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We propose a new implementation of a quantum speed meter QND measurement scheme.
It employs two independent optical readouts of the interferometer test masses, featuring
strongly different values of the bandwidths γ1,2 and of the optical circulating power I1,2,
with the special relationship of I1/I2 = γ1/γ2. The outputs of these two position meters have
to be combined by an additional beamsplitter. In this scheme, signals at the common and the
differential outputs of the interferometer setup are proportional to the position and the veloc-
ity of the test masses, respectively. The influence of the position meter-like back action force
associated with the position signal can be cancelled using the EPR approach by measuring
the amplitude quadrature of the beamsplitter common output correlated with this force. In
the standard signal-recycled Michelson interferometer topology of the modern gravitational-
wave detectors, two independent optical position meters can be implemented by two orthog-
onal polarisations of the probe light. Our analysis shows that the EPR speedmeter provides
significantly improved sensitivity for all frequencies below ∼ 30Hz compared to an equiv-
alent signal recycled Michelson interferometer. We believe the EPR speedmeter scheme to
be very attractive for future upgrades of gravitational wave detectors, because it requires
only minor changes to be implemented in the interferometer hardware and allows to switch
between the position meter and the speed meter modes within short time-scales and without
any changes to the hardware.

I. INTRODUCTION

The sensitivity of the modern laser-interferometric gravitational-wave (GW) detectors is lim-
ited by quantum fluctuations of the probing light over most of the sensitive frequency range. In
particular, at higher frequencies their sensitivity is limited by the shot noise (also known in more
general context as the measurement noise), created by quantum fluctuations of the phase of the
probing light [1–3]. The resulting sensitivity, about ∼ 10−20 m/

√
Hz in units of the equivalent

displacement noise, is extremely high and has proved to be sufficient for the direct observation of
gravitational waves from astrophysical sources [4, 5].

At the same time the pair of Advanced LIGO interferometers, which detected the first GW
signals, have not reached yet their design sensitivity, which is planned to provide about a factor
three improvement in astrophysical reach [6]. Suppression of the shot noise, which is necessary
for achieving this goal, will require either an increase of the optical power circulating in the in-
terferometer up to ∼ 1MW, or the application of squeezed light states [7–9], and most probably a
combination of both approaches will be used to maximise the sensitivity gain.

Due to the Heisenberg uncertainty relation, this will lead to the proportional increase of an-
other kind of the quantum noise, namely radiation pressure noise (also known as the quantum
∗ Corresponding author: khalili@phys.msu.ru
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back action noise), imposed by the quantum fluctuations of the light power in the interferometer
disturbing the test mass positions. The point of balance between the measurement noise and the
back action noise is known as the Standard Quantum Limit (SQL) [10], and the design sensitivity
of the Advanced LIGO interferometers will touch the SQL at one frequency.

It has to be emphasized that the SQL is not a truly fundamental limit, and several methods
have been proposed for overcoming the SQL in future GW detectors. A detailed review of these
methods can be found e.g. in [11]. One of the most promising approaches for surpassing the
SQL is based on the quantum speed meter concept, which was first proposed in [12]. The basic
idea of this concept is to measure the velocity of the probe mass(es) instead of their position.
In this case, the measurement noise and the back action noise spectral densities depend on the
observation frequency in such a way that they can provide cancellation of each other by means
of introducing a frequency-independent cross-correlation between them. It can be implemented
simply by using a homodyne detector with the properly set homodyne angle. Note that in the
traditional position-sensitive interferometers, additional long filter cavities are required for this
type of the quantum noises cancellation [13] (4-km cavities were proposed in [13]; it was shown
later that much shorter, but still quite long, tens or hundreds of meters, cavities could be used as
well, but they could provide only limited sensitivity gain [14–16]).

Several implementations of the quantum speed meter concept suitable for the GW detectors
were proposed, which can be divided into the following two categories: the first one relies on the
ordinary Michelson interferometer topology of the contemporary GW detectors, but requires an
additional long sloshing cavity [17, 18] and therefore does not provide significant advantages in
comparison with the filter cavities based topologies. The second category is based on the zero-area
Sagnac interferometer topology [19, 20], which significantly deviates from the standard Michelson
topology. Currently it is a subject of intense R&D efforts [21–24].

Here we propose a new kind of the quantum speed meter, the EPR speed meter (from the fa-
mous gedanken experiment by Einstein, Podolsky and Rosen), which allows to use the Michelson
interferometer topology and, at the same time, does not require any additional long-baseline filter
cavities or other major infrastructure changes.

We would like to emphasize that the goal of this short paper is to introduce the concept of
this new speed meter type. Detailed investigations of the technical implementation, such as the
robustness against optical loss, the coupling of laser frequency and amplitude noise, as well as
additional add-on techniques, like the injection of squeezed states will be considered in a follow-
up article, currently in preparation.

This paper is organized as follows. In the next section we reproduce the basic analytical treat-
ment of quantum noise in the position meter and speed meter schemes. In Sec. III we present the
concept of the EPR speed meter. In Sec. IV we consider a possible implementation of our concept
in a GW wave detector and provide brief estimates of its sensitivity, using parameters similar to
the ones of the envisaged LIGO Voyager GW detectors [25]. The notations and the parameter
values used in this paper are listed in Table I.

II. GENERAL INTRODUCTION TO QUANTUM NOISE OF THE POSITION METER AND
THE SPEED METER

A. Position meter

The (double-sided) power spectral density of the sum of quantum noise components in a po-
sition meter can be presented as follows (a much more detailed analysis of the quantum noise in
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Quantity Description
c Speed of light
h̄ Reduced Plank constants
M = 200kg Reduced mass of the interferometer equal to the mass

of each of the arm cavities mirrors [11]
L = 4km Length of the interferometer arm cavities
ωo = 2πc/1.550 µm Resonance frequency of the interferometer and the optical pump frequency
Ic = 2×3MW Total optical power circulating in the both arms of the interferometer

J =
4ωoIc

MLc
= (2π×79Hz)3 Normalized optical power in the interferometer

γ Half-bandwidth of the interferometer
Ω Audio sideband frequency of the GW signal
ζ Homodyne angle

TABLE I. Main notations used in this paper. For the numerical values, we use the ones planned for the
next-generation GW detector LIGO Voyager [25].

interferometers can be found in [11]):

SPM = Sxx−
2SxF

MΩ2 +
SFF

M2Ω4 , (1)

where Sxx is the spectral density of the measurement noise, SFF is the spectral density of the back
action force and SxF is the cross-correlation spectral density of these two noise sources (we assume
here that SxF is real in order to avoid subtle but unrelevant to our consideration issues related to
the imaginary part of SxF ). These spectral densities satisfy the Heisenberg uncertainty relation

SxxSFF −S2
xF ≥

h̄2

4
. (2)

In the rest of this section, we assume this relation is saturated and the interferometer is driven by
the vacuum and laser fields in the minimum uncertainty quantum state.

In the modern GW detectors, there is no cross-correlation between the shot noise and the radia-
tion pressure noise, because the resonance-tuned configuration is used in these detectors and only
the phase quadrature of the outgoing light is measured. Hence

SPM = Sxx +
SFF

M2Ω4 ≥ SSQL , (3)

where
SSQL =

h̄
MΩ2 (4)

is the double-sided SQL spectral density.
On the other hand, if SxF 6= 0 and can be made arbitrarily dependent on frequency, then the

spectral density (1) can be minimized, using the exact equality in (2) and setting

Sxx =
h̄2

4SFF
+

SFF

M2Ω4 , SxF =
SFF

MΩ2 , (5)
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which gives:

SPM =
h̄2

4SFF
. (6)

In the laser interferometers SFF is proportional to the optical power inside the interferometer.
It was shown in [26] that this Energetic Quantum Limit actually is a general one for all linear
stationary interferometric measurements.

The optimized spectral density (6), in principle, can be made arbitrarily small simply by in-
creasing this power. However, conditions (5) can only be satisfied in the given frequency band,
provided that the spectral densities Sxx, SxF , and SFF depend on frequency Ω in a rather specific
way which is, sadly, different from the one they acquire due to finite bandwidth of the arm cavities
in the existing GW interferometers. Therefore, to introduce the desired frequency dependence (5)
in a broad band, long additional filter cavities are required [13].

B. Speed meter

In the speed meter schemes, the quantum noise has the same general structure (1), but with the
following peculiarities:

Sxx =
Svv

Ω2 , SFF = Ω
2Spp , SxF =−Svp , (7)

where Svv is the velocity measurement noise spectral density, Spp is the momentum perturbation
noise spectral density, and Svp is the corresponding cross-correlation spectral density. It is impor-
tant that Svv, Spp, and Svp can be considered as frequency-independent within the interferometer
bandwidth [17]. The relation (2) takes the following form:

SvvSpp−S2
vp =

h̄2

4
, (8)

and the sum quantum noise spectral density of the speed meter reads:

SSM =
1

Ω2

(
Svv +

2Svp

M
+

Spp

M2

)
. (9)

In the particular case of Svp = 0, similar optimization as for the PM can be made:

Svv =
h̄2

4Spp
=

h̄
2M

, (10)

yielding the quantum noise of the speed meter to follow the SQL:

SSM =
h̄

MΩ2 . (11)

Note that the corresponding spectral density of the position meter (3) only touches the SQL at one
given frequency and goes above it elsewhere. Therefore, the speed meter provides better sensitivity
even in this simple case.

In a more general case of Svp 6= 0, the following optimization:

Svv =
h̄2

4Spp
+

Spp

M2 , Svp =−
Spp

M
, (12)
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FIG. 1. Conceptual schemes of the EPR speed meter. Top: two optically independent Fabry-Perot cavities
sense the position x of the same mass M; their output beams are combined by the beamsplitter, forming
the “+” (position) and the “−” (speed) outputs. Bottom: a more practical collinear version (tolerant to the
angular motion of the mass M) of the same scheme; in this case, the signs of the beamsplitter reflectivity
factors has to be swapped.

gives:

SSM =
h̄2

4Ω2Spp
. (13)

Similar to the position meter case (6), this spectral density can be arbitrary small, provided that
Spp is sufficiently large, which means high enough circulating optical power in the interferometer.
Contrary to the position meter, no additional elements like filter cavities are required for this.

III. IDEA OF THE EPR SPEED METER

Consider now the scheme shown in Fig. 1(top). Here the mass M forms a joint movable mirror
for two otherwise independent Fabri-Perot cavities having the same eigenfrequency ωo, the same
lengths L, but different bandwidths γ1,2. The cavities are pumped at the frequency ωo and their
output fields are combined by the beamsplitter. Its two output beams labeled in the picture as “+”
and “−”are measured by the two homodyne detectors.

Using the two-photon amplitudes notations of [27, 28], the input/output relations for these
cavities can be written as (see e.g. [29]):(

b̂c
1,2

b̂s
1,2

)
= R j

(
âc

1,2

âs
1,2

)
+G j

(
0
x̂

)
, (14)

where j = 1,2 is the cavity number, âc,s
j are the cosine and the sine quadratures of the input field

of the cavity j, b̂c,s
j are the corresponding output field quadratures,

R j =
γ j + iΩ
γ j− iΩ

(15)



6

are the frequency-dependent reflectivities of the cavities for the cavity sideband fields,

G j =
2
√

2ωoE j

γ j− iΩ

√
γ j

cL
(16)

are the optomechanical transfer functions, E j are the classical amplitudes of the intracavity fields,
normalized as follows:

h̄ωoE2
j = I j , (17)

and I j is the optical power, circulating in the cavity j = 1,2. Note that if âc,s
j correspond to the

vacuum input fields, then the same is true for R jâ
c,s
j . Therefore, below we absorb R j into âc,s

j in
order to simplify the equations.

The beamsplitter transforms the output fields as follows:(
b̂c
±

b̂s
±

)
=

(
âc
±

âs
±

)
+G±

(
0
x̂

)
, (18)

where

âc,s
± =

âc,s
1 ± âc,s

2√
2

(19)

are the new effective input vacuum fields and

G± =
G1±G2√

2
. (20)

are the transfer functions for the “+” and “−” channels.
In order to create the speed meter type frequency dependence of the optomechanical coupling,

we propose to exploit the difference in the frequency dependence of G1,2. Note that if γ1 6= γ2 and

E1√
γ1

=
E2√
γ2

, (21)

then the DC values of G1 and G2 are equal to each other, but the AC values are different. In
this case, the leading term of the factor G− is proportional to Ω, as it is required for the speed
measurement. More specifically, in this case

G+ =
2ωoE1√

γ1cL
2γ1γ2− iΩ(γ1 + γ2)

(γ1− iΩ)(γ2− iΩ)
, (22a)

G− =
2ωoE1√

γ1cL
iΩ(γ2− γ1)

(γ1− iΩ)(γ2− iΩ)
. (22b)

Taking also into account that the “+” and “−” noise components in (18) are uncorrelated, it follows
from Eqs. (22) that the “+” and “−” ports of the beamsplitter correspond to two independent
meters: the position one for the “+” port (note that G+ is flat at low frequencies) and the speed
meter for the “−” port.

According to the Heisenberg uncertainty relation, each of these meters create the back action
force of its own. Indeed, it is easy to show that the fluctuational component of the radiation
pressure force acting on the mass M is equal to (see again [29]):

F̂fl = h̄(G ∗1 âc
1 +G ∗2 âc

2) = F̂fl++ F̂fl− , (23)
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where
F̂fl± = h̄G ∗±âc

± . (24)

It is easy to see that the force F̂fl− has the speed meter type frequency dependence.
In principle, a more practical version with the collinear placement of the elements, which is

tolerant to the angular motion of the test mass, is also possible, see Fig. 1(bottom). Evidently, in
this case the signs of reflectivities of the two beamsplitter surfaces has to be swapped. In all other
aspects, the features of this version are identical to the one considered before.

In general the two outputs of the proposed two-meters setup can be combined in a variety of
ways. Here we mainly focus at the simplest pure speed meter case, which can be implemented
by “switching off” the position-sensitive “+” channel. This can be done by measuring the ampli-
tude (cosine) quadrature of the “+” output field, which does not contain any information on the
mechanical motion, but instead it is correlated with radiation pressure force F̂fl+. Therefore, it
is entangled with the mechanical motion. The measurement of âc

+ removes this entanglement in
the EPR way and projects the mass M into the conditional state with effectively eliminated per-
turbation component created by the “+” channel. Of course, physically this perturbation remains
unchanged, but it becomes known to the experimenter and can be eliminated from the output sig-
nal by the subsequent appropriate data processing. It could be mentioned that in general case, this
filtering can not be done by in real time by using a causal filter. However, for the GW detection
this is not an issue because off-line cancellation with an acausal filter can be used in this case.

The remaining “−” channel quantum noise spectral density can be calculated using Eqs. (1, 18,
22b, 24). Assuming that the output of this channel is measured by the homodyne detector with the
homodyne angle ζ−, we obtain:

SEPR =
SSQL

2

(
1

K− sin2
ζ−
−2cotζ−+K−

)
, (25)

where

K− = SSQL|G−|2 =
(γ1− γ2)

2J
(γ1 + γ2)(γ

2
1 +Ω2)(γ2

2 +Ω2)
(26)

is the Kimble factor [13] for the “−” channel. The three terms in parentheses in (25) originate,
respectively, from the shot noise, the cross-correlation between the the shot noise and the radiation
pressure noise, and the radiation pressure noise. They directly relate to the corresponding terms in
Eqs. (1) and (9).

It is instructive to compare K− with the corresponding factors for the position meter (Michel-
son) interferometers [13]:

KPM = SSQL|GPM|2 =
2γJ

Ω2(γ2 +Ω2)
(27)

and for the speed meter Sagnac interferometer [19]:

KSM = SSQL|GSM|2 =
4γJ

(γ2 +Ω2)2 . (28)

Note that in order to fulfill the speed meter conditions (10, 12), the optomechanical coupling has
to be sufficiently strong, KSM ≥ 1, which requires sufficiently high circulating optical power:

J ≥ γ3

4
. (29)
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More sophisticated frequency dependence of K− allows to alleviate this problem. Indeed K−
has a flat speed meter-like behaviour only up to the smaller of the two bandwidths γ1,2; to be
specific, we suppose that γ2 < γ1. At higher frequencies Ω� γ2, it can be approximated as

K− ≈
(γ1− γ2)

2J
(γ1 + γ2)(γ

2
1 +Ω2)Ω2 (30)

and has the position meter type frequency dependence with the bandwidth equal to γ1, compare
with (27).

Consider therefore the strongly asymmetric case with γ2 � γ1 and with γ1 is equal to the re-
quired bandwidth of the interferometer. In this case the speed meter conditions (10, 12) give the
following requirement for the circulating optical power:

J ≥ (γ1 + γ2)γ
2
1 γ2

2
(γ1− γ2)2 ≈ γ1γ

2
2 (31)

which is a factor of 1/4× (γ1/γ2)
2 weaker than (29). With the account for this moderate optical

power, the quantum noise at frequencies above the γ2 will be dominated by the shot noise, with
the position meter-like K− providing 1/4× (γ1/Ω)2 lower shot noise spectral density within the
interferometer bandwidth (Ω . γ1) than in the Sagnac speed meter case.

The price to pay, however, is the approximately two times lower high-frequency asymptotic
of K− (30) compared to that of the ordinary position meter (27) (see also Fig. 3). The reason
for this is evident: only the part of the total circulating optical power which corresponds to the
“−” channel, that is about half of the total power, participates in the measurement. Whether this
disadvantage outweighs the advantage of more effective K− discussed above or not, depends on
the specific parameters of the interferometer.

IV. PROSPECTS OF USE IN GW DETECTORS

A possible method of implementation of two independent position meters within the standard
Michelson interferometer topology is to use the two orthogonal polarisations of light. Note that
polarisation-based schemes of speed meter (the Sagnac interferometer or the Michelson inter-
ferometer with the additional sloshing cavity) were discussed already in literature several times
[20, 30–34].

The scheme which we propose here is shown in Fig. 2. In this scheme, in order to excite two
orthogonal linear polarisations of the carrier light in the interferometer, the polarisation of the
pumping laser has to be tilted by the angle defined by the condition (21):

arctan
E2

2
E2

1
= arctan

γ2

γ1
(32)

Two strongly different values of the bandwidths γ1� γ2 can be created by using the signal re-
cycled configuration of the interferometer [35, 36] with a birefringent plate inserted into the signal
recycling cavity. This plate has to introduce the phase shift π/2 between the two polarisations
passing through it (the quarterwave plate). In this case, for one polarisation we obtain a resonant
sideband extraction scheme (large bandwidth), while for the other polarisation we obtain a signal
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FIG. 2. Possible implementation of the EPR speed meter based on the standard signal recycled interfer-
ometer topology of the modern GW detectors. SRM: signal recycling mirror; BP: birefringent plate; PBS:
polarising beamsplitter.

recycling scheme (low bandwidth). The bandwidths of the two readouts are given by:

γ1 =
c

4L
TSRMTITM

1−√RSRMRITM
, (33a)

γ2 =
c

4L
TSRMTITM

1+
√

RSRMRITM
, (33b)

where RITM, TITM are the power reflectivity and transmissivity of the arm cavities input mirrors,
and RSRM, TSRM are the power reflectivity and transmissivity of the signal recycling mirror.

Finally, in order to create the output channels “+” and “−”, the polarisation beamsplitter tilted
by 45◦ relative to the linear polarisations circulating in the interferometer can be used.

For the sensitivity estimates for this scheme, we use the parameters planned for the next gener-
ation GW detector LIGO Voyager [25], see Table I. Note that due to the increased mirror mass and
the changed laser wavelength (compared to Advanced LIGO) and despite the increased circulating
optical power, this detector will be even more underpowered than the Advanced LIGO, with the
normalized optical power J� γ3. Therefore, we assume here in most cases that the phase quadra-
ture of the output channel “−” is measured, which corresponds to homodyne angle ζ− = π/2, see
Eq. (25). In this regime, the speed meter can not overcome the SQL, but still has much better low-
frequency sensitivity than the position meter, see Sec. II. At the same time, this regime requires
smaller optical circulating power than the more advanced SQL-beating one with ζ 6= π/2.

Figures 3 and 4 show the optomechanical transfer function and the (single-sided) linear quan-
tum noise spectral density, normalised to the equivalent GW signal:√

Sh =
2
L

√
2S , (34)

respectively. For comparison, the corresponding plots for the Sagnac speed meter interferometer,
also for the case of ζ = π/2, and for a Michelson/Fabry-Perot (position meter) interferometer with
the same value of the homodyne angle are also provided.
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I.
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interferometer with γ = (4J)1/3 ≈ 2π × 125Hz. In all cases, the phase quadrature of the output light is
supposed to measured (ζ = π/2). All other parameters correspond to the ones of the planned LIGO Voyager
GW detector, see Table I.
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cases, γ = γ1 = 2π×500Hz, γ2 =

√
J/γ1 ≈ 2π×31Hz. All other parameters correspond to the ones of the

planned LIGO Voyager GW detector, see Table I.

It is easy to see from these plots that the EPR speed meter realises the trade-off between the
high-frequency and the low-frequency sensitivity, losing discussed above 3 dB to the position me-
ter in shot noise dominated high- and medium-frequency region, yet providing significantly better
sensitivity in the radiation-pressure noise dominated low-frequency region. It is also inferior by
≈ 6db to the Sagnac speed meter in the medium-frequency range. However, the relative simplicity
of implementation of the EPR speed meter has the potential to easily outweigh this disadvantage.

An important feature of the of the EPR speed meter scheme is the flexibility provided by the
two homodyne angles which can be tuned independently. In particular, if the phase quadratures
are measured in both channels, ζ+ = ζ− = π/2, then this schemes reduces to the position meter,
see the corresponding plot in Fig. 5. The high-frequency sensitivity in this case is the same as in
the ordinary Michelson positions meter. However, the low-frequency is worse by≈ 3db due to the√

2 times larger low-frequency asymptotic of the transfer function G+, in comparison with GPM
(see Fig. 3), which increases proportionally the radiation-pressure noise.

The values of 0 < ζ+,ζ− < π/2 provide sensitivity better than the SQL. As Fig. 5 shows, that
(assuming the LIGO Voyager parameters) the SQL can be surpassed by a factor of up to ∼ 3db
over a frequency range of half a decade. Note that the sub-SQL performance will increase with
increasing power. The price for this is the sharp increase of the noise in the very low-frequency
band due to incomplete cancellation of the “+”-channel back action. Therefore, in any future
application the EPR speed meter sensitivity can be optimised to obtain maximum reach for any
astrophysical source for a given level of other noise sources of the GW detector.
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V. DISCUSSION

We would like to mention three important things here. First, the scheme described in this article
is probably one of the simplest ways to realise a quantum speed meter, because it builds to a large
extent on the traditional Michelson configuration with just minor extensions. Note that only a
small number of additional optical elements will be needed, such as the additional quarter wave
plate in the signal recycling cavity and the polarising beamsplitter at the output port. In addition
it has to be ensured that the core interferometer can sustain normal operation for two orthogonal,
linear polarisations.

Secondly, the proposed scheme can be switched back in-situ (using remote-controlled, in-
vacuum waveplates) to the position meter mode, therefore increasing its medium- and high-
frequency sensitivity. This transformation of the measurement mode can likely be obtained within
short time-scales and without any replacement of hardware, simply by switching the “+” output
from the amplitude quadrature to the phase quadrature detection. If this switching and the cor-
responding changes to the control system and calibration system (e.g. adjusting loop gains and
signal transfer functions) can be done fast enough and without introducing any additional dis-
placement noise, then this possibility could be useful for the detection of GW signals from binary
systems mergers, with the waveforms starting from very low frequency and gradually increasing
to much higher ones.

Finally, it is evident that the capabilities of the considered scheme, featuring two outputs, are
not limited by the simple configuration considered here. For instance the application of squeezed
light states will even further improve the achievable strain sensitivity of our proposed scheme, and
such options will be considered in in detail in a follow-up article.
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Appendix A: Post-processing of two output ports

We assume that the photocurrents of the two homodyne detectors are combined using the opti-
mal frequency-dependent weight function ε:

iε(Ω) = ε(Ω)i+(Ω)+ [1− ε(Ω)]i−(Ω) . (A1)

Note that this is a software operation and therefore no constrains are applied on the shape of ε .
This gives the following spectral density of the combined noise:

Sε = |ε|2S++2ℜ
[
ε(1− ε

∗)S±
]
+ |1− ε|2S− , (A2)

where S+, S− are the sum noise spectral densities at the “+” and the “−” outputs, respectively,
and S± is the corresponding cross-correlation spectral density. It can be shown using Eqs. (18, 23),
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that they are equal to

S+ =
SSQL

2

(
1

K+ sin2
ζ+
−2cotζ++K++K−

)
, (A3a)

S− =
SSQL

2

(
1

K− sin2
ζ−
−2cotζ−+K++K−

)
, (A3b)

S± =
SSQL

2
(−cotζ−− cotζ++K++K−), (A3c)

where the factors K+, K− are given by

K+ = SSQL|G+|2 =
[4γ2

1 γ2
2 +Ω2(γ1 + γ2)

2]J
Ω2(γ1 + γ2)(γ

2
1 +Ω2)(γ2

2 +Ω2)
(A4)

and by Eq. (26).
The following optimization of (A2):

ε =− S∗±−S−
S++S−−2ℜS±

(A5)

gives:

Sopt =
S−S+−|S±|2

S−+S+−2ℜS±

=
SSQL

2
1−K+ sin2ζ+−K− sin2ζ−+K 2

+ sin2
ζ++K 2

− sin2
ζ−+2K+K− sinζ+ sinζ− cos(ζ+−ζ−)

K+ sin2
ζ++K− sin2

ζ−
.

(A6)
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