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Chapter 5
Where to Start? First Interactions between Wave Mechanics
and General Relativity
Alexander Blum

In the years 1925 to 1927, the old quantum theory was replaced by the newly developed
theory of quantum mechanics, which grew out of the matrix mechanics of Heisenberg,
Born, and Jordan and the wave mechanics of Schrödinger. Both of these theories were
initially formulated entirely non-relativistically. But it was clear from the outset that con-
tact would have to be made with the special theory of relativity for two important reasons:
On the one hand, the mechanics would have to be complemented with a quantum elec-
trodynamics (QED), in order to describe the emission and absorption of radiation, as well
as the particulate properties of light itself, which by this time (in the wake of the discov-
ery and interpretation of the Compton effect) was a generally accepted fact. On the other
hand, the mechanics itself would have to be made relativistic, as it was known, already
since the mid 1910s, that relativistic corrections to the kinematics of the electron would
have a measurable effect in the fine structure of atomic spectra.

It was Schrödinger’s wave mechanics, rather than matrix mechanics, that provided
the ideal starting point for a relativistic kinematics of matter: One needed to find a new,
relativistic matter wave equation, but at first glance there were no immediate other con-
ceptual difficulties, such as the problem of a non-commuting time variable in matrix me-
chanics. Schrödinger himself had initially attempted to find a relativistic wave equation,
following de Broglie’s program of matter waves, which had been formulated in a rela-
tivistic manner. But de Broglie had stopped short of addressing the dynamical equations.
Schrödinger in fact arrived at the Klein Gordon equation, but he dismissed it, due to its
empirical inadequacy (later understood as the absence of spin in the Klein Gordon equa-
tion). Others were not as scrupulous, and the Klein Gordon equation was rediscovered
(and published) multiple times in the immediate aftermath of Schrödinger’s first papers
on wave mechanics.1

Which role did general relativity play in this context? In full analogy with the case
of special relativity, two distinct problems can be distinguished. On the one hand, there is
the question of a quantum theory of the gravitational field. This will be discussed in the
next part. On the other hand, there is the question of how quantum matter interacts with
a gravitational field. We will be discussing this aspect first, because it is primary both
logically and historically: Many of those who attempted a relativistic generalization of
Schrödinger’s program didn’t see a reason to stop at special relativity—after all, the final
quantum wave equation should also be compatible with general relativity and be able to
describe the interaction of microscopic matter with a gravitational field. In two cases, the
re-discovery of the Klein Gordon equation thus actually occurred in the context of curved
space-time, in the work of Théophile de Donder and Oskar Klein.

1For a detailed history of the Klein Gordon equation, see Kragh (1984).
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It should be noted that at the time, quantum mechanics was far from being well
enough established for these works to be viewed as merely an application of the new
quantum theory to general relativity. Rather, by incorporating wave mechanics within the
better-established framework of general relativity, they sought to put the former on a surer
foundation. From a modern viewpoint, De Donder’s papers are notable for delivering the
first construction of a Klein Gordon equation in curved spacetime (Chapter 7). But for de
Donder this was not the central point. Rather, the generalization of Schrödingers “quan-
tization” procedure for arriving at the Schrödinger equation to the generally relativistic
case was in some sense meant to motivate the quantization procedure itself, even if de
Donder’s reasoning on this point is rather sketchy (Chapter 6).

In a similar vein, Klein’s attempt to bring together wave mechanics with the five-
dimensional extension of GR, proposed by Kaluza (1921) in order to unify gravity and
electromagnetism, might simply be read as the construction of a Klein Gordon wave equa-
tion in curved spacetime with an electromagnetic potential. But Klein’s main ambition
was to see whether the interpretation of Schrödinger’s waves as waves in actual space-
time, which the likes of Bohr and Heisenberg doubted from the very start, might in fact
be saved in a five-dimensional spacetime (Chapter 8). These hopes, cautiously voiced by
Klein in the conclusion to his paper, were soon to be dashed, when Klein realized that
such a theory would never be able to explain Planck’s law of black body radiation, the
problem that had led to quantum theory in the first place. In 1927, Klein converted to the
probabilistic camp, now placing his hopes for a spatio-temporal description in the newly
emerging quantum field theory.

This did not immediately change Klein’s research program: He continued to elab-
orate his classical five-dimensional field theory, but now viewed it merely as a starting
point for quantization. While work on a full theory of quantum electrodynamics was well
underway at this time, the quantization of gravity was not viewed as an immediate con-
cern. Klein’s second paper (Chapter 9) thus begins with some remarks on why general
relativity would need to be modified according to the postulates of quantum theory. This
is the first published argument for the necessity of quantizing the gravitational field. He
further argued that gravity and electrodynamics should be quantized simultaneously, that
is, that one should quantize a unified field theory rather than simple Maxwellian electro-
dynamics (interacting with a Klein Gordon matter field), as this would, in particular, allow
for a unification of the conservation laws of energy-momentum and of charge.

Indeed, if Klein’s later recollections are to be believed, his five-dimensional field
theory initially formed the classical basis for Heisenberg’s and Pauli’s attempts at formu-
lating QED.2 That is, until the Dirac equation came along in 1928 and ousted the Klein
Gordon equation as the best description of relativistic quantum matter. Initially, Dirac
saw one main advantage in his new equation over the old Klein Gordon one, namely that
it could be interpreted as a one-particle, quantummechanical Schrödinger equation (Dirac
1928). But even those who believed that any theory of matter waves would necessarily
have to be second-quantized immediately realized the superiority of the Dirac equation,
incorporating as it did the spin of the electron (and the proton).

In the wake of the Dirac equation, work immediately began on its integration into
general relativity, the most immediate goal being the formulation of the Dirac equation
in a curved (but non-dynamical) space-time. The first step in this direction was taken

2Oral history interview conducted by J. L. Heilbron and L. Rosenfeld on 25 February 1963, Niels Bohr
Library and Archives, American Institute of Physics, College Park, MD, USA, http://www.aip.org/history/
ohilist/4709_3.html.

http://www.aip.org/history/ohilist/4709_3.html
http://www.aip.org/history/ohilist/4709_3.html
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by Hugo Tetrode, already in 1928 (Chapter 10). The general idea was the following: In
Dirac’s derivation, the flat Minkowski space-time metric 𝜂𝜇𝜈 shows up in the algebra of
the Dirac 𝛾 matrices:

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝜂𝜇𝜈 (5.1)

Tetrode’s starting point was now to replace the Minkowski metric in this relation with a
generalized non-flat metric 𝑔𝜇𝜈 , turning the (elements of the) 𝛾 matrices from constants
into space-time dependent quantities, determined by the value of the metric at a given
space-time point. But this determination was not unique, in fact it did not even offer a
clear prescription for constructing the 𝛾 matrices when the metric was given. Tetrode
only presented some tentative attempts at finding such a prescription, but, soon after, Eu-
gene Wigner proposed that one could answer this question by making use of a formalism
that Einstein had developed in that same year (1928), but in an entirely different context
(Wigner 1929).

Einstein’s idea was to replace the metric 𝑔𝜇𝜈 as the fundamental quantity of his gen-
eral theory of relativity with so-called “vierbeine” (tetrads), that is, for each point in space-
time a local coordinate system spanned by four orthonormal basis vectors ℎ𝜈

𝑎, with 𝑎 run-
ning from one to four (Einstein 1928). The metric at a given point was determined by the
tetrad to be

𝑔𝜇𝜈 = ℎ𝜇𝑎𝜂𝑎𝑏ℎ𝜈𝑏, (5.2)

but the metric by itself did not determine the tetrads. Indeed, the metric is unchanged by
an arbitrary local Lorentz transformation of the tetrads

ℎ𝜇𝑎 → Λ𝑏
𝑎ℎ𝜇𝑏 (5.3)

Einstein now proposed that the relative orientation of the tetrads was not redundant infor-
mation, but actually carried physical meaning. In other words, once one has defined an
𝑥 axis at some point in spacetime, it makes a difference what I call 𝑥 axis in some other
point—the only allowed transformations are then global Lorentz transformations, which
conserve the relative orientation of the tetrads. This allowed one to speak of vectors at
different spacetime points as parallel if they had the same components with regard to their
local tetrad; hence Einstein’s theory went by the name of teleparallelism. Through the
notion of teleparallelism, the tetrads thus defined a second connection (beside the usual
Levi-Civita connection one could obtain from the metric tensor alone) which could be
used to construct new tensors and invariants, which could in turn be used to write down
more general field equations. Einstein believed that he could thereby construct combined
field equations for the gravitational and electromagnetic fields.

Wigner realized that, independent of these unified field theory considerations,3 given
local tetrads one could give a unique prescription for the construction of the 𝛾 matrices in
curved spacetime as

3As we shall see, this is just one instance of the close connection between developments in unified field
theory and the Dirac equation in curved space-time. For a detailed discussion from the viewpoint of the
history of unified theory, see Goenner (2004).
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𝛾𝜇 = ̃𝛾𝑎𝜂𝑎𝑏ℎ𝑏
𝜇 (5.4)

where the ̃𝛾 are the usual (constant) Diracmatrices; theDiracmatrices on curved spacetime
𝛾 can then easily be shown to obey the correct anti-commutation relations. The open
question was then: Given the Dirac matrices in curved spacetime, how were they to be
incorporated into the Dirac equation? Both Tetrode andWigner had tried this, but they had
mainly concerned themselves with the question of how space-time dependent 𝛾 matrices
were to be integrated into the Dirac equation, which of course contained derivatives with
respect to space and time. The general covariance of the wave equations they ended up
with was, however, very questionable. This question was soon taken up by Vladimir Fock,
initially in collaboration with Dimitri Ivanenko.

Fock’s main innovation was introducing the notion of the covariant derivative of
a spinor, which allowed for a manifestly covariant Dirac equation in curved spacetime
(Chapter 11). The connection appearing in the covariant spinor derivative was determined
by the Dirac matrices in curved spacetime, which in turn were determined by the tetrads.
But Fock could show that his Dirac equation was indeed covariant under local Lorentz
transformations, that is, that the choice of tetrads (beyond what was determined by the
metric) played no physical role. The tetrads were thus demoted to mere mathematical
tools, in contrast with the physical role they had played in Einstein’s teleparallelism.

A very similar approach was developed independently by Hermann Weyl (Chap-
ter 12).4 But Weyl’s approach differed fundamentally from Fock’s in its perceived goal.
Fock came from quantum theory and viewed his work as an extension of Dirac’s theory
to the case of curved spacetime. Weyl, on the other hand, is a representative of the view-
point, which we already encountered in the work of de Donder and the early Klein, that
general relativity might help in solving foundational issues in quantum mechanics. For
while the original problems of motivating the quantization procedure or interpreting the
wave function had largely been set aside by 1929 (the year of Weyl’s and Fock’s work),
the Dirac equation brought with it new fundamental difficulties, most notably the problem
of the negative energy states.

Weyl attempted to solve this difficulty by replacing the four-spinors of Dirac with
the two-spinors that now carry Weyl’s name. This removed the negative energy solutions,
but at the same time also prevented the inclusion of the usual explicit mass term in the
wave equation. Weyl expressed the rather vague hope that the mass might arise through
the coupling to a gravitational field and, to this end, constructed an essentially classical
field theory of coupled spinor, gravitational and electromagnetic fields, which, just like
Klein’s five-dimensional field theory two years earlier, was eventually supposed to be
quantized. In order to couple the spinors to the gravitational field, he introduced the same
tetrad-based covariant spinor derivative that Fock had constructed. For the coupling of
the spinors to the electromagnetic field, he discovered, almost in passing, the local gauge
invariance of the Dirac equation, which he not only related to, but in fact tried to deduce
from local Lorentz invariance.

The work of Weyl and Fock was received in two distinct ways: Some, coming to the
problem from general relativity, attempted to further pursue the solution of the negative
energy problem along these lines, most notably Jan Schouten, who attempted to show
how a mass term for Weyl spinors might arise in five- instead of four-dimensional curved
spacetime (Schouten 1931). In the quantum community, on the other hand, the work of
4For a detailed discussion of Weyl’s, and also Fock’s, work and its context, see Scholz (2005).
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Weyl and Fock was viewed as the classical basis for a relativistic quantum field theory
of gravitation, electromagnetism and charged Dirac particles, and an attempt to quantize
it was undertaken almost immediately by Léon Rosenfeld (see the following part of this
book). It was important for this undertaking that Weyl and Fock had not only shown
how to couple spinor waves to a gravitational field, but had also identified the degrees of
freedom in general relativity that were supposed to be subjected to quantization in such a
coupled theory, the tetrads.

In 1932, Schrödinger showed that this was not the unique way of integrating spinors
into general relativity. He took the spacetime dependent Dirac matrices as fundamen-
tal degrees of freedom, instead of the tetrads (Chapter 13). This brought the question of
which basis to choose for the Dirac matrices back onto the table: In the tetrad prescription,
equation 5.4, one simply had to initially pick some basis for the constant Dirac matrices;
everything else then followed from the tetrads and their transformation properties. But if
the 𝛾 matrices themselves were supposed to be the dynamical variables, no direct refer-
ence could be made to the constant matrices. Schrödinger thus imposed further hermiticity
conditions, which defined the space-time dependent Dirac matrices, given a metric, up to
a unitary transformation in spin space. These unitary transformations were not only, as
Schrödinger put it, “benign and irrelevant,” they also corresponded exactly to the local
Lorentz transformations in the Weyl-Fock tetrad formalism. What had thus, using tetrads,
looked like the rotation of local coordinate axes, in Schrödinger’s formalism was inter-
preted as a (local) transformation in spin space. This latter point, in particular, was soon
after further worked out by Bargmann (1932) and Pauli (1933).

A further alternative was worked out by Bartel van der Waerden and Leopold Infeld
(Chapter 14), based on a generalization of van derWaerden’s special relativistic spinor cal-
culus (Waerden 1929).5 They defined, instead of the local coordinate basis of the tetrad
formalism, local spinor spaces. The separation between local spin space transformations
and coordinate transformations was thus now taken as the starting point, rather than as
a result of the analysis. As in special relativistic spinor calculus, where vectors are con-
structed from spinors through the Pauli matrices, the connection between spinor space and
spacetime was established through a set of local, spacetime dependent generalized Pauli
matrices. These matrices replaced the metric as fundamental degrees of freedom. They
were thus the two-spinor analog of Schrödinger’s spacetime dependent Dirac matrices.
In a sense, Infeld/van der Waerden was to Schrödinger as Weyl was to Fock: The same
general idea, but with two-spinors instead of four-spinors. Van der Waerden viewed his
formalism as a considerable simplification of Schrödinger’s four-dimensional framework,
since one no longer needed to employ hermiticity conditions in order to fix the dynamical
matrix degrees of freedom.6

Both the Schrödinger and the Infeld-van der Waerden formalism had to wait quite a
while until they were put to use. Even though Pauli immediately suggested to Rosenfeld
that he should repeat his analysis of 1930, this time quantizing the Dirac matrices instead
of tetrads,7 Schrödinger’s reformulation was, to the best of my knowledge, not used as the
basis for a quantization of gravity until Bryce deWitt’s thesis work in the late 1940s. And,
still in 1951,8 Schrödinger remarked to Fredrik Belinfante: “I do not set any store in my
paper of 1932 on Dirac’s theory in a general metric. It was at the time a smart exercise,

5For a detailed study of van der Waerden’s work in physics, including this paper, see Schneider (2010).
6See the letter from van der Waerden to Schrödinger, 14 June 1932, Schrödinger papers, Vienna University
Library.
7Letter from Pauli to Rosenfeld, 25 November 1932, reprinted in Meyenn (1993).
8Letter from Schrödinger to Belinfante, 16 March 1951, Archive for the History of Quantum Physics.
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but it came to nothing.” Van der Waerden was equally dismissive of his work. His formal-
ism had to wait even longer, until the late 1950s, before it was widely received, mainly,
however, in the context of mathematical relativity, rather than as a basis for quantization.9

In any case, by the early 1930s it appeared that the classical field theory of relativistic
quantum matter interacting with the gravitational field had been worked out, in several
closely related mathematical formulations. The core difficulties were seen to lie in the
quantization procedure, which, already for the simpler case of electrodynamic interactions,
led to uninterpretable infinities in the higher orders of perturbation theory.

In 1938, however, a study by Einstein, Infeld, and Banesh Hoffmann (EIH) appeared,
which appeared to indicate that there were serious advantages to starting with a classical
theory of matter as point particles, in contradiction, ironically, with Einstein’s program of
a unified field theory (Chapter 15). EIH could show that if one treated matter particles
as singularities in the gravitational field , one could (in stepwise approximations) derive
the equations of motion for these singularities from the field equations alone, without
having to additionally postulate the geodesic equations for particle motion. The prospect
of carrying this feature of general relativity over to the quantum theory made a classical
theory of point particles (rather than a classical theory of matter waves to be second-
quantized) an attractive starting point for a quantum theory of gravitation. This approach
was taken by Peter Bergmann, as will be discussed in the final part of this book.

Several different possible starting points for a quantization of gravity, that is, a mod-
ification of general relativity according to the principles of quantum theory, had thus been
set. But the inverse program, the modification of quantum theory following considera-
tions from general relativity, was not dead. As we have seen, this program by the late
1920s mainly centered around the idea that the inclusion of general relativity might some-
how determine the mass of the elementary particles, which were after all purely empirical
parameters in the wave equations of quantum mechanics and field theory.

A variant of this idea, which brought in ideas from relativistic cosmology, had been
formulated early on by Arthur Eddington (1923). He hypothesized that the radius of the
electron (proportional to the inverse mass) should be related (in fact proportional) to the
curvature radius 𝑅 of the universe as a whole, still viewed at the time as static and spher-
ical (an Einstein universe). Eddington further elaborated on this idea 13 years later in
the context of his notorious and oft-ridiculed relativistic theory of protons and electrons
(Eddington 1936),10 obtaining the necessarily huge proportionality constant through the
square root of the number 𝑁 of electrons (or protons) in the entire universe.

While this work was almost universally regarded as obscure and incomprehensible,
some of the general ideas concerning the relation between cosmology and elementary
particles were taken up by Erwin Schrödinger.11 Schrödinger saw some promise in Ed-
dington’s new work, inasmuch as it was a specification of the original idea of connecting
the electron mass with cosmology, now also incorporating the tools of wave mechanics.
In particular, Eddington had derived the rest mass energy of an elementary particle as the
energy of the first excited state for the system of all the identical fermions in the universe.
The curvature radius of the universe entered through the boundary conditions for the wave
equation, the total number of particles in the universe through the fact that one was look-
ing at energies near the Fermi surface. In a stripped-down version, which Schrödinger

9See, in particular, Penrose (1960).
10For a benevolent and insightful reading of this book, see Kilmister (1994). For more on the historical
background, see Kragh (2015).
11For more on this work in the context of Schrödinger’s work on cosmology more generally, see Urbantke
(1992).
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presented at the Galvani Bicentennial in 1937 (Schrödinger 1938b) and which made no
more reference to the more eccentric aspects of Eddington’s theory (such as the attempt
to prove that the fine structure constant was necessarily the reciprocal of an integer),12 the
central relation read:

𝑚𝑐2 = ⋯ ℎ𝑐√𝑁
𝑅 , (5.5)

where the dots refer to undetermined constants. In order to obtain such a relation from
the accepted wave mechanics, rather than from Eddington’s novel theory, Schrödinger
devoted considerable energy to the explicit construction of the solutions of the Maxwell
and Dirac equations in a spherical universe (Schrödinger 1938a), also studying the non-
static, expanding case, which was by that time heavily favored (Schrödinger 1940). But
after three years of working on this subject, he had to conclude in a small note that one
would, starting from very general assumptions, always obtain the cubic root of 𝑁 in Ed-
dington’s relation, instead of the square root, and thus obtain much too small masses for
the elementary particles (Chapter 16).

The idea that general relativity, in particular relativistic cosmology, might directly
determine the microscopic quantum wave equations thus remained nothing more than a
tantalizing possibility. In contrast, the program of quantizing the gravitational field, while
technically challenging, seemed a fairly straightforward task. In this section, we have
discussed the necessary groundwork for this task, that is, the establishment of classical
theories of matter interacting with the gravitational field that went beyond the very unspe-
cific energy-momentum tensor of matter appearing in the Einstein equations. In the next
section, we will discuss the first attempts at an actual quantization of such theories.
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