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Abstract
Within density-functional theory, perturbation theory(PT) is the state-of-the-art formalism for
assessing the response to homogeneous electric fields and the associatedmaterial properties, e.g.,
polarizabilities, dielectric constants, andRaman intensities. Here, we derive a real-space formulation
of PT and present an implementationwithin the all-electron, numeric atom-centered orbitals
electronic structure code FHI-aims that allows formassively parallel calculations. As demonstrated by
extensive validation, we achieve a rapid computation of accurate response properties ofmolecules and
solids. As an application showcase, we present harmonic and anharmonic Raman spectra, the latter
obtained by combining hundreds of thousands of PT calculationswith ab initiomolecular dynamics.
By using the PBE exchange-correlation functional withmany-body van derWaals corrections, we
obtain spectra in good agreementwith experiment especially with respect to lineshapes for the isolated
paracetamolmolecule and twopolymorphs of the paracetamol crystal.

1. Introduction

The response ofmolecules and solids to an applied electricfield is a fundamental physicalmechanismof prime
importance, since it determines significant properties and spectroscopic signals, such as dielectric constants,
Raman spectra, and sum-frequency generation spectra. Infirst-principles frameworks, these quantities are
typically computed via time-dependent density-functional theory (DFT) [1, 2] or via analytical perturbation
theory(PT) in either its density-functional perturbation theory(DFPT) [3–6]or coupled perturbed self-consistent
field(CPSCF) formulation [7–12].Within these linear-response approaches, an additional complexity arises for
the treatment of solids: as discussed inmore detail in section 3, theposition operator appearing in the respective
equations is notwell-defined and the expressionsneed to be recast into amore suitable form.Practical
implementations of thesemethodswithinKohn–ShamDFTdiffer substantially by their choice of basis sets (e.g.,
planewaves or localized basis sets) andby their treatment of the core electrons(e.g., all-electronor
pseudopotentials). In this paper,we address an implementationof PT for the response to a homogeneous electric
field targeted towardshandling large periodic systems,whichwill be the subject of our showcase in section 6.Our
implementationuses the all-electron, numeric atom-centeredorbital based frameworkof theFHI-aims code
[13–15], which also features implementations ofPT for vibrational [16] andmagnetic properties [17]. Notably, this
infrastructure allowsus to treat isolated systems (such asmolecules) and extended systems (such as periodic,
crystalline solids)on the same footing, as discussed in sections 2 and 3, respectively.

As an application, we focus on the important task of calculating anharmonic vibrational Raman spectra of
molecular crystals. These spectra are able to provide information about differences in the polymorphic structure
of these crystals, the presence of impurities, and the onset of phase transitions. Importantly, they are quantities
that can be readily accessed experimentally under different thermodynamic conditions, which can also be
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unambiguously simulated. In that respect, the calculation of these spectra in an anharmonic fashion using time-
correlation functions [18, 19], as further detailed in section 6, represents an important link between computer
simulations and experiments. It can help to gauge the impact of anharmonicities in different phononmodes,
which opens the path for a better understanding and control of the polymorphic forms ofmolecular crystals.
The particular character of our implementation results in an efficient scalingwith respect to system size (due to a
sparse representation of the densitymatrices) and efficient numerical scalingwith respect to the number of cores
used onmodern,massively parallel architectures(due to the use of local real-space operations). This facilitates
the calculations of tens of thousands of polarizability tensors along ab initiomolecular dynamics(MD)
trajectories and thus enables the evaluation of anharmonic Raman spectra.We discuss how these spectra depend
on different functionals and proposeways to obtain them atminimal cost. Our ab initio spectra computed at
room temperature compare verywell with experimental data obtained at the same conditions.

The remainder of this paper is organized as follows. The fundamental PT framework is discussed forfinite
and extended periodic systems in sections 2 and 3, respectively. In section 4, a detailed derivation of the
respective equations and their implementation in a real-space, all-electron, numeric atom-centered orbitals
based framework is presented. In section 5, our approach and implementation is validated by comparing the
calculated analytical polarizabilities and dielectric constants to literature values or to ones computed via finite
differences. Furthermore, we discuss the convergence behavior of our implementation, the scalingwith system
size, and the parallel performancewhen a large number of cores is used.Wefinish in section 6 by applying the
developed formalism to compute harmonic and anharmonic Raman spectra for different polymorphs of the
paracetamol crystal.

2. Fundamental theoretical framework

Before addressing the implementation in the FHI-aims code, we recall the basic equations used in this work.
Throughout the text, we use a spin-unpolarized notation for the sake of simplicity, but a formal generalization to
a collinear (scalar) spin treatment is straightforward.Moreover, we focus on systemswith a non-vanishing
energy gap for electronic excitations, because electric fields inmetals are fully screened.Our numerical strategy
to deal with quasi-degenerate electronic states in non-metallic systems is discussed in section 4.3. In this section,
a detailed derivation of the equations forfinite,molecular systems is given; a generalization to extended periodic
solids follows in section 3.

InKohn–ShamDFT, the total energy functional is given by

E n T n E n E n E n E . 1KS s ext H xc nuc nuc= + + + + -[ ] [ ] [ ] [ ] [ ] ( )

Here, n(r) is the electron density, Ts the kinetic energy of non-interacting electrons, Eext the external energy due
to the electron-nuclear attraction, EH theHartree energy, Exc the exchange-correlation energy, and Enuc nuc- the
repulsion energy of the nuclei. The ground-state electron densityn r0( ) (and the associated ground-state total
energy) is obtained by variationallyminimizing equation (1) under the constraint that the number of electrons
Ne is conserved. This yields the chemical potential E nKSm d d= of the electrons and theKohn–Sham single
particle equations

h t v v v 2p p p pKS s ext H xc y y y= + + + =ˆ [ˆ ˆ ˆ ˆ ] ( )

for theKohn–ShamHamiltonianhKS
ˆ . In equation (2), tŝ denotes the kinetic energy operator, vextˆ the external

potential, vHˆ theHartree potential, and vxcˆ the exchange-correlation potential. Solving equation (2) yields the
Kohn–Sham single particle statesψp and their eigenenergiesòp. For a spin-unpolarized system, these states
determine the electron density via

n fr r , 3
p

p p
2å y=( ) ( )∣ ( )∣ ( )

whereby the occupation numbersf (òp) are chosen in such away that theNe/2 states with the lowest
eigenvaluesòp are doubly occupied.

To solve equation (2) in numerical implementations, the Kohn–Sham states are expanded in afinite basis
set r RIc -m m( )( ) as

Cr r R , 4p p Iåy c= -
m

m m m( ) ( ) ( )( )

with the expansion coefficientsCμp. The chosen notation highlights that in a numerical atom-centered basis set,
each basis functionμ is associated to an atomI(μ) situated atRI m( ). In such a basis set, equation (2) becomes a
generalized eigenvalue problem
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H C S C . 5p p på å=
n

mn n
n

mn n ( )

Using the bra-ket notation . .á ñ∣ for the inner product inHilbert space,Hμν denotes the elements hKSc cá ñm n∣ ˆ ∣ of
theHamiltonianmatrix and Sμν the elements c cá ñm n∣ of the overlapmatrix. Accordingly, the variationwith
respect to the density becomes aminimizationwith respect to the expansion coefficientsCνp

E E n Er min 1 , 6
C p

p p ptot
0

KS 0 KS
p

å y y= = - á ñ -
n

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥[ ( )] ( ∣ ) ( )

inwhich the eigenstatesψp are constrained to be orthonormal. Typically, the ground-state densityn r0( ) and the
associated total energyEtot are determined by solving equation (6) iteratively, until self-consistency is achieved.

If an external electric fieldE is applied to an isolated system, theKSHamiltonian gains an additional
termh r EE = -ˆ · . If this electric field e e eE , ,x y z= ( ) is a superposition of homogeneous electrical fields with

strengthseγ aligned along the different cartesian axesγ, the additional termhE
ˆ contributes

E n e r n r rd 7E òå= -
g

g g[ ] ( ) ( )

to the total energy functional in equation (1). A perturbative Taylor expansion of the total energy in the zero-
field limit then gives

E E e e eE
1

2
, 8tot tot

0

,
å åm a» + + +
g

g g
g d

gd g d ( ) ( )

where η, γ areCartesian directions. For isolated systems, the coefficient in the linear term

E n

e
n rr rd , 9

E

E 0

0

0òm =
¶
¶

= -g
g

g

=

[ ] ( ) ( )

which corresponds to the γ-component of the dipolemoment of the system in its ground-state, can be directly
evaluated at theDFT level of theory due to theHellmann–Feynman theorem.However, this is not possible for
the coefficient in the second-order term,i.e.,the polarizability

E n

e e e
r

n

e

r
rd , 10

E E E

2
E 0

0 0

0

0
òa

m
=

¶
¶ ¶

=
¶

¶
= -

¶
¶

gd
g d

g

d
g

d= = =

⎛
⎝⎜

⎞
⎠⎟

[ ] ( ) ( )

since the derivative (or response) of the ground-state density with respect to thefield strength is explicitly
required.More generally, this is formalizedwithin the n2 1+ rule [20], which states that second-order
derivatives of the total energy [21–23] cannot be directly calculated from the ground-state electron density or
wavefunction alone, but also require the respective first-order derivatives of the electron density or
wavefunction,i.e.,their linear response to the perturbation.We use PT to obtain the required derivatives. In
this formalism, the response to perturbations along different Cartesian axesγ can be treated independently viz.
subsequently, so that the short-hand notation

M
M

e

d

d
111

0

=
g

( )( )
( )

used in the following for ground-stateM(0) and response propertiesM(1) is always well-defined,e.g.,

n
n

e

n

e

d

d

d

d
. 121

0
0= =

g g
( )( )

( )

In this way, we can express the linear Taylor expansion of theKohn–ShamHamiltonian in the limit of vanishing
field along the γ-axis as:

h e h h e , 13KS KS
0

KS
1

» + +g g ˆ ( ) ˆ ˆ ( )
( ) ( )

where the response of theHamiltonian operator is

h v r v v r . 14KS
1

ext
1

H
1

xc
1= + + - g

ˆ ˆ ( ) ˆ ˆ ( )
( ) ( ) ( ) ( )

Introducing the analogous expansions

e e e e 15p p p p p p
0 1 0 1  y y y» + + » + +g g g g ( ) ( ) ( )( ) ( ) ( ) ( )

for the single particle statesψp(eγ) and their eigenvaluesòp(eγ), rearranging the linear-order terms in theKS
equation h e e e ep p pKS y y=g g g g

ˆ ( ) ( ) ( ) ( ), and applying the normalization condition e e 1p py yá ñ =g g( )∣ ( ) , yields
the Sternheimer equation

3
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h h , 16p p p pKS
0 0 1

KS
1 1 0 y y- ñ = - - ñ( ˆ )∣ ( ˆ )∣ ( )

( ) ( ) ( ) ( ) ( ) ( )

aswell as the condition

0. 17p p p p
1 0 0 1y y y yá ñ + á ñ =∣ ∣ ( )( ) ( ) ( ) ( )

Bymultiplying equation (16)with q
0yá ∣( ) from the left one obtains

h . 18q p q p q p p qp
0 0 0 1 0

KS
1 0 1  y y y y d- á ñ = - á ñ -( ) ∣ ( ∣ ˆ ∣ ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

To solve this equation numerically, we expand the response of thewave functions

U U Cr r r 19p
q

qp q
q

qp q

C

1 1 0 1 0

p
1

å å åy y c= =
m

m m

m

  
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( )

in terms of the unperturbed states rq
0y ( )( ) . Here, we choseU 0pp

1 =( ) for allp to fulfill equation (17) and hence
obtain an algebraic expression for equation (18)

U C C h . 20q p qp q p p qp
0 0 1 0 0

KS
1 1*  å c c d- = - á ñ +

mn
m n m n( ) ( ) ∣ ˆ ∣ ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

The expansion using thematrixUqp
1( ) employed in this work is typical for theCPSCF formulation [7–12] of PT.

For our implementation described in section 4, such an expansion in terms of orbitals is advantageous, since it
allows leveraging the already existing algorithms for themassively parallel evaluation ofmatrix elements in this

representation [13, 14, 16]. Accordingly, thematrix elementsH h1
KS

1
c c= á ñmn m n∣ ˆ ∣( ) ( )

are defined in the sameway as
for unperturbed calculations,i.e.,using the numeric atomic orbitals introduced in equation (4). This allows us
to directly compute the non-diagonal elements (q p¹ ) of

U
C H C

. 21qp

q p

p q

1

0 1 0

0 0

*

 

å
=

-
mn m mn n( )

( )( )
( ) ( ) ( )

( ) ( )

ThematrixUqp
1( ), which fulfillsU Uqp pq

1 1 *= -( )( ) ( ) , plays a central role in our implementation: As discussed in
detail in section 4, it allows us to directly determine the response of the density

n f 22
p

p p p p p
1 1 0 0 1å y y y y= +( )[ ] ( )( ) ( ) ( ) ( ) ( )

in a densitymatrix formalism,i.e.,without explicitly computing the response of the eigenvalues p
1 ( ), of the

wavefunction rp
1y ( )( ) , or its coefficientsC p

1
m
( ), which is computationally advantageous. UsingUqp

1( ), one can then
directly evaluate the polarizability tensorαγδ defined in equation (10) infinite, isolated systems. Let us note that
implementations of PT in planewave codes typically do not use the expansion in terms of orbitals defined in
equation (19) via theUqp

1( ) matrix, but rather compute the coefficientsC p
1
m
( ) by directly solving equation (18) in

the space spanned by theKS states using theDFPT formalism [3–6]. In such codes, inwhich thousands of
orbitals,i.e.,planewaves, need to be considered, theDFPT approach is advantageous.

3.Generalization to periodic solids

For periodic boundary conditions(PBCs), themain physical reasoning behind the derivation of equations (1)–
(22) still remains valid.However, three specific adaptations have to bemade:

First, the basis set expansion introduced in equation (4) is slightly different, as described in detail in
[13, 16, 24]: The periodic images of the nucleiR R RIm I m= + are accounted for by summing over the lattice
vectorsRm,i.e.,over linear combinations of the unit cell (u.c.) lattice vectorsa a a, ,1 2 3. Analogously, also the
numeric atomic orbitals associatedwith such periodic images,e.g., r r R Rm I mc c= - -m m m( ) ( )( ) associated
with the periodic imagem of nucleusRI , gain an additional indexm that describes their relative position to the
u.c. equivalent. To account for translational symmetry and exploit Bloch’s theorem, Bloch-like generalized basis
functions

k r r k R, exp i 23
m

m måj c= -m m( ) ( ) ( · ) ( )

are constructed from the local atomic orbitals and then used in the basis set expansion

Ck r k k r, , . 24p p
0 0åy j=

m
m m( ) ( ) ( ) ( )( ) ( )

4
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Accordingly, all relevant physical quantities such as theKSHamiltonian

H hk r r re d 25
m n

m n
k R R0

,

i

u.c.
KS

n m òå c c=mn m n
- -( ) ( ) ˆ ( ) ( )( ) ( )

gain an additional dependence on thewavevectork , so that equation (5) becomes

H C S Ck k k k k . 26p p p
0 0 0 0å å=

n
mn n

n
mn n( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

Therefore, the summations over electronic states appearing in equations (1)–(22)now feature an additional
analytical integration over the Brillouin zone that is approximated numerically by a sumover afinite k-gridwith
Nkpoints. Similarly, the real-space integrals in equations (1)–(22) are no longer indefinite, but definite and
limited to the u.c., as it is the case in equation (25).

Second, it is necessary to consider the screened electric fieldE D P4p= - in the solid, where D is the
electric displacement [25] and the polarization in the u.c. volumeV is given by [3, 6]:

P
V

r n r r
1

d . 27
u.c.

0ò= -g g ( ) ( )

The relationship between the components of the electric displacement and the screened field defines the high-
frequency dielectric constant [25]

D

E

P

E
4 , 28e d p=

¶
¶

= +
¶
¶gd

g

d
gd

g

d

¥ ( )

where η, γ areCartesian directions and δ is the Kronecker delta symbol. For a screened field e e eE , ,x y z= ( ) that
consists of a superposition of homogeneous electrical fields with strengthseγ aligned along the different
cartesian axesγ, one can follow the derivation given in the previous section to obtain

E n

e
r n VPr rd , 29

E

E 0

0
u.c.

0ò m
¶
¶

= - = 
g

g g g
=

[ ] ( ) ( )

E n

e e
r

n

e
V

P

e

r
rd . 30

E E E

2
E 0

0
u.c.

0

0 0
ò a

¶
¶ ¶

= -
¶
¶

=
¶
¶


g d

g
d

g

d
gd

= = =

⎛
⎝⎜

⎞
⎠⎟

[ ] ( ) ( )

A comparisonwith equations (9) and(10) reveals the formal relationship between the dipolesμγ and the
polarizabilitiesαγδ discussed in the previous section formolecules and the polarizationPγ,i.e.,a dipole density
[26], and its derivative with respect to the screened field in solids. For the sake of notational clarity, the
‘molecular’notationwithμγ andαγδ is used for the remainder of this paper.

Third, complications arise due to the fact that the superposition of homogeneous electric fieldsE is not
periodic, as alluded to in the introduction. As a consequence, the definite integral over the u.c. required to

determine theHamiltonian responseH k1
mn ( )( ) is ill-defined in PBCs, since hKS

1ˆ ( )
given in equation (14) contains

the position operatorrγ, which is itself ill-defined in this case. The same problem affects equation (30). In
reciprocal-space implementations, the Berry-phase formalism [4, 5, 21, 23, 27, 28] is typically themethod of
choice. A tutorial introduction to this approach can be found in [29]. In real-space implementations, the
position operator can be rewritten in a boundary-insensitive form [22] by exploiting the properties of the

commutator between theKSHamiltonian and the position operator h k r,KS
0

= -[ ˆ ( ) ]
( )

.With that, one gets the
well-known expression

h rk k k k k, 31q p q p
0 0 0

KS
0 0y y y yá  ñ = -á ñg g( )∣ ∣ ( ) ( )∣[ ˆ ( ) ]∣ ( ) ( )( ) ( ) ( ) ( ) ( )

rk k k k , 32p q q p
0 0 0 0  y y= - á ñg( ( ) ( )) ( )∣ ∣ ( ) ( )( ) ( ) ( ) ( )

that can be used to evaluate the non-diagonalmatrix elements (q p¹ )

rk k
k k

k k
. 33q p

q p

p q

0 0
0 0

0 0 
y y

y y
á ñ =

á  ñ

-
g

g( )∣ ∣ ( )
( )∣ ∣ ( )
( ) ( )

( )( ) ( )
( ) ( )

( ) ( )

Using equations (23) and(24)we obtain the representation

r
C C

Rk k k
k k

k k
k 34qp q p

q p

p q

0 0
0 0

0 0
0

*

 
åy yW = -á ñ = -

-
g

mn

m n
mn( ) ( )∣ ∣ ( )

( ( )) ( )
( ) ( )

( ) ( )( ) ( )
( ) ( )

( ) ( )
( )

with

R k r r re d . 35
mn

m n
k R R0 i

u.c.

n m òå c c= mn m g n
- -( ) ( ) ( ) ( )( ) ( )
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Wecan then recast the expectation valueH hk k kqp q p
1 0

KS
1 0y y= á ñ( ) ( )∣ ˆ ∣ ( )( ) ( ) ( ) ( ) appearing in equation (18):

h v r v v rk k k k k k 36q p q p q p
0

KS
1 0 0

ext
1

H
1

xc
1 0 0 0y y y y y yá ñ = á + + ñ - á ñg( )∣ ˆ ∣ ( ) ( )∣ ˆ ( ) ˆ ˆ ∣ ( ) ( )∣ ∣ ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

C C Vk k k k . 37q p qp
0 0 1*å= + W

mn
m n mn( ( )) ( ) ( ) ( ) ( )( ) ( ) ( )

Here, thematrix elementsV v r v vk k k1
ext

1
H

1
xc

1j j= á + + ñmn m n( ) ( )∣ ˆ ( ) ˆ ˆ ∣ ( )( ) ( ) ( ) ( ) can be directly evaluated as done in
equation (25)

V v r v vk r r re d , 38
m n

m n
k R R1

,

i

u.c.
ext

1
H

1
xc
1n m òå c c= + +mn m n

- -( ) ( )( ˆ ( ) ˆ ˆ ) ( ) ( )( ) ( ) ( ) ( ) ( )

since they only depend on lattice periodic operators. Now, thematrixU kqp
1 ( )( ) introduced in equation (21) is

computed as

U
C V C

k
k k k

k k

k

k k
. 39qp

q p

p q

qp

p q

1

0 1 0

0 0 0 0

*

   

å
=

-
+

W

-
mn m mn n

( )
( ( )) ( ) ( )

( ) ( )
( )

( ) ( )
( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )

Similarly, the polarizability tensor components appearing in equation (10) can be rewritten as
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using thematrix elements defined in equation (34). As explicitly highlighted in the notation, thematrixU kqp
1,d ( )( )

associatedwith a perturbation along theCartesian axisδ has to be used in this case, whereas thematrix kqpW g ( )( ) is
associatedwith a perturbation along theCartesian axisγ. Throughout the remainder of this work, themore
general formulation in terms of Bloch-functions kjm ( ) andwave vectorsk is used, since a simplification to
finite systems is straightforward.

4.Details of the implementation

Our implementation closely follows the flowchart shown in figure 1: After a ground-state DFT calculation (see
[13]) is completed, thematrix kqpW ( ) is computed. IfU k 0pq

1 =( )( ) is used as initial guess, one obtains

U k
k

k k
41qp

qp

p q

1
0 0 

=
W

-
( )

( )
( ) ( )

( )( )
( ) ( )

in the first iteration, which can then be fed back to the self-consistency loop to determine the first-order density
responsen r1 ( )( ) in a densitymatrix formalism(see section 4.1). As detailed in section 4.2, we then usen r1 ( )( ) to

compute the remaining, individual ingredients that enter hk kq p
0

KS
1 0y yá ñ( )∣ ˆ ∣ ( )( ) ( ) ( ) ,i.e.,thematrix

elementsV k1
mn ( )( ) defined in equation (38). The Sternheimer equation then provides a newmatrixU kqp

1 ( )( ) , as
discussed in section 4.3.We iteratively restart the PT loop using a Pulaymixer [30], until self-consistency is
reached,i.e.,until the changes in the response of the densitymatrixP 1( ) become smaller than a user-given
threshold. In the last step, the polarizability and the dielectric constant are computed, as discussed in section 4.4.
Atomic units are used in the complete workflow.

Both the ground-state densityn(0)(r) and the response of the densityn(1)(r) are periodic,i.e.,invariant
against translations

n n n nr R r r R r 42m m
0 0 1 1+ = + =( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

by a lattice vectorRm, as shown infigure 2. Accordingly, we can use the algorithms used in ground-state
calculations and discussed in detail in [13, 24] formany aspects of our implementation. In the following, we thus
mainly focus on the practical details that are specifically needed for the computation of the response to a
homogeneous electric field.
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4.1. Response of the electronic density
Tonumerically compute the electronic densityn r( ) in ground-state calculations [13], we use a densitymatrix
formalism

n Pr r r , 43
m n

m n m n
0

,
,

0 0 0å c c=
m n

m n m n( ) ( ) ( ) ( )( ) ( ) ( ) ( )

which is obtained by inserting equations (24) and(23) into equation (3). Hence, the densitymatrix is given by

P
N

f C Ck k k
1

e . 44m n
k o

o o o
k

k R R
,

0 i 0 0n m *å å=m n m n
- -

⎡
⎣⎢

⎤
⎦⎥( ( ))( ( )) ( ) ( )( ) ( ) ( ) ( )

Here, the chosen notation using the indexo highlights that the sumover all states only needs to be performed
over occupied states with f k 0o ¹( ( )) in practice. Similarly, the response of the electronic density can thus be
expressed as

n Pr r r 45
m n

m n m n
1

,
,

1 0 0å c c=
m n

m n m n( ) ( ) ( ) ( )( ) ( ) ( ) ( )

Figure 1. Flowchart for the calculation of the polarizability. Loops are performed over the different Cartesian coordinates and, in the
case of periodic boundary conditions, over thefinite k-grid.

Figure 2.Ground-state electronic densityn r0 ( )( ) and its responsen r1 ( )( ) to an electricfield, as exemplarily computed for an infinite,
periodicH2 chain.
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using the response of the densitymatrix given by

P
N
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In the sumover stateso, we express C k1 ( )( ) in terms ofU k1 ( )( ) via

C U C
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wherebywe split the sumoverq into two separate sums overo¢ andu. In practice, these two sums can then be
later evaluated by restricting the sumovero¢ to occupied and the sumoveru to unoccupied states, respectively.
Accordingly, also the sumovero appearing in equation (46) can be split into two double sums, one overo o, ¢
and one overo u, . For thefirst one, we obtain

f f
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which vanishes due toU Uk koo o o
1 1 *= -¢ ¢( ) ( ( ))( ) ( ) , see equation (39). For the second double sum,we obtain

f f
C U C C U C
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k k k k k k
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by switching the summation indicesu, o in the second term and usingU Uk kou uo
1 1 *= -( ) ( ( ))( ) ( ) , as done already

for equation (48). By thismeans, the response of the densitymatrix can bewritten as

P
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e f f C U Ck k k k k
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. 51m n
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In practice, the evaluation of equation (51) can thus be restricted to the double sumover occupiedo and
unoccupied statesu.

4.2. Response of theKohn–ShamHamiltonian

As discussed in section 3 for equation (37), the computation of hk kq p
0

KS
1 0y yá ñ( )∣ ˆ ∣ ( )( ) ( ) ( ) is split into different steps:

ThematricesR k0
mn ( )( ) and k0Wmn ( )( ) , which are defined in equations (34), (35) andwhich are required to

calculate rk kq p
0 0y yá - ñg( )∣ ∣ ( )( ) ( ) , are computed before the self-consistency loop, since they only depend on

unperturbed properties. The definite u.c. integral appearing in equation (35) is integrated on a real-space grid
using the formalisms described in [13, 14]. Conversely, thematrixV k1

mn ( )( ) , which is defined in equation (38) and
which is required to compute v r v vk kq p

0
ext

1
H

1
xc

1 0y yá + + ñ( )∣ ˆ ( ) ˆ ˆ ∣ ( )( ) ( ) ( ) ( ) ( ) , explicitly depends on the response of the

densityn r1 ( )( ) and thus needs to be updated each cycle. For that purpose, wefirst compute its ingredients on a
real-space grid,i.e.,the response of the electrostatic potentialsv rext

1ˆ ( )( ) and v rH
1ˆ ( )( ) aswell as the response of the

exchange-correlation potentialv rxc
1ˆ ( )( ) , as discussed below. Thematrix elementsV k1

mn ( )( ) are then again obtained
by performing the real-space u.c. integral appearing in equation (38)with the aforementioned techniques.

4.2.1. Response of the electrostatic potentials
As discussed in detail in [13, 16, 24], the electrostatic potential generated by the nuclei and the electrons is
computed in FHI-aims ground-state calculations using a scheme proposed byDelley [31]: The ground-state
densityn r0 ( )( ) is decomposed into two terms

n n nr r R r . 52
Im

Im Im
0 freeå d= - +( ) ( ) ( ) ( )( )

Thefirst termdescribes the density associatedwith a superposition of ‘free’,i.e.,completely isolated, spherically
symmetric atomsn rIm

free ( ) located at the positions of the nuclei and of their periodic imagesRIm. The potentials
ofn rIm

free ( ) and n rd ( ) are computed independently and then reassembled to get the full electrostatic potential that
enters the Kohn–Sham equations. For this purpose, n rd ( ) is further decomposed into atom-specificmultipoles,
the contributions of which are added up in an Ewald-like summation to account for long-range interactions, see
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[13, 24, 31]. Given that the density responsen r1 ( )( ) is also periodic in the perturbed case, seefigure 2, we can use
the exact same formalism to obtain the electrostatic potential associatedwith it. There is only one small
difference: In this case, the ‘free’, spherically symmetric atoms do not contribute to the associated electrostatic
potential at all.

4.2.2. Response of the exchange-correlation potential
In semi-local approximations, the exchange-correlation potentialv rxcˆ ( ) entering theKohn–ShamHamiltonian
in equation (2) is given by

v
E n

n
r

r

r
. 53xc

xc=
¶

¶
ˆ ( ) [ ( )]

( )
( )

Accordingly, its responsev rxc
1ˆ ( )( ) can be obtained via
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g
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( ) ( ) ( ) ( )( ) ( )

by integrating over the exchange-correlation kernel f r r,xc ¢( ),i.e.,the second functional derivative of the
exchange-correlation energyE n rxc [ ( )], and the density responsen r1 ¢( )( ) . For the local-density approxima-
tion(LDA) [32, 33] and the PBE functional [34, 35] in the generalized-gradient approximation(GGA), we have
implemented the standard expressions for f r r,xc ¢( ). Additionally,manymore exchange-correlation kernels are
accessible in our implementation via the Libxc library [36].

For isolated systems, we have also implemented the response of the exact-exchange potential. ForHartree–
Fock and hybrid functionals, an additional exchange term

V P
1

2
55HFX

1
,

,
,
1å c c c c= -m n

l s
l s m l n s[ ] ( ∣ ) ( )( ) ( )

needs to be added to the entriesH ,
1
m n
( ) of theHamiltonian responsematrix. Here, c c c cm l n s( ∣ ) is the two-

electron, four-indexCoulomb integral defined and discussed in [15, 37, 38] and P 1( ) is thefirst-order density
matrix defined in equation (51).

4.3. Stable evaluation of the expansionmatrixU k1 ( )( )

To computeU k1 ( )( ) , one can in principle just evaluate equation (39) as discussed in the beginning of section 4.
Thereby, only the entries

U C V Ck
k k
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associated to unoccupied–occupied(uo) orbital pairs need to be computed, since these are the only entries that
enter the response of the densitymatrixP 1( ), as shown and discussed for equation (51). Obviously, equation (56)
becomes numerically unstable when quasi-degenerate eigenvalues are present close to the Fermi energy F , since
the denominator k ko u

0 0 -( ) ( )( ) ( ) approaches zero in that case. In order to overcome this difficulty, we employ
a technique originally proposed by deGironcoli [6, 39] forDFPT-based lattice dynamics calculations inmetals.
We use a Fermi functionwith a small smearingwidthσ

e
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for the occupation numbersf (òo) andf (òu) appearing as difference in equation (51).We then pull this
differencef (òo)−f (òu) inside the evaluation ofUuo

1( ) and re-write the problematic prefactor in equation (56) as
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as detailed in [39]. This has virtually no influence in the regime k ko u  s- >( ) ( ) . For k ko u  s- ( ) ( ) , we
replace and evaluate the rewritten problematic factor by its analytic limit for u o  :
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This expression is alwaysfinite and therefore numerically stable, even in the case of vanishingly small energy
differences.
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4.4. Evaluation of polarizabilities
In the last step, we evaluate the polarizability by rewriting equation (40):

N
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In thefirst step, the use of k kqp pq*W = W( ) ( ) reduces the summands to a real part Re(), while in the second step
the same procedure as used to obtain equation (48) is applied. In this way, the double sum can be limited in
practice to only run over unoccupiedu and occupiedo states. The same strategy introduced for equation (58)
and discussed in the previous section can be applied to deal with quasi-degenerate eigenvalues here. Again, the
matrixU k1,d ( )( ) appearing in equation (62) is associatedwith a perturbation along theCartesian axisδ, while
the kW g ( )( ) matrix is associated to a perturbation along the axisγ.

5. Validation andperformance

To validate our implementationwe showhowour simulations convergewith respect to the numerical
parameters used in the calculation in section 5.1. Furthermore, we compare our PTpolarizabilities to those
obtained from finite differences in section 5.2. These tests are then extended to periodic systems in section 5.3.
The computational performance of the implementation is discussed in section 5.4.

5.1. Convergencewith respect to basis set size and k-point grid density
Weobserve that our calculated polarizability tensors aremost sensitive to the basis set size and the amount of k-
points used in the simulation, as shown below. All other numerical parameters either influence the results very
little or show a similar convergence behavior as in ground-stateDFT calculations.

First, we discuss the convergence of polarizabilities in our implementationwith respect to the basis set size
used for the expansion of theKohn–Sham states in equation (4). As an example, we use ethylene(C2H4), for
whichwe compute the three diagonal componentsαγγ of the polarizability tensor using LDA [32, 33]. In all
cases, the PT calculations were performed for the same geometry, i.e., the structure obtained by geometry
optimization(maximum residual force<10−4 eV 1-Å )with tight basis sets and numerical settings. TheC–C
bond of themolecule is oriented along theY-axis.

Figure 3 shows the absolute error in the diagonal components of the polarizability tensorwith increasing
basis set size. Here, aminimal basis includes exactly one basis function per electron; additional functions are
then added in groups, so-called tier 1, tier 2, etc, basis sets (see [13] formore details). The polarizabilities
converge slowlywith the basis set size infinitemolecular systems as ethylene: although getting qualitatively
correct results, themaximumabsolute(relative) error is for instance still 2.44a0

3 (11%) at a tier 2 level. Only at
the tier 3 level we get amaximumabsolute(relative) error of 0.23a0

3 (1%). For semi-infinite systems, the
dielectric constant, which is directly proportional to the polarizability as noted in equation (28), convergesmuch
faster with increasing basis set size, as also shown infigure 3 for bulk silicon. Even at a tier 1 level we essentially
achieve convergence with an absolute(relative) error of 0.007(0.05%).

Figure 3.Convergence behavior of the polarizabilitiesαxx,αyy,αzz of ethylene and of the high-frequency dielectric constant xxe¥ of
bulk silicon(16×16×16 k-points)with respect to the basis set size(see text).
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The slower convergence observed formolecular systems arises from the inhomogeneous distribution of the
localized basis sets in isolated systems. The standard basis sets in FHI-aims have been optimized to obtain
converged ground-state energies, but are not necessarily even-tempered for the calculation of polarizabilities,
which can create an imbalance in the extent of the polarization that is possible in different directions. One
possibility to improve convergence would be the construction of basis sets that are specifically tailored for the
calculation of polarizabilities, see for instance [40] for an example of basis sets adapted for polarizabilities [41],
for hyperpolarizabilities, or [17] formagnetic response properties. Alternatively, it is possible to include extra
basis functions in otherwise empty regions to span the spacemuchmore efficiently. As shownbelow, this allows
to reduce the computational cost by usingmuch smaller overall basis sets without sacrificing accuracy. The
difficult task in this procedure is to determine inwhich region of space the original basis sets are not sufficient, in
order to determinewhere to best place the extra basis functions. In general, the symmetries of themolecule are
helpful in this task and thus need to be considered aswell.We illustrate this procedure for the polarizabilities of
the C2H4molecule with LDA (see table 1). It is clear that the addition of 2 carbon-like ghost atoms (i.e. only the
tier 1 basis set of a carbon atom), whichwe positioned below and above themolecular plane on the bisection of
theC–C segment (see figure 4), significantly improves the convergence, almost to the level of tier 2, but at only
half the computing time. Please note that simply increasing the onset of the cutoff potential for the usual basis
sets in FHI-aims does not improve the performance of our results.

Finally, to study the sensitivity of the polarizability tensor on the k-point grid density in periodic systems, we
also use silicon as example. Figure 5 displays the convergence behavior with respect to the size of the reciprocal-
space k-mesh in the primitive Brillouin zone.We observe amaximumabsolute(relative) error of 0.12(0.15%)
when using 16×16×16 k-points with respect to the converged result. This convergence behavior is
comparable or slightly slower thanwhat is observed for the total energy.

5.2. Validation againstfinite differences
To validate our PT implementation, we also compared the obtained polarizabilities of 32 selectedmolecules to
the ones obtained via finite difference calculations, as detailed in the appendix. There, the details for each
individualmolecule can be found; here, this data is succinctly summarized in table 2, wherewe list themean
absolute percentage error(MAPE) and themean absolute error(MAE) for all testedmolecules. Overall, wefind
an excellent agreement between our implementation and the finite difference results.

5.3. Extended systems: high-frequency dielectric constant
In order to validate our implementation for extended systems, we have calculated the dielectric constant of
several semiconductors using the LDA[42] and theGGA(PBE [34, 35]) and compared it with experimental and

Table 1. Influence ofH- andC-like ‘ghost’ atoms on the diagonal elements of
the polarizability of C2H4, using light settings and LDA.Numbers in brackets
indicate themean polarizability.

Basis set Polarizability Time (s)

tier1 21.8 32.8 13.2 (22.6) 7.4

tier1+2H-ghosts 22.3 33.2 18.6 (24.7) 12.9

tier1+2C-ghosts 24.4 33.5 19.6 (25.8) 18.4

tier2 23.9 35.0 19.7 (26.2) 36.3

Figure 4. Sketch of theC2H4molecule and its two ghost atoms used to improve the convergence. Ghost atoms are pictured at the top
and bottomof themolecule from this perspective.
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theoretical data compiled from literature [1, 22], see table 3. All calculations have been performed at the
theoretical equilibrium lattice constant using 16×16×16k-points in the primitive u.c. and tight basis set and
integration settings. Also, we list LDA/GGA literature results obtained using a planewave basis set and norm-
conserving pseudopotentials(NCPP) [1, 22] or the projector augmentedwavemethod (PAW [43, 44]).With
respect to experiment, we note that all LDA andGGA calculations overestimate the electronic dielectric constant
by roughly10%due to thewell-known fact that these functionals yield too small band gaps [22, 45].

With respect to theoretical results, themost recent literature data computedwith the PAWmethod (LDA
[43]; PBE [44]) is in excellent agreementwith our implementation. Slightly larger deviations are observedwith
respect to earlier calculations that rely onNCPPs: the agreement is generally better with literature results

Table 2.Mean absolute error (MAE) and
mean absolute percentage error (MAPE) for
the difference between the polarizabilities
obtained via PT andfinite differences(FD)
for a set of 16 dimers, 5 trimers, and 11
molecules. All calculations are performed at
the LDA level of theorywith fully converged
numerical settings and relaxed geometries.
Detailed informations including the values
for each individualmolecule can be found in
the appendix.

FD PTa a-∣ ∣ MAE (a0
3) MAPE

Dimers 0.0004 0.0007%

Trimers 0.0002 0.001%

Molecules 0.0002 0.0008%

Table 3.Comparison of the high-frequency dielectric constants of various semiconductors
computed at the LDA/PBE level with literature values: tight-default settings and basis sets as well
as a 16×16×16 k-pointmesh are used.

Exp. [46–50]

Thiswork

(all-electron)
NCPP NCPP PAW PAW

1991 1996 2006 2016

[22] [1] [43] [44]
LDA PBE LDA PBE

Si 12.1 13.2 12.9 13.6 — 13.3 13.1

AlP 7.5 8.4 8.2 — 8.2 8.3 8.1

AlAs 8.2 9.5 9.5 9.2 9.3 — 9.5

AlSb 10.24 11.7 11.9 12.2 11.4 — 12.1

GaP 9.0 10.6 10.6 — 10.0 — 10.6

GaSb 14.44 16.0 15.5 18.1 16.7 — —

Figure 5.Convergence of the diagonal components of the high-frequency dielectric constant xxe¥ of bulk siliconwith respect to the k-
point density. The size of the k-grid isNk×Nk×Nk.Tight grid settings and tier 2 as well as tier 3 basis sets are used. The benchmark
value is calculated usingNk=24.
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obtained using nonlinear core corrections [51, 52]. For instance, this can be observed forGaSb: thework ofDal
Corso et al [1]made use of nonlinear core corrections, but not the earlier one ofGiannozzi et al [22]. For the
latter work, the use of a smaller k-point gridmay also be partially responsible for the observed deviations.

5.4. Performance and scaling of the implementation
Todemonstrate the performance and scaling of our implementation, we show timings for theH(C2H4)nH
molecules with variable n=8–128 and diamond. In the latter case, different supercell sizes were considered by
increasing the number of building units in the u.c. from(C2)32 to (C2)512. All calculations use light settings and
the LDA functional. Only theΓ point is considered in the periodic case. Calculationswere performed on a single
node featuring two Intel Xeon E5-2698v3CPUs(32 cores) and 4Gbof RAMper core.

For the timings shown infigure 6 (molecules), wefind that the integration of theHamiltonian response
matrixH k1 ( )( ) determines the computational time for small system sizes,i.e.,for less than 200 atoms. Like for
the update of the response densityn(1), which involves similar numerical operations, wefind a scaling of
nearlyO(N) for this step(see table 4), as it is the case in ground-stateDFT calculations [13]. For very large
system sizes(N?1000), the update of the response densitymatrixP 1( ) becomes dominant, since it scales
withO(N2.5) in this regime. As discussed in section 4, the computation ofP 1( ) requiresmatrixmultiplication
operations, which traditionally scaleO(N3). For bulk diamondwe find a similar behavior and fit similar
exponents, as shown infigure 6 and table 4 aswell.We note that the prefactors to these timings are higher for
dense 3D systems than for 1D systems and that they also are systemdependent. Our real-space PT
implementation thus exhibits a similar scaling as the underlyingDFT calculations, as it is generally the case for
DFPT/CPSCF codes.

In summary, we find an overall scaling behavior that is always smaller thanO(N2) for the investigated system
sizes both in themolecular and the periodic case. Note that a parallelization over cores is already part of the
presented implementation, given that the discussed real-space formalism closely follows the strategies used for
the parallelization of ground-state DFT calculations in FHI-aims [13, 14]. As shown infigure 7 for a u.c. of the
paracetamol crystal containing 160 atoms, almost ideal scaling is achieved for the time per PT iterationwhen

Figure 6.H(C2H4)nHmolecules: CPU time per PT cycle required forfiniteH(C2H4)nHmolecules(left) and periodic diamond(right)
as a function of the number of atoms(diamond: in the unit cell) on 32 cores(see text). Following theflowchart infigure 1, also the
timings required for the computation of the individual responses,i.e.,the ones of the density n r1 ( )( ) , of theHamiltonianmatrix
H k1 ( )( ) , and of the densitymatrixP(1), are given.

Table 4. FittedCPU time exponentsα for
theH(C2H4)nHmolecules (n=8–128)
and the periodic diamond discussed in the
text. The fits were performed using the
expressiont=c Nα for the CPU time as
function of the number of atomsN.

H(C2H4)nH Diamond

n r1 ( )( ) 1.1 1.4

H k1 ( )( ) 1.4 1.5

P 1( ) 2.5 2.6

Total 1.3 1.4
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different number of CPU-cores(same specifications as in the previous tests) are used. Still, it is very gratifying to
see that even quite extended systemswithmore than 100 atoms in the u.c. are in principle treatable within the
relativelymoderate CPU andmemory resources offered by a single state-of-the-art workstation.

6. Application: harmonic and anharmonic Raman spectra

In order to showcase the usefulness and efficiency of our implementation, we calculate the non-resonant Raman
spectra of paracetamol in itsmolecular form, as well as in its first (monoclinic) and second (orthorhombic)
crystalline polymorph.More specifically, wewish to investigate the impact of anharmonicities on these spectra,
due to their acknowledged importance inH-bonded, flexible systems [18, 53, 54]. Focusing onmolecular
crystals, which often exist inmultiple competing polymorphswith very different physicochemical properties,
makes it necessary to have an accurate and efficientmodel to characterize such structures. Taking into account
anharmonicities in the computation of Raman spectra is of crucial importance, as has already been proven in the
past, for example for the characterization of phase transitions in high-pressure ice [18].

Vibrational Raman spectra are typically computed in the harmonic approximation, where the Raman
intensities are proportional to the derivatives of the polarizability with respect to atomic displacements, as
detailed, for example, in [55, 56]. In this work, we calculate these harmonic Raman intensities through finite
differences by numerically computing the derivatives of the polarizability tensor viafinite displacements of the
nuclear coordinates. These displacements are performed in the u.c., since only phonons at theΓ point of the
lattice contribute to theRaman intensity. Additionally, we also compute anharmonicRaman spectra through the
calculation of polarizability autocorrelation functions in thermodynamic equilibrium.We simulate the nuclear
dynamics using ab initioMDand compute the polarizabilities along these trajectories via PT. As explained in,
e.g., [57], the polarizability tensora can be divided into an isotropic ā, and an anisotropic component b,
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Here,N is again the number of atoms in the system. Furthermore, since the autocorrelation functionsá ñ· are
computed classically, a quantum correction factor is usually applied. Due to the fact that the classical correlation

Figure 7. Scaling of theCPU time per PT cyclewith the number of cores(parallel scalability) for the paracetamol crystal (form II)
containing 160 atoms in the unit cell.Tier 1 basis sets and a 2×2×2 k-grid are used. The time required for the computation of the
individual response properties is also shown.
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function better approximates theKubo transformof the quantumautocorrelation function, wemultiply I(ω) in
equation (64) by 1 e b w - b w-( ), where k T1 Bb = [58]. Further frequency-dependent factors thatmultiply
the vibrational Raman lineshapes are experiment-dependent [59–61]. Here, we normalized experimental and
theoretical spectra by their areas for comparison. AllMD trajectories used in this paper have been obtained using
the PBE functional in combinationwithmany-body van derWaals interactions [62] (PBE+MBD), which have
been previously shown to play an important role for the accurate assessment of potential-energy surfaces(PES)
and free energies ofmolecular crystals [19, 53, 63, 64].

Wefirst analyze the sensitivity of the harmonic Raman intensities of the paracetamolmolecule to the
employed exchange-correlation functional. Infigure 8, the PES is always treated at the PBE+MBD level, but
different functionals are used to calculate the polarizabilities.We observe that the Raman spectra are essentially
insensitive to the choice of xc-functional(LDA, PBE, and hybrid functional PBE0) used in the PTpart. This is
due to the fact that themagnitude of the Raman peaks are proportional to the polarizability derivatives with
respect to atomic displacements and these derivatives are very similar in all functionals. Since evaluating the
polarizabilities at the PBE0 level is four timesmore expensive thanwith LDA,we can decrease the cost of these
simulationswithout sacrificing accuracy by evaluating the PTportion at the LDA level.

Conversely, the xc-functional chosen for the assessment of the PES has a large impact on the position of the
peaks. Infigure 9, we highlight this fact by showing the harmonic Raman spectra of the paracetamolmolecule
obtained using the LDA xc-functional for the polarizabilities, but different xc-functionals for the PES(energy
and forces including full geometry relaxation). Switching fromLDA to PBE (or to PBE0) for probing the PES
results in noticeable changes in the harmonic Raman spectrum, as can be seen from the shifts in the peak
positions.We also note that themain differences introduced byHartree–Fock exchange in the spectrum are
rigid blueshifts of the peak positions, especially above 1000 cm−1, whichmeans that these vibrationalmodes
becomemore stiff [65, 66].

Infigures 10(a) and (b), we showour calculated harmonic and anharmonic Raman spectra for the isolated
paracetamolmolecule and the paracetamol crystal in itsmonoclinic form I. For themolecule, we show
anharmonic spectra obtained from an ab initioMDtrajectory at 300Kwith classical nuclei and also spectra
obtained from a thermostatted ring polymerMD trajectory at 300K,which accounts for quantum-nuclear
effects in the dynamics [67, 68].We have used 16 replicas of the system and the generalized-Langevin equation
thermostat proposed in [68] for the internalmodes of the ring polymer.While the general shape of the harmonic
and anharmonic spectra are similar(both for themolecule and the crystal), several peaks are shiftedwith respect
to one another and feature different relativemagnitudes, which substantiates the importance of anharmonic
effects. In themolecular case, nuclear quantum effects induce a redshift (with respect to the anharmonic classical
spectrum) of about 70–100 cm−1 in the high-frequency range. The effect ismuch less pronounced in the lower
frequency regions, as expected [66]. In the crystal, the lineshapes of the harmonic and anharmonic
approximations are quite different, which highlights the fact that in our anharmonic spectrumwe are able to
capture the Raman peak lifetimes, while in the harmonic approximationwe are simply convoluting theRaman
intensities withGaussian functions of afixedwidth (and not explicitly calculating lifetimes). For periodic and
condensed phase systems, we have previously shown [68–70] that nuclear quantum effects would have a similar
impact on the spectrum as for themolecular case. Forwater at room temperature for instance, theOH-stretch
peaks are red-shifted by 150 cm−1 solely due to nuclear quantum effects [68, 70].

Figure 8.Harmonic Raman spectrumof the paracetamolmolecule: the notationXX/YYdenotes that the PES(energy and forces)
were calculatedwith theXX functional, while the YY functional was used for the polarizabilities in the PTpart. In thisfigure, the PES is
always obtained at the PBE+MBD level, while different functionals are used for the polarizabilities.Tight settings and basis sets were
used and the calculated (finite difference)Raman intensities were convolutedwith aGaussian function offixedwidth for better
visualization. Computational time required for each simulation is also denoted.
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In order to further evaluate the quality of our simulationswe turn to a comparison to experimental data:
figure 11 shows our computed anharmonic Raman spectra for polymorphs I and II of the paracetamol crystal,
respectively, compared to experimental spectra from literature. Both spectra were calculated from2
independentMD runs of 15 picoseconds each. A time step of 0.5 femtosecondwas used and the polarizability
was computed every femtosecond.Our results show a very good agreementwith experiment, especially in terms
of lineshapes for both crystalline forms. As previously discussed in literature and above, the observed rigid shifts
between experimental and theoretical spectra originate from the choice of functional and the lack of nuclear
quantum effects in the simulations. Employing a higher-level hybrid functional can be estimated to lead to
blueshifts of up to 180 cm−1 for frequencies above 3000 cm−1 (see figure 9), while considering the quantum
nature of the nuclei would redshift these frequencies by up to 150cm−1 at high frequencies, as discussed above.
To some extent, these effects hence cancel each other and are less pronounced at lower frequencies, which
explains the good agreement observed in the 600–1800 cm−1 region between calculated and experimental
spectra.However, the calculated spectra are still blue-shiftedwith respect to experiment above 2500 cm−1, even
though lineshapes are well reproduced. The inclusion of nuclear quantum effects in the simulationwouldmost
likely solve this discrepancy, but the cost of such a simulationwould be prohibitive at this point.

It is interesting to note that experimental spectramay sometimes differ slightly fromone another aswell.
These differences are noticeable in the relative intensities of peaks or appearance/disappearance of low-intensity
peaks [71–74]. These differences reflect the difficulty to control the experimental setup for awide range of
frequencies and to synthesize a pure sample especially in the case of those polymorphic crystals, which undergo
phase transitions under specific thermodynamic conditions. In particular, as explained in [72], the
crystallization of paracetamol in form II is often not perfect, as some traces ofmetacetamolmay remain present,
leading to partiallymixedRaman spectra.

7. Conclusions

In this paper, we derived and implemented a real-space formulation of PT for homogeneous electric fields
within an all-electron, numeric atom-centered orbitals DFT framework.We validated the approach by
computing polarizabilities (and dielectric constants) ofmolecules and solids. In particular, we have shown that

Figure 9.Harmonic Raman spectrumof the paracetamolmolecule: The notationXX/YYdenotes that the PES(energy and forces)
were calculatedwith theXX functional, while the YY functional was used for the polarizabilities in the PTpart. In thisfigure, the
polarizabilities are always obtained at the LDA level, while different functionals are used for the PES.Tight settings and basis sets were
used and the calculated (finite difference)Raman intensities were convolutedwith aGaussian function offixedwidth for better
visualization.
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these calculations can be systematically convergedwith respect to the numerical parameters used in the
computation. Due to the slow convergence of polarizabilities with respect to the basis set size for isolated
systems, we propose a simple solution based on the addition of so-called ‘ghost’ atoms (i.e. only basis functions)
in parts of space that are not densely populated. Also, we showhow to stabilize our implementation for
situationswhere small differences between occupied and unoccupied eigenvalues are present, arriving at a
formulationwhich proved always stable. The scaling behavior of our implementation for the calculation of
polarizabilities is betweenO(N) andO(N2) for both non-periodic(O(N1.3)) and periodic systems(O(N1.4)). In
order to reduce the total time toO(N), more advanced algorithms [11, 12] for the evaluation of the density
matrix response P 1( ) could be pursued in the future.

We have tested our approach for the computation of dielectric constants by comparing theoretical and
experimental literature data for a variety of semiconductors, obtaining very good agreement. To highlight the
power of our PT implementation, we applied it to the calculation of anharmonic Raman spectra of the isolated
molecule of paracetamol, as well as two of its polymorphic crystal forms, which involved the computation of
hundreds of thousands of polarizability tensors in order to build the time series.We obtained good agreement
with experiment in all cases especially for the lineshapes, which highlights the power of ab initioMDto capture
anharmonic phonon frequencies and lifetimes, as well as the respectivematerial properties [75]. Regarding the
calculated peak positions, we observe blueshifts in theNHandCH stretching regions that stem from the lack of
nuclear quantum effects in theMD simulations, as we explicitly show for the isolatedmolecule.We also found
that these spectra are very sensitive to the xc-functional employed for the assessment of the PES, but that they are
rather insensitive to the xc-functional employed for the calculation of the polarizabilities. In fact, we obtain
correct spectra in a computationally efficientmanner by using the LDA functional for the polarizability tensors,
but the PBE functional withmany-body van derWaals corrections for the PES.We have shown that having such
an efficient implementation that gives access to anharmonic Raman signals will be extremely useful for the

Figure 10.Comparison of harmonic and anharmonic (300K)Raman spectra of (a) the paracetamolmolecule, and (b) the paracetamol
crystal (form I). In (a)we also show a spectrumobtained from thermostatted ring polymermolecular dynamics (TRPMD), which
accounts for the quantumnature of the nuclei. In all cases, the PESwas probedwith the PBE+MBD functional, while the
polarizabilities were calculatedwith the LDA functional. Harmonic Raman intensities were convolutedwithGaussian functions for
better visualization.
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analysis of experimental Raman spectra, which are often used to characterize new polymorphic forms of
(molecular) crystals.

The data presented in this work aswell as the input and outputfiles used to produce it are publicly available
as a dataset [76] on theNOMADRepository.
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Appendix. Validation of the polarizability tensor formolecules

To validate our implementation for isolated systems, we compared the PTpolarizabilities of 16dimers(see
table A1), 5trimers(see table A2), and 11molecules(see table A3)with those obtained byfinite differences. In
the latter case, the polarizability tensorswere calculated using afinite, external electric field perturbation
of±0.01 VÅ−1. All calculations were performed for fully relaxed geometries(remainingmaximum force
components smaller than 10−4 eVÅ−1) at the LDA level of theory using tier 2 basis sets and really tight defaults
for all other numerical parameters such as integration grids. In all cases, we find that the observed deviations
between the polarizabilities obtained via PT and via finite differences are orders ofmagnitude smaller than the
polarizabilities themselves, as also substantiated by the respectiveMAEs andMAPEs given in tables A1–A3.

Figure 11.Raman spectra of paracetamol-form I (top) and II (bottom) calculated at 300K. Experiment from [71] at room
temperature. The spectra have been normalized to one in each panel.
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Table A1.Polarizability tensor elementsαii for 16 dimers, as
computedwith the presented PT implementation at the LDA level of
theory. Additionally, absolute errors(AE) and absolute percentage
errors(APE)with respect to finite difference calculations are given.
Please note that these errors are several orders ofmagnitude smaller
than the relevant digits inαii.

PT(a0
3) AE·103 (a0

3) APE·103 (%)

Cl2 xxa 24.123 0.07 0.29

αyy 24.123 0.07 0.29

αzz 41.309 0.10 0.24

ClF αxx 15.927 0.05 0.31

αyy 15.927 0.05 0.31

αzz 22.292 0.06 0.27

CO αxx 11.656 0.00 0.00

αyy 11.656 0.00 0.00

αzz 15.493 0.01 0.06

CS αxx 22.239 0.03 0.13

αyy 22.239 0.03 0.13

αzz 37.652 0.07 0.19

F2 αxx 6.170 0.11 1.78

αyy 6.170 0.11 1.78

αzz 11.684 0.16 1.37

H2 αxx 3.902 0.01 0.26

αyy 3.902 0.01 0.26

αzz 7.532 0.03 0.40

HCl αxx 16.815 0.00 0.00

αyy 16.815 0.00 0.00

αzz 18.868 0.05 0.26

HF αxx 4.964 0.08 1.61

αyy 4.964 0.08 1.61

αzz 6.410 0.08 1.25

Li2 αxx 120.631 1.16 0.96

αyy 120.631 1.16 0.96

αzz 231.987 3.83 1.65

LiF αxx 11.162 0.19 1.70

αyy 11.162 0.19 1.70

αzz 11.064 0.06 0.54

LiH αxx 29.868 0.43 1.44

αyy 29.868 0.43 1.44

αzz 30.634 0.97 3.17

N2 αxx 9.923 0.04 0.40

αyy 9.923 0.04 0.40

αzz 15.033 0.14 0.93

Na2 αxx 121.132 0.58 0.48

αyy 121.132 0.58 0.48

αzz 283.915 7.22 2.54

NaCl αxx 28.156 0.22 0.78

αyy 28.156 0.22 0.78

αzz 40.558 0.00 0.00

P2 αxx 34.724 0.02 0.06

αyy 34.724 0.02 0.06

αzz 67.280 0.09 0.13

SiO αxx 24.570 0.40 1.63

αyy 24.570 0.40 1.63

αzz 34.021 0.13 0.38

Mean 0.41 0.77
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Table A2.Polarizability tensor elementsαii forfive trimers, as
computedwith the presented PT implementation at the LDA level of
theory. Additionally, absolute errors(AE) and absolute percentage
errors(APE)with respect to finite difference calculations are given.
Please note that these errors are several orders ofmagnitude smaller
than the relevant digits inαii.

PT(a0
3) AE·103 (a0

3) APE·103 (%)

CO2 αxx 12.041 0.14 1.16

αyy 12.041 0.14 1.16

αzz 26.559 0.23 0.87

H2O αxx 8.576 0.06 0.70

αyy 9.795 0.11 1.12

αzz 9.191 0.03 0.33

HCN αxx 13.101 0.08 0.61

αyy 13.101 0.08 0.61

αzz 23.102 1.88 8.14

SH2 αxx 23.169 0.03 0.13

αyy 24.109 0.24 1.00

αzz 24.052 0.04 0.17

SO2 αxx 18.869 0.03 0.16

αyy 33.634 0.05 0.15

αzz 22.710 0.01 0.04

Mean 0.21 1.09%

Table A3.Polarizability tensor elementsαii for elevenmolecules, as
computedwith the presented PT implementation at the LDA level of
theory. Additionally, absolute errors(AE) and absolute percentage
errors(APE)with respect tofinite difference calculations are given.
Please note that these errors are several orders ofmagnitude smaller than
the relevant digits inαii.

PT (a0
3) AE·103 (a0

3) APE·103 (%)

C2H2 αxx 16.323 0.09 0.55
αyy 16.323 0.09 0.55

αzz 31.802 0.22 0.69
C2H4 αxx 20.208 0.10 0.49

αyy 24.666 0.34 1.38
αzz 35.705 0.11 0.31

CH3Cl αxx 26.327 0.02 0.08
αyy 26.327 0.03 0.11

αzz 35.999 0.10 0.28
CH4 αxx 16.974 0.62 3.65

αyy 16.974 0.62 3.65
αzz 16.974 0.62 3.65

H2CO αxx 11.993 0.04 0.33
αyy 18.333 0.09 0.49

αzz 23.032 0.11 0.48
H2O2 αxx 13.596 0.12 0.88

αyy 17.595 0.17 0.97

αzz 12.362 0.13 1.05
N2H4 αxx 20.997 0.08 0.38

αyy 25.882 0.07 0.27
αzz 21.209 0.07 0.33

NH3 αxx 13.339 0.02 0.15
αyy 13.339 0.00 0.00

αzz 14.608 0.07 0.48
PH3 αxx 30.003 0.70 2.33

αyy 30.003 0.70 2.33
αzz 31.116 0.01 0.03

Si2H6 αxx 57.444 0.20 0.35
αyy 57.444 0.23 0.40

αzz 77.035 0.36 0.47
SiH4 αxx 31.967 0.14 0.44

αyy 31.967 0.14 0.44
αzz 31.967 0.14 0.44

Mean 0.20 0.86
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Please note that even the largest observed absolute error(0.001 8 a0
3 forHCN) corresponds to a very small

relative error of only∼0.008%.
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