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Metastability-Containing Circuits

Stephan Friedrichs, Matthias Fugger*, and Christoph Lenzen

Abstract—In digital circuits, metastability can cause deteriorated signals that neither are logical 0 nor logical 1, breaking the
abstraction of Boolean logic. Synchronizers, the only traditional countermeasure, exponentially decrease the odds of maintained
metastability over time. We propose a fundamentally different approach: It is possible to deterministically contain metastability by
fine-grained logical masking so that it cannot infect the entire circuit. At the heart of our approach lies a time- and value-discrete model
for metastability in synchronous clocked digital circuits, in which metastability is propagated in a worst-case fashion. The proposed
model permits positive results and passes the test of reproducing Marino’s impossibility results. We fully classify which functions can be
computed by circuits with standard registers. Regarding masking registers, we show that more functions become computable with each
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clock cycle, and that masking registers permit exponentially smaller circuits for some tasks. Demonstrating the applicability of our
approach, we present the first fault-tolerant distributed clock synchronization algorithm that deterministically guarantees correct
behavior in the presence of metastability. As a consequence, clock domains can be synchronized without using synchronizers,

enabling metastability-free communication between them.

Index Terms—Metastability, metastability-containment, logical masking, masking register, clock synchronization

1 INTRODUCTION

A classic image invoked to explain metastability is a ball
“resting” on the peak of a steep mountain. In this
unstable equilibrium the tiniest displacement exponentially
self-amplifies, and the ball drops into a valley. While for Sis-
yphus metastability admits some nanoseconds of respite, it
fundamentally disrupts operation in VLSI circuits by break-
ing the abstraction of Boolean logic.

In digital circuits, every bistable storage element can
become metastable. Metastability refers to volatile states that
usually involve an internal voltage strictly between logical 0
and 1. A metastable storage element can output deteriorated
signals, e.g., voltages stuck between logical 0 and logical 1,
oscillations, late or unclean transitions, or otherwise unspec-
ified behavior. Such deteriorated signals may violate timing
constraints or input specifications of gates and further stor-
age elements. Hence, deteriorated signals may spread
through combinational logic and drive further bistables into
metastability. While metastability refers to a state of a bista-
ble, we refer to the above mentioned deteriorated signals as
“metastable” for the sake of exposition.

Unfortunately, any way of reading a signal from an
unsynchronized clock domain or performing an analog-to-
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digital or time-to-digital conversion incurs the risk of a
metastable result; no physical implementation of a non-triv-
ial digital circuit can deterministically avoid, resolve, or
detect metastability [1].

Traditionally, the only countermeasure is to write a
potentially metastable signal into a synchronizer [2], [3], [4],
[5], [6], [7] and wait. Synchronizers exponentially decrease
the odds of maintained metastability over time [6], [7], [8]:
In this unstable equilibrium the tiniest displacement expo-
nentially self-amplifies and the bistable resolves metastabil-
ity. Put differently, the waiting time determines the
probability to resolve to logical 0 or 1. Accordingly, this
approach delays subsequent computations and does not
guarantee success.

We propose a fundamentally different approach: It is
possible to contain metastability by fine-grained logical
masking so that it cannot infect the entire circuit. This tech-
nique guarantees a limited degree of metastability in—and
uncertainty about—the output. At the heart of our approach
lies a model for metastability in synchronous clocked digital
circuits. Metastability is propagated in a worst-case fashion,
allowing to derive deterministic guarantees, without and
unlike synchronizers.

The Challenge. The problem with metastability is that it
fundamentally disrupts operation in VLSI circuits by break-
ing the abstraction of Boolean logic: A metastable signal can
neither be viewed as being logical 0 or 1. In particular, a
metastable signal is not a random bit, and does not behave
like an unknown but fixed Boolean signal. As an example,
the circuit that computes -~z V x using a Not and a binary
Or gate may output an arbitrary signal value if « is metasta-
ble: 0, 1, or again a metastable signal. Note that this is not
the case for unknown, but Boolean, x. The ability of such
signals to “infect” an entire circuit poses a severe challenge.

The Status Quo. The fact that metastability cannot be
avoided, resolved or detected, the hazard of infecting entire

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/


https://orcid.org/0000-0001-5765-0301
https://orcid.org/0000-0001-5765-0301
https://orcid.org/0000-0001-5765-0301
https://orcid.org/0000-0001-5765-0301
https://orcid.org/0000-0001-5765-0301
https://orcid.org/0000-0002-3290-0674
https://orcid.org/0000-0002-3290-0674
https://orcid.org/0000-0002-3290-0674
https://orcid.org/0000-0002-3290-0674
https://orcid.org/0000-0002-3290-0674
mailto:
mailto:
mailto:

1168

circuits, and the unpleasant property of breaking the
abstraction of Boolean logic have led to the predominant
belief that waiting—using well-designed synchronizers—
essentially is the only method of coping with the threat of
metastability: Whenever a signal is potentially metastable,
e.g., when it is communicated across a clock boundary, its
value is written to a synchronizer. After a predefined time,
the synchronizer output is assumed to have stabilized to
logical 0 or 1, and the computation is carried out in classical
Boolean logic. In essence, this approach trades synchroniza-
tion delay for increased reliability; it does, however, not
provide deterministic guarantees.

Relevance. VLSI circuits grow in complexity and operating
frequency, leading to a growing number unsynchronized
clock domains, technology becomes smaller, and the operat-
ing voltage is decreased to save power [9]. These trends
increase the risk of metastable upsets. Treating these risks in
the traditional way—by adding synchronizer stages—
increases synchronization delays and thus is counterproduc-
tive w.r.t. the desire for faster systems. Hence, we urgently
need alternative techniques to reliably handle metastability
in both mission-critical and day-to-day systems.

Our Approach. We challenge the point of view that syn-
chronizers are the only solution to metastability and exploit
that logical masking provides some leverage. If, e.g., one
input of a NaND gate is stable 0, its output remains 1 even if
its other input is arbitrarily deteriorated. This is owed to the
way gates are implemented in CMOS logic and to transistor
behavior under intermediate input voltage levels.

We conclude that it is possible to contain metastability to
a limited part of the circuit instead of attempting to resolve,
detect, or avoid it altogether. Given Marino’s result [1], this
is surprising, but not a contradiction. More concretely, we
show that a variety of operations can be performed in the
presence of a limited degree of metastability in the input,
maintaining an according guarantee on the output.

As an example, recall that in Binary Reflected Gray Code
(BRGC) z and z + 1 always only differ in exactly one bit;
each upcount flips one bit. Suppose Analog-to-Digital Con-
verters (ADCs) output BRGC but, due to their analog input,
a possibly metastable bit u decides whether to output = or
x4+ 1. As x and = + 1 only differ in a single bit, this bit is the
only one that may become metastable in an appropriate
implementation. Hence, all possible stabilizations are in
{z,z +1}, we refer to this as precision-1. Among other
things, we show that it is possible to sort such inputs in a
way that the output still has precision-1.

We assume worst-case metastability propagation and
still are able to guarantee correct results. This opens up an
alternative to the classic approach of postponing the actual
computation by first using synchronizers. Advantages over
synchronizers are:

(1) No time is lost waiting for (possible) stabilization.
This permits fast response times as, e.g., useful for
high-frequency clock synchronization in hardware,
see Section 9. Note that this removes synchronization
delay from the list of fundamental limits to the oper-
ating frequency.

(2) Correctness is guaranteed deterministically instead
of probabilistically.
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Fig. 1. The separation of concerns (analog — digital metastability-con-
taining — analog) for fault-tolerant clock synchronization in hardware.

(3) Stabilization can, but is not required to, happen
“during” the computation, i.e., synchronization and
calculation happen simultaneously. In [10] our
approach has been applied to a Network-on-Chip
router: the authors replaced the synchronizers in the
receive circuit and replaced it with a metastability-
containing state machine implementation, resulting
in lower packet delivery time.

Separation of Concerns. Clearly, the impossibility of resolv-
ing metastability still holds; metastability may still occur,
even if it is contained. Hence, a separation of concerns, com-
pare Fig. 1, is key to our approach.

For the purpose of illustration, consider a hardware clock-
synchronization algorithm, which is discussed in more detail
in Section 9. We start in the analog world: nodes generate
clock pulses. Each node measures the time differences
between its own and all other nodes’ pulses using Time-to-
Digital Converters (TDCs). Since this involves entering the
digital world, metastability in the measurements is unavoid-
able [1]. The traditional approach is to hold the TDC outputs
in synchronizers, spending time and thus imposing a limit
on the operating frequency. But as discussed above, it is pos-
sible to limit the metastability of each measurement to at
most one bit in BRGC-encoded numbers, where the metasta-
ble bit represents the “uncertainty between  and « + 1 clock
ticks,” i.e., precision-1.

We apply metastability-containing components to digitally
process these inputs to derive digital correction parameters
for the node’s oscillator. These parameters contain at most
one metastable bit, as above accounting for precision-1. We
convert them to an analog control signal for the oscillator,
translating the metastability to a small frequency offset
within the uncertainty from the initial TDC measurements.

In short, metastability is introduced at the TDC, determin-
istically contained in the digital subcircuit, and ultimately
absorbed by the analog control signal.

Our Contribution. In Section 3, we present a rigorous
time-discrete value-discrete model for metastability in
clocked as well as in purely combinational digital circuits.
We consider two types of registers: simple (standard)
registers that do not provide any guarantees regarding
metastability and masking registers that can “hide” inter-
nal metastability to some degree using high- or low-thresh-
old inverters. The propagation of metastability is modeled
in a worst-case fashion and metastable registers may or
may not stabilize to 0 or 1. Hence, the resulting model
allows us to derive deterministic guarantees concerning
circuit behavior under metastable inputs.

We demonstrate that the model is not too pessimistic, i.e.,
that it allows non-trivial positive results. At the same time,
we are obligated to verify that it properly reflects the physi-
cal behavior of digital circuits, i.e., that it is sufficiently pes-
simistic. We perform a reality check in Section 5, showing
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that the physical impossibility of avoiding, resolving, or
detecting metastability [1] holds in our model.

Having established some confidence that our model
properly reflects the physical world and allows reasoning
about circuit design, we turn our attention to the question
of computability in Section 6. In Section 6, we analyze what
functions are computable by circuits w.r.t. the available reg-
ister types and the number of clock cycles. Let Fun’,, denote
the class of functions that can be implemented in r clock
cycles; let Funy denote the class of functions implementable
in r clock cycles of circuits that can only use simple regis-
ters. We show that the number of clock cycles is irrelevant
for combinational and simple circuits, reflecting the intui-
tion from electrical engineering that synchronous Boolean
circuits can be unrolled, but that this is not the case in the
presence of masking registers

= Fun?g = Funls = Fun}w C Fun?w e (1)

In Section 7, we fully classify Fung. Furthermore, we
establish the metastable closure, the strictest possible exten-
sion of a function specification that allows it to be computed
without masking registers.

Section 8 establishes that the closure can be efficiently
computed using masking registers. This is exponentially
more efficient than the best implementation without mask-
ing registers that we are aware of. Moreover, recently the
existence of circuits for which implementing the closure
without masking registers must incurr an exponential over-
head has been shown [11].

Finally, we apply our techniques to show that an
advanced, useful circuit is in reach. We show in Section 9 that
all operations required by the widely used [12], [13] fault-tol-
erant clock synchronization algorithm of Lundelius Welch
and Lynch [14]—max and min, sorting, and conversion
between Thermometer Code (TC) and BRGC—can be per-
formed in a metastability-containing manner. Employing the
above mentioned separation of concerns, a hardware imple-
mentation of the entire algorithm is within reach, providing
a deterministic correctness guarantee despite metastable
upsets originating in the TDC and without synchronizers. As
a consequence, we show that (1) synchronization delay poses
no fundamental limit on the operating frequency of clock
synchronization and that (2) clock domains can be synchro-
nized without synchronizers. The latter shows that we may
eliminate communication across unsynchronized clock
domains as a source of metastable upsets altogether.

2 RELATED WORK

Metastability. The phenomenon of metastability has been
studied for decades [6] with the following key results. (1) No
physical implementation of a digital circuit can reliably
avoid, resolve, or detect metastability; any non-constant digi-
tal circuit, including “detectors,” can become metastable [1].
(2) The probability of an individual event generating meta-
stability can be kept low. Large transistor counts and high
operational frequencies, low supply voltages, temperature
effects, and changes in technology, however, disallow to
neglect the problem [3]. (3) Being an unstable equilibrium,
the probability that, e.g., a memory cell remains in a metasta-
ble state decreases exponentially over time [6], [7], [8]. Thus,
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waiting for a sufficiently long time reduces the probability of
sustained metastability to within acceptable bounds.

Synchronizers. The predominant technique to cope with
metastable upsets is to use synchronizers [2], [3], [4], [5], [6],
[7], carefully designed [2], [5] bistable storage elements that
hold potentially metastable signals. After a predefined time,
the synchronizer output is assumed to have stabilized and
the computation is carried out in classical Boolean logic. In
essence, this approach trades synchronization delay for
increased reliability, typically expressed as MTBF. Syn-
chronizers, however, do not provide deterministic guaran-
tees and avoiding synchronization delay is an important
issue [15], [16].

Glitch/Hazard Propagation. Metastability-containing cir-
cuits are related to glitch/hazard-free circuits, which have
been extensively studied since Huffman [17] and Unger [18]
introduced them. Eichelberger [19] extended these results to
multiple switching inputs and dynamic hazards, Brzozow-
ski and Yoeli extended the simulation algorithm [20], Brzo-
zowski et al. surveyed techniques using higher-valued
logics [21] such as Kleene’s 3-valued extension of Boolean
logic, and Mendler et al. studied delay requirements needed
to achieve consistency with simulated results [22].

While we too resort to Kleene’s 3-valued to model meta-
stability, there are differences to the classical work on haz-
ard-tolerant circuits: (1) A common assumption in hazard
detection is that inputs only perform well-defined, clean
transitions, i.e., the assumption of a hazard-free input-gen-
erating circuitry is made. This is the key difference to meta-
stability-containment: Metastability encompasses much
more than inputs that are in the process of switching; meta-
stable signals may or may not be in the process of complet-
ing a transition, may be oscillating, and may get “stuck” at
an intermediate voltage. (2) Another common assumption
in hazard detection is that circuits have a constant delay.
This is no longer the case in the presence of metastability;
unless metastability is properly masked, circuit delays can
deteriorate in the presence of metastable input signals, even
if the circuit eventually generates a stable output [23]. This
can cause late transitions that potentially drive further regis-
ters into metastability. (3) Glitch-freedom is no requirement
for metastability-containment. (4) When studying synthesis,
we allow for specifications in which outputs may contain
metastable bits. This is necessary for non-trivial specifica-
tions in the presence of metastable inputs [1]. (5) We allow a
circuit to compute a function in multiple clock cycles. (6)
Circuits may comprise masking registers [6].

While static hazards as studied by [17] inherently model
different signal behavior than metastable signals, our Theo-
rem 23 shows that similar techniques can be applied in both
cases: like in static-hazard-free circuits, covering prime-
implicants is a technique to achieve metastability-contain-
ment. However, this method potentially leads to exponen-
tial size circuits, which was recently proven to be inevitable
in general [11]. Sections 8 and 9 demonstrate that metasta-
bility-containing circuits are not necessarily large: we pres-
ent a method that circumvents exponential blow-up by
using masking registers, and show that clock synchroniza-
tion components do not suffer from this blow-up.

OR Causality. The work on weak (OR) causality in asyn-
chronous circuits [24] studies the computation of functions
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under availability of only a proper subset of its parameters.
As an example, consider a Boolean function f(z,y), where
£(0,0) = f(0,1). An early-deciding asynchronous module
may set its output as soon as = = 0 arrives at its input, disre-
garding the value of y. Early-deciding circuits, however,
differ from our work because they are neither clocked syn-
chronous designs nor do they necessarily operate correctly
in presence of metastable input bits: f(0,M) = f(0,0) =
£(0,1) does not necessarily hold.

Speculative Computing. To the best of our knowledge, the
most closely related work is that by Tarawneh et al. on spec-
ulative computing [15], [16]. The idea is the following:
When computing f(z,y) in presence of a potentially meta-
stable input bit z, (1) speculatively compute both f(0,y) and
f(1,y), (2) in parallel, store the input bit = in a synchronizer
for a predefined time that provides a sufficiently large prob-
ability of resolving metastability of x, and (3) use x to select
whether to output f(0,y) or f(1,y). This hides (part of) the
delay needed to synchronize x.

Like our approach, speculative computations allow for
an overlap of synchronization and computation time. The
key differences are: (1) Relying on synchronizers, specula-
tive computing incurs a non-zero probability of failure;
metastability-containment insists on deterministic guaran-
tees. (2) In speculative computing, the set of potentially
metastable bits X must be known in advance. Regardless of
the considered function, the complexity of a speculative cir-
cuit grows exponentially in | X|. Neither is the case for meta-
stability-containment, as illustrated by several circuits [10],
[25], [26], [27]. (3) Our model is rooted in an extension of
Boolean logic, i.e., uses a different function space. Hence,
we face the question of computability of such functions by
digital circuits; this question does not apply to speculative
computing as it uses traditional Boolean functions.

Metastability-Containing Circuits. Many of the proposed
techniques have been successfully employed to obtain meta-
stability-aware TDCs [26], metastability-containing BRGC
sorting networks [25], [27], metastability-containing multi-
plexers [23], and metastability-tolerant network-on-chip
routers [10]. Simulations verify the positive impact of meta-
stability-containing techniques [10], [23], [25]. Most of these
works channel efforts towards metastability-containing
FPGA and ASIC implementations of fault-tolerant distrib-
uted clock synchronization; this paper establishes that all
required components are within reach.

3 MOoDEL OF COMPUTATION

INy and IN denote the natural numbers with and without 0.
We abbreviate [k] := {¢ € INy | ¢ < k} for k € INy. Tuples a,b
are concatenated by a o b, and given a set S, P(S) := {S' C
S} is its power set.

We propose a time-discrete and value-discrete model in
which registers can become metastable and their resulting
output signals deteriorated. The model supports synchro-
nous, clocked circuits composed of registers and combina-
tional logic and purely combinational circuits. Specifically,
we study the generic synchronous state-machine design
depicted in Fig. 2. Data is initially written into input regis-
ters. At each rising clock transition, local and output registers
update their state according to the circuit's combinational
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Fig. 2. Generic synchronous state machine design in (a). The input reg-
ister is initially prefilled. Local and output registers are updated at each
rising clock transition. The circuit behavior over time is depicted in (b).
The three phases of a clock cycle are shown: (1) Register output stabili-
zation, (2) propagation of outputs through combinational logic to register
inputs, and (3) stable register inputs.

logic. Fig. 2b shows the circuit’s behavior over time: (1) Dur-
ing the first phase, the output of the recently updated local
and output registers stabilizes. This is accounted for by the
clock-to-output time that can be bounded, except for the case
of a metastable register. In this case, no deterministic upper
bound exists. (2) During phase two, the stable register output
propagates through the combinational logic to the register
inputs. Its duration can be upper-bounded by the worst-case
propagation delay through the combinational part. (3) In the
third phase, the register inputs are stable, ready to be read
(sampled), and result in updated local and output register
states. The duration of this phase is chosen such that it can
account for potential delays in phase (1); this can mitigate
some metastable upsets. If the stabilization in phase (1), how-
ever, also exceeds the additional time in phase (3), a register
may read an unstable input value, potentially resulting in a
metastable register.

As motivated, metastable registers output an undefined,
arbitrarily deteriorated signal. Deteriorated can mean any
constant voltage between logical 0 and logical 1, arbitrary
signal behavior over time, oscillations, or simply violated
timing constraints, such as late signal transitions. Further-
more, deteriorated signals can cause registers to become
metastable, e.g., due to violated constraints regarding tim-
ing or input voltage. Knowing full well that metastability is
a state of a bistable element and not a signal value or voltage,
we still need to talk about the “deterioration caused by or
potentially causing metastability in a register” in signals. For
the sake of presentation—and as these effects are causally
linked—we refer to both phenomena using the term meta-
stability without making the distinction explicit.

Our model uses Kleene’s 3-valued logic, a ternary exten-
sion of binary logic; the third value appropriately expresses
the uncertainty about gate behavior in the presence of meta-
stability. In the absence of metastability, our model behaves
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Fig. 3. Registers as non-deterministic state machines; state transitions
represent reads and are associated with an output. As we propose a
worst-case model, the dashed state transitions can be left out.

like a traditional, deterministic, binary circuit model. In
order to obtain deterministic guarantees, we assume worst-
case propagation of metastability: If a signal can be
“infected” by metastability, there is no way to prevent that.

With the example of metastability-containing multi-
plexers (CMUXes) we demonstrates our model, and Sec-
tion 5 ensures that it is not “too optimistic” by proving that
it reproduces well-known impossibility results. Concretely,
we show that for circuits in our model avoiding, detecting,
and resolving metastability is impossible, just as in physical
circuits [1]. Clearly, this obliges us to provide evidence that
our model has practical relevance, i.e., that it is indeed pos-
sible to perform meaningful computations. Surprisingly,
the classification derived in Section 7 entails that many
interesting functions can be implemented by circuits, which
is discussed in Section 9.

In our model circuits are synchronous state machines:
Combinational logic, represented by gates, maps a circuit
state to possible successor states. The combinational logic
uses, and registers store, signal values By := {0,1,M}. M
represents a metastable signal, the only source of non-deter-
minism. The classical stable Boolean signal values are
B := {0,1}. Let x € B}, be a k-bit tuple. Stored in registers
over time, the metastable bits may resolve to 0 or 1. The set
of partial resolutions of x is Resy(z), and the set of metasta-
bility-free, i.e., completely stabilized, resolutions is Res(z).
If m bits in x are metastable, |Resy(z)|=3" and
|Res(z)| = 2™, since M serves as “wildcard” for IBy; and IB,
respectively. Formally

Resy(z) == {y € ]Bf{'I |Viekl:zi =y V= M}, (2
Res(z) := Resy(x) N B (3

Registers. We consider three types of single-bit registers, all
of which behave just like in binary circuit models unless
metastability occurs: (1) simple registers which are oblivious
to metastability, and (2) registers that mask an internal
metastable state to an output of 1 (mask-1) or (3) to 0 (mask-
0). Physical realizations of masking registers are obtained
by flip-flops with high- or low-threshold inverters at the
output, amplifying an internal metastable signal to 1 or 0;
see, e.g., Section 3.1 on metastability filters in [6]. A register
R has a type (simple, mask-0, or mask-1) and a state
zp € By. R behaves according to zp and its type’s non-
deterministic state machine in Fig. 3. Each clock cycle,
R performs one state transition annotated with some
or € By, which is the result of sampling R at that clock
cycle’s rising clock edge. This happens exactly once per
clock cycle in our model and we refer to it as reading R. The
state transitions are not caused by sampling R but account

171

TABLE 1
Gate Behavior Under Metastability Corresponds to Kleene Logic
AND 0 1 M
0 0 0 0
1 0 1 M
M 0 M M
G 0 1 M
0 0 1 M
1 1 1 1
M M 1 M

for the possible resolution of metastability during the pre-
ceding clock cycle.

Consider a simple register in Fig. 3a. When in state 0, its
output and successor state are both 0; it behaves symmetri-
cally in state 1. In state M, however, any output in IBy; com-
bined with any successor state in IBy; is possible.

Since our goal is to design circuits that operate cor-
rectly under metastability even if it never resolves, we
make two pessimistic simplifications: (1) If there are three
parallel state transitions from state = to 2’ with outputs
0, 1, M, we only keep the one with output M, and (2) if,
for some fixed output o € By, there are state transitions
from a state x to multiple states including M, we only
keep the one with successor state M. This simplification is
obtained by ignoring the dashed state transitions in
Fig. 3, and we maintain it throughout the paper. Observe
that the dashed lines are a remnant of the highly non-
deterministic “anything can happen” behavior in the
physical world; if one is pessimistic about the behavior,
however, one obtains the proposed simplification that
ignores the dashed state transitions.

The mask-b registers, b € IB, shown in Figs. 3b and 3c,
exhibit the following behavior: As long as their state
remains M, they output b # M; only when their state changes
from M to 1 — b they output M once, after that they are stable.

Gates. We model the behavior of combinational gates in the
presence of metastability. A gate is defined by k € IN; input
ports, one output port—gates with k£ > 2 distinct output ports
are represented by k single-output gates—and a Boolean func-
tion f : B — B. We generalize f to fy : ]Bf{I — IBy as fol-
lows. Each metastable input can be perceived as 0, as 1, or as
metastable superposition M. Hence, to determine fy(x), con-
sider O := {f(z') | ' € Res(x)}, the set of possible outputs of
f after z fully stabilized. If there is only a single possible out-
put, ie., O = {b} for some b € IB, the metastable bits in = have
no influence on f(z) and we set fyu(x):=b. Otherwise,
O = 1B, i.e., the metastable bits can change f(z), and we set
fu(z) := M. Observe that this is equivalent to Kleene’s 3-val-
ued logic and that fyi(z) = f(z) forallz € B

See Table 1 for an Anp-gate and an Or-gate. Refer to
Fig. 6a for an example of metastability propagation through
combinational logic.

Combinational Logic. We model combinational logic as
Directed Acyclic Graph (DAG) G = (V; A) with parallel
arcs, compare Fig. 4. Each node either is an input node, an
output node, or a gate.

Input nodes are sources in the DAG, i.e., have in-degree 0
and an arbitrary out-degree, and output nodes are sinks
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Fig. 4. Combinational logic DAG with gates (gray) and registers (white).
The input (1;), output (O,), and local (L, and L) registers occur as input
nodes, output nodes, and both, respectively.

combinational logic output

©

with in-degree 1, i.e., have in-degree 1 and out-degree 0. If
veV is a gate, denote by f, : IBy; — By its gate function
with k, € IN; parameters. For each parameter of f,, v is con-
nected to exactly one input node or gate w by an arc
(w,v) € A. Every output node v is connected to exactly one
input node or gate w by an arc (w,v) € A. Input nodes and
gates can serve as input to multiple gates and output nodes.

Suppose G has m input nodes and n output nodes. Then
G defines a function f¢:IBj} — By, as follows. Starting
with input = € IBy;, we evaluate the nodes v € V. If v is an
input node, it evaluates to z,. Gates of in-degree 0 are con-
stants and evaluate accordingly. If v is a gate of non-zero in-
degree, it evaluates to f,(7), where Z € 1By} is the recursive
evaluation of all nodes w with (w, v) € A. Otherwise, v is an
output node, has in-degree 1, and evaluates just as the
unique node w with (w, v) € A. Finally, f¢(z), is the evalua-
tion of the output node v.

Circuits.

Definition 1 (Circuit). A circuit C' is defined by:

(1) m input registers, k local registers, and n output
registers, m, k,n € INy. Each register has exactly one
type—simple, mask-0, or mask-1—and is either input,
output, or local register.

(2) A combinational logic DAG G. G has m + k input
nodes, exactly one for each non-output register, and
k+n output nodes, exactly one for each non-input
register. Local registers appear as both input node and
output node.

(3)  An initialization x, € BY™ of the non-input registers.

Each s € By ™ defines a state of C.

A meaningful application clearly uses a stable initialization
xo € IBF™; this restriction, however, is not formally required.
Furthermore, observe that Definition 1 does not allow regis-
ters to be an input and an output register at the same time.
This overlap in responsibilities, however, is often used in digi-
tal circuits. We note that we impose this restriction for purely
technical reasons; our model supports registers that are read
and written—local registers—and it is possible to emulate the
above mentioned behavior: If the computation consists of a
single round, read from the input and write to the output reg-
ister. Otherwise, read form the input register in the first
round, write and read from local registers in successive
rounds, and write to the output register in in the last round.
Hence, this formal restriction has no practical implications.

We denote by

In: By — By (4)
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Loc : Byr*m — B, and (5)
Out : B - B, ©)

the projections of a circuit state to its values at input, local,
and output registers, respectively. In fact, the initialization
of the output registers, Out(z), is irrelevant, because output
registers are never read (see below). We use the convention
that for any state s of a circuit, s = In(s) o Loc(s) o Out(s).
Executions. Consider a circuit C' in state s, and let
x = In(s) o Loc(s) be the state of the non-output registers.
Suppose each register R is read, i.e., makes a non-dashed
state transition according to its type, state, and correspond-
ing state machine in Fig. 3. This state transition yields a
value read from, as well as a new state for, R. We denote by

Read” : Byj™" — P(B}; ™), )

the function mapping x to the set of possible values read from
non-output registers of C'depending on . When only simple
registers are involved, the read operation is deterministic:

Observation 2. In a circuit C' with only simple registers,
Read®(z) = {z}.

In the presence of masking registers, = € Read”(z) can
occur, but the output may partially stabilize:

Observation 3. Consider a circuit C in state s. Then for
x = In(s) o Loc(s)

x € Read®(z), and ®)
Read®(z) C Resy(z). 9

Let G be the combinational logic DAG of C with m + k
input and & +n output nodes. Suppose o € ByI** is read
from the non-output registers. Then the combinational logic
of C evaluates to (o), uniquely determined by G and o.

We denote all possible evaluations of C' w.r.t. = by Eval(x)

Eval” : Byt — P(Bi™), (10)
Eval®(z) := {fG(o) loe Readc(cc)}. (11)

When registers are written, we allow, but do not require,
signals to stabilize. If the combinational logic evaluates the
new values for the non-input registers to z € By, their
new state is in Resy(Z); the input registers are never over-
written. We denote this by

Write” : By — P(BE™), (12)

Write“(x) := | Resu(2). (13)

z€EvalC (x)

Observe that this is where metastability can cause inconsis-
tencies: If a gate is read as M and this is copied to three
registers, it is possible that one stabilizes to 0, one to 1, and
one remains M.

For the sake of presentation, we write Readc(s), Evalc(s),
and WriteC(s) for a circuit state s € BY;"**", meaning that
the irrelevant part of s is ignored.
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(a) Circuit
, state s, read o | eval Z,41 | write x4
I, L4101 | 1114 L0, L0,

0 MM11 oM1 MM M
1| MMIM MM1 MM MM
2 1IMMM 1IMM 1M 10
3 1M10 1M1 11 11
4 1M11

(b) States, reads, evaluations, and writes

Fig. 5. Example execution in a circuit (a). The node states as well as the
results of the read, evaluation, and write phases are listed in the
table (b). Register I; is a mask-0 register, all others are simple registers.
The initialization is 11, the input is MM, and hence sy = MM11.

Let s, be a state of C. A successor state s, of s, is any state
that can be obtained from s, as follows.

Read Phase. First read all registers, resulting in read values
o€ Readc(s,). Let ;41 € IBy] be the state of the input
registers after the state transitions leading to reading o.

Evaluation Phase. Then evaluate the combinational logic
according to the result of the read phase to
Ty = f9(0) € Eval(s,).

Write Phase. Pick a partial resolution z,4; € Resy(Z,41) C
Write®(s,) of the result of the evaluation phase. The
successor state is s,41 = ;41 0 Ty 1.

In each clock cycle, our model determines some successor

state of the current state of the circuit; we refer to this as round.

Note that due to worst-case propagation of metastability,
the evaluation phase is deterministic, while read and write
phase are not: Non-determinism in the read phase is
required to model the non-deterministic read behavior of
masking registers, and non-determinism in the write phase
allows copies of metastable bits to stabilize inconsistently.
In a physical circuit, metastability may resolve within the
combinational logic; we do not model this as a non-deter-
ministic evaluation phase, however, as it is equivalent to
postpone possible stabilization to the write phase.

Let C be a circuit in state sq. For » € INy, an r-round execu-
tion (w.r.t. sy) of C is a sequence of successor states
50,81, - - -, 8. We denote by S(sg) the set of possible states
resulting from r-round executions w.r.t. sy of C

S (s0) = {s0},and (14)

S,(.J(so) = {sr | s, successor of some s € Sr(il(so)}. (15)

An initial state of C w.r.t. input « € By} is s9 = 1 0 xy. We use
C, : By} — P(IB};) as a function mapping an input to all
possible outputs resulting from r-round executions of C'

C(1) := {Out(sr) |5, €8%to o) }. (16)

We say that r rounds of C implement f : By; — P(IBy,) if and
only if C,(¢) C f(¢) for all « € By}, i.e., if all r-round execu-
tions of C result in an output permitted by f. If there is
some r € IN, such that » rounds of C' implement f, we say
that C'implements f.

Observe that our model behaves exactly like a tradi-
tional, deterministic, binary circuit model if sy € B,
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Example. Fig. 5 specifies a circuit and its states, as well as
the results of the read, evaluation, and write phases. The
input registers are I; and I, the only local register is L,
and the only output register is O;. Regarding register types,
the input register /; is a mask-0 register and all other regis-
ters are simple registers.

The initialization is xy = 11, the input is « = MM, and
the initial state hence is sy =t o zp = MM11, which is indi-
cated in the upper left entry in Fig. 5b. In the read phase,
all non-output registers are read. Since I, and L; are sim-
ple registers, their read deterministically evaluates to M
and 1, respectively, by the state machine in Fig. 3a. The
mask-0 register [; in state M may either be read as 0 and
remain in state M, or be read as M and transition to
state 1, compare Fig. 3b; in this case it does the former. So
far, we fixed the outcome of the read phase, 0M1, and the
follow-up state of the input registers, MM; the other regis-
ters are overwritten at the end of the write phase. The
evaluation is uniquely determined, a read phase resulting
in o evaluates to f%(0), here, f¢(0M1) = MM. We are left
with only one more step in this round: The non-input
registers are overwritten with some value in the resolu-
tion of the evaluation phase’s result, in our case with
1M € Resyi(MM). Together we obtain the successor state
51 = MMIM.

In the next round, I; uses the other state transition, i.e., is
read as M, and hence has state 1 in the next round. Hence
its state remains fixed in all successive rounds by the state
machine in Fig. 3b. The other reads are deterministic, so we
obtain o = MMI1 as the result of the read phase and succes-
sor states 1M for I; and I,. The evaluation is fG(o) =
f¢(MM1) = MM the state of L; and O; is overwritten with
some value from Resy(MM), here by MM.

By round r = 2, the result of the read phase is determin-
istic because the only masking register stabilized, we read
o= 1MM, and evaluate to 1M. The remaining non-deter-
minism is whether to write 1M or some stabilization thereof.
We examine the case that 10 is written.

Rounds r > 3 now are entirely deterministic. The only
possible read is 1M1, which evaluates to f¢(1M1) = 11, fix-
ing the result of the write phase to 11. Further rounds are
identical, the only metastable register, I, remains metasta-
ble but has no impact on the evaluation phase as the Or
gate always receives input 1 from I, and hence masks the
metastable input.

Metastability-Containing Multiplexers. We demonstrate
the model by developing a CMUX. Despite its simplicity,
it demonstrates our concept, and is a crucial part of the
more complex metastability-containing components
required for the clock synchronization circuit outlined in
Section 9.2 [25], [26], [27]. From a broader perspective, this
shows that our model, especially the worst-case propaga-
tion of metastability, is not “too pessimistic” to permit pos-
itive results. We show in Section 5 that it is not “too
optimistic,” either.

Prior to discussing improved variants, let us examine a
standard Multiplexer (MUX). A (k-bit) Multiplexer (MUX) is
a circuit C with 2k + 1 inputs, such that C' implements

fMUX : IB]KI X IB]ﬂI X BM — IB]ﬁI (17)
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s (mask-1)

(a) CCMUXl (b) CCMUXZ

Fig. 6. MUX gate-level implementations. Both circuits mask a metastable
select bit s in the case of a = b employing additional gates (a) and a
masking register (b), respectively. Further, Figure (a) indicates how
metastability can be masked.

Resy(a) if s =0,
fMU)((CL7 b, 5) = ResM(b) if s= 1, and (18)
]BM if s = 1\/[7

where we use k = 1 for the sake of presentation. In the case
of a stable select bit s, it determines whether to output
(some stabilization of) a or b. If s is metastable, an arbitrary
output may be produced.

A desirable property of a MUX is that if a = b, the output
is a, regardless of s. Being uncertain whether to select a or b
should be insubstantial in this case. If, however, s = M and
a = b =1, a standard implementation with two AND2 and
a successive OR?2 yields

(msAa)V (sAb)=(-MAL)V(MAL) =MVM=M. (19)

Hence, we ask for an improved circuit that implements

Resy(a) if s=0o0ra=h,
f(jMUx((L, b7 S) = ResM(b) if s= 1, and (20)
]BM 1fa7éb/\s:M

We call such a circuit (k-bit) Metastability-Containing Multi-
plexer (CMUX). Circuit CMUX! in Fig. 6a implements (20):
The problematic case of s = M and a = b = 1 is handled by
the third Axp-gate which becomes 1, providing the Or-gate
with a stable 1 as input, see Fig. 6a.

Lemma 4. CPMYUX! C feyux from Equation (20).

We next show how to implement (20) using a masking
register in two rounds of computation. Algorithm 1 speci-
fies the clocked circuit by assignments of logic expressions
to registers. The trick is to sequentially read s from a mask-1
register, ensuring that at most one copy of s can be metasta-
ble. This guarantees that in the case of s=Manda=0=1,
one of the ANp-clauses is stable 1.

Algorithm 1. Metastability-Containing Multiplexer

input: a and b (simple), s (mask-1)
local: s’ (simple)
output: o (simple)
each round:

s —s0—(nsNa)V (s ND)
end

Lemma 5. Two rounds of Algorithm 1 implement (20).

One may argue that a direct realization of Algorithm 1 in
hardware as a clocked state machine may be too large for
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practical applications. In fact, however, the algorithm has
an optimized unclocked realization, that cannot directly be
expressed in our synchronous circuit model: The serializa-
tion of assignments in Algorithm 1 ensured by the two clock
cycles can also be enforced by local delay constraints
instead of clock cycles, see Fig. 6b: if the propagation delay
from s to the Anp-gate with non-negated s input is larger
than the gate delay from s to the Anp-gate with negated
input —s, the circuit exhibits the specified behavior. The
delay constraint can be enforced by appropriate routing or
insertion of inverters. Note that this implementation scales
well with increasing bit widths of a and b, since only the
select bit needs to be stored in a masking register.

4 BAsIc PROPERTIES

We establish basic properties regarding computability in the
model from Section 3. Regarding the implementability of
functions by circuits, we focus on two resources: the num-
ber r € IN of rounds and the register types available to it. In
order to capture this, let Funy be the class of functions
implementable with r rounds of circuits comprising only
simple registers. Analogously, Fun}, denotes the class of
functions implementable with 7 rounds that may use mask-
ing and simple registers.

First consider the combinational logic. Provided with a
partially metastable input =, some gates—those where the
collective metastable input ports have an impact on the out-
put—evaluate to M. So when stabilizing « bit by bit, no new
metastability is introduced at the gates. Furthermore, once a
gate stabilized, its output is fixed; stabilizing the input leads
to stabilizing the output.

Lemma 6. Let G be a combinational logic DAG with m input
nodes. Then for all x € 1By},

7’ € Resyi(z) = f(2') € Resu(f“(z)). (21)

The proof is by inductively applying the definition of a
gate to the DAG’s nodes.

Stabilizing the input of the combinational logic stabilizes
its output. The same holds for the evaluation phase: If one
result of the read phase is « and another is 2’ € Resyi(z), the
combinational logic stabilizes its output to f¢(z') €
Resyi(f9(z)). Recall Observations 2 and 3: In state x, simple
registers are deterministically read as =, and masking regis-
ters as some z’ € Resy(z). Hence, the use of masking regis-
ters might partially stabilize the input to the combinational
logic and, by Lemma 6, its output. The same stabilization
can also occur in the write phase. This implies that Write” is
not influenced by the register types.

Lemma 7. Consider a circuit C in state s. Let Cs be a copy of C
that only uses simple registers, and x = In(s) o Loc(s) the pro-
jection of s to the non-output registers. Then

Write”(s) = Write®s (s) = Resy (fc(x)) (22)

Proof. In C's, we have Read“s (s) = {z} by Observation 2. So
Eval®s(s) = {f%(z)}, and Write®s(s) = Resy(f¢(z)) by
definition.

In C, it holds that = € Read”(s) by Observation 3, so
Resyi (f9(x)) € Write€(s). All other reads z’ € Read®(s)
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have 2’ € Resyi(z) by Observation 3, and f¢(2') € Resy
(f(x)) by Lemma 6. It follows that Write®(s) = Resy

(f¢(@))- 0

Carefully note that the write phase only affects non-input
registers; input registers are never written. Hence, Lemma 7
does not generalize to multiple rounds: State transitions of
input registers in the read phase affect future read phases.

In 1-round executions, however, masking and simple
registers are equally powerful, because their state transi-
tions only affect rounds ~ > 2 (we show in Section 6 that
these state changes lead to differences for r > 2 rounds).

Corollary 8. Fun} = Fun},.

In contrast, simple and masking registers used as non-
input registers behave identically, regardless of the number
of rounds: A circuit C'in state s, overwrites them regardless
of their state. Since Write®(s,) is oblivious to register types
by Lemma 7, so is Loc(s,41) o Out(s,1) for a successor state
Spy1 Of 8.

Corollary 9. Simple and masking registers are interchangeable
when used as non-input registers.

Consider a circuit C in state s, and suppose x € Read”(s)
is read. Since the evaluation phase is deterministic, the eval-
uation y = f¢(z) € Eval“(s) is uniquely determined by =
and C. Recall that we may resolve metastability to
Resy(y) C Writec(s) in the write phase: The state of an out-
put register R becomes 0 if yr =0, 1 if yz = 1, and some
b € By if yp = M. Consequently, output registers resolve
independently:

Corollary 10. For any circuit C, Cy = gy X -+ X gn—1, where
gi - By — {{0}, {1}, By}

Proof. Let s =t oz be the initial state of C' w.r.t. input ¢,
and 2 = In(s) o Loc(s). By Lemma 7, Write®(s) = Resy
(f%(x)), ie., Ci(t) = {Out(s') | s’ € Resy(f¢(x))}. By defi-
nition, Resvi(f¢(z)) = [];c, Resu(f9(2));. Hence, the
claim follows with g;() := Resy(f“(z)), for all ¢ € BY;
and i € [n]. ]

We show in Section 7 that Corollary 10 generalizes to
multiple rounds of circuits with only simple registers. This
is, however, not the case in the presence of masking regis-
ters, as demonstrated in Section 6.

Lemmas 6 and 7 apply to the input of circuits: Partially
stabilizing an input partially stabilizes the possible inputs
of the combinational logic, and hence its evaluation and the
circuit’s output after one round.

m

Observation 11. For a circuit C and input ¢ € IBYj,

! € Resy (1) = C1(() C C1(0). (23)
Proof. Let z; be the initialization of C, s = ( o z; its initial
state w.r.t. input ¢, and = = In(s) o Loc(s) the state of the
non-output registers; define s’ and z’ equivalently w.r.t.
input ¢ € Resy(t). Using Lemmas 6 and 7, and that
Resyi(z') € Resy(z) for a’ € Resy(z), we obtain that
Write®(s') = Resy(f€(2')) € Resy(f€(x)) = WriteC(s). O

Finally, note that adding rounds of computation cannot
decrease computational power, i.e., result in less functions
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being implementable, since a circuit determining = in r
rounds can be transformed into one using 7 + 1 rounds by
buffering « for one round. Furthermore, allowing masking
registers does not decrease computational power.

Observation 12. For all r € IN;, we have Funf C Funj™,
Fun}, C Funj/!, and Funy C Fun},.

5 REALITY CHECK

We demonstrated that our model permits the design of
metastability-containing circuits. Given the elusive nature
of metastability and Marino’s impossibility result [1], non-
trivial positive results of this kind are surprising, and raise
the question whether the proposed model is “too opti-
mistic” to derive meaningful statements about the physical
world. Put frankly, a reality check is in order!

In particular, Marino established that no digital circuit
can reliably (1) avoid, (2) resolve, or (3) detect metastabil-
ity [1]. It is imperative that these impossibility results are
maintained by any model comprising metastability. We
show in Theorem 16 and Corollaries 17 and 18 that (1)-(3)
are impossible in the model proposed in Section 3 as well.
We stress that this is about putting the model to the test
rather than reproducing a known result.

We first verify that avoiding metastability is impossible
in non-trivial circuits. Consider a circuit C' that produces
different outputs for inputs ¢ # /. The idea is to observe
how the output of C' behaves while transforming ¢ to " bit
by bit, always involving intermediate metastability, i.e.,
switching the differing bits from 0 to M to 1 or vice versa.
This can be seen as a discrete version of Marino’s argument
for signals that map continuous time to continuous volt-
age [1]. Furthermore, the bit-wise transformation of ¢ to ¢/,
enforcing a change in the output in between, has parallels to
the classical impossibility of consensus proof of Fischer
et al. [28]; our techniques, however, are quite different. The
following definition formalizes the step-wise manipulation
of bits.

Definition 13 (Pivotal Sequence). Let k € INy and ¢ € IN be
integers, and x,z’ € By, Then (21),c,,y, ¥ € BY, is a
pivotal sequence (from = to 2’ over BY,) if and only if

(1) 20 =gand 2® = 2,
() forall i € [(], 2 and =) differ in exactly one bit,
and

(3)  this bit is metastable in either 2V or z(+V).
For i € [¢], we call the differing bit the pivot from i to i + 1
and P its corresponding pivotal register.

Carefully note that we do not use pivotal sequences as
temporal sequences of non-output register states and circuit
successor states; the bit-wise manipulation does not happen
over time, instead, we aim at examining closely related cir-
cuit states.

We begin with Lemma 14 which applies to a single round
of computation. It states that feeding a circuit C' with a piv-
otal sequence x of non-output register states results in a piv-
otal sequence of possible successor states s of the circuit.
Hence, if C'is guaranteed to output different results for 20
and 2z, some intermediate element of s must contain a
metastable output bit, i.e., there is an execution in which an
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output register of C' becomes metastable. We argue about
successor states rather than just the output because we
inductively apply Lemma 14 in Corollary 15.

Lemma 14. Let C be a circuit, and (s")),.,, ), s € By, a
pivotal sequence of states of C. Then there is a pivotal sequence
(39) jepw H}) sU) e Btk where each s ) is a successor state
of some s\"), satisfying that 3 and 3) are successor states

of 59 and s“), respectively.

Given a pivotal sequence of inputs, there are executions
producing a pivotal sequence of attainable successor states.
Using these states for another round, Lemma 14 can be
applied inductively.

Corollary 15 Let C be a circuit, xy its initialization, and
((D)icrpsry, () € By, be a pivotal sequence of inputs of C.
Then there is a pivotal sequence of states (s(j>)j€[f’ +1)r
s € B that C can attain after r € IN rounds satisfying

50 € SO o z) and s € SC(110 o ).

We wrap up our results in a compact theorem. It states
that a circuit which has to output different results for differ-
ent inputs can produce metastable outputs.

Theorem 16. Let C be a circuit with C,.(¢) N C.(!') = () for some
1,0 € By;. Then C has an r-round execution in which an out-
put register becomes metastable.

Proof. Apply Corollary 15 to a pivotal sequence from ¢ to ¢/
and C, yielding a pivotal sequence y of states that C' can
attain after r-round executions. Since C,(1) > Out(s(")) #
Out(s")) € C,.(¢'), some Out(s)) contains an M bit. O

Marino proved that no digital circuit, synchronous or
not, can reliably (1) compute a non-constant function and
guarantee non-metastable output, (2) detect whether a regis-
ter is metastable, or (3) resolve metastability of the input
while faithfully propagating stable input [1]. Theorem 16
captures (1), and Corollaries 17 and 18 settle (2) and (3),
respectively. The key is to observe that a circuit detecting or
resolving metastability is non-constant, and hence, by Theo-
rem 16, can become metastable—defeating the purpose of
detecting or resolving metastability in the first place.

Corollary 17. There exists no circuit that implements f : By —
'P(IBM) with

if €=M, and

otherwise. (24)

_

={{)

Proof. Assume such a circuit C exists and implements f in r
rounds. C,(0) N C.(M) =0, so applying Theorem 16 to
t=0 and / = M yields that C' has an r-round execution
with metastable output, contradicting the assumption. O

Corollary 18. There exists mno circuit that implements
f : IBM — 'P(IBM) with

{0,1} ifz=M, and
= 25
/@) { {z} otherwise. @5)
Proof. As in Corollary 17 with ¢ =0 and ¢/ = 1. O

In summary, our circuit model (Section 3) is consistent
with physical models of metastability, yet admits the
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Fig. 7. Unrolling three rounds of the circuit in Fig. 4 with three gates

(gray), and four registers (white). Local registers become fan-out buffers,
and early output is ignored.

computation of non-trivial functions that are crucial in con-
structing complex metastability-containing circuits [25],
[26], [27]. This gives rise to further questions: (1) Is there a
fundamental difference between simple and masking regis-
ters? (2) Which functions can be implemented? We study
these questions in Sections 6 and 7, respectively.

6 COMPUTATIONAL HIERARCHY

In this section, we determine the impact of the number of
rounds r € IN and the available register types on the compu-
tational power of circuits, i.e., the set of functions that are
implementable by such circuits. Recall that Funy denotes
the functions implementable using 7 rounds and simple
registers only, and Funj, those implementable using r
rounds and arbitrary registers. The main results are:

(1) Even in the presence of metastability, circuits
restricted to simple registers can be unrolled (Theo-
rem 19): Funj, = Funj'™.

(2)  With masking registers, however, more functions
become implementable with each additional round
(Theorem 21): Fun}, € Funj;".

With Corollary 8, we obtain the following hierarchy:

- = Fun} = Fun§ = Fun}, € Fun}, C ---. (26)
We believe this to make a strong case for further pursuing
masking registers in research regarding metastability-con-
taining circuits.

Simple Registers. It is folklore that binary-valued synchro-
nous circuits can be unrolled such that the output after
r € IN clock cycles of the original circuit is equal to the out-
put after a single clock cycle of the unrolled circuit. Theo-
rem 19 states that this result also holds in presence of
potentially metastable simple registers. Note that—defying
intuition—masking registers do not permit this, see
Theorem 21.

Theorem 19. Given a circuit C with only simple registers such
that r € IN rounds of C implement f, one can construct a cir-
cuit C" such that one round of C' implements f.

Proof Sketch. Arrange r copies of the combinational logic
of C as in Fig. 7 such that (1) input registers feed all copies
of gates they feed in C, (2) local registers become fan-out
buffers (gates forwarding their input), and (3) output
registers are copied as well, but only the rth copy is rele-
vant. We have C] = C, because simple registers merely
maintain and propagate metastability in the worst case. O

Naturally, the unrolled circuit can be significantly larger
than the original one. However, the point is that adding
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rounds does not affect the computational power of circuits
with simple registers only.

Corollary 20. For all r € N, Funy = Fung =: Fung.

Arbitrary Registers. For simple registers, additional
rounds make no difference in terms of computability—the
corresponding hierarchy collapses into Fung. In the follow-
ing, we demonstrate that this is not the case in the presence
of masking registers: Fun), C Fun’j;! for all» € IN. We dem-
onstrate this using a metastability-containing fan-out buffer
specified by Equation (27). It creates r copies of its input bit,
at most one of which is permitted to become metastable

" if x # M,
f(:z:)—{{ } #

U iepyResm (0'M17~71)  otherwise. @n

Theorem 21. Fun’y, € Fun),;* forall r € IN.

Proof Sketch. Pick 2 <r € IN and consider f from Equa-
tion (27). To see that f € Fun/,, have a circuit C store the
input in a mask-0 register, and read one copy of it in each
of r rounds. If z # M, r rounds of C' generate r stable cop-
ies of . Otherwise = M and the r outputs are specified
by r state transitions of the mask-0 register starting in
state M, i.e., behave exactly as specified in (27).

As for f¢ Funy,!, assume r — 1 rounds of C' imple-
ment (27) and observe that the input register R can only
be read r — 1 times. Since C produces r outputs, two of
these outputs have to depend on the same read of R. If
that read operation returns M, which is possible even for
masking registers, both outputs can become metastable,
violating the specification (27). ]

7 THE POWER OF SIMPLE REGISTERS

The design of metastability-containing circuits requires a
quick and easy check which metastability-containing com-
ponents are implementable. In this section, we present such
a test for circuits without masking registers.

First, we present sufficient and necessary conditions for a
function to be implementable with simple registers only.
Using this classification, we demonstrate how to take an
arbitrary Boolean function f : B™ — IB" and extend it to the
most restrictive specification [f],; : By} — P(IBy;), the meta-
stable closure of f, that is implementable. This is an easy pro-
cess—one simply applies Definition 24 to f.

The way to make use of this is to start with a function f
required as component, “lift” it to [f],;, and check whether
[f]y; is restrictive enough for the application at hand. If it is,
one can work on an efficient implementation of [f],;, other-
wise a new strategy, possibly involving masking registers,
must be devised; in either case, no time is wasted searching
for a circuit that does not exist.

Since we discuss functions implementable with simple
registers only, recall that the corresponding circuits can be
unrolled by Theorem 19, i.e,, it suffices to understand C}, a
single round of a (possibly unrolled) circuit.

Natural Subfunctions. From Corollary 10 and Observa-
tion 11, we know that C', the set of possible circuit outputs
after a single round, has three properties: (1) its output can
be specified bit-wise, (2) each output bit is either 0, 1, or
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completely unspecified, and (3) stabilizing a partially meta-
stable input restricts the set of possible outputs. Hence
Ci—and by Corollary 20 all circuits using only simple regis-
ters—can be represented in terms of bit-wise KV diagrams
with values “0, 1, IBy;” instead of “0, 1, D” (D for “don’t
care”). We call such functions natural and show below that
f € Fung if and only if f has a natural subfunction.

Definition 22 (Natural and Subfunctions). The function
f By — P(By;) is natural if and only if it is bit-wise,
closed, and specific:

Bit-wise

The components fi, ..., f, of fare independent

f(@) = fi(z) x - x fu(2).

Closed Each component of f is specified as either 0, as 1, or
completely unspecified

f(a) € {{0}, {1}, Bun}".

Specific ~ When stabilizing a partially metastable input, the
output of f remains at least as restricted

(28)

Yz e By : (29)

Ve e By : 2 €Res(z) = f(z') C f(z). (30)
For functions f,g: 1By — P(IBy;), g is a subfunction of f

(we write g C f), if and only if g(x) C f(z) forall z € By].

Suppose we ask whether a function f is implementable
with simple registers only, i.e., if f &€ Fung. Since any
(unrolled) circuit C' implementing f must have C; C f, Cor-
ollary 10 and Observation 11 state a necessary condition for
f € Fung: f must have a natural subfunction. Theorem 23
establishes that this condition is sufficient, too. For the if-
direction, we use a technique introduced in [17] for hazard-
free circuits: we cover all prime-implicants of f.

Theorem 23. Let g:IBy; — P(IBy,) be a function. Then
g € Fung if and only if g has a natural subfunction.

Proof. For the only-if-direction, suppose that C' is a circuit
with only simple registers such that C); C g; by Theo-
rem 19, such a circuit exists. C is bit-wise and closed by
Corollary 10, and specific by Observation 11. Hence,
choosing f := C) yields a natural subfunction of g.

We proceed with the if-direction. Let f C g be a natu-
ral subfunction of g, and construct a circuit C' that
implements f. As f is bit-wise, we may w.l.o.g. assume
that n = 1. If f(-) = {0} or f(-) = By, let C be the circuit
whose output register is driven by a Consto-gate; if
f(-) = {1}, use a Consri-gate. Otherwise, we construct C
as follows. Consider fi : B" — {{0},{1}} given by

if f(2) =
if f(z)

{0} or f(x) = By, and
{1}.

Construct C' from Anp-gates, one for each prime impli-
cant of fi, with inputs connected to the respective, possi-
bly negated, input registers present in the prime
implicant. All Anp-gate outputs are fed into a single
Or-gate driving the circuit’s only output register.

By construction, C(z) = fi(z) C f(z) for all z € IB™.
To see C) C f, consider z € IB}; \ B” and make a case
distinction.

(31)

0
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(1) If f(z) = By, then trivially Cy(z) C f(x).

(2 If f(z) ={0}, we have for all 2’ € Res(z) that
f(@) = fe(@’) ={0} by (B0). Thus, for each
such 2/, all Axp-gate outputs are 0. Furthermore,
under input  and for each Axp-gate, there must
be at least one input that is stable 0: Otherwise,
there would be some 2’ € Res(r) making one
Anp-gate output 1, resulting in fp(z’') = {1}. By
our definition of gate behavior, this entails that all
Axp-gates output 0 for all 2’ € Resyi(x) as well,
and hence C(z) = {0} = f(x).

3 If flx) ={1}, all 2’ € Res(x) have
f(@") = fe(2’) = {1} by (30). Thus, fi outputs {1}
independently from the metastable bits in z, and
there is a prime implicant of fp which relies only
on stable bits in x. By construction, some
Axp-gate in C implements that prime implicant.
This Anp-gate receives only stable inputs from z,
and hence outputs a stable 1. The Or-gate receives
that 1 as input and, by definition of gate behavior,
outputs stable 1. Hence, C4(z) = {1} = f(x).

As f is closed, this case distinction is exhaustive. The
claim follows as one round of C' implements f. 0

Theorem 23 is useful for checking if a circuit without
masking registers implementing some function exists; its
proof is constructive. However, we obtain no non-trivial
bound on the size of such a circuit—covering all prime
implicants can be exponentially costly in m [29]. While effi-
cient metastability-containing implementations exist [25],
[27], it is an open question (1) which functions can be imple-
mented efficiently in general, and (2) what the overhead for
metastability-containment w.r.t. an implementation oblivi-
ous to metastability is. However, we show in Section 8 that
it is possible to efficiently implement such a circuit with the
help of masking registers.

Metastable Closure. We propose a generic method of iden-
tifying and creating functions implementable with simple
registers. Consider a classical Boolean function f: IB" —
IB" defined for stable in- and outputs only. Lift the defini-
tion of f to [f],, dealing with (partly) metastable inputs
analogously to gate behavior in Section 3: Whenever all
metastable input bits together can influence the output,
specify the output as “anything in By.” We call [f],, the
metastable closure of f, and argue below that [f],; € Fung. For
f: By — P(By), ie., for more flexible specifications,
[f]y; is defined analogously.

Definition 24 (Metastable Closure). For a function
f By} — P(By,), we define its metastable closure [f],; :
By — P(IBy;) component-wise for i € [n] by

{0} if V2’ € Resy(x) : f(a);, = {0},
[fla(z), == ¢ {1} if V&’ € Resm(z) : f(2'), = {1}, (32)
By otherwise.

We generalize (32) to Boolean functions. For f : B™ — IB", we
define [f],, : By — P(IBY,) as above, but require f(z'), =0
and f(x'); = 1, respectively (instead of asking for {0} and {1}).

By construction, [f],; is bit-wise, closed, specific, and
hence natural.
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Observation 25. [f],; € Fung for all f:IB™ — IB" and for
all f: By} — P(IBy)).

An immediate consequence of Observation 25 for the
construction of circuits is that, given an arbitrary Boolean
function f:IB™ — IB", there is a circuit without masking
registers that implements [f],;.

For f : B™ — IB", Theorem 23 shows that [f],; is the min-
imum extension of f implementable with simple registers:
by (30) any natural extension g of f must satisfy

Vo € By}, Vi € [n] : (33)

U f@); c o)

2/ €Res(z)

and thus
by (29).

To show that a function is not implementable with sim-
ple registers only, it suffices to show that it violates the pre-
condition of Theorem 23, i.e., has no natural subfunction.

Example 26. Consider f : B}, — P(IB};) with

2, 2" € Res(z) : f(2'), # f(2"), = g(z); = Bu

f(x) :=Resy(z) \ {MM}. (34)
This function specifies to copy a 2-bit input, allowing
metastability to resolve to anything except MM. No cir-
cuit without masking registers implements f: f ¢ Fung.

The recipe to prove such a claim is: (1) For contradiction,
assume [ € Fung, i.e., that f has some natural subfunction
g C f by Theorem 23. (2) By specification of f, the individ-
ual output bits of g can become metastable for input MM.
(3) Since g is bit-wise, it follows that MM € g(MM). (4) This
contradicts the assumption that g C f.

8 THE POWER OF MASKING REGISTERS

As discussed in Section 6, circuits with masking registers
are strictly more powerful than circuits restricted to simple
registers. In this section, we show that they can also make a
circuit significantly smaller. Let f : IB™ — IB" be a Boolean
function. We propose a generic implementation of its meta-
stable closure [f],; based on a Boolean implementation of f,
i.e., a circuit disregarding metastability, but implementing f
correctly for stable inputs.

First, recall that the implementation of [f],; without
masking registers implied by Theorem 23 relies on covering
all prime implicants of f. The number of prime implicants,
however, can be exponential in m, resulting in a circuit that
is exponentially larger than one which implements f and is
oblivious to metastability. Worse, in [11] unconditional
exponential lower bounds were shown on the size of combi-
national circuits implementing [f],, for functions f that
allow for polynomially-sized circuit implementations. With
one round of computation, a circuit in our model computes
exactly the same function as its combinational logic, see
Lemma 6 and, for a more detailed discussion, [30, Chapter
7]. As circuits without masking registers can be unrolled
(Theorem 19), this implies exponential lower bounds on the
product of circuit size and the number of rounds of compu-
tation for circuits without masking registers in our model.
Recall also that masking registers make no difference if we
use a single round of computation only, see Corollary 8.



FRIEDRICHS ET AL.: METASTABILITY-CONTAINING CIRCUITS

Using masking registers and multiple rounds enables to
break this hardness barrier. We propose a clocked imple-
mentation based on masking registers that requires only
additive linear and logarithmic overheads in the gate count
and depth of the combinational logic, respectively; the num-
ber of required rounds is 2m + 1. Thus, this approach is
provably exponentially more efficient than any solution
without masking registers.

The idea underlying the proposed circuit is to make suffi-
ciently many copies of the input so that the majority of cop-
ies is completely stable. As masking registers guarantee that
their reads are stable in all but one round, 2m + 1 such cop-
ies suffice. As the metastable closure guarantees a stable
output only if all stabilizations of the input yield the same
result (for a given output bit), either evaluating f for each of
the stable copies yields the same resulting bit b € IB or arbi-
trary output is valid. In the former case, sorting (separately
for each output bit) the 2m + 1 computed bits with respect
to the order 0 < M < 1 and returning the (m + 1)th bit
yields the correct output. This is exactly what a metastabil-
ity-containing sorting network does, ie., a circuit that
implements the metastable closure of the sorting function.
We discuss this in depth in Section 9, see Lemma 28. How-
ever, we only require to sort single bits here; hence simple
AxD and Or gates implement the [min],; and [max],;, respec-
tively, enabling to directly use standard sorting networks
with these gates implementing the 2-sort subcircuits.

Theorem 27. Let f: IB" — IB" be a Boolean function and G a
combinational logic DAG with f(z) = f(x) for all x € B™.
Then there is a circuit C that implements [f],, in 2m + 1
rounds that uses m masking registers, (2m + 1)n simple local
registers, and n simple output registers. The additive overhead
in complexity w.r.t. G is O(nm logm) in gate count and
O(log m) in depth.

Proof Sketch. First suppose that n = 1. We propose the fol-
lowing circuit C, which implements [f],; in 2m +1
rounds. C' has m mask-0 registers I, . .., I,, as input regis-
ters, 2m + 1 simple local registers Ly, ..., Loy11, and one
simple output register O. In the rth round, C' performs
the following operations:

e It copies, for all 1 <+ < 2m, the content of L; to
Li.

e Itreads the input registers, yielding 2 € Resy (1),
where ¢ is the input, and feeds the result into G,
yielding f¢(2(")), and stores itin L;.

e If feeds the values stored in Ly,..., Lo, into a
metastability-containing sorting network (for sin-
gle bit inputs) and writes the median, i.e., the
(m + 1)th output bit of the sorting network, to O.

We claim that C' implements [f],; in 2m + 1 rounds.
First observe that if [f],;(t) = IBy, any output of C is fea-
sible. Hence, suppose [f],(t) = {b} for some b € B in the
following,.

Recall that each masking register can be read as M at
most once in any (2m + 1)-round execution, cf. Fig. 3b.
Hence, there must be m + 1 rounds in which all reads are
stable, i.e., where z(") € B™. As [f],;(¢) = {b}, f(z")) =b.
As fYx) = f(z) for € B™ by assumption, in these
rounds we have f¢(z(")) = b. It follows that at least m + 1
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of the local registers L; hold the bit b after 2m + 1 rounds.
We claim that—after sorting—the (m + 1)th bit is b and is
copied to O. To see this, consider the closure [s],; of the (1-
bit) sorting function s : B™ — IB". The ith output is 0 if
there are at least ¢ inputs that are 0, it is 1 if there are
n — ¢ — 1 inputs that are 1, and M otherwise—in the latter
case, stabilizing all M inputs to either 0 or 1 would result in
different values of output 4, in the first two cases it would
not. Hence, having at least m + 1 of the registers L; hold
value b implies that the (m + 1)th output bit of the sorting
network is b. We conclude that C' behaves as claimed.

It remains to bound the number of additional gates
and the increase in depth of the combinational logic.
Using a pair of AND and Or gates as a 2-sort element and
optimal sorting networks [31], the sorting network con-
tains O(m logm) gates and has depth O(logm). This
completes the proof for the special case of n = 1. To con-
clude the proof, we observe that the above construction
directly generalizes to arbitrary n—Definition 24 allows
us to treat the output bits independently. O

Observe that the above construction can be specialized to
implementing [f],, only for inputs satisfying that at most
k < m bits in the input are metastable. In this case, it is suffi-
cient to read the input 2k + 1 times only, meaning that m is
replaced by £k in all of the above complexity bounds, i.e., the
overheads become O(nk logk) in the gate count and of
O(log k) in depth. This is to be contrasted with the construc-
tion from [11], which implements [f],, for inputs with at
most k metastable bits without masking registers and in a
single round, but at the cost of increasing the number of
gates by a factor exceeding (7)) * ie., a multiplicative blow-
up in circuit size that is exponential in k.

9 COMPONENTS FOR CLOCK SYNCHRONIZATION

This section demonstrates the power of our techniques: We
establish that a variety of metastability-containing compo-
nents are a reality. Due to the machinery established in the
previous sections, this is possible with simple checks (usu-
ally using Observation 25). The list of components is by no
means complete, but already allows implementing a highly
non-trivial application.

We are the first to demonstrate the implementability of
the fault-tolerant clock synchronization algorithm by Lun-
delius Welch and Lynch [14] in hardware, with determin-
istic correctness guarantee, despite the unavoidable
presence of metastable upsets. This algorithm is widely
applied, e.g., applied in the Time-Triggered Protocol
(TTP) [13] and in FlexRay [12]. While the software-hard-
ware based implementations of TTP and FlexRay achieve a
precision in the order of microseconds, higher operating fre-
quencies ultimately require a pure hardware implementa-
tion. Recently, an implementation based on an FPGA has
been presented by Kinali et al. [32]. All known implementa-
tions, however, synchronize potentially metastable inputs
before computations—a technique that becomes less reliable
with increasing operating frequencies, since less time is
available for metastability resolution.

Moreover, classical bounds for the MTBF for metastable
upsets assume a uniform distribution of input transitions;
this is not guaranteed to be the case in clock synchronization,
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Fig. 8. Efficient TC-to-BRGC conversion.

since the goal is to align clock ticks. Either way, synchron-
izers do not deterministically guarantee stabilization, and
errors are bound to happen eventually when n clocks take
n(n — 1) samples at, e.g., 1 GHz. Ever-increasing operating
frequencies and the inevitability [1] of metastable upsets
when measuring relative timing deviations lead us to a fun-
damental question: Does the unavoidable presence of meta-
stable upsets pose a principal limit on the operating
frequency? We show that this is not the case.

We prepare by arguing that the right encoding is crucial
in Section 9.1 and present the algorithm and the required
components in Section 9.2.

9.1 Encoding and Precision

An appropriate encoding is key to designing metastability-
containing arithmetic components. If, for example, a control
bit v indicating whether to increase = 7 by 1 is metastable,
and « is encoded in binary, the result must be a metastable
superposition of 00111 and 01000, ie., anything in
Res(OMMMM) and thus an encoding of any number
2’ € [16]—even after resolving metastability! The original
uncertainty between 7 and 8 is massively amplified; a good
encoding should contain the uncertainty imposed by v = M.

Formally, a code is an injective function y : [n] — IB" map-
ping a natural number z € [n] to its encoded representation.
For y=y(z), we define y~'(y): =z, and for sets X,
y(X) :=={y(x) |z € X} and y 1(X) := {z|y(z) € X}. In this
work, we consider two encodings for input and output: TC
and BRGC. For the 4-bit (unary) TC we use un : [5] — B*
with un(1) = 0001 and un~!(0111) = 3; un~1(0101) does not
exist. BRGC, compare Fig. 8a, is represented by rg(z), and is
much more efficient, using only [log,n] bits. In fact,
rg : [27] — B is bijective.

We choose un and rg due to the property that in both
encodings, for z € [k — 1], y(x) and y(x + 1) differ in a single
bit only. This renders them suitable for metastability-con-
taining operations. We revisit the above example with the
metastable control bit u indicating whether to increase
x =7 by 1. In BRGC, 7 is encoded as 00100 and 8 as 01100,
so their metastable superposition resolves to Res(0M100),
ie, only to 7 or 8. Since the original uncertainty was
whether or not to increase = 7 by 1, the uncertainty is per-
fectly contained instead of amplified as above. We formalize
the notion of the amount of uncertainty in a partially meta-
stable code word: € B, has precision-p (w.r.t. the code y) if

max{y — |y, J € y '(Res(z))} <p, (35)

i.e., if the largest possible difference between resolutions of
x is bounded by p. The precision of 2 w.r.t. y is undefined if
some y € Res(z) is no code word, which is not the case in
our application.
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Fig. 9. Tapped delay line TDC. Outputs 1¥0"* or 1*M0"~*!, i.e., at most
one metastable bit, and hence has precision-1.

Note that the arithmetic components presented below
make heavy use of BRGC. This makes them more involved,
but they are exponentially more efficient than their TC
counterparts in terms of memory and avoid the amplifica-
tion of uncertainties incurred by standard binary encoding.
As a matter of fact, recently proposed efficient implementa-
tions for metastability-containing sorting networks [25], [27]
and metastability-containing TDC [26] use BRGC.

9.2 Algorithm and Components

Our core strategy is the separation of concerns outlined in
Section 1 and Fig. 1. The key is that the digital part of the cir-
cuit can become metastable, but that metastability is con-
tained and ultimately translated into bounded fluctuations in
the analog world, not contradicting Marino.

We propose an implementation for n clock synchroniza-
tion nodes with at most f < n/3 faulty nodes, in which
each node does the following.

Step 1: Analog to Digital. First, we step from the analog
into the digital world: Delays between n — 1 remote pulses
and the local pulse are measured with TDC. The measure-
ment can be realized such that at most one of the output
bits, accounting for the difference between = and « + 1 ticks,
becomes metastable, i.e., has precision-1.

TDC can be implemented using tapped delay lines or
Vernier delay line TDC [33], [34], [35]; see Fig. 9: A line of
delay elements is tapped in between each two consecutive
elements, driving the data input port of initially enabled
latches initialized to 0. The rising transition of the remote
clock signal fed into the delay line input then passes
through the line, and sequentially sets the latches to 1; the
rising transition of the local clock signal is used to disable
all latches at once. After that, the delay line’s latches contain
the time difference as unary TC. Choosing the propagation
delays between the latches larger than their setup/hold
times, we ensure that at most one bit is metastable, i.e., their
status is of the form 1°0* or 1*MO0*. The output is hence a
precision-1 TC-encoded time difference.

A traditional implementation would use synchronizers
on the TDC outputs. This delays the computation and
encourages stabilization, but does not enforce it. However,
clock synchronization cannot afford to wait. Furthermore,
we prefer guaranteed correctness over a probabilistic state-
ment: Four nodes, each sampling at 1 GHz, sample 1.2 - 10"
incoming clock pulses per second; synchronizers cannot
provide sufficiently small error probabilities when allocat-
ing 1 ns or less for metastability resolution [4].

Step 2: Encoding. We translate the time differences into
BRGC, making storage and subsequent components much
more efficient. The results are BRGC-encoded time differen-
ces with at most one metastable bit of precision-1.

With the example circuit in Fig. 8, we show how preci-
sion-1 TC-encoded data can be efficiently translated into
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precision-1 BRGC-encoded data. Fig. 8b depicts the circuit
that translates a 7-bit TC into a 3-bit BRGC; note that gate
count and depth are optimal for a fan-in of 2. The circuit can
be easily generalized to n-bit inputs, having a gate depth of
|log ,n|. While such translation circuits are well-known, it is
important to check that the given circuit fulfills the required
property of preserving precision-1: This holds as each input
bit influences exactly one output bit, and, due to the nature
of BRGC, this bit makes exactly the difference between
rg(z) and rg(z + 1) given a TC-encoded input of 1"M0"*~1.

A more efficient way is to use a metastability-containing
TDC which directly produces BRGC of precision-1; such a
component is presented in [26].

Step 3: Sorting Network. A sorting network selects the
(f+ 1Dth and (n — f)th largest remote-to-local clock differ-
ences (tolerating f faults requires to discard the smallest
and largest f values).

This requires 2-sort building blocks that pick the mini-
mum and maximum of two precision-1 BRGC-encoded
inputs preserving precision-1, which can then be combined
using well-known sorting networks [31], [36]. We show that
max (analogously min and hence a 2-sort) of two precision-1
k-bit BRGC numbers is implementable without masking
registers, such that each output has precision-1. Observe
that this is straightforward for TC-encoded inputs with bit-
wise AND and OR for min and max, respectively. We show,
however, that this is possible for BRGC inputs as well; effi-
cient implementations of the proposed 2-sort building
blocks are presented in [25], [27].

Lemma 28. We define the function maxgrac : B' x B¥ — B*
by  maxpreo(t,y) = rg(max{rg™ (), 17" (y)}).  Then
[maxpracly € Fung and it determines precision-1 output
from precision-1 inputs x and y.

An analogous statement holds for minggrce(z,y) = r1g
(min{rg~'(z),rg"'(y)}). Efficient implementations are given
in [25], [27] and improved in [23].

Step 4: Decoding and Digital to Analog. The BRGC-encoded
(f+ 1)th and (n — f)th largest remote-to-local clock differ-
ences are translated back to TC-encoded numbers. This can
be done preserving precision-1: A BRGC-encoded number
of precision-1 has at most one metastable bit: For any up-
count from (an encoding of) z € [2¥ — 1] to z + 1, a single bit
changes, which thus can become metastable if it has preci-
sion-1. It is possible to preserve this guarantee when con-
verting to TC.

Lemma 29. Define rg2un : B¥ — B gs rg2un(z) := un
(rg”'(x)). Then [rg2un]y; € Fung converts its parameter to
TC, preserving precision-1.

Finally, we step back into the analog world, again with-
out losing precision: The two values are used to control the
local clock frequency via a Digitally Controlled Oscillator
(DCO). However, the DCO design must be chosen with
care. Designs that switch between inverter chains of differ-
ent length to modify the frequency of a ring oscillator can-
not be used, as metastable switches may occur exactly when
a pulse passes. Instead, we use a ring oscillator whose fre-
quency is controlled by analog effects such as changes in
inverter load or bias current, see e.g., [37], [38], [39]. While
the at most two metastable control bits may dynamically
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change the load of two inverters, this has a limited effect on
the overall frequency change and does not lead to glitches
within the ring oscillator.

Carefully note that this gives a guaranteed end-to-end
uncertainty of a single bit through all digital computations.

10 CONCLUSION

No digital circuit can reliably avoid, detect, or resolve meta-
stable upsets [1]. So far, the only known counter strategy has
been to use synchronizers—trading time for an increased
probability of resolving metastability. We propose a funda-
mentally different method: It is possible to design efficient
digital circuits that tolerate a certain degree of metastability
in the input. This technique features critical advantages:

(1)  Where synchronizers decrease the odds of failure,
our techniques provide deterministic guarantees. A
synchronizer may or may not stabilize in the allotted
time frame. Our model, on the other hand, guaran-
tees to return one of a specific set of known values—
like the metastable closure, but this depends on the
application—without relying on probabilities.

(2)  Our approach avoids synchronization delay and, in
principle, allows higher operating frequencies. If the
required functions can be implemented in a metasta-
bility-containing way, there is no need to use a syn-
chronizer, i.e., to wait a fixed amount of clock cycles
before starting the computation.

(3)  Even if metastability needs to be resolved eventually,
one can still save time by allowing for stabilization
during the metastability-containing computations.

In light of these properties, we expect our techni-
ques to prove useful for a variety of applications,
especially in time- and mission-critical scenarios.

As a consequence of our techniques, we are the first to
establish the implementability of the fault-tolerant clock
synchronization algorithm by Lundelius Welch and
Lynch [14] with a deterministic correctness guarantee,
despite the unavoidable presence of metastable upsets.

Furthermore, we fully classify the functions computable
with circuits restricted to standard registers. Finally, we
show that circuits with masking registers become computa-
tionally more powerful with each round, resulting in a non-
trivial hierarchy of computable functions.

Future Work. In this work, we focus on computability
under metastable inputs. There are many open questions
regarding circuit complexity in our model of computation.
It is of interest to reduce the gate complexity and latency of
circuits, as well as to determine the complexity overhead of
metastability-containment in general. While [11] proved the
existence of functions with exponential overhead in case of
simple registers, efficient circuits have been obtained for
sorting networks [25], [27], a TDC that directly produces
precision-1 BRGC [26], and network-on-chip routers [10].
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