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We apply the recently developed notion of complexity for field theory to a quantum quench
through the critical point in 1+1 dimensions. We begin with a toy model consisting of a quantum
harmonic oscillator, and show that complexity exhibits universal scalings in both the slow and fast
quench regimes. We then generalize our results to a 1-dimensional harmonic chain, and show that
preservation of these scaling behaviours in free field theory depends on the choice of norm. Applying
our set-up to the case of two oscillators, we quantify the complexity of purification associated to a
subregion, and demonstrate that complexity is capable of probing features to which the entanglement
entropy is insensitive. We find that the complexity of subregions is superadditive, and comment on
potential implications for holography.

INTRODUCTION

Among the most exciting developments in theoretical
physics is the confluence of ideas from quantum many-
body systems, quantum information theory, and gravi-
tational physics. Recent progress in this vein includes
the development of tensor network methods for simulat-
ing quantum many-body systems (see, e.g., [1]), proofs
of irreversibility of RG flows using quantum informa-
tion techniques [2–7], and the illumination of the role
of codimension-2 extremal surfaces in the emergence of
holographic spacetime (see, e.g., [8]). The central tech-
nical tool in these ground-breaking results is the reduced
density matrix for a spatial subregion, and the associated
von Neumann entropy, cf. [9, 10].

However, insights from black hole physics [11–14] sug-
gest that certain codimension-0 and codimension-1 sur-
faces may also play an important role in reconstructing
bulk spacetime in holography, since these capture infor-
mation beyond that which is accessible to the aforemen-
tioned codimension-2 surfaces—that is, beyond entangle-
ment entropy. These geometric objects are conjectured
to be dual to the “complexity” of the boundary field the-
ory, according to the competing “complexity=volume”
(CV) [11, 12] and “complexity=action” (CA) propos-
als [13, 14].

Drawing on earlier developments [15–19], [20] and [21]
sought to make the above conjectures more precise by
defining the notion of complexity in (free, bosonic) quan-
tum field theory (this idea was subsequently extended to
fermionic theories in [22], see also [23, 24]; for alterna-
tive approaches to defining complexity in field theories,
see [25–30]). In light of the successes born of entangle-
ment entropy mentioned above, understanding complex-
ity in quantum field theory represents a very promising
research direction. Particularly interesting open ques-
tions include the time-dependence of complexity, and the
interplay between complexity and entanglement entropy
in non-equilibrium systems. It is therefore of value to

have a tractable system in which these ideas can be con-
cretely explored.

To that end, one of the most active areas of research
into non-equilibrium quantum dynamics is the study of
quantum quenches [31, 32], in which remarkable progress
has been made in understanding the mechanisms under-
lying thermalization encoded in the reduced density ma-
trix [33]. Theoretical studies within the scope of exper-
imental verification have revealed that smooth quenches
through a critical point exhibit universal signatures via
scalings. The Kibble-Zurek (KZ) scaling [34, 35] is the
most well-known example of this behaviour, and has re-
ceived a great deal of attention in recent years [36–40].
In this case, the state is evolved adiabatically until very
close to the critical point, and hence the regime of KZ
can be characterized as “slow”. Recent studies in holog-
raphy [41, 42], free field theory [43–45], and lattice spin
models [46] have also revealed new scaling behaviours in
a “fast” (non-adiabatic) regime. This fast scaling be-
haviour appears to be a universal feature of free field
theories flowing from a fixed point, which is described
by a CFT [47–49]. At a technical level, previous studies
have mainly focused on the scalings of a restricted set of
one- and two-point functions, and recently on entangle-
ment [50]. However, as we shall argue below, the latter
probes at most only a spatial subsystem, while complex-
ity is a property of the entire wavefunction. Hence com-
plexity represents a means of probing features of quench
dynamics to which entanglement entropy is insensitive.
Initial steps towards applying complexity to quenches
were taken in [51], for a quench which monotonically in-
terpolates between two massive theories.

Motivated by these scaling phenomena, we explore
the complexity of exact critical quench solutions for free
scalar theories, and find evidence for universal scaling be-
haviour. Our primary model will consist of a bosonic os-
cillator whose frequency varies smoothly with time, and
asymptotes to a finite constant in both the far future and
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past. We first define complexity for a single mode, and
then generalize our results to a 1-dimensional harmonic
chain. However, we find that a judicious definition of
complexity is required in order to make the scaling ex-
pectations for free field theory manifest. Utilizing this
set-up, we contrast the complexity and the entanglement
entropy for a fixed bipartition of the Hilbert space of two
coupled harmonic oscillators. This model enables us to
quantify the notion of “complexity of purification” re-
cently introduced in [52], which allows one to associate
a complexity to subregions (i.e., mixed states). We find
that the complexity of subregions is superadditive, which
may have interesting implications for the CV vs. CA pro-
posals above.

COMPLEXITY OF QUANTUM QUENCHES

Quench model

We shall begin with the following simple Hamiltonian
describing a free bosonic oscillator:

H±(t) =
1

2M
P 2
± +

1

2
Mω̃2

±X
2
± , (1)

where M is the mass of the oscillator, ω̃±(t/δt) is some
time-dependent frequency profile with an intrinsic scale
set by the parameter δt, and the canonical position and
momentum operators satisfy [X±, P±] = i. However, for
reasons that will become apparent below, it is preferable
to work with the dimensionless variables x ≡ $X, p ≡
P/$, ω± ≡ ω̃±/$, where $ is some new mass scale,
which will be given an interpretation as the gate scale
when we introduce our quantum circuit (see appendix
A). Setting $ = M for simplicity, (1) becomes

H±(t) = M

(
p2
±
2

+ ω2
±
x2
±
2

)
, (2)

where the quantities appearing in the parentheses are all
dimensionless, and we shall henceforth set M = 1. The
time-evolved initial ground-state wavefunction at time t
for the Hamiltonian (2) takes the form

ψ±0 (x±, t) = N exp

(
i

2

ḟ∗±
f∗±
x2
±

)
, (3)

where N ≡
(
2πf∗±f±

)−1/4
, and the functions f±(t/δt)

are the solutions to the equation

f̈± + ω2
±f± = 0. (4)

Now, we desire a quench profile ω2
±(t/δt) which admits

an exact solution to this equation, and which asymptotes
to a constant at both early and late times, with changes
occurring in the time-window [−δt, δt]. One of the most
common profile used in the literature (see, e.g., [50]) is

ω2
±(t/δt) = ω2

0

(
1± 1

cosh2
(
t
δt

)) . (5)

Here ω0 is a free parameter, but will gain an interpreta-
tion as the dimensionless reference-state frequency below.
This profile has the property that the system is initially
gapped at t = −∞, but becomes gapless at t = 0, corre-
sponding to oscillator excitations above the ground state
(3) as the system evolves via (2). In this case, the func-
tions f±(t) can be written explicitly in terms of hyperge-
ometric functions—see [50].

Our interest in this set-up is due to the fact that it
can also be used to study the ground state of two (or
more) harmonic oscillators with a time-dependent cou-
pling. The same model was considered in [50, 53, 54]
for investigating entanglement entropy during a quench.
Explicitly, the Hamiltonian is given by

H =
1

2

[
p2

1 + p2
2 + 2Ω2 (x1 − x2)

2
+ ω2

(
x2

1 + x2
2

)]
. (6)

In the normal-mode basis x± = (x1±x2)/
√

2, this Hamil-
tonian takes the decoupled form

H(t) = H+(t) +H−(t) (7)

with ω2
+ = ω(t)2 and ω2

− = ω(t)2 + 4Ω(t)2 in (2). The
corresponding wavefunction is then given by

ψ(x+, x−, t) = ψ+
0 (x+, t)ψ

−
0 (x−, t) , (8)

with ψ±0 given by (3). Note that this construction natu-
rally generalizes to anN -oscillator harmonic chain, which
we will consider after introducing complexity below.

Circuit complexity

To evaluate the complexity of the target state (8),
we shall apply the circuit complexity approach of [20],
adapted at the level of covariance matrices as in [55].
The reader is referred to these works for details. In brief,
a circuit U is a unitary operator whose action on some
reference state ψR produces the desired target state ψT,

|ψT〉 = U |ψR〉 . (9)

In analogy with quantum circuits, U can be thought of as
a sequence of fundamental gates, each of which effects an
infinitesimal change to the state. The complexity of the
target state is then defined as the length of the optimum
circuit according to some suitably chosen depth function
(e.g., the number of gates). Note the keyword “opti-
mal”: there may be arbitrarily many different circuits
which satisfy (9). Hence the central feature of [20] was to
use the geometric approach of Nielsen and collaborators
[15–17] to convert the problem of finding the optimum
circuit into that of identifying the minimum geodesic in
the geometry generated by the algebra of gates.

Given the form of (8), it is sufficient to begin with a
single oscillator. Hence we are interested in target states
of the form

ψT(x, t) =
( a
π

)1/4

exp

{
−1

2
(a+ ib)x2

}
, (10)
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where a(t), b(t) ∈ R are the real and imaginary parts of
the frequency iḟ∗/f∗ in (3), and we have suppressed the
time-dependence for compactness. Note that a>0, while
b may take any sign. Our reference state will be provided
by the ground state of our time-dependent Hamiltonian
(6) at t=−∞,

ψR(x) =
(ωR

π

)1/4

exp
{
−ωR

2
x2
}
, (11)

where 0 < ωR ∈ R. Our task is now to construct a cir-
cuit U satisfying (9) according to the geometric approach
outlined above.

The details of our complexity calculation are given in
appendix A. The key point is that we may view U as a
matrix which acts at the level of covariance matrices, so
that (9) becomes

GT = UGRU
T , (12)

where the matrix elements of G are given by

Gab = 〈ψ|ξaξb + ξbξa|ψ〉 , (13)

where ξa ≡ {x1, p1, . . . xN , pN} are the dimensionless
phase-space operators for N oscillators. Upon geometriz-
ing the problem with a particular choice of gates, we
find that the matrix U parametrizes hyperbolic space H2,
with the metric

ds2 =
2 dz2 + dy2

8z2
, (14)

and therefore the complexity of the target state (10) is
given by the well-known geodesic distance formula on H2

(cf. appendix B), which admits a particularly compact
expression in terms of the squeezed target-state covari-
ance matrix G̃T = SGTS

T :

C =
1

2
ln
(
χ+

√
χ2 − 1

)
, χ ≡ 1

2
tr G̃T , (15)

where S is the squeezing operator defined such that
SGRS

T = 1. This result immediately generalizes to
the case of N oscillators: since G̃T is block-diagonal in
an appropriate basis, the geometry factorizes into N in-
dependent copies of H2. Hence the complexity of a 1-
dimensional lattice of oscillators is

C =

√√√√ N∑
j=1

[
1

2
ln
(
χj +

√
χ2
j − 1

)]2

. (16)

Note that in this expression, we have added the complexi-
ties in the L2-norm; we shall comment on the use of other
norms in the discussion of scalings below. By taking the
continuum limit of such a lattice, we obtain the complex-
ity for a bosonic system in 1+1 dimensions. Specifically,
we consider the harmonic chain whose Hamiltonian is
given by

H =
1

2

N∑
n=1

(
Π2
n + (φn+1 − φn)2 +m2(t)φ2

n

)
, (17)

where (φn,Πn) are mutually conjugate scalar field vari-
ables. Since we work with dimensionless variables, we
shall set the lattice spacing (i.e., the UV-cutoff) to unity.
In momentum space, each mode then satisfies

φ̈k +

(
4 sin2 k

2
+m2(t)

)
φk = 0 , (18)

where we have imposed periodic boundary conditions k=
k+2π, and the quench profile is given by m(t)=ω−(t/δt)
in (5). The reference state, |ψR〉 is given by the ground
state of the Hamiltonian (17) at t = −∞ when m(t) =
ω0. Integrating over momentum modes, the continuum
limit of (16) is simply

C(t) =

√∫ 2π

0

dk

2π

[
1

2
ln

(
χk(t) +

√
χ2
k(t)− 1

)]2

. (19)

where χk(t) is given in (15) with the covariance matrix
corresponding to the kth oscillator.
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Figure 1. Log-log plot of complexity of the (1+1)-dimensional
free field theory (19) at the critical point t=0 vs. the quench
rate δt (measured in units of the lattice spacing), with ω0 =
0.005. The straight-line fit (blue) reveals linear scaling in the
fast regime.

Since we are interested in the behaviour of complexity
as the system passes through the critical point of the
quench, it is sufficient to evaluate this function at t = 0;
see Fig. 1. This then allows us to extract the universal
scaling behaviours, which we examine in more detail in
the next section.

Universal scalings in complexity

We now wish to examine the presence of universal scal-
ings of the critical complexity with respect to the quench
rate. In particular, the contributions from individual mo-
mentum modes to C(0) in (19) are plotted in Fig. 2. We
find that all modes go to zero in the sudden-quench limit
δt→ 0, which is consistent with results for instantaneous
quenches. For all k > 0, we observe mode-dependent sat-
uration in the slow regime δt→∞, consistent with what
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one expects from KZ. In the adiabatic approximation,
the KZ scale arises from the Landau criterion for the
breakdown of adiabaticity,

1

E(t)2

dE(t)

dt

∣∣∣∣
tKZ

= 1 , (20)

where tKZ is the Kibble-Zurek time and E is the time-
dependent mass gap from criticality. For the profile (5),
one finds tKZ ≈

√
δt/ω0, at which time the frequency is

ωKZ(k) =
√

4 sin2 k
2 +m2(tKZ) ≈

√
4 sin2 k

2 + ω0

δt , where

we have used the fact that m2(tKZ) ∼ ω2
0t

2
KZ/δt

2, since
in the slow regime δt> tKZ by definition. Hence the KZ
scaling for the kth mode may be extracted by calculating
the complexity at this frequency. One finds logarithmic
KZ scaling in the slow regime for δt< ω0

4 csc2 k
2 . As soon

as δt exceeds this value, we observe saturation in the
frequency (to 2 sin k

2 ), and hence also in complexity to

Cksat =
1

2
log

(√
ω2

0 + 2− 2 cos k

2
∣∣sin k

2

∣∣
)
. (21)

The KZ approximation is superimposed on the exact re-
sults in Fig. 2, which clearly shows agreement with the
saturation value (21) in the large-δt limit.
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Figure 2. Single-mode contributions to the complexity
(19) at the critical point t = 0 for ω0 = 0.005 and k =
{0.006, 0.111, 0.216, 0.320, 0.425} (resp. red, orange, yellow,
green, blue). For large δt, the exact solutions (dotted) agree
with the saturation values (21) predicted from KZ (solid).

The critical complexity of the zero mode k=0 exhibits
universal scalings in both the slow and fast regimes. In-
deed, this same behaviour is exhibited by the single quan-
tum oscillator we initially introduced upon sending the
frequency to zero (i.e., we take the ω− solution for the
two-oscillator case above). Unlike higher modes, the zero
mode does not saturate at large δt since the logarithmic
scaling is always present. From the KZ analysis above,
we can identify the universal coefficient of the log as 1

4 ,
which is confirmed by fitting the exact solution, as shown

in Fig. 3. We note that the KZ scaling exhibited by en-
tanglement entropy under a critical quantum quench has
the same form, but with a 1

6 coefficient instead [50, 56].
Meanwhile in the fast regime (δt < 1 in lattice units), the
complexity grows linearly with δt. While these scalings
are present for higher modes as well, they are confined to
increasingly narrow regions of δt for larger values of k.
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Figure 3. Zero-mode contribution to C(0) (19) as a function of
the quench rate ω0δt, with ω0 =0.005. The complexity scales
linearly in the fast regime (blue), and smoothly transitions to
a logarithmic scaling 1

4
log δt in the slow regime (red). The

transition to KZ occurs at ω0δt∼1 which in this case is δt∼
200 in lattice units.

It is interesting to note how the scaling behaviours of
the critical complexity emerge in the field theory in differ-
ent norms. As shown in Fig. 3, the zero-mode complexity
exhibits a linear growth with δt which smoothly transi-
tions to the logδt KZ behaviour at δt−1∼ω0. As we move
towards the UV, both the exact solution as well as the KZ
approximation for non-zero modes (see Fig. 2) saturate to
smaller values of complexity at lower values of δt. Thus
when adding the modes using the Lp-norm (with p≥2),
the field theory critical complexity is dominated by the
zero mode and hence inherits its scaling behaviour. If we
instead use the L1-norm, the mode-by-mode saturation
values are no longer sufficiently suppressed for the field
theory to simply inherit the scaling behaviour of the zero
mode, and thus it is unclear whether universal scalings
can be extracted in this case.

COMPLEXITY VS. ENTANGLEMENT

One of the main motivations for the holographic com-
plexity proposals was the observation that the informa-
tion contained in the reduced density matrix of any spa-
tial bipartition of the CFT Hilbert space, as encoded in
the entanglement entropy, is generally insufficient to de-
termine the entire bulk geometry [12] (see also [57] and
references therein). One can then ask whether complex-
ity provides another take on the information contained
in reduced density matrices. Indeed, recent proposals for
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the complexity of subregions in holography – that is, on
the bulk side – have been made in [58–62]. However,
since the field-theoretic notion of complexity above is de-
fined for pure states, it is not a priori clear how to define
complexity for the reduced density matrix corresponding
to some spatial subregion.

A particularly natural extension of existing pure-state
definitions to this case is the complexity of purification,
recently outlined in [52], in which the complexity of the
subsystem is defined by minimizing over the complexi-
ties of all possible purifications (see also [63]). Applying
our quench set-up above to the case of two oscillators
allows us to quantify this proposal, by considering the
reduced density matrix corresponding to a single oscil-
lator, say x1, and purifying within the original Hilbert
space of Gaussian states (i.e., without ancilla). The to-
tal wavefunction depends on six real parameters, three of
which we fix by our knowledge of the covariance matrix
for oscillator x1. Minimizing over the remaining three
parameters then gives the complexity of purification for
the subsystem, which we shall denote CA in reference to
a generic subsystem A and its complement Ā. Sample
results are shown in Fig. 4.

-4 -2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

C
(t
)

Figure 4. Comparison of the complexity (16) as a function
of time t of the original target state (solid) and the optimum
purification (dashed) for δt = 10 (blue) and δt = 1 (red),
with ωR = 0.5 for both oscillators. Note that the latter never
exceeds the former: the complexity of purification appears to
satisfy superadditivity (22). We have tested this conjecture
numerically for ∼70,000 cases.

To contrast the above with the information accessed
by entanglement, consider the case in which we know the
reduced density matrices for both subsystems, which for
simplicity we may fix symmetrically, i.e., 〈x2

1〉 = 〈x2
2〉,

〈p2
1〉 = 〈p2

2〉 and 〈x1 p1〉 = 〈x2 p2〉. This leaves a one-
parameter freedom in the full covariance matrix, which
we can choose to be 〈x1 p2〉 = 〈x2 p1〉. Obviously, the
entanglement entropy for either subsystem will be com-
pletely insensitive to this information about the total
state. In contrast, the complexity varies as a function

of this parameter, and therefore provides a complemen-
tary probe to entanglement for a fixed bipartition. We
stress however that this dependence is not necessarily
monotonic, which prevents us from directly identifying
complexity as an order parameter for the wavefunction.

As observed in Fig. 4, the complexity of purification
satisfies C/2 ≤ CA ≤ C, which we have verified numer-
ically for a wide range of values in the six-parameter
landscape spanned by the components of the covariance
matrix. The upper inequality is saturated iff the orig-
inal target state happens to be the least complex state
among all possible purifications. Meanwhile, the lower
inequality is saturated iff the original target state is a
product state with respect to the chosen bipartition; i.e.,
subsystem A describes a pure state, SA = 0. This can
be understood from the fact that the purification process
seeks to produce a state which is as close to the reference
state as possible, since the latter has minimum complex-
ity by fiat. Since in this case the reference state is an
unentangled product state, the minimum purification is
one in which the complement Ā is also an unentangled
product state—but this is only possible if the original
state is a tensor product of the form HA ⊗ HĀ, oth-
erwise the entanglement across the bipartition prevents
one from obtaining the reference state in the restriction
Ā. While one should exercise caution in blithely gen-
eralizing from this simple two-oscillator case, the above
strongly suggests that the complexity of subsystems is
superadditive:

CA + CĀ ≥ C . (22)

As observed in [52], this agrees with the behaviour of the
holographic CA proposal, but not with the CV proposal,
which is subadditive.

OUTLOOK

Quenches represent tractable models of dynamical quan-
tum systems in which complexity can be better under-
stood, as well as yield new physical insights. For example,
we found that we cannot extract universal scalings using
the L1-norm. However, previous studies [20, 21] found
that L1 exhibits better agreement with holography than
L2. Hence it would be very interesting to explore criti-
cal quenches holographically (non-critical quenches have
been studied in, e.g., [64–66]). We have also examined
the complexity of subregions (i.e., mixed states) via their
purifications. Since complexity encodes global informa-
tion about the state, it is sensitive to features to which
entanglement is blind. We find that subregion complexity
appears to satisfy superadditivity (22), which is consis-
tent with the CA proposal. While it would be premature
to take definitive lessons for holography from such simple
free field models, this may provide further hints as to the
proper notion of complexity in holographic field theories,
and thereby shed light on ongoing efforts to reconstruct
bulk spacetime in AdS/CFT.
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A. Circuit complexity for H2

In this section, we explain the calculation of the com-
plexity of the state (10). Our approach closely follows
that of [20], but adapted at the level of covariance ma-
trices as in [55]; the reader is referred to these works for
more details. As stated in the main text, one seeks the
optimum circuit U which acts on the reference state to
produce the target state according to (9). Identifying,
and associating a well-defined length to, this optimum
circuit requires geometrizing the problem [15–17]. To

proceed, one represents the circuit as a path-ordered ex-
ponential,

U(s) = ~P exp

∫ s

0

ds̃ Y I(s̃)MI , (23)

where the path parameter s is chosen to run from 0 at
the reference state to 1 at the target state (i.e., s = 1
in (9)). The matrix generators MI represent the algebra
of gates, while the parameters Y I can the thought of as
turning these gates on and off at specified points along
the path (these will be given a precise interpretation be-
low as the components of the frame bundle that we use to
construct the inner product, and thereby the geometry).
However, in order to obtain a state-independent repre-
sentation of our gate set, we shall instead work at the
level of the covariance matrices, which completely char-
acterize the Gaussian state. Hence one views the circuit
as a matrix acting on the covariance matrix representa-
tion of the states in the usual manner; i.e., the evolution
equation (9) becomes

GT = UGRU
T , (24)

where the matrix elements of G are given by

Gab = 〈ψ|ξaξb + ξbξa|ψ〉 , (25)

where ξa ≡ {x1, p1, . . . xN , pN} are the dimensionless
phase-space operators for N oscillators; cf. (12) in the
main text.

Now, one has the freedom to choose the gate set gen-
erated by MI with which to build the circuit. Since the
gate set ultimately determines the geometry, one will ob-
tain different geodesics – and hence different complexities
– for different choices. Provided the algebra that gener-
ates the set of gates is sufficient to produce the target
state however, there are no rules for how to select it,
and indeed several different choices have been analyzed
in the literature. For example, [20] chose a set of scal-
ing and entangling gates that formed a representation of
GL(N,R), while [21, 51] worked instead with SU(1, 1).
In order to study the time-dependence of the TFD, [55]
chose a representation of Sp(2N,R), on the basis that this
is the general group of transformations that preserves the
canonical commutation relations.

Given this freedom, we will be motivated by physical
considerations in selecting our gates, namely, we wish to
use the minimum set of gates sufficient to effect our par-
ticular class of target states. Since we shall work in the
normal-mode basis, where the ground state factorizes as
in (8), it suffices to compute the complexity for a single
mode (the generalization to N oscillators is then straight-
forward, and is given in the main text). For the reference
(11) and target (10) states under consideration, we have

GR =

(
1
ωR

0

0 ωR

)
, GT =

( 1
a − b

a

− b
a

a2+b2

a

)
. (26)
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Hence we wish to select a set of gates that allows us
to interpolate between these two states. This can be
done with a subalgebra of sp(2,R). We shall denote the
generators in the full algebra by

W =
i

2
(xp+ px) , V =

i√
2
x2 , Z =

i√
2
p2 , (27)

where x, p are the dimensionless variables introduced be-
low (1). One can check that these generators satisfy the
algebra

[W,V ] = 2V , [W,Z] = −2Z , [V,Z] = −2W .

Thus one sees that the W and V gates close to form a
subalgebra. Hence, in contrast to [55], which analyzed
circuits using the full algebra of sp(2,R), we shall re-
strict our circuits to the submanifold corresponding to
the group elements

XW = eεW , XV = eεV , (28)

where 0 < ε ∈ R. The corresponding matrix generators
are then

M1 =

(
−1 0
0 1

)
, M2 =

(
0 0√
2 0

)
, (29)

where M1 corresponds to W and M2 corresponds to V .
Note that these are not orthonormal, but instead satisfy

MT
I MJ = 2 δIJ . (30)

The gates corresponding to (28) are then obtained by
exponentiating these matrix elements:

Q1 = eεM1 =

(
e−ε 0
0 eε

)
, Q2 = eεM2 =

(
1 0√
2 ε 1

)
. (31)

Let us pause briefly to remark on the scale $, introduced
in the dimensionless variables x = $X, p = P/$. We
refer to this as the gate scale because, had we written
the generators (27) in terms of the dimensionful variables
X,P , then both V and Z would contain factors of $2

in order to make the exponents in (28) dimensionless.
Setting $ = M is then a natural choice in order to avoid
introducing an auxiliary scale into the problem, and we
shall do so henceforth.

Now, to find the geometry in which the circuit (23)
lives, we must find a suitable parametrization of the gen-
eral group element with which to construct the metric.
As shown in appendix B, a convenient choice is

U =
1√
z

(
z 0
y√
2

1

)
. (32)

The reason for this choice is that, upon isolating the com-
ponents of the frame bundle in the usual manner [20],

dY I =
1

2
tr
(

dUU−1MT
I

)
(33)

(where the factor of 1
2 is due to the normalization of the

generators (30)), up to an unimportant overall normal-
ization, the most general positive definite line element
is

ds2 = gIJ dY IdY J =
dz2 +A2 dy2 + 2A sinσ dy dz

4z2
,

(34)
where we have taken

gIJ =

(
1 −A sinσ

−A sinσ A2

)
. (35)

In this expression, A and σ are penalty factors which
account for different weighting of different gates. In con-
trast to metrics obtained in [20, 55], their presence does
not prevent us from having a closed form expression for
geodesic length between two points (z0, y0) and (z1, y1),
since we always deal with the metric on hyperbolic disc
for which the distance function is known. However, for
reasons which will become apparent below, we shall focus
on the special case σ=0 and A=2−1/2 for the remainder
of this text. In this case, the distance function on the
hyperbolic disc,

D01 =
1

2
ln

(
X01 +

√
X2

01 − 1

)
, (36)

is evaluated with

X01 ≡
2
(
z2

1 + z2
0

)
+(y1 − y0)

2

4z1z0
. (37)

Now, the optimum circuit is the minimum geodesic on
H2 that connects the reference GR and target GT states,
and the complexity of the latter is given by the length of
this circuit, (36). It therefore remains simply to express
the initial and final coordinates, (z0, y0) and (z1, y1), in
terms of the physical parameters of the problem at hand,
i.e., the frequencies of the reference and target states.

However, one important caveat is in order: the gen-
eralization of this prescription to N oscillators relies on
the fact that for our quench solution, both the reference
and target states remain block diagonal. When consid-
ering purifications however, we begin with a dense co-
variance matrix representing the target state, and must
first bring it to block-diagonal form prior to computing
the complexity. This can be done by defining a squeezing
operator

S = diag{
√
ω1,

1
√
ω1
, . . . ,

√
ωN ,

1
√
ωN
} , (38)

where ω1 through ωN are the reference state frequencies
for each of the N oscillators. The definition of S is such
that its action on the reference state produces the iden-
tity matrix,

SGRS
T = 1 . (39)
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Applying this operator to the target state then allows us
to block-diagonalize the latter without introducing off-
diagonal terms in the reference state. Therefore in order
to compute complexity for such states, we will evaluate
the distance (37) between the identity and the squeezed
target state

G̃T ≡ SGTS
T =

(
ωR

a − b
a

− b
a

a2+b2

ωRa

)
. (40)

To proceed, we impose boundary conditions on the cir-
cuit U (32), where z(s), y(s) are functions of the path
parameter s ∈ [0, 1] (that is, (32) is merely the coordi-
nate representation of (23)). At s=0, the circuit has not
produced any change in the reference state, and hence
the initial condition is

U(0)GRU(0)T = GR =⇒ U(0) = 1 , (41)

which holds for GR in (26) for arbitrary ωR. Conversely,
at s=1 the circuit should satisfy (24), with GR→1 and
GT→ G̃T, which enables one to solve for the final coor-
dinates in terms of the physical frequencies; one finds:

(z0, y0) = (1, 0) , (z1, y1) =

(
ωR

a
,−
√

2 b

a

)
.

Substituting these into the expression for the geodesic
length (36), we obtain (15). Due to the ability to simul-
taneously diagonalize GR = 1 and G̃T, the result for N
oscillators is simply N copies of the hyperbolic disc.

As alluded above, one can also explicitly solve the ge-
ometry in the presence of the general penalty factors in
(35). The result is rather unwieldy and unilluminating,
so we refrain from writing it out here. However, it is
worth noting that the scaling behaviours observed in the
main text are insensitive to the choice of penalty factors.
The reason is two-fold: first, it is a general fact that one
can absorb the penalty factor A by rescaling the imag-
inary component of the target state b → b/A. Second,
it turns out that when specifying to the quench solution
considered in the main text, this imaginary component
vanishes for the full parameter range. Therefore the com-
plexity only depends on the penalty factors through sinσ,
and one can furthermore show that the unique range of
this parameter is σ ∈ [0, π/2) (the complexity diverges at
precisely σ=π/2). For values of σ within this range, the
effect is merely a constant shift in Fig. 3, and a slightly
more gradual transition between the linear and logarith-
mic 1

4 ln δt regimes. The value of the coefficient in the lat-
ter may be obtained by numerical fitting, and is therefore
sensitive to the width of this transition zone, but remains
largely unchanged.

B. Geodesics on H2

In this section, we show that the geometry correspond-
ing to the use of the two gates (28) can be derived as
an embedding in AdS, which enables us to readily ob-
tain the geodesic distance (36). We begin by finding a
suitable parametrization for the general group element,
which will represent the circuit U(s) (23). Of course,
the most näıve way to express the generic group element
generated by (29) is

U = exp {µM1 + νM2} =

(
e−µ 0√

2ν
µ sinhµ eµ

)
(42)

where µ, ν ∈ R. However, by making the change of vari-
ables

µ = −1

2
ln z , ν =

1

2

y

z − 1
ln z , (43)

this becomes

U =
1√
z

(
z 0
y√
2

1

)
.

which is (32). As mentioned above, the reason for this
choice is that the resulting metric becomes that of the
hyperbolic plane. In particular, choosing σ = 0, A =
2−1/2 yields

ds2 = `2
2 dz2 + dy2

2z2
, (44)

where ` ≡ 1/2. One can reproduce H2 via the standard
embedding of the pseudosphere in Rd,1:(

X0
)2 −(X1

)2
+
(
X2
)2

= −`2 , (45)

where the metric of the embedding space is

ds2 = −ηMN dXMdXN , ηMN = diag{−1, 1,−1} .
(46)

One can check that the constraint (45) allows the follow-
ing choice of parameters:

X0 =
`y√
2z

, X1 =
`2 + z2 + y2/2

2z
, X2 =

−`2 + z2 + y2/2

2z
,

upon which (46) reproduces (44). Then, for points
(z0, y0) and (z1, y1),

`2X01 ≡ ηMNX
M (z0, y0)XN (z1, y1) , (47)

yields precisely (37), with the geodesic distance given by
(36).
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