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All local gauge invariants for perturbations of the Kerr spacetime
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We present two complex scalar gauge invariants for perturbations of the Kerr spacetime defined
covariantly in terms of the Killing vectors and the conformal Killing-Yano tensor of the background
together with the linearized curvature and its first derivatives. These invariants are in particular
sensitive to variations of the Kerr parameters. Together with the Teukolsky scalars and the linearized
Ricci tensor they form a minimal set that generates all local gauge invariants. We also present
curvature invariants that reduce to the gauge invariants in linearized theory.
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Introduction.— Black hole perturbation theory plays a
major role in numerical and analytical investigations of
general relativity. The coordinate freedom or diffeomor-
phism invariance of the Einstein equations implies gauge
freedom for the linearized equations. For many applica-
tions it is essential to extract the gauge invariant content
of the theory. The aim of this letter is to describe all
local gauge invariants for perturbations of the rotating
Kerr black hole.

The dynamics of gravitational perturbations of the
Schwarzschild geometry is governed by the Regge-
Wheeler [I] and Zerilli [2] variables, see [3] 4] for a gauge
invariant formulation, but also by the Bardeen-Press [5]
variables. Gauge invariants of higher than second dif-
ferential order have also been used in the literature,
see e.g. [6] for third order quantities and [7] for a set
of higher order gauge invariants and their relations on
Schwarzschild. The construction of the Bardeen-Press
invariants has been generalized to the Kerr geometry by
Teukolsky [8] and Wald showed in [9] that one complex
Teukolsky scalar determines the linearized gravitational
field up to unphysical solutions and Kerr parameter vari-
ations. Motivated by the self-force problem, Merlin et.
al. [I0] recently constructed three more real, third or-
der scalar invariants and in [I1] we found a third order
gauge invariant vector field. Here we take a different per-
spective by asking: in terms of which variables can the
gauge invariant content of the theory be described? As
will be demonstrated in [I2]: there exist a finite number
of invariants from which all invariants can be constructed
by further differentiation and linear combination. This
opens up the possibility of a systematic investigation of
the field equations and differential relations satisfied by
the gauge invariant quantities.

Linearized diffeomorphisms generated by a real vector
field »* change the linearized metric hy, according to

hap = hap + 2V (o). (1)

Depending on the background geometry, certain linear
combinations of derivatives of h,, can be constructed to

be independent of v* under the transformation . Such
quantities are called local gauge invariants, and play a
fundamental role in black hole perturbation theory. Also
non-local gauge invariants, often formulated in terms of
separated modes or global integrals can be of interest,
but here we restrict our attention to local quantities.
Stewart & Walker [13] showed that any linearized field
T around a given background, transforms under with
the Lie derivative along v* of its background value Ty,

T —T+L,Tp. (2)

This in particular implies that the linearized Ricci tensor
is gauge invariant on vacuum backgrounds.

Any linear differential operator applied to a gauge in-
variant is also gauge invariant. Therefore, we say that
a set of gauge invariants is generating if all gauge in-
variants can be expressed as a linear combinations of dif-
ferential operators on elements of this set. For instance,
the linearized curvature tensor is gauge invariant for per-
turbations of Minkowski space and one can show that it
forms a generating set.

We would like elements of the generating set to be of
as low differential order as possible and also minimal in
the sense that the removal of any element implies loss of
information about the gauge invariant content, or equiv-
alently that the set is no longer generating. Observe how-
ever, that the elements satisfy differential relations. For
example, the set of components of the linearized curva-
ture tensor on Minkowski space is minimal generating,
but the elements are related by the differential Bianchi
identities.

For perturbations of the Kerr spacetime the two com-
plex Teukolsky scalars (and their derivatives) together
with the linearized Ricci tensor are well known gauge in-
variants. In this letter we add two complex scalar fields,
I¢ and I¢, to this list of local gauge invariants (collec-
tively they can be found in [I0], [T1], see remarks [5| and
[6] but here they are identified as a generating set for the
first time). Their construction involves the Killing vec-
tors £%, (%, see proposition [I| below. The main result of



this letter is the statement of a minimal generating set
of gauge invariants in theorem [4

Finally we present curvature invariants in the non-
linear theory that reduce to constants on a Kerr back-
ground and to I¢ and I in linear theory.

The proof that the set is generating is based on a uni-
versal compatibility complex of the Killing operator, see
[14], and will be published separately in [12]. For exam-
ples of the method on Lorentzian manifolds see e.g. [I5].
The computations for this letter were performed with
xAct for Mathematica, in particular using the package
SpinFrames [16].

Geometry of Kerr.— We use abstract index notation
and let g, denote the background Kerr metric with pa-
rameters a and M. Unless otherwise stated, frame de-
pendent statements are valid in any principal Newman-
Penrose tetrad (I%,n% m®,m*) on the background. For
clarity some coordinate expressions are given in Boyer-
Lindquist like coordinates (¢, 7,z = cos b, ¢).

Let Y, be the anti-self dual conformal Killing-Yano
tensor of the Kerr spacetime, see [17], normalized so that

£ = 2iV, Y™ (3)
is the real Killing vector d;. Furthermore, let
p =V =1 —iax,

We base our construction on the 2-form Y,; which in any
principal tetrad takes the form

Us, = — Vglog(p). (4)

Yar = ip(llane) — M) (5)
A second, linearly independent Killing vector is given by
(" =2Y"Ypel — 1 (0% + 77 = a%(9,)" + a(94)°, (6)

see [I8] for details. For later reference, we note the reality
conditions

Uop? = Uop® = —M, U'Yup = — UYap = 3i&, (7)
and the differential relation

VoUy = 2U Uy — Lgap (U2 +20.U°) — p26,8
+2U5p Y (Y. (8)

Metric perturbations.— To avoid complications with
the tetrad gauge freedom, we treat metric perturbations
covariantly in the style of [19] and denote the variation
of a field F by F. Define the following version of the
linearized Riemann tensor

Ravea = 29514V g Vieht)' + 2Ry’ (chays — ng[ab][chdégs

which is the mean value of variations with all indices up
and all indices down. The spin-0 and spin-1 parts of the
linearized curvature can be expressed by

6]7219\:[/2 = (Rbdcdléac - RabcdyCd - Racbdng)gab; (103)
4p*Zap = — 2%CdR[a|cd|f13b]f + 3%CdR[af|cd|léb]f. (10Db)

In any principal tetrad, we get

19\1/0 = lelmv (113,)

19\111 = %leln - %lemr’na (11b)

19\1/2 = %Rlnln - %Rlnmm + %lemn + éRmﬁlmﬁl?
(11c

I3 = %Rlnﬁm - %Rmmmna
19\1’4 = Rﬁn],ﬁnu (116
Zap = — 279\1’3l[amb] + 219\I/1m[anb]. (11f
Here, 9¥; are the components of the linearized Weyl
spinor 9V spop introduced in [I9], but the formulas
above can be used as definitions. They are related to

linearized Newman-Penrose Weyl scalars ¥;, but com-
pensated for their linearized tetrad gauge dependence,

VW = o, U1 = Uy + W (mal® — lan®), 905 = s,
Dy = Uy, 9V = U3 — 3Wy(ngm® — men). (12)
The set of gauge invariants.— We can now construct
third order gauge invariants.
Proposition 1. Let V¢ be a real Killing vector field and
Iy = p*W*V,(p*9¥s) — $ Re(p® IV, V, W)
— 2iIm(pPU W Z4p) — SpSWoU WP hap,  (13)

where the vector field W, = 2ip~3VYy, is assumed to
satisfy the condition

ULy = — p*U, Wy, (14)
Then Ty s a local gauge invariant.

Proof. A consequence of the Killing equation gives
Uy,U*V, = 0. For a pure diffeomorphism we get

Wy = 3W,U %, (15a)
Yo Zac = — %\IIbecv[aVc] + %\1129GCV[1)VC]
- 3\I/2U[aléb]cl/c - 3W2Uclj[a‘c|l/b]. (15b)

This gives
PPU W 20 = — 3pCTU WO (V vy + 2U1))
= 3ip> WU V'Y,V (16)
The conditions and then imply
im(pCUWZ,0) =
— WU WS (Vo) + Uparyy + Upary).  (17)



Together with 7 we get for a pure diffeomorphism
Iy = — 3 U U W,op®vp — 2WUpo, VWP
= 3G, T v VW + 30U WOtV Uy,
+ 3 U WP pb (Upaviy) + Ulaty)- (18)
The relations , , imply

WbVyU, = 2U,UW, — UyU*W, — UyRe(W,), (19a)

UV W, = 20U, Wy, — TaRe(W,), (19b)
FUNVW = — 4WsRe(W,)p® — Uap® VW
+ AU — T )pPU Wy (19¢)

Together, we get Iy, = 0 for a pure diffeomorphism. [

Remark 2. For the case V¢ = £% we get W = —U%p~!
and for the case V* = (* we get

Wap® = = 3Uap?p” + Uap* (0 +7%).  (20)
Both of these vectors satisfy the required condition ,
so I and I¢ are gauge invariant.

Corollary 3. A set of local gauge invariant quantities
for perturbations of the Kerr spacetime is given by

Teukolsky scalars IWq, IV, (21a)
Linearized Ricci Rup = Roe® , (21b)
Killing invariants I, Le. (21¢)

Note that (21a)), (21b)) depend on up to second deriva-
tives of linearized metric, while (21c) depends on up to
third derivatives.

Theorem 4 ([12]). The set of gauge invariants in corol-
lary[3 is minimal and generates all local gauge invariants
for perturbations of the Kerr spacetime with a # 0.

Arguments for minimality are given below and for a
proof of the theorem we refer to [12].

It should be noted that a generating set of gauge in-
variants can degenerate if restricted to more special back-
grounds, in the sense that certain components of the set
can be derived from more elementary gauge invariants.
Examples are the second order Regge-Wheeler variable
on Schwarzschild and the linearized curvature compo-
nents of spin-0 and 1 on Minkowski.

Also the spherical Killing vectors on Schwarzschild sat-
isfy condition , and therefore lead to gauge invariants.
On the other hand, the Regge-Wheeler variable ImiyW¥,
is gauge invariant and hence certain real or imaginary
parts of Killing invariants can be generated from it.

Remark 5. In [T1] we derived a covariant version of
the Teukosky-Starobinski identities. In these identities
a real, gauge invariant vector field ImA® appears natu-
rally. It can be expressed in terms of the invariants ,

for example ImA®V, = — %]ml[v for both isometries in
the source-free case. This partly initiated the systematic
search for gauge invariants.

Remark 6. Merlin et. al. found three real gauge invari-
ants, [10], in a coordinate based construction. They are
related to Rellg, Rele and Iml¢ via

2(Re(I¢) + r*Re(le)) (r? + a%2?)

I = - 22

! 3M(r2 — 2Mr + a?)?2 ’ (22a)
9 — — 2(Re(I¢) — a?z?Re(I¢)) (r + a2x2)7 (22h)

3Ma?(1 — x2)
T il 2 2,.2\2
9y = m(Ie)(r” + a’a”) . (22¢)
3Ma(r? — 2Mr + a2)v/1 — 22

Type D wariations and independence of gauge

invariants.— We use the Plebanski-Demianski solution
[20] in vacuum. In coordinates (t,r,x = cosf,¢) define
the Newman-Penrose tetrad

1—
- (2\/%@ (r* +a%)0, + A0, +ady),  (23a)
1—
n= (2\/2%“”) ((r2 +a2)d, — A0, +ady),  (23D)
m = (1;\/%””) (ia(1 — 22)0, — A0, +1i0y),  (23c)
A, =1+2Na 'z — 2% + 2cMa® — c?a’2?, (23d)
A, =a® —2Mr +r? — 2cNa 'r? — c?r?, (23e)
¥ =r?+a%z? (23f)

with parameters M, N, a, c for mass, NUT charge, an-
gular momentum and c-metric, respectively. A variation
in each of the parameters leads to specific values of the
invariants showing their functional independence.
For pure mass (M) and angular momentum (a) per-
turbations, the invariants take the form
I = M,

I, = 2a’M — 3Maa, (24a)

while perturbing in direction of the NUT (N) yields
2iM .

Ie = —iN + —/—N, (24b)

I, = —ia’N +az(r — 2M — %)N, (24c)
and perturbing in the c-metric direction (¢) gives

o= M0 Mt (M- r)r)e,  (24d)

I = 61\/12:27“300 — 3iMa(p? — r?z?)e. (24e)

Observe that I¢, I+ are real for M, a perturbations, but
complex for N and ¢ perturbations. From the explicit



form above we conclude that the four real degrees of free-
dom of I¢, I+ are functionally independent. Furthermore,
there are algebraically special frequency solutions, see
e.g. [2I], turning on only one of ¥¥qy, ¥¥,. Similarly,
metric perturbations turning on specific components of
the linearized Ricci tensor are possible to construct by a
linearized conformal transformation. Hence, we have a
sequence of solutions turning on one invariant after the
other. This motivates why all 18 invariants are needed
on Kerr with a # 0. Even though the gauge invariants
are independent in this way, they will satisfy a set of dif-
ferential compatibility equations. These relations will be
stated and used in [12] for the proof of theorem

One can argue that components of the linearized cur-
vature are the only possible gauge invariants of second
order, and that no gauge invariant curvature component
carries the M, a, N and ¢ perturbations. The differential
order of I¢, I is therefore minimal.

GHP form of gauge invariants.— In a principal tetrad
the Killing invariants take the GHP [22] form

Hg = — p(pl 1) +p 19/ *T/ 0—r1 6/)(p419\112) - %\I/2p519\112
— 20p"0W; + 2Usp® (hnnp® + 2hunpp’ + hup”

- thmPT - thmﬂlT + hmm7'2 - thmpT/
— 2hlmp/7—/ + 2hmm7—7—l + hmmT/2)7 (25)
and with p, =p+7D,p_- =p — 7,
= 10(p2(p'b+pb’) — pI(r' 0 4+70")) (p*0V2)

+ iRe (p Do (Vopyp- — 2W5p° — 4p(p_pp’
— P+ 7'7'/))) + 2i1m(p6§(19\113p7 + 19\I/1p’7’))

- 2p+p—(hnmpT + i p' T+ P pT’ A+ him p'")
+ P2 (hmm T + 2R T’ + hmmTIQ)). (26)

Curvature invariants.— The scalars I¢, I can be de-
rived from linearizations of tensors built from the cur-
vature and its derivatives in the full theory. On a gen-
eral vacuum spacetime with anti-self dual Weyl curvature
Cabed = %Cabcd + %i*C’abcd define the curvature invariants

~

J = 4 Capea?, g=75  (27)
Furthermore, define the complex curvature invariant

M= — IV, I)(V)+I+7J. (28)
On a Kerr spacetime in a principal tetrad we find J= w2
and M turns out to be the real constant Mge,, = M~2/3.
Due to , it follows that the variation of around
Kerr is gauge invariant and a lengthy calculation shows

M= — M /L. (29)

Similarly define the real scalar curvature invariant

A= ‘5; (v )(va )—2Im<32>1m(29 M). (30)

In the background it reduces to Akerr = 4a22M~%/3. The
variation of A around a Kerr background shows

A= — SM "/ Rel,. (31)

To express Iml¢, define the real, symmetric, trace-free
two tensor

Toe = (jsj e (a c) (vbj)(vdj)) s (32)

which equals [23] eq.(18)] up to a constant. On a general
type D spacetime it has the non-trivial factor pr + p7’
which is zero in the Kerr case. Variation around Kerr
and contraction into £ leads to

. w3
T

(£°CImle — £ Imlle) . (33)

Conclusions.— In this letter we introduced two com-
plex scalar gauge invariants for perturbations of Kerr
spacetime. Together with the Teukolsky scalars and
the Ricci tensor they form a minimal generating set of
18 real scalar invariants. A similar construction on a
Schwarzschild background leads to a set of 19 real scalar
invariants and for Minkowski space, it is known to consist
of the 20 real scalar components of the linearized curva-
ture tensor, see e.g. [I5]. Whether there is a relation be-
tween the minimal number of generators for gauge invari-
ants and the number of parameters of the background,
also in other spacetimes, is yet unclear.

We would also like to point out that the invariants as
defined in directly depend on the background isome-
tries. The alternative definition in terms of curvature
invariants does not make explicit use of this structure
and may be interesting for tracking type D parameter
variations in numerical evolution as well as for higher or-
der self-force problems. It would also be interesting to
analyze the set of gauge invariants from the perspective
of the black hole stability problem. Assuming that the
Teukolsky scalars are under control, relations to the other
invariants can be analyzed without gauge fixing and yield
additional flexibility for the integration of the remaining
field equations after gauge fixing.

The geometric background and the full proof of theo-
rem [4 will be given in [I2].
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