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I. THE MODEL
A. Cavity field quantisation

The setup is sketched in Fig. 1(a) of the main text. We
model the cavity as perfectly reflecting mirrors at z = 0 and L,
with the 2D electron gas at the centre at zp = L/2. The tangen-
tial component of the electric field and the normal component
of the magnetic fields must vanish at the mirrors’ position. In
addition, we impose periodic boundary conditions in the xy-
plane. Given an electronic system filling the xy-plane with a
spacing a between the lattice sites, the size of the cavity in the
planeis L L, = Na?. For the mean field, we shall consider the
thermodynamic limit N — co.

To derive expressions for the cavity field, we follow the
derivation in [1]. The boundary conditions are satisfied by
the vector potential of the form
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where b, denotes the field amplitude in the n-th direction,
€ the filling material dielectric constant, and ¢ the vacuum
dielectric constant. Transversality imposes ¢ - A =0, such
that the b; are not linearly independent. Therefore, we write
d = |ql(sin 8 cos ¢, sin 8 sin ¢, cos 0), and rotate to a new basis,
in which the z-component is parallel to ¢, with the rotation
matrix
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The new eigenmodes are then given by iz, = X éiOZiutﬁ, and
we obtain the two transverse field modes
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with the polarisation vector
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which is called the transverse electric mode. Here, we have
set nzg/L = /2, i.e. the electron system is placed at the max-
imum of the cavity field.
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The second polarisation is given by
@’12 = éé’,l X éz (S5)

and is called the transverse magnetic mode. The z-component
of the field can be neglected, and we obtain the vector poten-
tial
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Note that the transverse magnetic mode also has a gapless
mode with k, = 0, which is however polarised along the z-
direction [2], and does not couple to the electronic system in
the present setup.

In principle, this setup also features higher dispersion bands
starting at frequencies (2n+ 1)wq, where n is a natural number
(even multiples of w( have a node at the position of the elec-
tron gas, and hence do not couple to it). For wy = 27 x5 THz,
these higher dispersion bands are in the optical regime, and
one cannot expect a THz cavity to still confine the light at
such high frequencies, so we do not take these into account.

B. Coupling to electron field

The paramagnetic Hamiltonian couples the cavity field to
the current operator of the electron system, and reads in real
space

Hi = ) JF) - A(F 2y = ) /2), (S7)
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where 7 denotes the summation over the lattice sites. In a
rectangular lattice with nearest-neighbour hopping, the cur-
rent operator is given by
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where 77+ 1, = (ny+ 1,ny) and ii + 1, = (n,, ny + 1). Using the
form of the vector potential (S6), the interaction Hamiltonian
in k-space then reads

@
Hu= Y "% (ag +d',) c;:q e (S9)
Kod.s
with
¢ iz, eg1,xsin[(ky + q./2)] + 85,y sin[(ky + qy/2)]’

1 (1 . (%)2)1/4

(S10)


mailto:frank.schlawin@physics.ox.ac.uk

and
@ _ . €qoxsin[(ky +qx/2)] + &z, sin[(ky + qy/2)]
gl?,z =180 o o174 5
(‘ +(22) )
(S11)
where in our setup
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Here, @ ~ 1/137 denotes the fine structure constant, and we
used € = 13 for GaAs (see table I). This coefficient is similar
to the one obtained in [3] for the coupling of cyclotron tran-

sitions to a cavity field. The coefficients obey the symmetry
§g =g md =g

This is the cavity coupling for a half-wavelength cavity
with wy = cn/L,. In the case of a nanoplasmonic cavity,
the field is further enhanced below the free-space limit. For
instance, in Ref. [4], the cavity volume is estimated to be
V =25%107 x (1y/2 \/2)3, where A is the vacuum cavity
wavelength. It is this further compression of the cavity field
that enables the experiments to reach the ultrastrong coupling
regime, where the coupling becomes comparable to the cavity
frequency. To describe this situation phenomenologically (i.e.
without ab initio simulation of the cavity field), we rescale g
by the reduction of the mode volume below the A3-limit,
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where we define the reduction of the cavity below the far field
limit A.

(S14)

II. PARAMETER VALUES FOR GAAS
HETEROSTRUCTURES

Electron band mass m* = 0.07 m,
Lattice constant a=56A
Dielectric constant e=13

n, =3.6x 10" cm™
wy =21 x5THz

Electron density
Cavity frequency

TABLE I. Parameters of GaAs used for the estimation of the critical
temperature.

The parameters are obtained from reported values in [4, 7—
9], and are given in table I. From these, we calculate the trans-
fer integral
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and the Fermi wavevector (which we measure in units of the
lattice constant a)

kra = 2mn.a ~ 0.084. (S16)
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For low filling ratios, the electron dispersion is approximately
quadratic,
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with i = 4t + u. We use Eqgs. (S16) and (S18) to relate the
electron density to the chemical potential,

m
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The speed of light in GaAs in given by

¢ =co/ Ve, (520)

where ¢y = 3 x 108 m/s is the vacuum speed of light.
In the case of a two-dimensional electron gas GaAs het-
erostructures, the screened Coulomb repulsion is given by [9]
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with the vacuum permittivity ¢ and the inverse screening
length kyp = me?/(2neeyh?), we obtain an approximate
Hubbard-U (for £ = 0), U ~ 0.25t.

III. WOLF-SCHRIEFFER TRANSFORMATION

To obtain the effective cavity-mediated interaction, we
eliminate the interaction Hamiltonian (S9) by a Wolf-
Schrieffer transformation, i.e. we rotate to a new frame with
Hamiltonian

H' = ¢8 (Hy+ Hy + Hip) ™ (S22)
= Ho + Hf + H,‘m + [S,HO + Hf + Hint]
+% [S.]S. Ho + Hf|| + .. (S23)
where we choose S, such that
S, Ho + Hy| = ~Hi, (S24)

and thereby eliminate the coupling to the cavity to leading
order. This is the case for
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From Eq. (S23), we then obtain
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Keeping in mind that iw, > |€; — €|, we can always replace
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A. Change of electron dispersion

In tracing out the photon field, one also obtains a renor-
malisation of the electronic band structure due to scattering
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processes, when kK’ = k + ¢ and o = 0. We obtain
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where gm,x denotes a cutoff frequency for the in-plane photon
momenta supported by the cavity (see also section IV D). In
the first line, we approximated the numerator of Eq. (S32) by
~ 2kj2ca2. The additional factor 2z stems from the integration
over the azimuthal angle. Using values appropriate for GaAs,
we obtain hy ~ 1.25% 1073A~". Thus, even if the mode volume
compression is as small as A = 1073, the change in the elec-
tron dispersion would on the order of 0.1 %. It can therefore
be neglected.
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B. The diamagnetic interaction

As shown theoretically in [3], and observed experimentally
in [7], the diamagnetic interaction, which can be neglected
in most cases of interest in the optical regime, can become
relevant or even dominant at strong resonant coupling. The
diamagnetic interaction Hamiltonian reads
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S +q.o
k,q.q 5,0
(S35)
where
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The prefactor can be estimated as (see section IV D)
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and can only give rise to minimal changes of the electron self-
energy. Again, it can be safely neglected, as long as the cavity
is in its ground state.
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IV. MEAN FIELD THEORY
A. The pair density wave

Considering only the attractive Amperean channel in the

nesting wavevectors Q = ko(£1, £1), the electronic Hamilto-
nian reads
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We define the order parameters
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and arrive at the mean field Hamiltonian
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This representation contains singlet and triplet components.
The dominating symmetry cannot be deduced in this form.

B. Single mean field

We consider only one order parameter, in which case the
mean field Hamiltonian reduces to
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It can be diagonalised straightforwardly, and we obtain
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with Ex = Heg,; — €5.) * \/(e@ﬁ g4+ AP,
Note that in contrast to regular BCS theory, this Hamiltonian
|
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has no particle-hole symmetry, E_ # —E..

The gap equation reads
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where f; = (exp(E.(p)/ksT)+ D!, and {p = (eé+ﬁ+ eé_ﬁ)/2.
Due to the lack of particle-hole symmetry, the expression does
not simplify to the usual gap equation, since
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Thus, in the continuous limit we obtain
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As we will describe in the next section, the deviation from a
conventional BCS theory are negligibly small; at least, when
we are determining the critical temperature.

C. Critical temperature

We wish to switch the integration over the full Brillouin
zone in Eq. (S46) into an integration along the Fermi surface,
and one integration along the energy axis £. To find deviations
from conventional BCS theory, we write
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where ¢ denotes the deviation of the quasiparticle dispersion
from {. Expanding around ¢ = O (at the Fermi surface), we
find

fﬁr + f,[,*r -1= —tanh( inT
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Linearising Eq. (S46) near T., and switching the integration
variables to an integration along the energy axis, and along
the Fermi surface, we obtain the eigenvalue equation (5) of
the main text. The energy integration yields for the first term
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in Eq. (S48) the well-known result
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and we find that corrections to this term are suppressed expo-
nentially,
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Hence, for the determination of the critical temperature, we
can neglect the deviation from particle-hole symmetry, and
evaluate Eq. (S46) with f3 + f_3 —1 =~ —tanh({/(2kgT)). The
critical temperature is then connected to the largest eigenvalue
of the linearised gap equation by [5]

kT, = 1.13hw e, (S51)

where v is a solution of the eigenvalue equation (5) of the main

" text. Using A = 5x107> and w, = wy, we obtain 7. = 2 K. For

A = 1073, this would even increase to 7. = 68 K (However,
in this case the eigenvalues grow to order of unity, v ~ 1,
and our weak-coupling approach may no longer be adequate).
This approximation cannot account for a finite range of photon
momenta in the cavity. So we compare these results in the
following with an alternative calculation in section IV D.



D. Check: long-range approximation

Here, we consider the full gap equation for s-wave pairing
symmetry. The p-wave case could be treated analogously, but
here we are only interested in an estimate for the critical tem-
perature.

At finite temperature, the gap equation is given by

0 3
Vis  A9@)

N RN
(S52)

In the thermodynamic limit, we obtain Eq. (S46). To solve this
integral equation analytically, we note that ¢/(awy) ~ 10* in
the THz regime, so the interaction V; 7 decays very quickly
in k-space (i.e. it is long-range in real space). Thus, only a
very short range of wavevectors will be affected, and we can
write approximately,

A9 (p) = (fy + fop = 1).
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where ay is chosen such that the both sides of Eq. (S53) inte-
grated over the first Brillouin zone yield the same result, i.e.
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where we introduced a momentum cutoff g« for the in-plane
photon momenta supported by the cavity in the second line
which we discuss below. We then obtain
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The factor 27 in Eq. (S55) stems from the integration over
the azimuthal angle. The momentum cutoff g, evidently
depends on the cavity geometry. Our present model of two in-
finite cavity walls sustains arbitrary g-values, and we can set
gmax = 7/a. In this case, we obtain log(1 + (e /(awyp))?) = 20
(for the values in GaAs). In practice, however, only a finite
range of photon momenta will be sustained. To estimate a
lower bound for these, we note that the minimal photon mo-
mentum in a cavity of length L in the x/y-plane should be
gmin = 7/L. In [4], this length is L = 45 um, yielding gmina =
3.3 x 1073, and thus log[...] > log(1 + (1/3)%) = 0.1. In [6],
the cavity length is given by L = 2 um, thus gpi, = 8.7x 1074,
and log|[...] > 2.9. In the following, we assume the logarithm
to be on the order of unity,

(S54)
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The approximation (S53) turns Eq. (S46) into a simple in-
version problem, and we obtain at zero temperature
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for |{5| < nVo(cos 2p;a — cos 20;a)/(4(2n)?), and zero other-
wise, and the critical temperature
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where AE)Q) is given by Eq. (S58) evaluated at the Fermi sur-
face. For typical values in GaAs heterostructures and using a
cavity compression V ~ 13/(2 x 10%), we obtain Vo ~ 1073¢,
and the critical temperature

K

~ _4_

T.~2x10 1

Thus, the cavity-mediated interaction can give rise to su-

perconducting condensation in the milliKelvin regime for a

wavelength-limited cavity. This temperature is already orders

of magnitude larger than those predicted for the free space in-

teraction. The additional enhancement of the vacuum field in

nanocavities then pushes the critical temperature into an ex-

perimentally accessible regime. For A = 2 x 107*, we thus

obtain 7. ~ 1 K, and for A = 1075, T. ~ 20 K. This is roughly
in agreement with the previous estimation in section IV C.
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V. QUASIPARTICLE HAMILTONIAN

To determine the energy dispersion, we diagonalize the
Hamiltonian [10]
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where we define J; = ko(1, 1) and G, = ko(1, —1). The length
ko is obtained from the requirement €5 = 0. This Hamiltonian

contains the mean field values A@ at all four nesting vectors.

We approximate the mean fields by exponentials

ND = Agexp(—(k - 0 /202, (562)
where the width o is estimated from a fit to the leading eigen-
function [see Fig. 1(d) of the main text] at the given electron
density, but the results do not depend sensitively on this width.
Furthermore, we fix Ag = 1073 (corresponding to a critical
temperature in the low-Kelvin regime).

VI. HEXAGONAL LATTICE

The results for a square lattice can be generalised to an ar-
bitrary lattice by writing the electron Hamiltonian as,

Hy=-2 Z Z Iy cos(k - 3)c£(rC,;(T,

ko &

(S63)



where the summation over ¢ runs over nearest-neighbour vec-
tors (for instance, for the square lattice, we simply have
81 = a(1,0)7, and &, = a(0,1)7), and 75 denotes the hopping
amplitude along the direction ¢. For the case of a hexagonal
lattice, we have
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Repeating the calculations outlined in the manuscript, and as-

suming for simplicity ¢z = ¢ for all S, we can straightforwardly
derive the effective interaction
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The resulting pairing state can be examined with the gap equa-
tion (5) of the main text analogously to the square lattice.

The results are shown in Fig. 1, where we consider an elec-
tron gas in a hexagonal lattice with otherwise the same param-
eters as a gas in a GaAs heterostructure, i.e. relative permit-
tivity € = 13, electron band mass m* = 0.069m,, chemical
potential u = —3.98¢, lattice constant a = 5.6 A, and a cavity
frequency wg = 2 x5 THz. The cavity compression is chosen
asA =101

Fig. 1(a) shows the coupling strength in reciprocal space.
The gray vectors indicate linearly independent nesting vectors

S6

Q. Panels (b) and (c) then show the dominating eigenvalues
of Eq. (5), and the eigenfunctions, respectively. Just like in
the square lattice, the first two eigenvalues correspond to a
singlet and a triplet order, respectively. The main influence of
the lattice consists in changing the nesting vectors, thus giving
rise to a distinct pair density structure.

VII. INFLUENCE OF WEAK DISORDER

To assess the impact of small energetic disorder on the Am-
perean pairing, we write the energy dispersion as

& = —21(cos(k,a) + cos(k,)) = 4 + Esorder(K),  (S66)

where the final term edisorder(l?) represents a weak disorder po-
tential. In the following simulations, it is created from the in-
terpolation of random values drawn from a Gaussian distribu-
tion with zero mean, i.e. (€gisorger(K)) = O (where (. ..) denotes
the ensemble average), and variance <6§isorder(l_€)> = 1071
The disorder is expected to have two consequences. First,
it slightly changes the Fermi surface. Second, it affects the
density of states at the Fermi surface, and thus the number
of electrons locally available for pairing. The impact on the
leading eigenvalue of the linearised gap equation, and hence
on the critical temperature, is investigated in Fig. 2, where the
eigenvalues are plotted for different disorder realisations. It
appears that on average the weak disorder has a (very weak)
positive effect on the eigenvalue. This can be understood as a
consequence of the long-range nature of the cavity-mediated
interaction. The disorder can locally enhance the density
of states in reciprocal space, and since only electrons with
closely neighbouring k-values can pair effectively, this lo-
cal enhancement can outweigh the reduction elsewhere in k-
space. It should be noted, however, that our simple approach
cannot take the reduction of the electronic coherence length
into account, which could counteract this weak enhancement.
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Supplementary Information, Figure 1.  (a) Contour plot of the numerator of Eq. (S65) at # = p/ = 0. The solid red line indicates the
Fermi surface at 4 = —3.98¢, and the gray vectors point towards the maximal Q-vectors m(1/ V2, 0) and 71(1, V3)/2372. (b) Eigenvalues of the
linearised gap equation (5) of the main text. We used the values for GaAs, as in Fig. 1 of the main text. (c) The eigenfunctions pertaining to
the two largest eigenvalues of panel (b).
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