such a DF ordering, we exploited the structure of the system matrix and proposed
an efficient preconditioner to solve the DAE. Numerical results show the advantage
of our algorithms.
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[43] M. Wathen, C. Greif and D. Schötzau, Preconditioners for mixed finite element discretizations

of incompressible MHD equations, SIAM J. Sci. Comput., 39 (2017), A2993–A3013.
[44] J. Zhou and M. A. Adewumi, Simulation of transients in natural gas pipelines using hybrid

TVD schemes, Internat. J. Numer. Methods Fluids, 32 (2000), 407–437.

[45] A. Zlotnik, M. Chertkov and S. Backhaus, Optimal control of transient flow in natural gas
networks, in 2015 54th IEEE Conference on Decision and Control (CDC), 2015, 4563–4570.



GAS NETWORK MODELING AND SIMULATION 27

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: qiuyue@shanghaitech.edu.cn

E-mail address: grundel@mpi-magdeburg.mpg.de

E-mail address: martin.stoll@mathematik.tu-chemnitz.de

E-mail address: benner@mpi-magdeburg.mpg.de

mailto:qiuyue@shanghaitech.edu.cn
mailto:grundel@mpi-magdeburg.mpg.de
mailto:martin.stoll@mathematik.tu-chemnitz.de
mailto:benner@mpi-magdeburg.mpg.de

	1. Introduction
	2. Gas dynamics in pipelines
	2.1. 1D isothermal Euler equation
	2.2. Finite volume discretization

	3. Network modeling
	3.1. Pipeline network as graph
	3.2. Smoothed graph
	3.3. Nodal conditions
	3.4. Network assembly

	4. Fast numerical methods for simulation
	4.1. Numerical algorithms for differential algebraic equations
	4.2. Matrix structure
	4.3. Edge and Node Ordering
	4.4. Example for a large network
	4.5. Preconditioning technique

	5. Numerical results
	5.1. Comparison of discretization methods
	5.2. Change of flow direction
	5.3. Preconditioning performance

	6. Conclusions
	REFERENCES

