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Abstract

This paper addresses an Optimal Control Problem (OCP) for a robot that has to
find and collect a finite number of objects and move them to a depot in minimum
time. The robot has fourth-order dynamics that change instantaneously at any
pick-up or drop-off of an object. The objects are represented by point masses
in a bounded two-dimensional space that may contain unknown obstacles. The
OCP is formulated assuming either a worst-case positioning, or a uniform dis-
tribution of the objects (probabilistic case). Modeling the robotic problem by
a hybrid system facilitates an event-driven receding horizon solution based on
motion parameterization and gradient-based optimization. A comparison of the
proposed methods to two simple heuristic approaches in simulation suggests
that the event-driven approach offers significant advantages – a lower execution
time (on average) and the ability to handle obstacles – over the simple solu-
tions, at the price of a moderately increased computational effort. The methods
are relevant for various robotic applications, e.g. the motion control of mobile
manipulators for home-care, search and rescue, harvesting, manufacturing etc.

Keywords: Optimal control, hybrid systems, motion control

1. Introduction

One of the major challenges in autonomous robotic navigation is coping with
uncertainties arising from limited a priori knowledge of the environment. Ac-
quiring necessary information and achieving the overall goal are complementary
subtasks that require adapting the motion of a robot during mission execution,
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typically accompanied by minimizing a performance criterion. In this work
we address an Optimal Control Problem (OCP) for a robot with fourth-order
dynamics that has to find, collect and move a finite number of objects to a
designated spot in minimum time. The objects with a priori known masses
are located in a bounded two-dimensional space, where the robot is capable
of localizing itself using a state-of-the-art simultaneous localization and map-
ping (SLAM) system [1]. The challenging aspects of the problem at hand are (at
least) threefold. One of them arises due to the discontinuity of the value function
denoting the overall completion time, which makes it hard to obtain an explicit
controller even for deterministic linear systems [2, 3]. Fortunately, a wide range
of approximate solutions has been proposed, including approaches based on
numerical continuation [4], value set approximation [5], multi-parametric pro-
gramming [6] etc. Another challenge follows from the requirement to collect a
finite number of objects and drop them at the depot with minimal overall cost,
which represents an instance of the well-known NP-hard Traveling Salesperson
Problem (TSP) [7]. While similar Vehicle Routing Problems (VRPs) have been
extensively addressed in Operations Research [8], a distinguishing feature of
the addressed problem is the continuous dynamics of the Salesperson (i.e. the
robot) that change upon object pick-ups and drop-offs. While deterministic
autonomously switching dynamics can be handled efficiently, e.g., by two-stage
optimization [9, 10] or relaxation [11], the complexity of most approaches for
setups that involve uncertainties scales poorly with the problem size [12].

Further, optimal exploration of a limited space is an inherently difficult prob-
lem by itself. Minimizing the expected time for detecting a target located on a
real line with a known probability distribution by a searcher that can change its
motion direction instantaneously, has a bounded maximal velocity and starts
at the origin, was originally addressed in [13] and extended in [14]. Different
versions of this problem have received considerable attention from several re-
search communities, e.g., as a “pursuit-evasion game” in game theory [15, 16],
as a “cow-path problem” in computer science [17] or as a “coverage problem”
in control [18, 19], but its solution for a general probability distribution or a
general geometry of the region is, to a large extent, still an open question.
Effective approaches for the related persistent monitoring problem based on
estimation [20], linear programming [21] or parametric optimization [22] have
been also been proposed. OCPs with uncertainties have also been addressed by
certainty equivalent event-triggered [23], minimax [24] and sampling-based [25]
optimization schemes. While methods for Partially Observable Markov Decision
Processes (POMDP’s) can also be applied, e.g., [26, 27], they typically become
computationally infeasible for larger problem instances. Due to the aforemen-
tioned aspects, the problem at hand has exponential complexity in the number
of objects and for any chosen time and space discretization. In this context,
employing a discrete abstraction of the underlying continuous dynamics is often
only possible by introducing a hierarchical decomposition [28], or additional as-
sumptions that simplify the implementation of automatically synthesized hybrid
controllers [29]. Alternatively, one may resort to event-based receding horizon
approaches that have been shown to outperform other optimization methods un-
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der the presence of uncertainty, e.g., for the elevator dispatching problem [30],
multi-agent reward collection problems [31] or planning with temporal logic
constraints [32].

Since the locations of the objects are the only source of uncertainty in the
considered problem, the ultimate goal is a tractable and scalable, albeit subop-
timal, solution that avoids time discretization and requires re-computation only
upon a detection of an object. Analytical solutions have been derived for the
OCP of a robot, which has to find, collect and move a finite number of objects
back to a depot in minimum time, but is allowed to move only along a line [33].
Since a direct generalization of this result for higher dimensional position spaces
was not possible, an event-driven receding horizon approach was proposed in
[34], where the robot moves along a fixed exploratory trajectory. In this paper,
we address the OCP by an event-driven receding horizon approach that allows
for adjusting the shape of the exploratory trajectory online, which is particularly
useful under the presence of a priori unknown obstacles. Introducing a finite
parameterization of the motion of the robot enables the use of Infinitesimal Per-
turbation Analysis (IPA) [35] for solving the worst and probabilistic case OCPs
by an iterative optimization scheme only upon detecting previously undiscov-
ered objects (or obstacles). Two additional heuristic event-driven schemes are
introduced for comparison. The first one is based on exploring the environment
until all objects are discovered, followed by an optimal pick-up and drop-off of
all objects. The second one is based on enforcing a pick-up of an object upon its
detection, followed by an optimal exploration and drop-off of all currently car-
ried objects until all remaining ones are discovered, thus resembling the policy
introduced in [36].

The remainder of the paper is organized as follows: in Sec. 2, we present the
problem formulation. Sec. 3 starts with a brief discussion on the performance
index and introduces a lower bound for the cost-to-go, followed by the proposed
event-driven (Sec. 4) and the heuristic approaches (Sec. 5). The methods are
then compared in a numerical example (Sec. 6), followed by the conclusions in
Sec. 7.

Notation. For a set S, |S| and 2S denote its cardinality and the set of all of
its subsets (power set), respectively. For r ∈ R, respectively, r ∈ Rn, |r| and ‖r‖
denote the absolute value and the Euclidean norm. In is an identity matrix with
dimension n. 0m,n represents an m× n matrix with zero entries. For a vector
of zeros or ones with length m, we write 0m or 1m, respectively. R,R≥0,R>0

denote the sets of reals, non-negative reals and positive reals, respectively. We

use the derivatives ẋ(t) = dx(t)
dt , c′(s, θ) = ∂c(s,θ)

∂s and the gradient ∇θc(s, θ) =[
∂c(s,θ)
∂θ1

, . . . , ∂c(s,θ)∂θn

]T
.

2. Problem formulation

Consider a mobile robot that has to find, collect and move a finite set of ob-
jects O = {o1, . . . , oL} located in a limited position space Yg = [−ymax, ymax]×
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[−ymax, ymax] ⊂ R2 back to a designated known spot (depot) yd in minimum
time. Every object ol, l ∈ {1, . . . , L} is uniquely characterized by its position
p(l) ∈ Yg, which is a priori unknown to the robot, and its mass m(l) ∈ R≥0. The
number of objects and their masses are assumed to be known. For simplicity,
the absence of obstacles in Yg and a single depot located at yd = 02 are assumed
in the main part. Handling obstacles is revisited in the end of Sec. 4.

The overall system is modeled by a hybrid automaton with continuous inputs
[37], i.e., a 9-tuple H = {Q,X,F, U,E, Inv, G,R, Init}, where:

• Q is the finite set of discrete states;

• X ⊆ Rn is the continuous state set;

• U ⊆ Rm is the continuous input set;

• F = {fq}q∈Q is the finite set of vector fields that describe the evolution of
the continuous state such that

ẋ(t) = fq(x(t), u(t)), q ∈ Q, x(t) ∈ X,u(t) ∈ U ;

• E ⊆ Q×Q is the set of discrete state transitions;

• Inv : Q → 2X is the invariant map that describes the feasible continuous
state domain associated with the discrete states;

• G : E → 2X is the guard map that captures the continuous state domain,
where transitions may occur;

• R : E×X → 2X is the reset map that describes changes of the continuous
state upon a discrete state transition;

• Init ⊂ Q×X is the initial state set.

The discrete state at time t is q(t) = (q1(t), q2(t), q3(t)), where q1(t) ⊆ O is the
set of objects being carried by the robot, q2(t) ⊆ O the set of objects that has
been dropped at the depot prior to or at time t, and q3(t) ⊆ O is the set of
objects that have been detected so far. Clearly, q(t) ∈ Q with Q ⊆ 2O×2O×2O.
The current mass of the robot is mq(t) = m∅ +

∑
l,ol∈q1 m

(l), where m∅ is the
nominal mass of the robot.

Consider a class of mobile robots capable of moving in any direction by di-
rectly controlling their constrained driving force (e.g. differential drive robots).
For differentially flat dynamics, the robot state can be expressed by x(t) =
[yT (t), vT (t)]T ∈ X, where v(t) ∈ R2 is the current velocity of the robot, can be
assumed to evolve according to a finite collection of vector fields F = {fq}q∈Q
with

ẋ(t) =fq(x, u) =

[
02,2 I2

02,2 02,2

]
x(t) +

1

mq(t)

[
02,2

I2

]
u(t), (1)
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driven by the piecewise continuous control signal u : [0, tf ] → U := {φ ∈
R2 : ‖φ‖ ≤ 1}, where tf is the free final time for the assignment. The overall
continuous state (x(t),Y(t)) consists of the robot state x(t) and the region
Y(t) ⊆ Yg that has not been explored at time t.

As Q is finite, the set of discrete state transitions (or events) E ⊆ Q×Q is
also finite. Let E be partitioned into ∆ ∪Π ∪Ψ, where for q = (q1, q2, q3), q′ =
(q′1, q

′
2, q
′
3) ∈ Q,

∆ = {(q, q′) : q′1 = q1, q
′
2 = q2, q

′
3 = q3 ∪ {ol}, ol 6∈ q3}

is the set of detection events,

Π = {(q, q′) : q′1 \ q1 = {ol}, ol ∈ q3, q
′
2 = q2, q

′
3 = q3},

is the set of pick-up events, and

Ψ = {(q, q′) : q1 6= ∅, q′1 = ∅, q′2 = q2 ∪ q1, q
′
3 = q3}

corresponds to the set of drop-off events.
Assume that the robot is equipped with an omni-directional sensor with a

footprint of size r � ymax around its current position y(t) ∈ R2, hence covering
the area

O(y(t)) = {yp ∈ R2 : ‖y(t)− yp‖ ≤ r}. (2)

Thus, detection events occur when the distance between the current robot posi-
tion and the position of an object that has not been detected so far becomes r.
Pick-up events occur when the robot reaches the position of an object that has
not been collected so far. Drop-off events occur when the robot reaches the de-
pot and carries objects. In addition, for both pick-up and drop-off events, zero
velocity is required. To illustrate these relations, consider a scenario with two
objects and its corresponding discrete dynamics shown in Fig. 1. The conditions
on q and x upon the occurrence of detection, pick-up and drop-off events are
captured by the invariant Inv : Q→ 2X , i.e.,

Inv(q)=


X\{[yT , vT ]T : ‖y − p(l)‖=r}, if ol 6∈ q3,

X\{[p(l)T ,0T2 ]T }, if ol 6∈q1∪q2,

X\{04}, if q1 6= ∅,

and the guard map G : E → 2X , i.e. with e = (q, q′),

G(e)=


{[yT , vT ]T : ‖y − p(l)‖=r}, if e∈∆, q′3\q3={ol},
{[p(l)T ,0T2 ]T }, if e∈Π, q′1\q1={ol},
{04}, if e∈Ψ, q1 6= ∅.

For example, upon a detection of a new object as per (2), when the robot is
in the discrete state q, the first case of the Inv requires that a transition must
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δ1 δ2
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δ2 ψ1 π2
π2

ψ1

π1

ψ2

ψ2π1 δ1

π1ψ1
π2 ψ2

π2 π1
ψ12

Figure 1: Discrete dynamics of H for O={o1, o2} with δl ∈ ∆, πl ∈ Π, ψl ∈ Ψ, l ∈ {1, 2}, ψ12 ∈
Ψ. Exploration may take place at gray states. The robot has zero velocity at states denoted
by a square.

occur, and the first case of G allows a transition to a discrete state q′, where
the discovered object is included in the detected objects set q′3. The reset map
R : E×X → 2X is trivial since no jumps of the continuous variables occur upon
a discrete state switching. Note that the above conditions do not depend on
Y(t), and hence, Inv, G and R map into 2X . As the robot is assumed to start
at the depot with zero velocity, and no objects have been detected, picked up
or dropped off before that, the initial state set is

Init = {(q(0), (x(0),Y(0)))} = {((∅, ∅, ∅), (04,Yg \ O(02))}.

As both the robot and the objects are represented by points in Yg, we assume
that no collisions can occur. A practical setup that satisfies this assumption
is, e.g., a quadrotor that has to explore a two-dimensional space on the ground
from above.

Solving the addressed problem involves L detection events, L pick-up events
and up to L drop-off events, as it can be advantageous to collect several objects
on the way and drop them off simultaneously at the depot. Hence, for the total
number N of events, 2L < N ≤ 3L holds. The time of the occurrence of event
n, 1 ≤ n ≤ N is denoted by tn, t0 is the initial time, tf = tN the final time,
and t0 ≤ t1 ≤ . . . ≤ tN . The N time intervals τn := [tn−1, tn], n = 1, . . . , N
form the time axis from the initial to the final time with τ := (τ1, . . . , τN ). The
input is an ordered set of functions u = (u1, . . . , uN ), where un : τn → U are
absolutely continuous functions for n ∈ {1, . . . , N}. Thus, if ζ = (τ, q, ξ)u is an
execution of the hybrid automaton H for an input signal u, i.e. (τ, q, ξ)u � H,
q = (q1, . . . , qN ) is a discrete state trajectory with qn : τn → Q, qn = const.
ξ = (ξ1, . . . , ξN ) is the continuous state trajectory with ξn = (xn,Yn), where
xn : τn → X are absolutely continuous functions, and Yn : τn → 2Yg non-
increasing functions, i.e., Yn(t′) ⊆ Yn(t) for t ≤ t′. Let Z denote the set of all
feasible executions of the hybrid automaton H. The cost of an execution is the
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total task time

tf =

N∑
n=1

(tn − tn−1) = tN − t0. (3)

Further, let the set of states that can be reached upon completing the task be
denoted by Fin = {(qf = (∅, O,O), (04,Yg \ ∪t̃∈[0,tf ]O(y(t̃))))}.

One way to account for the uncertainty in the addressed OCP is to minimize,
the largest cost at time t that may occur for a possible configuration of all objects
that have not been discovered so far. Alternatively, the positions of the objects
that have not been detected so far can be assumed to be independent identically
distributed random variables with probability density functions

P(p(l))=

{
1
κ(t) , if p(l) ∈ Y(t),

0, if p(l) ∈ Yg \ Y(t),
(4)

∀l, where κ(t) measures the size of Y(t). This leads to the following (A) worst-
case and (B) probabilistic OCPs.

Problem 1. At state (q(t), ξ(t)), find the input signal u|[t,tf ] for H, such that

for p = {p(l) : ol 6∈ q3(t)}

A) min
u|[t,tf ]

max
p

(tf − t), s.t. (q(tf ), (x(tf ),Y(tf ))) ∈ Fin;

B) min
u|[t,tf ]

E{tf − t}, s.t. (q(tf ), (x(tf ),Y(tf ))) ∈ Fin.

Note that Problem A is always deterministic, while Problem B is probabilis-
tic until the last detection of an object.

Before turning to the solution, we introduce a finite approximation of the
explored space and restrict the motion of the robot to a family of curves, whose
shape is determined by a finite parameter vector. Thereby, we can derive approx-
imate optimality conditions for the motion of the robot along the curve. This, on
the other hand, allows for an event-driven scheme by an iterative gradient-based
optimization over the parameters of the curve only upon detection events.

3. Preliminaries

To obtain a finite conservative approximation for Y(t), introduce a finite
cover of Yg by cells ωk, k ∈ {1 . . . ,K} defined by a set of grid points W =
{w1, . . . , wK}, equally spaced by dg ≤ r

√
2, such that ωk = {y ∈ Yg : ‖y −

wk‖∞ ≤ dg/2}. An example is shown in Fig. 2. Let W(t) denote the set of grid
points, whose associated cells have not been completely covered by the robot’s
sensing range (2) until time t, i.e. W(t) = {wi ∈ W : ωi 6⊆ ∪t̃∈[0,t]O(y(t̃))}.
Thus, Y(t) is over-approximated by Ỹ(t) = {∪iωi : wi ∈ W(t)}.

Consider a continuous curve c(s, θ) in Yg, where s(t), t ∈ [0, tf ] denotes the
time-dependent position along the curve c, such that s(0)=0 and s(tf ) = 1,
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(b)

Figure 2: A robot with sensing radius r over the coarsest allowed grid (a). A snapshot of the
robot that has moved from y0 = 02 to y1 6= 02 with dg < r

√
2 (b). The area covered along

the path is under-approximated over the grid.

and θ ∈ Ra is a parameter vector that determines its shape. Let s̃(t) be the
monotonically non-decreasing curve length function of c over t ∈ [0, tf ]. With

α ∈ R>0 denoting the arc-length of c, let s(t) = s̃(t)
α denote the normalized arc-

length variable. Thus, the robot’s position can be described by the parametric
equation

y(t) = c(s(t), θ) =

[
c1(s(t), θ)
c2(s(t), θ)

]
∈ Yg. (5)

To apply gradient-based optimization, we further require that c is twice continu-
ously differentiable with respect to s and θ. The parametric functions employed
in this work are Fourier series (see Appendix A for a particular example) that
exhibit rich expressiveness in terms of motion behaviors and allow for an effi-
cient solution of the optimization problem. Other types of parametric functions
or more complex robot dynamics may also be used, as outlined in Remark 1.

4. Event-driven approach

Consider a finite approximation of the explored space and restrict the mo-
tion of the robot to a parameterized curve, as described in the previous section.
With that, the optimal motion of the robot along the curve can be obtained for
a fixed shape of the curve. This OCP is then embedded into a simultaneous
OCP, which provides a solution that satisfies all remaining constraints for solv-
ing Problem 1. The simultaneous OCP is solved by an augmented Lagrangian
method that allows for replacing the constrained optimization problem by a
series of unconstrained optimization problems. Employing Infinitesimal Pertur-
bation Analysis [35], we obtain the derivative of the augmented cost and solve
the unconstrained OCPs by gradient-based methods. The simultaneous problem
is solved repeatedly until reaching a (local) minimum, which is attained upon
satisfying an iteration threshold condition. We first turn to the the embedded
problem.

4.1. Embedded problem

Let the first and second derivatives of (5) w.r.t. s be c′(s, θ) = ∂c/∂s
and c′′(s, θ) = ∂2c/∂s2, respectively. Further, let ṡ = ds/dt and s̈ = d2s/dt2
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denote the time derivatives. For the velocity and the acceleration along (5), we
respectively obtain

ċ(s, θ) =
dc(s(t), θ)

dt
= c′(s, θ)ṡ,

c̈(s, θ) =
d2c(s(t), θ)

dt2
= c′′(s, θ)ṡ2 + c′(s, θ)s̈,

and the robot’s dynamics (1) are restated as

mq(t)(c
′′
i (s, θ)ṡ2 + c′i(s, θ)s̈) = ui, i ∈ {1, 2}. (6)

With the employed arc-length parameterization, the robot traverses the curve
with ‖c′(s, θ))‖ = α, where α is the arc-length of c. Substituting the relation
u = uc(t)[cos (ϕ), sin (ϕ)]T in (6) and since ‖c̈(s, θ)‖ = ‖u‖/mq(t) = uc/mq(t)

holds along the curve, the dynamics of the robot (1) are equivalently restated
by (5) and the state x̄ = [x̄1, x̄2]T = [s, ṡ]T with dynamics

˙̄x(t)=f̄q(x̄(t), uc(t), θ)

=

[
x̄2

√
u2
c(t)

α2m2
q(t)

− (c′′1 c′2−c′1c′′2 )
2
x̄4
2

α4 − (c′′1 c
′
1+c′′2 c

′
2)x̄2

2

α2

]T
.

(7)

To simplify the analysis in the following, the necessary optimality conditions for
uc(t) are derived for

˙̄x(t) ≈
[
0 1
0 0

]
x̄(t) +

1

αmq(t)

[
0
1

]
uc(t), (8)

which represents an approximation of (7) along smooth curves. Note that, for
lines, c′′1 = c′′2 = 0 implies c′′1c

′
2− c′1c′′2 = 0 and c′′1c

′
1 + c′2c

′′
2 = 0, and (8) describes

the dynamics of the robot exactly. Since the sensor footprint (2) is typically
much smaller than Yg, for evaluating the cost-to-go we neglect the sensing range
of the robot and assume that prior to their discovery all objects are located on
(5), i.e., ∀l,∃sl ∈ [0, 1] with p(l) = c(sl, θ). In what follows, we further assume
that the simultaneous OCP (presented in the following section) provides an
optimal parameter θ∗, such that the robot moving along (5) with θ∗ plans to
cover the remaining space Ỹ(t) as long as there are objects to be detected, and
passes through object locations that have been discovered previously but have
not been picked-up yet. We start the analysis assuming that there is only one
undetected object, i.e. O = {o}, with mass m located at an a priori unknown
spot so ∈ [0, 1].

4.1.1. Optimal control for one object

The robot with dynamics (8) starts at x̄(0) = [0, 0]T , q(0) = (∅, ∅, ∅) and
mq(0) = m∅. The optimal control uc|[0,tf ] solving Problem 1 is divided into
three parts: uc|[0,t1) denoting the control until detection, uc|[t1,t2) the control
until pick-up and uc|[t2,tf ) the control until drop-off. After the object is detected
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at time t1, when the robot moves with velocity x̄2(t1) ≥ 0, it can be reached
at time t2 with x̄2(t2) = 0 by employing a time-optimal bang-bang control
switching at time t̃1 [2], i.e.,

uc(t) =

{
−1, t ∈ [t1, t̃1),

1, t ∈ [t̃1, t2).

Solving (8) with the above control and mq(0) = m∅, and applying the boundary
conditions for the object’s pick-up x̄1(t1) = x̄1(t2), x̄2(t2) = 0, yields the optimal
cost

(t2 − t1) = (1 +
√

2)︸ ︷︷ ︸
cg

αm∅x̄2(t1). (9)

Since the robot stops moving at t2, steering it back to the depot in a time-
optimal manner is given by bang-bang control. Since the cost of this segment
is independent of x̄(t) for t ∈ [0, t2), it can be neglected for finding the optimal
control u∗c |[0,t1). Thus, only the time until pick-up has to be considered, i.e.
t2 = t1 + cgαm∅x̄2(t1) obtained from (9) and we will skip the time interval
subscript in the following.

In the worst case (Problem 1.A), the object is located the furthest away
from the initial point, i.e., at so = 1. To allow for a pick-up, the correspond-
ing position of the robot x̄1(t2) = 1 should be reached with zero velocity, i.e.
x̃2(t2) = 0. Thus, the time-optimal worst-case control for the first segment is
given by

u∗c,w(x̄) =

{
1, if x̄1 ∈ [0, 0.5),

−1, if x̄1 ∈ [0.5, 1].
(10)

In the probabilistic case (Problem 1.B), the object’s location so is uniformly
distributed over [0, 1]. To compute the corresponding optimal control u∗c,p, in-
troduce an additional state for the time x̃3 = t, leading to an extended system
state x̃ = [x̄T t]T with dynamics (8) and ˙̃x3 = 1. The expected time for picking
up the object is given by

E{t2} =E{x̃3(t1) + cgαm∅x̃2(t1)}

=

∫ 1

0

(x̃3(t1) + cgm∅αx̃2(t1))dso.

From the assumed sensor paradigm so = x1(t1), and substituting the relation
dx̃1(t1) = x̃2(t1)dt1, we obtain

E{t2} =

∫ t̃

0

(x̃2x̃3 + cgαm∅x̃
2
2)dt1,

where the lower integral limit is obtained from the initial condition x̃(0) =
[0, 0, 0]T , and the upper integral limit from x̃1(t̃) = 1. The corresponding control
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Hamiltonian is

H(x̃, λ, uc,p) = (x̃2x̃3+cgαm∅x̃
2
2)+λT (t)

[
x̃2

uc,p

m∅α
1
]T
, (11)

with absolutely continuous costate dynamics

λ̇(t)=− ∂H

∂x̃
= −

[
0 2cgαm∅x̃2 + x̃3 + λ1 x̃2

]T
. (12)

The boundary conditions at the free final time t̃ are given by x̃1(t̃) = 1, x̃2(t̃) =
0 and λ3(t̃) = 0. Thus, the probabilistic OCP has been transformed into a
nonlinear constrained OCP. Applying Pontryagin’s Minimum Principle, there
exists an optimal state x̃∗, a control u∗c,p, and a nontrivial costate λ∗ trajectory,

such that ∀t ∈ [0, t̃),

H(x̃∗, λ∗, u∗c,p) ≤ H(x̃∗(t), λ(t)∗, uc,p(t)), (13)

leading to the following results.

Theorem 1. For the optimal control until detection at time t̃, for t ∈ [0, t̃),

u∗c,p(t) ∈
{
−1,− 1

2cg
, 1
}

holds.

Theorem 2. The optimal control until detection is given by

u∗c,p(x̃) =

{
1, if x̃1 ∈ [0, 1

3+2
√

2
),

− 1
2+2
√

2
, if x̃1 ∈ [ 1

3+2
√

2
, 1].

(14)

The proofs can be found in Appendix B.

4.1.2. Control for multiple objects

For multi-object setups, we propose an approach to obtain the control anal-
ogously to the single-object case. While the worst-case optimal control is
built from a finite sequence of bang-bang control segments, a computationally
tractable scheme for the probabilistic control is derived as follows. Recall the
robot moving in the position space shown in Fig. 2 (b) and consider a scenario
with two objects. Like in the single-object case, the robot starts moving in the
discrete state q = (∅, ∅, ∅). The possible discrete event strings until the robot
comes to a halt for the first time consist of detecting an object followed by its
immediate pick-up, i.e. δiπi, or detecting both objects and stopping at one of
the two objects’ positions, i.e. δiδjπk, i, k, j ∈ {1, 2}, i 6= j (see Fig. 1). For
both cases, we employ the control (14) for the time interval up to the detec-
tion of the first object, although for more than one object this policy may not
be optimal. Now assume that object o1 has just been detected. This triggers
a re-planning resulting in a new policy that takes into account the acquired
information since the last re-planning. Fig. 3(a) and 3(b) show two possible
outcomes of the overall optimization scheme that provide complete exploration
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Figure 3: An exemplary scenario. The robot has moved from y0 = 02 to y1 6= 02, where it
has detected object o1 denoted by N. Object o2, denoted by �, has not been discovered so far.
Two possible motion plans for covering the remaining unexplored space are shown with dashed
lines in (a) and (b), respectively. Both are followed by a pick up of o1 and bringing o1 back to
the depot, depicted by a dotted line, which reflects that the robot is moving with a different
mass in that segment. The generalized state trajectory (s, ṡ)|[0,tf ] shown in (c) corresponds

to the plan shown in a), while (d) represents the generalized state trajectory of the plan in
(b). The gray marking in s denotes parts of the robot’s path that lie in not yet explored areas,
where a detection event may occur. In (a), s1 stands for entering an unexplored region and
s2 – for the end of the overall exploration. In (b), s1 denotes entering an unexplored region,
s2 – entering an already explored region, s3 – entering an unexplored region, and s4 – the
end of the overall exploration. Note that the end of the overall exploration also denotes the
worst-case position of o2 with respect to the current plan.
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of Ỹ(t), allow for picking up o1 and end at the depot. The trajectories x̄∗ result-
ing from the probabilistic control are shown in Fig. 3(c) and 3(d), respectively.
The particular control can be derived using the corresponding boundary and
continuity conditions, as shown in Appendix C. The analysis for these two cases
can be easily generalized to obtain the approximate probabilistic control for an
arbitrary finite number of unexplored segments in the interval [0, 1].

Moving on to a scenario with more than two objects, the controls along the
curve can be obtained by following a similar line of argumentation – both the
worst-case and the probabilistic controls consist of a finite sequence of appro-
priate bang-bang control segments. For that, consider the set of discrete state
strings starting at the current state q = q(t) and ending at the final state qf ,
while neglecting all objects that have not been discovered so far, i.e.

Σq:={σ=q0q1 . . . qd : (qi−1, qi)∈(Π ∪Ψ), qi−1
1 ⊆q̃i−1,

qi1⊆q̃i, i ∈ {1, . . . , d}, qd = qf , q
0 = q},

(15)

where q̃i=qi3\(qi1∪qi2) denotes objects that have been detected, but have not
been picked up or dropped at the depot yet. For a given θ and with t = t0, the
curve (5) yields a discrete state string σ ∈ Σq that is traversed in time

J1=

d∑
i=1

(ti−ti−1)=

d∑
i=1

∫ x̄1(ti)

x̄1(ti−1)

1

x̄2
dx̄1. (16)

Since minimizing (16) over the free parameters of the proposed policy, i.e. the
switching times, can be decoupled at pick-up and drop-off instants, we solve
d− 1 Two-Point Boundary Value Problems (TPBVP’s)

x̄∗|[ti−1,ti] = arg min
x̄1|[ti−1,ti]

∫ x̄1(ti)

x̄1(ti−1)

1

x̄2
dx̄1,

s.t. (7), x̄2(ti−1) = x̄2(ti) = 0,

(17)

using the corresponding control trajectory uc for the worst-case or the prob-
abilistic problem. A segment x̄∗|[ti−1,ti] of x̄∗ = (x̄∗|[t0,t1], . . . , x̄

∗|[td−1,td]) is
obtained by solving an initial value problem backward and forward in time, and
choosing the minimal velocity x̄2 along the curve. Clearly, once all objects are
detected, both versions A) and B) of Problem 1 become deterministic and can
be easily solved.

Remark 1. The TPBVP (17) can be extended for general convex input con-
straints or nonlinear robot dynamics, as shown in [38]. If the curve is not con-
tinuously differentiable, an approximation can be obtained by a finite number of
spline segments.

Now the remaining task is solving the simultaneous optimization problem.
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4.2. Simultaneous optimization

The solution of the simultaneous optimization problem yields a curve (5)
that can be traversed optimally according to the policy outlined above, while
providing complete exploration of the remaining space Ỹ(t), passing through all
positions of objects that have been discovered but have not been picked up yet
and ending at the depot. Let these constraints be captured by the mapping h :
Z × Ra → Rb, where h(ζ, θ) = 0b, if the constraints are satisfied, and h(ζ, θ) 6=
0b, else. With (16) and (17), we solve the embedded OCP for a fixed θ, thus,
obtaining the corresponding optimal execution ζ along the particular curve. The
remaining task for the simultaneous OCP is to find the parameter vector for
the curve with corresponding optimal execution that satisfies the aforementioned
constraints. The corresponding bi-level optimization formulation at time t reads

(tf − t)∗= min
θ,ζ∈Z

J1(ζ, θ)

s.t. ζ ∈ arg min
ζ̄∈Z

{J1(ζ̄, θ)},

h(ζ, θ) = 0b.

(18)

Leveraging ideas from [39, 32], let J2 : Z × Ra → Rb be a twice continuously
differentiable version of the mapping h that captures the constraints of the
simultaneous OCP, such that J2(ζ, θ) = 0b, if h(ζ, θ) = 0b, and J2(ζ, θ) >
0b, else. We will now introduce the individual constraints of the optimization
problem.

To guarantee that all objects are detected eventually, the robot has to ob-
serve every wik ∈ W(t) ⊂ W, ik ∈ {1, . . . ,K}, when it moves along the curve.
For every wik , we define a function dk(x̄, θ), such that dk(x̄, θ) = 0, if wk is
within the sensing range (2) of the robot with position y(t) = c(x̄1, θ), and
dk(x̄, θ) > 0, otherwise. The choice of dk(x̄, θ) is not unique. In particular, we
employ

dk(x̄, θ)=

{
1− exp (−(Dk(x̄1, θ)−r)2), if Dk(x̄, θ)>r,

0, else,
(19)

where Dk(x̄, θ) = ‖c(x̄1, θ)−wk‖. This leads to the constraint vector DW =
[minx̄1∈[0,1] d1(x̄, θ), . . . ,minx̄1∈[0,1] dK̃(x̄, θ)], K̃ = |W(t)|, which is required to
be equal to 01,K̃ , as every wik ∈ W(t) has to be seen along the curve.

Let q̃ = q3 \ (q1 ∪ q2) denote all objects that have been detected, but have
not been picked up or dropped at the depot yet. To solve the task, all objects
oil ∈ q̃, il ∈ {1, . . . , L̃}, L̃ = |q̃|, have to be eventually picked up, while the robot
moves along the curve. Thus, in the simultaneous OCP we have to guarantee
that the curve passes through all corresponding positions p(il). This requirement
is captured by

d̃l(x̄, θ)

{
= 0, if p(il) = c(x̄1, θ),

> 0, else.
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Note that the choice of d̃l is not unique. In this work, we employ d̃l(x̄, θ) =
1− exp (−‖c(x̄1, θ)− p(il)‖2). This leads to the constraint vector Dq3\(q2∪q1) =

[minx̄1∈[0,1] d̃1(x̄, θ), . . . ,minx̄1∈[0,1] d̃L̃(x̄, θ)] that has to be equal to 01,L̃, such

that every p(il) is visited at some point along the curve. Note that the constraint
that the robot performs a pick-up with zero velocity is taken care of by the
embedded OCP.

Further, upon a detection and, consequently, a re-computation, the robot
is required to continue its motion in a smooth manner, despite changing from
a curve characterized by the previous parameter θ− at x̄− = x̄(t), to a curve
characterized by the current parameter θ at x̄ = [0, x̄−2 ]T . Hence, introduce a
function

dy0(x̄−, θ−, x̄, θ)

{
= 0, if c(x̄−1 , θ

−) = c(x̄1, θ),

> 0, else.

for the position and, analogously, a function dv0(x̄−, θ−, x̄, θ) for the velocity.
Note that both dy0 and dv0 are not unique. In particular, we employ

dy0(x̄−, θ−, x̄, θ) =1− exp (−‖c(x̄−1 , θ−)− c(x̄1, θ)‖2),

dv0(x̄−, θ−, x̄, θ) =1− exp (−‖c′(x̄−1 , θ−)− c′(x̄−1 , θ)‖2).

In addition, to guarantee feasibility of the ODE, the discriminant in (7) has to
be greater than or equal to 0, which can be captured by an expression similar
to (19). Finally, the robot is required to return to the depot in order to drop all
objects. Since the requirement that the drop-off is performed with zero velocity
is taken care of by the embedded OCP, in the simultaneous OCP we have to
guarantee that the curve ends at the depot. Thus, introduce the function d(θ),
such that d(θ) = 0, if c(1, θ) = yd, and d(1, θ) > 0, otherwise. In particular, we
use d(θ) = 1− exp (−‖c(1, θ)−yd‖2). Note that the choice of d(θ) is not unique.
This leads to the constraint vector

D0,f =

{
[dy0, d

v
0, d], if x̄2

2 6= 0,

[dy0, d], else,

which is required to be zero. Once all objects are discovered, exploration is no
longer necessary and DW are neglected. Thus, the overall constraints are

J2(ζ, θ)=

{
[DW ,Dq3\(q2∪q1),D0,f ]T , if q3(t)6=O,
[Dq3\(q2∪q1),D0,f ]T , else.

(20)

The constrained optimization problem (18) is approximately solved with (20)
by the augmented Lagrangian method [40], yielding the iterative unconstrained
optimization problem

(θ∗z , ζ
∗
z ) = arg min

θ,ζ
Ĵ = J1 +

µz
2
JT2 J2 + λ̄Tz J2, (21)
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where µz ∈ R>0 is an optimization tuning variable that increases with each
iteration and λ̄z ∈ Rb is an estimate of the Lagrangian multiplier, updated by

λ̄z+1 = λ̄z + µzJ2(ζ∗z , θ
∗
z) for every iteration z = 0, 1, 2, . . . (22)

Since (20) is twice continuously differentiable w.r.t. s and θ, the uncon-
strained optimization problem (21) can be solved by gradient-based optimiza-
tion. Taking into account the dynamics of the hybrid automaton H and substi-
tuting α = ‖c′(x̄1, θ)‖ for the employed arc-length parameterization, the gradi-
ent of (21) (omitting function arguments) is given by

∇θĴ=

N∑
n=1

∇θ
∫ tn

tn−1

dt+

b∑
β=1

(µzJ2,β+λ̄z,β)∇θJ2,β

=

N∑
n=1

∇θ
∫ tn

tn−1

‖c′‖
α
dt+

b∑
β=1

(µzJ2,β+λ̄z,β)∇θJ2,β .

(23)

Observing that x̄1 depends on θ through (7), we employ Infinitesimal Perturba-

tion Analysis (IPA) [35] to obtain the gradient ∇θ
∫ tn
tn−1

‖c′‖
α dt (and, thus, ∇θĴ).

Over an interval τn = [tn−1, tn), n = 1, . . . , N , the evolution of x̄ is described by
the vector field f̄n−1(t, x̄, θ) (with a slight abuse of notation). For t ∈ [tn−1, tn),

d

dt
∇θx̄(t, θ)=

∂f̄n−1(t, x̄, θ)

∂x̄
∇θx̄(t, θ)+∇θf̄n−1(t, x̄, θ) (24)

holds with the boundary condition

∇θx̄(t+n−1, θ)=∇θx̄(t−n−1, θ)+

[f̄n−2(t−n−1, x̄, θ)−f̄n−1(t+n−1, x̄, θ)]∇θtn−1(θ).
(25)

Thus, we obtain

∇θx̄(t, θ)=∇θx̄(t+n−1, θ) +

∫ t

tn−1

d

dt
∇θx̄(t, θ)dt. (26)

Since f̄1,n−2(t−n−1, x̄, θ)=f̄1,n−1(t+n−1, x̄, θ), from (25) we assert ∇θx̄1(t+n−1, θ) =

∇θx̄1(t−n−1, θ). Using (24) with
∂f̄1,n−1(t,x̄,θ)

∂x̄1
= 0 and ∇θf̄1,n−1(t, x̄, θ) = 0 and

(26), the gradient (23) (omitting function arguments) is obtained by

∇θĴ=

d∑
i=1

∫ ti

ti−1

∇θ
‖c′(x̄1, θ)‖

α
dt+

b∑
β=1

(µzJ2,β+λ̄z,β)∇θJ2,β . (27)

The partial derivatives of (19) w.r.t. s or θ (omitting function arguments)
are obtained by

∇(.)dk=

{
2(Dk−r) exp (−(Dk−r)2)∂Dk

∂(.) , if Dk>r,

0, else,
(28)
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where ∂Dk

∂(.) = 1
Dk

(
(c1−w1,k)∇(.)c1+(c2−w2,k)∇(.)c2

)
. The corresponding deriva-

tives of d̃l and d are obtained analogously. The required partial derivatives for
Fourier series are shown in Appendix A. Then, to compute (27), we obtain the
optimal solutions of the internal OCPs of the constraints DW by a gradient-
based algorithm, i.e.,

sz+1 = sz − ηz
∂dk(sz, θ)

∂s

∣∣∣∣
s∈[0,1]

, (29)

where {ηz}, z = 0, 1, 2 . . . is an appropriate step size sequence, ∂dk
∂s

∣∣
s∈[0,1]

is

the gradient projected onto the feasible interval s ∈ [0, 1] and the algorithm

terminates when
∣∣∣ ∂dk∂s ∣∣s∈[0,1]

∣∣∣ < ε (for a given threshold ε). Analogously, we

solve the internal OCPs of the constraints Dq3\(q1∪q2), yielding the value of J2.
Then, ∇θJ2 is computed by (28) for the (local) optima acquired by solving (29)
for the corresponding constraints.

As the considered setup is static, the gradient obtained through IPA is a
trivially unbiased estimate of the gradient of the cost for Problem B. Thus, the
optimal parameter vector θ∗ is obtained with a gradient-based algorithm, i.e.,

θz+1 = θz − ηz ∇θĴ(x̄∗, θz)
∣∣∣
Yg

(30)

where {ηz}, z = 0, 1, 2, . . . is a properly selected step-size sequence and the gra-
dient is projected onto the feasible position space Yg. The algorithm terminates

when |∇θĴ(x̄∗, θz)|Yg
| < ε for a pre-specified threshold ε. Note that the OCPs

(29) are non-convex, the solution of (21) acquired by (30) will, in general, be
only locally optimal.

The overall event-driven solution is summarized in Alg. 1. Upon a detection
of an object, as long as the current solution violates the constraints, (17) and
(30) are solved iteratively, where µz increases with each iteration, thus increasing
the importance of J2 over J1 in the optimization.

Remark 2. Under the presence of an obstacle obs with a priori unknown size
and location, the obstacle is approximated by all wk of the discretization of Yg
that have been covered by the sensor until time t and belong to the obstacle
region, i.e. all wk ∈ ∪t̃∈[0,t]O(y(t̃)) ∧ wk ∈ obs. Then, J2 is augmented by a

term that is only active in the surroundings ds = dg/
√

2 of the corresponding

wk, k ∈ {1, . . . , K̃}, and is continuously differentiable w.r.t. s or θ, e.g.,

Jo =

K̃∑
k=1

max{0, 1− (Dk/ds)
2)}2. (31)

With the partial derivative

∇(.)Jo=−
4

d2
s

K̃∑
k=1

[
∂Dk

∂(.)
max{0, 1−D

2
k

d2
s

}
]
,
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Algorithm 1 Event-driven receding horizon control

Input: Robot dynamics described by the hybrid automaton H with Init =
(q(t), (x̄(t),W(t))); curve y(t) = c(x̄1, θ) with initial parameter vector θ;
optimization parameters 0 < ε� 1, ν > 1

Output: The optimal control u|∗[t,tf ]

1: Set µ1 = 1 and λ̄1 = 0b.
2: while J2(x̄∗, θ) > ε1b do
3: repeat
4: Compute u∗(x̄∗) through (17) and J2 and ∇θJ2 through (29) for θ for

the worst-case or the probabilistic case.
5: Compute Ĵ and ∇θĴ |Yg

with µz, and update θ through (30) and λ̄z
through (22).

6: until |∇θĴ |Yg | < ε
7: Set µz+1 = νµz.
8: end while
9: return u|∗[t,tf ] = u∗(x̄∗)

the (local) minimum of J∗o is acquired by solving an OCP of the form (29), and
the corresponding ∇θJo is used to solve (30). Note that Jo = 0 and ∇θJo = 0a, if
the curve does not intersect the obstacle. Alg. 1 remains unchanged. In general,
the non-convexity of the optimization space increases with a growing number
of obstacles, which may deteriorate the quality of the local minima obtained
by Alg. 1. In general, in environments with high obstacle densities, one should
choose parameterizations with a higher degree of freedom (i.e. larger Γ1 and Γ2

if using Fourier series) to allow for effective obstacle avoidance.

Under the assumption that a solution of the simultaneous problem exists
and, since the approximation of the equality constraints is sufficiently smooth
and all involved functions are continuously differentiable w.r.t. the optimization
variables in the approximate formulation, Alg. 1 converges to a locally optimal
solution [41, 42]. In the numerical example presented in (Section 6), the algo-
rithm typically terminated within a small number of iterations also for numerous
variations of the setup. The explicit rate of convergence will be the subject of fu-
ture work. The interested reader is referred to [41] for an in-depth discussion on
the properties of the employed optimization method. Further, to obtain a bet-
ter local solution, a Stochastic Comparison Algorithm (SCA) [43] was employed,
i.e. multiple optimizations with different (quasi-)random initial conditions were
run in parallel and the solution that yielded the lowest cost was chosen.

5. Alternative heuristic approaches

This section introduces two heuristic event-driven policies for solving Prob-
lem 1. For both approaches, let the exploratory motion of the robot be param-
eterized by a curve (5), where θ is fixed and assume that the robot with sensor
footprint (2) covers Yg completely for s ∈ [0, 1], i.e. ∪s∈[0,1]O(c(s, θ)) ⊇ Yg.
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δ ∈ ∆f

δ ∈ ∆e

(a) Heuristic 1.
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(b) Heuristic 2.

Figure 4: Heuristic policies.

5.1. Complete exploration followed by pick-up and drop-off

A simple approach for Problem 1 is to explore the environment until all
objects are discovered, followed by an optimal pick-up and drop-off of all objects.
The corresponding bimodal policy can be captured by the automaton depicted
in Fig. 4(a). The set ∆e contains detection events before the last object is
detected, i.e. ∆e = {(q, q′) ∈ ∆ : q′3 6= O}, and ∆f = ∆ \ ∆e are all other
detection events. In exploration mode, the robot is simply following the curve
that provides a complete cover of Yg, until the occurrence of a detection event
δ ∈ ∆f at time t′ ∈ (0, tf ], which implies that the last object was found and
triggers a transition to pick-up and drop-off mode. Since all objects have been
detected prior to t′, the remaining cost denotes the minimum time for a sequence
of pick-ups and drop-offs necessary for completing the overall task. Consider
the set of all corresponding strings Σq from q = q(t′) to qf as defined in (15).
Minimizing the cost Jσ of σ ∈ Σq can be decoupled in terms of the input u|[t′,tf ]

at every pick-up and drop-off time instant ti−1, ti ∈ [t′, tf ] due to the zero
velocity requirement, i.e.,

J∗σ(q(t′), ξ(t′))= min
u|[t′,tf ]

Jσ(q(t′), ξ(t′), u|[t′,tf ])

=

d∑
i=1

min
u|[ti−1,ti]

J(qi−1, ξ(ti−1), u|[ti−1,ti])

with t0 = t′ and td = tf . Assuming the absence of obstacles in Yg, the
time-optimal motion of the robot with dynamics (1) from the hybrid state
(qi−1, (x(ti−1) = [y(ti−1)T ,0T2 ]T ,Y(ti−1))) to (qi, (x(ti) = [y(ti)

T ,0T2 ]T ,Y(ti)))
with y(ti), y(ti−1) ∈ p ∪ {02} is on straight lines. Thus, using an affine trans-
formation, (1) can be reduced to a double integrator in one dimensional space.
The OCP for the reduced model corresponds to the classical linear time-OCP
[2] solved by a piecewise constant control that takes values in the set {±1} and
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yields the optimal cost ti− ti−1 = 2
√
mqi−1‖y(ti)−y(ti−1)‖. The controller can

be transformed back to (1) by using the inverse affine transformation (details
can be found in [10]). Thus, the optimal cost for σ ∈ Σq is

J∗σ(q(t′), ξ(t′)) =

d∑
i=1

2
√
mqi−1

‖y(ti)−y(ti−1)‖,

and the optimal cost in pick-up and drop-off mode is

J∗(q(t′), ξ(t′)) = min
σ∈Σq

J∗σ(q(t′), ξ(t′)).

Its solution can be acquired by a standard search algorithm in the corresponding
finite weighted graph.

5.2. Immediate pick-up followed by exploration and drop-off

Another option for solving Problem 1 is to pick-up objects immediately upon
their detection, followed by planning an optimal exploration of the remaining
not yet covered space and eventually dropping-off all currently carried objects,
until all objects are discovered. The policy, captured by the automaton in
Fig. 4(b), has been introduced in [36] and will only be briefly summarized here.
The robot starts in exploration mode, i.e. following the curve until an object
detection δ occurs at the spot s̃ ∈ [0, 1] along the curve, thus triggering a
transition to pick-up mode. In pick-up mode, the robot moves to the location
of the detected object in minimum time, which corresponds to a TPBVP solved
by standard methods. If the robot is in pick-up mode and another detection
occurs, it remains in this mode until all detected objects that have not been
picked up and dropped at the depot yet, i.e. q3 \ (q2 ∪ q1) are picked up, i.e.
until q1 = q3 \ q2. Then, the robot may either return to the depot to drop-off
all currently carried objects, or resume exploration, by returning to the spot s̃,
where it has left the curve to perform a pick-up, and continues following the
curve for s ∈ [s̃, 1] to guarantee complete coverage. After the last detection, the
robot performs a pick-up and returns to the depot for drop-off.

Remark 3. If the same initial parameterization (5) is employed for all ap-
proaches, the two heuristic policies are possible solution outcomes of the event-
driven scheme proposed in Section 4. Thus, their evaluation will be performed
in terms of a different, widely common path for exploration – the Archimedean
spiral – in the next section. Under the presence of obstacles, when the robot
moves along a fixed exploratory curve, guaranteeing complete coverage of Yg
and obstacle avoidance simultaneously is a non-trivial requirement, which will
not be addressed in this paper.

6. Numerical example

The methods were implemented in MATLAB, using ode45 to obtain the mo-
tion trajectories of the robot along the curve. All computations were performed
on an Intel R© Core

TM

i7 2.20 GHz processor with 8 GB RAM.
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event-driven
heuristic 1 heuristic 2

worst-case probabilistic

tf [s] 32.3 30.1 40.4 38.5
tcomp [s] 6.1 5.3 3.1 4.4

Table 1: Average final time tf and average (re-)computation time tcomp over 100 random
placements of the three objects.

Consider the bounded position space Yg = [−5, 5]× [−5, 5] m and its regular
discretization (as described in Section 3) with a grid constant of 0.25 m. The
object set consists of three objects, i.e. O = {o1, o2, o3} with positions initially
unknown to the robot. The robot with sensor footprint of size r = 1 m and
nominal mass m∅ = 2 kg starts at the depot yd = 02 at rest. A static obstacle
with a priori unknown location and size to the robot, is described by

obs=

{
y ∈ R2:

[
I2

−I2

]
y ≤

[
I2

−I2

] [
1.875
−3.625

]
+

[
I2

I2

] [
0.375
0.375

]}
.

Note that the obstacle is neglected in the heuristic event-driven approaches.
Fourier series of order Γ1 = Γ2 = 3 were used for the event-driven approach.
Optimization was performed with parameters ν = 2, ε = 10−3, and a maximal
integration time of 40 s for ode45. The parameter vector θ, which characterizes
the curve before the first detection, is obtained by running Alg. 1 for 100 random
initializations and selecting the best (local) optimum.

For a scenario, where the masses and actual object’s positions are p(1) =
[−3.1,−3.1]T , m(1) = 1 kg, p(2) = [1.9,−1.9]T , m(2) = 2 kg and p(3) = [3, 3]T ,
m(3) = 2 kg, Fig. 5 shows snapshots of the robot’s motion at object detection
instants and the final time, obtained by applying the presented methods. Ex-
ecuted paths with nominal dynamics are denoted by solid, executed paths in
other dynamical modes by thicker dashed, and planned trajectories by dotted
lines. As it can be seen in the plots, the robot successfully avoids the obstacle –
snapshots at obstacle detection instants were omitted for brevity. Fig. 6 depicts
the outcome of the heuristic methods for the same scenario.

For 100 random placements of the three objects in Yg, the corresponding av-
erage final time tf and computation costs tcomp are summarized in Table 6. In
general, the worst-case solution resulted in a more “cautious” policy including
intermediate pick-ups and drop-offs. In contrast, the probabilistic evaluation
typically lead to a “threshold-based” policy, where previously detected objects
are collected in one sweep after longer exploration phases. On average, the
probabilistic solution performed better than the worst-case event-driven solu-
tion. Further, the heuristic approaches performed worse than the event-driven
ones in terms of average final cost, but required a lower computational effort.
Note that the convergence speed and the quality of the result of the event-driven
approaches strongly depend on the chosen initial conditions and the step size
selection method of the gradient optimization procedures.
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obs

o1
o2

o3

(a) t(3) = 3.8 s

o1
o2

o3

obs

(b) t(2) = 9 s

o1

o3

obs

(c) t(1) = 30.2 s

o3 o2o1

obs

(d) tf = 36.2 s

o1

o2

o3

obs

(e) t(2) = 4.4 s

o1

o2

o3

obs

(f) t(3) = 14 s

o1

o2

o3

obs

(g) t(1) = 25.4 s

o3 o2o1

obs

(h) tf = 32.2 s

Figure 5: Snapshots of the robot’s motion at detection instants t(l) and the final time tf
obtained with the event-driven worst-case (a-d) and probabilistic (e-h) methods, respectively.
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o1

o2

o3

(a) t(2) = 5.4 s

o1

o2

o3

(b) t(3) = 16 s

o1

o2

o3

(c) t(1) = 25 s

o3
o2
o1

(d) tf = 37.5 s

o1

o2

o3

(e) t(2) = 5.4 s

o1

o2

o3

(f) t(3) = 21 s

o3
o2

o1

(g) t(1) = 29 s

o3
o2
o1

(h) tf = 38.1 s

Figure 6: Snapshots of the robot’s motion at detection instants t(l) and the final time tf
obtained with the heuristic policy 1 in (a-d) and 2 in (e-h), respectively.
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7. Conclusions

A time-optimal hybrid control problem for a robot that has to find and collect
a finite number of objects located in a two-dimensional space and move them
to a depot has been addressed. An event-driven approach based on motion
parameterization and gradient-based optimization has been proposed, where
the cost was evaluated for the worst- and a probabilistic case, assuming uniform
distribution of the objects over the restricted position space. The methods were
compared to two heuristic approaches in a numerical example, reflecting the
advantages of the event-driven method – a lower execution time and the ability
to handle obstacles – over the heuristic approaches at the price of a moderately
higher computational effort. Future work will address a multi-robot setup, other
probability distributions and alternative optimization techniques, e.g. using the
Alternating Direction Method of Multipliers (ADMM) [44], and how different
cost functions can be considered in a similar manner.

Appendix A: Fourier series trajectories

In the event-driven approach, the position of the robot is parameterized by
Fourier series of respective order Γ1 and Γ2, i.e.,

y(t) =

[
c1
c2

]
=

[
a1

0 +
∑Γ1

γ=1 a
1
γ sin (4π2γf1s(t) + φ1

γ)

a2
0 +

∑Γ2

γ=1 a
2
γ sin (4π2γf2s(t) + φ2

γ)

]
,

where f1 and f2 are base frequencies, a1
0 and a2

0 are zero frequency components,
a1
γ and a2

γ are amplitudes for the sinusoid functions with frequency γf1 and γf2,
and φ1

γ and φ2
γ are phase differences with respect to the (γ+ 1)-th term of y1 or

y2. Since only the ratio of f1 and f2 (and not their absolute values) determines
the shape of the trajectories, f1 is treated as a free parameter, while f2 is kept
constant. With A1 =

[
a1

0, . . . , a
1
Γ1

]
, A2 =

[
a2

0, . . . , a
2
Γ2

]
, Φ1 =

[
φ1

1, . . . , φ
1
Γ1

]
and

Φ2 =
[
φ2

1, . . . , φ
2
Γ2

]
, the overall parameter vector is θ=[f1, A1, A2,Φ1,Φ2]T . The

derivative of the curve w.r.t. θ with i ∈ {1, 2} is

∇θyi = ∇θci(s, θ) =
[
∂yi
∂f1

∂yi
∂A1

∂yi
∂A2

∂yi
∂Φ1

∂yi
∂Φ2

]T
with γ = 1, . . . ,Γi and

∂yi
∂f1

=

{
4π2s(t)

∑Γ1

γ=1 a
1
γ cos (4π2γf1s(t) + φ1

γ), i=1,

0, i=2,

∂yi

∂aj0
=

{
1, i=j,

0, i 6=j, ,
∂yi

∂ajγ
=

{
sin (4π2γfis(t) + φiγ), i=j,

0, i 6=j,

∂yi

∂φjγ
=

{
aiγ cos (4π2γfis(t) + φiγ), i=j,

0, i6=j,
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With i ∈ {1, 2}, for the derivative ∇θĴ , we also need

c′i =

Γi∑
γ=1

4π2γfia
i
γ cos (4π2γfis(t)+φ

i
γ),

c′′i = −
Γi∑
γ=1

16π4γ2f2
i a

i
γ sin (4π2γfis(t)+φ

i
γ).

∂c′i
∂f1

=


∑Γi

γ=1(4π2γaiγ cos (4π2γfis(t)+φ
i
γ)

−16π4γ2aiγ sin (4π2γfis(t)+φ
i
γ)), i = 1,

0, i = 2,

∂c′′i
∂f1

=


∑Γi

γ=1(−32π4γ2aiγ sin (4π2γfis(t)+φ
i
γ)

−64π6γ3aiγs(t) cos (4π2γfis(t)+φ
i
γ)), i = 1,

0, i = 2,

∂c′i
∂aj0

= 0,
∂c′′i
∂aj0

= 0,

∂c′i
∂ajγ

=

{∑Γi

γ=1 4π2γfi cos (4π2γfis(t)+φ
i
γ), i = j,

0, i 6= j,

∂c′′i
∂ajγ

=

{
−∑Γi

γ=1 16π4γ2f2
i sin (4π2γfis(t)+φ

i
γ), i = j,

0, i 6= j,

∂c′i
∂φjγ

=

{
−∑Γi

γ=1 4π2γfia
i
γ sin (4π2γfis(t)+φ

i
γ), i = j,

0, i 6= j,

∂c′′i
∂φjγ

=

{
−∑Γi

γ=1 16π4γ2f2
i a

i
γ cos (4π2γfis(t)+φ

i
γ), i = j,

0, i 6= j.

When the robot moves along a curve with parameter vector θ− and detects an
object at s− = s(t), for the initial parameter vector of the simultaneous OCP,
for i ∈ {1, 2}, we set

∀γ, φiγ =4π2γfis− + φiγ−,

ai0 =ci(s−, θ−)−
Γi∑
γ=1

aiγ− sin (φiγ),

such that only a small number of constraints of the simultaneous OCP is violated
initially and Alg. 1 can converge fast.

Appendix B: Proofs

Proof. (Theorem 1) Since λ2 is the only costate that depends on u1 in (11),
(13) implies that λ∗2(t)u∗c,p(t) ≤ λ∗2(t)uc,p must hold. For λ2(t) 6= 0, t ∈ [0, t̃),
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we obtain uc,p(t) = −sgn(λ2(t)), i.e. u∗c,p(t) ∈ {±1}. As the input is bounded,
λ2(t) = 0 can hold at isolated times, without violating (13). A singular arc may
exist since λ2(t) = 0 can also hold over an interval. The necessary condition for
this case is obtained from the generalized first-order Legendre-Clebsch condition
[45]

d2

dt2
∂H̃

∂uc,p
= λ̈2(t) = 2cgαm∅

˙̄̃x2 + ˙̄̃x3 + λ̇1 = 0,

− ∂

∂uc,p

[
d2

dt2
∂H̃

∂uc,p

]
6= 0,

yielding −1/(2cg) as an additional possible input value.

Proof. (Theorem 2) From (11) and x̃1 ≥ 0, λ2(0) < 0 holds and the optimal
control starts with a fragment u∗c,p(t) = 1 for t ∈ [0, t̄1). Assuming that λ2(0) =

a ∈ R<0 for the interval [0, t̄1), the adjoint variable is λ2(t) = a− 2c+1
2 t(2)−λ1t

by integration of (12). If λ2(t̄1) = λ̇2(t̄1) = 0, λ1 = −
√

2(1 + 2c)a, the set
of possible control sequences is {(1), (1,−1), (1,−1/2cg), (1,−1/2cg,−1)}, or in
generalized form

uc,p(t) =


1, t ∈ [0, t̄1),

− 1
2cg
, t ∈ [t̄1, t̄2),

−1, t ∈ [t̄2, t̃).

(32)

Integrating (1) with mq = m∅ and (32), using the switching and final conditions
x̃1(t̃) = 1, x̃2(t̃) = 0, x̃2(t̄2) = vc and analyzing the expressions for t̄2 = t̄1 and
t̄2 = t̃, we obtain√

2(m∅α+ cgα2m∅2vc2)

2cg + 1
≤ t̄1 ≤

√
m∅α+

m2
∅α

2v2
c

2
,

for 0 ≤ vc ≤
√

2
m∅α

. Substituting the solutions of the ODE, the cost E{`} be-

comes a function of t̄1 and vc. For ∂E{`}
∂t̄1

= 0, t̄∗1 ∈
{√

2αm∅
2cg+1 ,

√
m∅α+

α2m2
∅v

2
c

2

}
holds. Analyzing ∂2E{`}

∂t̄21
in the feasible interval, we can verify that the first value

corresponds to the minimum. Substituting t̄∗1 in E{`} and evaluating ∂E{`}
∂vc

, for

the optimal velocity v∗c ∈
{

0,
√

2
m∅α

}
holds. Analyzing ∂2E{`}

∂v2c
yields v∗c = 0

and t̄2 = 2cg
√

2m∅α
2cg+1 , leading to t̄2 = t̃. Solving the ODE with (32) yields the

switching point 1/(1 + 2cg) and the corresponding controller.

Appendix C: Optimal control for two objects

First, consider the planned path shown in Fig. 3(a) with corresponding gen-
eralized trajectory shown in Fig. 3(c). Since o2 is discovered at latest when the

26



robot reaches s2, x̄2(t4) = 0. Thus, optimizing the trajectory for t ∈ [t4, t6] can
be decoupled, and the optimal control is given by

u∗c(x̄) =

{
1, if x̄1 ∈ [s2,

1+s2
2 ),

−1, if x̄1 ∈ [ 1+s2
2 , 1).

To obtain the optimal switching times of the remaining trajectory, we solve the
ODE (8) with

uc,p(t) =


1, if t ∈ [0, t1),

−1, if t ∈ [t1, t2),

1, if t ∈ [t2, t3),

− 1
2cg
, if t ∈ [t3, t4).

With the boundary conditions x̄1(0) = x̄2(0) = 0, and x̄1(t2) = s1, we obtain

− (t2 − t1)2

2m
+
t1
m

(t2 − t1) +
t21

2m
= s1,

where m = mqα, and since t2 ≥ t1,

t1 =

{
t2, if t2 ≤

√
2ms1,

t2 −
√

2
2

√
t22 − 2ms1, else.

Using the boundary conditions x̄1(t4) = s2, x̄2(t4) = 0, we obtain

− (t4−t3)
2

4cgm
+
t3+2t1−2t2

m
(t4−t3)+

t3−3t2+4t1
2m

(t3−t2)+s1=s2,

t4 = (2cg + 1)t3 − 4cg(t2 − t1),

yielding

t3=2(t2 − t1) +

√
t2

2 − 4t1t2 + 4t1
2 + 2m(s2 − s1)

2cg + 1
.

Since t3 ∈ R+ and t3 ≥ t2, together with the derived expression for t1, we obtain

t3 =

{√
t22+2m(s2−s1)

2cg+1 , if t1 = t2,

t2, else.

From the continuity of the variables, there exists a time when t1 = t2 = t3 =√
m
cg

(s2 − ssw). Thus, the switching takes place at

s′ =
1

2cg + 1
s2.
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Note that this corresponds to the result of Theorem 2, scaled for the interval
[0, s2]. For t2 >

√
2ms1, substituting t1 into the expression for t3 = t2, we

obtain t2 = t3 =
√

m
cg

(s2 − s1) and

t1,s =

√
m(s2 − s1)

cg
−
√

2

2

√
m(s2 − s1)− 2cgms1

cg

yielding a switching at

s′′ = −2
3
2
√
s2−s1

√
s2−(2cg + 1)s1−3s2+(2cg+3)s1

4cg

Thus, the optimal control is given by

u∗c,p(t, x̄) =


1, if x̄1 ∈ [0, ssw,1),

−1, if x̄1 ∈ [ssw,1, ssw,2),

− 1
2cg
, if x̄1 ∈ [ssw,2, s2),

(33)

where ssw,1 = max{s′, s1} and

ssw,2 =

{
s′′, if s1 > s′,

s′, else.

Now consider the planned path shown in Fig. 3(b) with corresponding gen-
eralized trajectory shown in Fig. 3(d). Analogously to the above analysis, it can
be easily shown that the optimal control is

u∗c,p(x̄) =



1, if x̄1 ∈ [0, ssw,1),

−1, if x̄1 ∈ [ssw,1, ssw,2),

− 1
2cg
, if x̄1 ∈ [ssw,2, ssw,3),

1, if x̄1 ∈ [ssw,3, ssw,4),

−1, if x̄1 ∈ [ssw,4, ssw,5),

− 1
2cg
, if x̄1 ∈ [ssw,5, s2),

where with x̄2(t4) = x̄2(t6) we obtain the appropriate switching spots ssw,1 to
ssw,5. Thus, for n unexplored intervals in [0, 1], it can be shown that the optimal
control consists of a string of n controls of the form (33) with appropriate
switching conditions.
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