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We propose a new implementation of a quantum speed meter QND measurement scheme. It employs two 
independent optical readouts of the interferometer test masses with different values of the bandwidths 
and of the optical circulating power, whose outputs have to be combined by an additional beamsplitter. 
Signals at the two outputs of the beamsplitter are proportional to the position and the velocity of the 
test masses, respectively. The influence of the position meter-like back action force associated with the 
position signal can be cancelled using the EPR approach by measuring the amplitude quadrature of the 
beamsplitter common output.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The sensitivity of the modern laser-interferometric gravitational-
wave (GW) detectors is limited by quantum fluctuations of the 
probing light over most of the sensitive frequency range. In par-
ticular, at higher frequencies their sensitivity is limited by the shot 
noise (also known in more general context as the measurement 
noise), created by quantum fluctuations of the phase of the prob-
ing light [1–3]. The resulting sensitivity, about ∼ 10−20 m/

√
Hz in 

units of the equivalent displacement noise, is extremely high and 
has proved to be sufficient for the direct observation of gravita-
tional waves from astrophysical sources [4,5].

At the same time the pair of Advanced LIGO interferometers, 
which detected the first GW signals, have not reached yet their 
design sensitivity, which is planned to provide about a factor of 
three improvement in astrophysical reach [6]. Suppression of the 
shot noise, which is necessary for achieving this goal, will require 
either an increase of the optical power circulating in the interfer-
ometer up to ∼ 1 MW, or the application of squeezed light states 
[7–9], and most probably a combination of both approaches will 
be used to maximise the sensitivity gain.

Due to the Heisenberg uncertainty relation, this will lead to 
the proportional increase of another kind of the quantum noise, 
namely radiation pressure noise (also known as the quantum back 
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action noise), imposed by the quantum fluctuations of the light 
power in the interferometer disturbing the test mass positions. The 
point of balance between the measurement noise and the back ac-
tion noise is known as the Standard Quantum Limit (SQL) [10], 
and the design sensitivity of the Advanced LIGO interferometers 
will touch the SQL at one frequency.

It has to be emphasized that the SQL is not a truly fundamental 
limit, and several methods have been proposed for overcoming the 
SQL in future GW detectors. A detailed review of these methods 
can be found e.g. in [11]. One of the most promising approaches for 
surpassing the SQL is based on the quantum speed meter concept, 
which was first proposed in [12]. The basic idea of this concept is 
to measure the velocity of the probe mass(es) instead of their posi-
tion. In this case, the measurement noise and the back action noise 
spectral densities depend on the observation frequency in such a 
way that they can provide cancellation of each other by means 
of introducing a frequency-independent cross-correlation between 
them. It can be implemented simply by using a homodyne de-
tector with the properly set homodyne angle. Note that in the 
traditional position-sensitive interferometers, additional long filter 
cavities are required for this type of the quantum noises cancella-
tion [13] (4-km cavities were proposed in [13]; it was shown later 
that much shorter, but still quite long, tens or hundreds of meters, 
cavities could be used as well, but they could provide only limited 
sensitivity gain [14–16]).

Several implementations of the quantum speed meter concept 
suitable for the GW detectors were proposed, which can be divided 
into the following two categories: the first one relies on the ordi-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Main notations used in this paper. For the numerical values, we use the ones planned for the next-generation 
GW detector LIGO Voyager [25].

Quantity Description

c Speed of light
h̄ Reduced Plank constants
M = 200 kg Reduced mass of the interferometer equal to the mass 

of each of the arm cavities mirrors [11]
L = 4 km Length of the interferometer arm cavities
ωo = 2πc/1.550 μm Resonance frequency of the interferometer and the optical pump frequency
Ic = 2 × 3 MW Total optical power circulating in both arms of the interferometer

J = 4ωo Ic

MLc
= (2π × 79 Hz)3 Normalized optical power in the interferometer

γ Half-bandwidth of the interferometer
� Audio sideband frequency of the GW signal
ζ Homodyne angle
nary Michelson interferometer topology of the contemporary GW 
detectors, but requires an additional long sloshing cavity [17,18]
and therefore does not provide significant advantages in compari-
son with the filter cavities based topologies. The second category 
is based on the zero-area Sagnac interferometer topology [19,20], 
which significantly deviates from the standard Michelson topology. 
Currently it is a subject of intense R&D efforts [21–24].

Here we propose a new kind of the quantum speed meter, the 
EPR speed meter (from the famous gedanken experiment by Ein-
stein, Podolsky and Rosen), which allows to use the Michelson 
interferometer topology and, at the same time, does not require 
any additional long-baseline filter cavities or other major infras-
tructure changes.

We would like to emphasize that the goal of this short paper 
is to introduce the concept of this new speed meter type. De-
tailed investigations of the technical implementation, such as the 
robustness against optical loss, the coupling of laser frequency and 
amplitude noise, as well as additional add-on techniques, like the 
injection of squeezed states will be considered in a follow-up arti-
cle, currently in preparation.

This paper is organized as follows. In the next section, we re-
produce the basic analytical treatment of quantum noise in the 
position meter and speed meter schemes. In Sec. 3 we present the 
concept of the EPR speed meter. In Sec. 4 we consider a possible 
implementation of our concept in a GW wave detector and pro-
vide brief estimates of its sensitivity, using parameters similar to 
the ones of the envisaged LIGO Voyager GW detectors [25]. The 
notations and the parameter values used in this paper are listed in 
Table 1.

2. General introduction to quantum noise of the position meter 
and the speed meter

2.1. Position meter

The (double-sided) power spectral density of the sum of quan-
tum noise components in a position meter (PM) can be presented 
as follows (a much more detailed analysis of the quantum noise in 
interferometers can be found in [11]):

SPM = Sxx − 2SxF

M�2
+ S F F

M2�4
, (1)

where Sxx is the spectral density of the measurement noise, S F F is 
the spectral density of the back action force and SxF is the cross-
correlation spectral density of these two noise sources (we assume 
here that SxF is real in order to avoid subtle but irrelevant for our 
consideration issues related to the imaginary part of SxF ). These 
spectral densities satisfy the Heisenberg uncertainty relation

Sxx S F F − S2
xF ≥ h̄2

. (2)

4

In the rest of this section, we assume this relation is saturated and 
the interferometer is driven by the vacuum and laser fields in the 
minimum uncertainty quantum state.

In the modern GW detectors, there is no cross-correlation be-
tween the shot noise and the radiation pressure noise, because the 
resonance-tuned configuration is used in these detectors and only 
the phase quadrature of the outgoing light is measured. Hence

SPM = Sxx + S F F

M2�4
≥ SSQL , (3)

where

SSQL = h̄

M�2
(4)

is the double-sided SQL spectral density.
On the other hand, if SxF �= 0 and can be made arbitrarily 

dependent on frequency, then the spectral density (1) can be min-
imized, using the exact equality in (2) and setting

Sxx = h̄2

4S F F
+ S F F

M2�4
, SxF = S F F

M�2
, (5)

which gives:

SPM = h̄2

4S F F
. (6)

In the laser interferometers S F F is proportional to the optical 
power inside the interferometer. It was shown in [26] that this 
Energetic Quantum Limit actually is a general one for all linear sta-
tionary interferometric measurements.

The optimized spectral density (6), in principle, can be made 
arbitrarily small simply by increasing this power. However, condi-
tions (5) can only be satisfied in the given frequency band, pro-
vided that the spectral densities Sxx , SxF , and S F F depend on 
frequency � in a rather specific way which is, sadly, different from 
the one they acquire due to finite bandwidth of the arm cavities 
in the existing GW interferometers. Therefore, to introduce the de-
sired frequency dependence (5) in a broad band, long additional 
filter cavities are required [13].

2.2. Speed meter

In the speed meter schemes, the quantum noise has the same 
general structure (1), but with the following peculiarities:

Sxx = S v v

�2
, S F F = �2 S pp , SxF = −S vp , (7)

where S v v is the velocity measurement noise spectral density, S pp

is the momentum perturbation noise spectral density, and S vp is 
the corresponding cross-correlation spectral density. It is important 
that S v v , S pp , and S vp can be considered as frequency-independent 
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Fig. 1. Conceptual schemes of the EPR speed meter. Top: two optically independent 
Fabry–Perot cavities sense the position x of the same mass M; their output beams 
are combined by the beamsplitter, forming the “+” (position) and the “−” (speed) 
outputs. Bottom: a more practical collinear version (tolerant to the angular mo-
tion of the mass M) of the same scheme; in this case, the output ports has to be 
swapped.

within the interferometer bandwidth [17]. The relation (2) takes 
the following form:

S v v S pp − S2
vp = h̄2

4
, (8)

and the sum quantum noise spectral density of the speed meter 
reads:

SSM = 1

�2

(
S v v + 2S vp

M
+ S pp

M2

)
. (9)

In the particular case of S vp = 0, similar optimization as for the 
PM can be made:

S v v = h̄2

4S pp
= h̄

2M
, (10)

yielding the quantum noise of the speed meter to follow the SQL:

SSM = h̄

M�2
. (11)

Note that the corresponding spectral density of the position meter 
(3) only touches the SQL at one given frequency and goes above 
it elsewhere. Therefore, the speed meter provides better sensitivity 
even in this simple case.

In a more general case of S vp �= 0, the following optimization:

S v v = h̄2

4S pp
+ S pp

M2
, S vp = − S pp

M
, (12)

gives:

SSM = h̄2

4�2 S pp
. (13)

Similar to the position meter case (6), this spectral density can 
be arbitrarily small, provided that S pp is sufficiently large, which 
means high enough circulating optical power in the interferometer. 
Contrary to the position meter, no additional elements like filter 
cavities are required for this.

3. Idea of the EPR speed meter

Consider now the scheme shown in Fig. 1(top). Here the mass 
M forms a joint movable mirror for two otherwise indepen-
dent Fabry–Perot cavities having the same eigenfrequency ωo and 
length L, but different bandwidths γ1,2. The cavities are pumped 
at the frequency ωo and their output fields are combined by the 
beamsplitter. Its two output beams labeled in the picture as “+” 
and “−” are measured by the two homodyne detectors.

Using the two-photon amplitudes notations of [27,28], the in-
put/output relations for these cavities can be written as (see e.g.
[29]):(

b̂c
1,2

b̂s
1,2

)
= R j

(
âc

1,2
âs

1,2

)
+ G j

(
0
x̂

)
, (14)

where j = 1, 2 is the cavity number, âc,s
j are the cosine and the 

sine quadratures of the input field of the cavity j, b̂c,s
j are the cor-

responding output field quadratures,

R j = γ j + i�

γ j − i�
(15)

are the frequency-dependent reflectivities of the cavities for the 
cavity sideband fields,

G j = 2
√

2ωoE j

γ j − i�

√
γ j

cL
(16)

are the optomechanical transfer functions, E j are the classical am-
plitudes of the intracavity fields, normalized as follows:

h̄ωoE2
j = I j , (17)

and I j is the optical power, circulating in the cavity j = 1, 2. Note 
that if âc,s

j correspond to the vacuum input fields, then the same is 
true for R j â

c,s
j . Therefore, below we absorb R j into âc,s

j in order 
to simplify the equations.

The beamsplitter transforms the output fields as follows:(
b̂c±
b̂s±

)
=

(
âc±
âs±

)
+ G±

(
0
x̂

)
, (18)

where

âc,s
± = âc,s

1 ± âc,s
2√

2
(19)

are the new effective input vacuum fields and

G± = G1 ± G2√
2

, (20)

are the transfer functions for the “+” and “−” channels.
In order to create the speed meter type frequency dependence 

of the optomechanical coupling, we propose to exploit the differ-
ence in the frequency dependence of G1,2. Note that if γ1 �= γ2
and

E1√
γ 1

= E2√
γ 2

, (21)

then the DC values of G1 and G2 are equal to each other, but the 
AC values are different. In this case, the leading term of the factor 
G− is proportional to �, as it is required for the speed measure-
ment. More specifically, in this case

G+ = 2ωoE1√
γ1cL

2γ1γ2 − i�(γ1 + γ2)

(γ1 − i�)(γ2 − i�)
, (22a)

G− = 2ωoE1√
γ1cL

i�(γ2 − γ1)

(γ1 − i�)(γ2 − i�)
. (22b)

Taking also into account that the “+” and “−” noise components 
in (18) are uncorrelated, it follows from Eqs. (22) that the “+” 
and “−” ports of the beamsplitter correspond to two independent 
meters: the position one for the “+” port (note that G+ is flat at 
low frequencies) and the speed meter for the “−” port.
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According to the Heisenberg uncertainty relation, each of these 
meters creates the back action force of its own. Indeed, the fluc-
tuational component of the radiation pressure force acting on the 
mass M is equal to (see again [29]):

F̂fl = h̄(G ∗
1 âc

1 + G ∗
2 âc

2) = F̂fl+ + F̂fl− , (23)

where

F̂fl± = h̄G ∗±âc± . (24)

It is easy to see that the force F̂fl− has the speed meter type fre-
quency dependence.

In principle, a more practical version with the collinear place-
ment of the elements, which is tolerant to the angular motion of 
the test mass, is also possible, see Fig. 1(bottom). Evidently, in this 
case the signs of reflectivities of the two beamsplitter surfaces has 
to be swapped. In all other aspects, the features of this version are 
identical to the one considered before.

In general the two outputs of the proposed two-meters setup 
can be combined in a variety of ways. Here we mainly focus at 
the simplest pure speed meter case, which can be implemented 
by “switching off” the position-sensitive “+” channel. This can be 
done by measuring the amplitude (cosine) quadrature of the “+” 
output field, which does not contain any information on the me-
chanical motion, but instead it is correlated with radiation pressure 
force F̂fl+ . Therefore, it is entangled with the mechanical motion. 
The measurement of âc+ removes this entanglement in the EPR way 
and projects the mass M into the conditional state with effectively 
eliminated perturbation component created by the “+” channel. 
Of course, physically this perturbation remains unchanged, but it 
becomes known to the experimenter and can be eliminated from 
the output signal by the subsequent appropriate data processing. It 
could be mentioned that in general case, this filtering can not be 
done by in real time by using a causal filter. However, for the GW 
detection this is not an issue because off-line cancellation with an 
acausal filter can be used in this case.

The remaining “−” channel quantum noise spectral density can 
be calculated using Eqs. (1), (18), (22b), (24). Assuming that the 
output of this channel is measured by the homodyne detector with 
the homodyne angle ζ− , we obtain:

SEPR = SSQL

2

(
1

K− sin2 ζ−
− 2 cot ζ− + K−

)
, (25)

where

K− = SSQL|G−|2 = (γ1 − γ2)
2 J

(γ1 + γ2)(γ
2

1 + �2)(γ 2
2 + �2)

(26)

is the Kimble factor [13] for the “−” channel. The three terms in 
parentheses in (25) originate, respectively, from the shot noise, the 
cross-correlation between the shot noise and the radiation pres-
sure noise, and the radiation pressure noise. They directly relate to 
the corresponding terms in Eqs. (1) and (9).

It is instructive to compare K− with the corresponding factors 
for the position meter (Michelson) interferometers [13]:

KPM = SSQL|GPM|2 = 2γ J

�2(γ 2 + �2)
(27)

and for the speed meter Sagnac interferometer [19]:

KSM = SSQL|GSM|2 = 4γ J

(γ 2 + �2)2
. (28)

Note that in order to fulfill the speed meter conditions (10), 
(12), the optomechanical coupling has to be sufficiently strong, 
KSM ≥ 1, which requires sufficiently high circulating optical power:

J ≥ γ 3

. (29)

4

More sophisticated frequency dependence of K− allows to al-
leviate this problem. Indeed K− has a flat speed meter-like be-
haviour only up to the smaller of the two bandwidths γ1,2; to be 
specific, we suppose that γ2 < γ1. At higher frequencies � � γ2, it 
can be approximated as

K− ≈ (γ1 − γ2)
2 J

(γ1 + γ2)(γ
2

1 + �2)�2
(30)

and has the position meter type frequency dependence with the 
bandwidth equal to γ1, compare with (27).

Consider therefore the strongly asymmetric case with γ2 	 γ1
and with γ1 equal to the required bandwidth of the interferom-
eter. In this case the speed meter conditions (10), (12) give the 
following requirement for the circulating optical power:

J ≥ (γ1 + γ2)γ
2

1 γ 2
2

(γ1 − γ2)2
≈ γ1γ

2
2 (31)

which is a factor of 1/4 × (γ1/γ2)
2 weaker than (29). With account 

of this moderate optical power, the quantum noise at frequencies 
above the γ2 will be dominated by the shot noise, with the posi-
tion meter-like K− providing 1/4 ×(γ1/�)2 lower shot noise spec-
tral density within the interferometer bandwidth (� � γ1) than in 
the Sagnac speed meter case.

The price to pay, however, is the approximately two times lower 
high-frequency asymptotic of K− (30) compared to that of the or-
dinary position meter (27) (see also Fig. 3). The reason for this 
is evident: only the part of the total circulating optical power 
which corresponds to the “−” channel, that is about half of the 
total power, participates in the measurement. Whether this disad-
vantage outweighs the advantage of more effective K− discussed 
above or not, depends on the specific parameters of the interfer-
ometer.

4. Prospects of use in GW detectors

A possible method of implementation of two independent po-
sition meters within the standard Michelson interferometer topol-
ogy is to use the two orthogonal polarisations of light. Note that 
polarisation-based schemes of speed meter (the Sagnac interfer-
ometer or the Michelson interferometer with the additional slosh-
ing cavity) were discussed already in literature several times [20,
30–34].

The scheme which we propose here is shown in Fig. 2. In 
this scheme, in order to excite two orthogonal linear polarisations 
of the carrier light in the interferometer, the polarisation of the 
pumping laser has to be tilted by the angle defined by the condi-
tion (21):

arctan
E2

2

E2
1

= arctan
γ2

γ1
(32)

Two strongly different values of the bandwidths γ1 � γ2 can 
be created by using the signal recycled configuration of the inter-
ferometer [35,36] with a birefringent plate inserted into the signal 
recycling cavity. This plate has to introduce the phase shift π/2
between the two polarisations passing through it (the quarter-
wave plate). In this case, for one polarisation we obtain a resonant 
sideband extraction scheme (large bandwidth), while for the other 
polarisation we obtain a signal recycling scheme (low bandwidth). 
The bandwidths of the two readouts are given by:

γ1 = c

4L

TSRMT ITM

1 − √
RSRM R ITM

, (33a)

γ2 = c

4L

TSRMT ITM

1 + √
RSRM R ITM

, (33b)
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Fig. 2. Possible implementation of the EPR speed meter based on the standard signal 
recycled interferometer topology of the modern GW detectors. SRM: signal recy-
cling mirror; QWP: quarterwave plate; PBS: polarising beamsplitter; ITM: input test 
masses; ETM: end test masses; BHD: balance homodyne detector; PD: photodetec-
tors.

where R ITM, T ITM are the power reflectivity and transmissivity of 
the arm cavities input mirrors, and RSRM, TSRM are the power re-
flectivity and transmissivity of the signal recycling mirror.

Finally, in order to create the output channels “+” and “−”, 
the polarisation beamsplitter tilted by 45◦ relative to the linear 
polarisations circulating in the interferometer can be used.

For the sensitivity estimates of this scheme, we use the param-
eters planned for the next generation GW detector LIGO Voyager 
[25], see Table 1. Note that due to the increased mirror mass and 
the changed laser wavelength (compared to Advanced LIGO) and 
despite the increased circulating optical power, this detector will 
be even more underpowered than the Advanced LIGO, with the 
normalized optical power J 	 γ 3. Therefore, we assume here in 
most cases that the phase quadrature of the output channel “−” 
is measured, which corresponds to homodyne angle ζ− = π/2, 
see Eq. (25). In this regime, the speed meter can not overcome 
the SQL, but still has much better low-frequency sensitivity than 
the position meter, see Sec. 2. At the same time, this regime re-
quires smaller optical circulating power than the more advanced 
SQL-beating one with ζ �= π/2.

Figs. 3 and 4 show the optomechanical transfer function and 
the (single-sided) linear quantum noise spectral density, nor-
malised to the equivalent GW signal:√

Sh = 2

L

√
2S , (34)

respectively. For comparison, the corresponding plots for the 
Sagnac speed meter interferometer, also for the case of ζ = π/2, 
and for a Michelson/Fabry–Perot (position meter) interferometer 
with the same value of the homodyne angle are also provided.

It is easy to see from these plots that the EPR speed meter 
realises the trade-off between the high-frequency and the low-
frequency sensitivity, losing discussed above 3 dB to the position 
meter in shot noise dominated high- and medium-frequency re-
gion, yet providing significantly better sensitivity in the radiation-
pressure noise dominated low-frequency region. It is also inferior 
by ≈ 6 dB to the Sagnac speed meter in the medium-frequency 
Fig. 3. Optomechanical transfer functions for: the “+” and the “−” channels of the 
EPR speedmeter noise with γ1 = 2π × 500 Hz and γ2 = √

J/γ1 ≈ 2π × 31 Hz; the 
Michelson/Fabry–Perot position meter interferometer with γ = 2π × 500 Hz; the 
Sagnac speed meter interferometer with γ = (4 J )1/3 ≈ 2π × 125 Hz. All other pa-
rameters correspond to the ones of the planned LIGO Voyager GW detector, see 
Table 1.

Fig. 4. Quantum noise of: the EPR speedmeter with γ1 = 2π × 500 Hz and γ2 =√
J/γ1 ≈ 2π ×31 Hz; the Michelson/Fabry–Perot position meter interferometer with 

γ = 2π × 500 Hz; the Sagnac speed meter interferometer with γ = (4 J )1/3 ≈ 2π ×
125 Hz. In all cases, the phase quadrature of the output light is supposed to be 
measured (ζ = π/2). All other parameters correspond to the ones of the planned 
LIGO Voyager GW detector, see Table 1.

range. However, the relative simplicity of implementation of the 
EPR speed meter has the potential to easily outweigh this disad-
vantage.

An important feature of the of the EPR speed meter scheme 
is the flexibility provided by the two homodyne angles which can 
be tuned independently. In particular, if the phase quadratures are 
measured in both channels, ζ+ = ζ− = π/2, then this schemes re-
duces to the position meter, see the corresponding plot in Fig. 5. 
The high-frequency sensitivity in this case is the same as in the 
ordinary Michelson positions meter. However, the low-frequency is 
worse by ≈ 3 dB due to the 

√
2 times larger low-frequency asymp-

totic of the transfer function G+ , in comparison with GPM (see 
Fig. 3), which increases proportionally the radiation-pressure noise.

The values of 0 < ζ+, ζ− < π/2 provide sensitivity better than 
the SQL. As Fig. 5 shows, that (assuming the LIGO Voyager param-
eters) the SQL can be surpassed by a factor of up to ∼ 3 dB over 
a frequency range of half a decade. Note that the sub-SQL perfor-
mance will increase with increasing power. The price for this is the 
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Fig. 5. Quantum noise of the various regimes of the two-channel interferometer: 
ζ+ = 0, ζ− = π/2 (the EPR speedmeter); ζ+ = ζ− = π/2 (the two-channel po-
sition meter); ζ+ = 0.04, ζ− = 1.4 (an example of the SQL-beating tuning); the 
Michelson/Fabry–Perot position meter interferometer with ζ = π/2. In all cases, 
γ = γ1 = 2π × 500 Hz, γ2 = √

J/γ1 ≈ 2π × 31 Hz. All other parameters correspond 
to the ones of the planned LIGO Voyager GW detector, see Table 1.

sharp increase of the noise in the very low-frequency band due to 
incomplete cancellation of the “+”-channel back action. Therefore, 
in any future application the EPR speed meter sensitivity can be 
optimised to obtain maximum reach for any astrophysical source 
for a given level of other noise sources of the GW detector.

5. Discussion

We would like to mention three important things here. First, 
the scheme described in this article is probably one of the simplest 
ways to realise a quantum speed meter, because it builds to a large 
extent on the traditional Michelson configuration with just minor 
extensions. Note that only a small number of additional optical 
elements will be needed, such as the additional quarter wave plate 
in the signal recycling cavity and the polarising beamsplitter at 
the output port. In addition it has to be ensured that the core 
interferometer can sustain normal operation for two orthogonal, 
linear polarisations.

Secondly, the proposed scheme can be switched back in-situ 
(using remote-controlled, in-vacuum waveplates) to the position 
meter mode, therefore increasing its medium- and high-frequency 
sensitivity. This transformation of the measurement mode can 
likely be obtained within short time-scales and without any re-
placement of hardware, simply by switching the “+” output from 
the amplitude quadrature to the phase quadrature detection. If this 
switching and the corresponding changes to the control system 
and calibration system (e.g. adjusting loop gains and signal transfer 
functions) can be done fast enough and without introducing any 
additional displacement noise, then this possibility could be useful 
for the detection of GW signals from binary systems mergers, with 
the waveforms starting from very low frequency and gradually in-
creasing to much higher ones.

Finally, it is evident that the capabilities of the considered 
scheme, featuring two outputs, are not limited by the simple 
configuration considered here. For instance the application of 
squeezed light states will even further improve the achievable 
strain sensitivity of our proposed scheme, and such options will 
be considered in detail in a follow-up article.
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Appendix A. Post-processing of two output ports

We assume that the photocurrents of the two homodyne detec-
tors are combined using the optimal frequency-dependent weight 
function ε:

iε(�) = ε(�)i+(�) + [1 − ε(�)]i−(�) . (A.1)

Note that this is a software operation and therefore no constrains 
are applied on the shape of ε . This gives the following spectral 
density of the combined noise:

Sε = |ε|2 S+ + 2�[
ε(1 − ε∗)S±

] + |1 − ε|2 S− , (A.2)

where S+ , S− are the sum noise spectral densities at the “+” and 
the “−” outputs, respectively, and S± is the corresponding cross-
correlation spectral density. It can be shown using Eqs. (18), (23), 
that they are equal to

S+ = SSQL

2

(
1

K+ sin2 ζ+
− 2 cot ζ+ + K+ + K−

)
, (A.3a)

S− = SSQL

2

(
1

K− sin2 ζ−
− 2 cot ζ− + K+ + K−

)
, (A.3b)

S± = SSQL

2
(− cot ζ− − cot ζ+ + K+ + K−), (A.3c)

where the factors K+ , K− are given by

K+ = SSQL|G+|2 = [4γ 2
1 γ 2

2 + �2(γ1 + γ2)
2] J

�2(γ1 + γ2)(γ
2

1 + �2)(γ 2
2 + �2)

(A.4)

and by Eq. (26).
The following optimization of (A.2):

ε = − S∗± − S−
S+ + S− − 2�S±

(A.5)

gives:

Sopt = S−S+ − |S±|2
S− + S+ − 2�S±

= SSQL

2

[
1 − K+ sin 2ζ+ − K− sin 2ζ− + K 2+ sin2 ζ+

+ K 2− sin2 ζ− + 2K+K− sin ζ+ sin ζ− cos(ζ+ − ζ−)
]

× [
K+ sin2 ζ+ + K− sin2 ζ−

]−1
. (A.6)
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