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Optical pulses are routinely used to drive dynamical changes in the properties of 

solids. In quantum materials, many new phenomena have been discovered, including 

ultrafast transitions between electronic phases, switching of ferroic orders and non-

equilibrium emergent behaviors such as photo-induced superconductivity. 

Understanding the underlying non-equilibrium physics requires detailed measurements 

of multiple microscopic degrees of freedom at ultrafast time resolution. Femtosecond 

x-rays are key to this endeavor, as they can access the dynamics of structural, 

electronic and magnetic degrees of freedom. Here, we cover a series of representative 

experimental studies in which ultrashort x-ray pulses from free electron lasers have 

been used, opening up new horizons for materials research. 
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The equilibrium functional properties of solids are determined by the interplay between 

many microscopic degrees of freedom. These include the crystallographic structure, 

the arrangement of charges, spins, and orbitals as well as their dynamical fluctuations. 

The strong interactions between these many degrees of freedom create complex energy 

surfaces and make the ground state highly dependent on subtle differences in 

microscopic parameters, and on fine-tuning of external conditions. Understanding the 

origin of these “emergent” phenomena is, even at equilibrium, a formidable task that 

requires monitoring several degrees of freedom in the material at once. In the past two 

decades, equilibrium x-ray1,2 and photoemission techniques3,4 have provided an 

enormous amount of information and have contributed to understanding of equilibrium 

emergent states. 

The present paper covers a new experimental direction in the physics of complex 

correlated electron systems, in which electromagnetic fields are used to control 

emergent properties away from thermodynamic equilibrium. Indeed, ultrashort laser 

pulses have been shown to be especially effective tools to manipulate magnetism5,6 or 

ferroelectricity7,8, to induce phase transitions at an ultrafast speed9,10 and to trigger new 

emergent phenomena10-13. The underlying physics proceeds on femtosecond and 

picosecond timescales. Although these timescales have long been accessible with 

optical laser pulses since the 1970’s, changes in the optical constants at visible and 

near infrared frequencies provide very limited information, only indirectly related to 

the microscopic degrees of freedom of interest.  

Hence, complementary techniques that directly interrogate charge, spin and lattice 

degrees of freedom in the material are often applied to gain a deeper insight into the 

underlying physics. Time-resolved x-ray and electron diffraction, for example, directly 

track the photo-induced evolution of the crystal lattice (see Box 1), with some 

limitations in time resolution for electron diffraction experiments.14 Time- and angle-
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resolved photoemission (tr-ARPES), on the other hand, is capable of tracking changes 

in the electronic band structure at different positions in the Brillouin zone. Similarly, 

knowledge of the transient element-specific local electronic structure can be gained 

from spectroscopic x-ray techniques, such as time-resolved x-ray absorption. 

Furthermore, tunable and intense x-rays provide the possibility of combining these 

spectroscopic techniques with the nano-scale spatial resolution given by diffraction and 

allow the direct study of the time-evolution of complex orders of charges, spins, and 

orbitals (see Box 1). 

Ultimately, a comprehensive view of the physics at hand is obtained when combining 

results from different time-resolved techniques. In the following, we discuss examples 

where the use of x-ray techniques furthered our understanding of light-induced states 

of matter.  

The development of ultrafast x-ray probes dates back at least two decades, made 

possible by the development of high intensity15,16 amplified optical pulses17,18.  Already 

in the 1990’s, x-ray fluorescence from plasmas19,20 spurred activity in this area. Despite 

the low flux and limited tunability of these first femtosecond x-ray sources, many 

rudimentary structural dynamics experiments were already reported at that stage, 

including studies of laser-induced disordering of organic films21, photo-induced 

melting of semiconductors22-24, detection of coherent acoustic25,26 and optical27 

phonons, and photo-induced solid-solid phase transitions28.  

Other techniques combined the same high peak power femtosecond lasers with 

relativistic electron beams, first by exploiting 90-degrees Thomson scattering29-31 and 

later by using lasers as energy modulators in electron storage rings32-35. These sources 

were tunable, and opened up femtosecond x-ray spectroscopies like ultrafast near edge 

x-ray absorption spectroscopy36 or x-ray magnetic circular dichroism37. Accelerator 

based sources brought to the fore multiple-order-of-magnitude improvements in the x-
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ray flux38,39, and culminated in the demonstration of x-ray from free electron laser 

(FEL) operation40.  

The present review covers the evolution of ultrafast materials research after x-ray FELs 

became available, focusing on how ultrafast x-ray diffraction and spectroscopy were 

used. We present a few representative experiments, especially those on ultrafast 

rearrangement of ferroic orders, of coupled charge, spin and orbital dynamics in 

complex oxides and in other strongly correlated materials. The notable case of photo-

induced superconductivity will also be discussed, especially with respect to the 

contributions made by x-ray FEL experiments. 

 

Ultrafast Switching in Ferroelectric Materials 

Ferroelectric materials are of great scientific and technological interest, as they exhibit 

bi-stable, structurally distorted states of oppositely phased electrical polarization. For 

this reason, digital information can be stored in in ferroelectrics, making them 

interesting candidates for non-volatile memories. Typically, switching of the 

ferroelectric polarization is achieved by the application of pulsed electric fields. 

However, this reversal is based on incoherent dynamics and on the propagation of 

domain boundaries, which limits switching times to hundreds of picoseconds41-43. 

Several attempts to achieve ultrafast ferroelectric switching have been made, by 

driving the ferroelectric soft mode coherently with light pulses, either with impulsive 

Raman scattering34,44-46 or direct excitation8,47.  

The properties of ferroelectrics can for example be controlled by the photoexcitation of 

charge carriers across the bandgap or by excitation of impurity levels. Such schemes 

have been used to facilitate polarization switching, control the domain nucleation and 

induce self-organized domain patterns48-51. The light-induced structural dynamics of 

ferroelectric PbTiO3 thin films were shown to involve a distortion of the unit cell along 
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the c-axis52. The response of the lattice constant along this direction was extracted 

from changes in the time-resolved x-ray scattering angle of an out-of-plane diffraction 

peak. A fast contraction of the film within the first 5 ps preceded a long-lived 

expansion, which was explained by dynamical charge screening of the depolarization 

field that in thin film ferroelectrics acts against the ferroelectric polarization53. 

More directly, the structural response of ferroelectric Sn2P2S6 to the direct excitation of 

its soft mode was also measured with x-ray probes.54 Following excitation with THz 

pulses of 120-kV/cm electric fields, coherent oscillations of the atoms along the soft 

mode coordinate were measured, through the corresponding modulation of the 

intensity of selected Bragg peaks. The amplitude of these motions corresponded only to 

a change of the ferroelectric polarization by 8%. The authors extrapolated that 

switching may become possible if the THz electric field was increased to 1 MV/cm.  

In this context the development of mode-selective lattice control, so called “nonlinear 

phononics”, has opened up new opportunities in ferroelectrics55. Transient reversal of 

the ferroelectric polarization7 was observed using nonlinear optical probes, an 

important achievement that will likely motivate structural studies using ultrafast x-ray 

scattering of the involved atomic motions.  

 

Ultrafast magnetism in metallic systems 

It has long been known that ferromagnetism can be destabilized by light, although the 

use of optical pumping was shown to be able to drive the same phenomenon along a 

highly non-equilibrium path, and hence far faster than expected6,56-58. Time-resolved x-

ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) 

were used to provide new insight into this class of processes, rejuvenating the field. 

For example, Stamm et al. combined these techniques to reconstruct the dynamical 

response in a nickel thin film excited with short near infrared pulses37. Within ~100 fs 
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after optical excitation, the ferromagnetic order was completely quenched, indicating 

ultrafast transfer of spin angular momentum to auxiliary degrees of freedom, 

presumably the crystal lattice.  

Measurements with simultaneous spatial resolution studied the growth of the magnetic 

disordering, evidencing the role of photo-excited electron diffusion on the length-scale 

of only tens of nanometers59. Gutt et al. demonstrated the use of single soft x-ray 

pulses from a FEL to record diffraction patterns from nanoscale magnetic-domain 

structures60. This approach yielded magnetic correlations with nanometer precision and 

30 fs time resolution. Pfau et al. made use of magnetic small angle x-ray scattering to 

analyze modifications of the magnetic domain structure in a Co/Pd multilayer sample 

induced by near-infrared laser pulses61. These measurements revealed that the quench 

of spin angular momentum is accompanied by a decrease of the magnetic spatial 

correlations within the first few hundred femtoseconds. From its very high speed, it 

was speculated that this change could not result from domain wall motion, but was 

rather caused by spin-dependent transport of photo-excited electrons between 

neighboring ferromagnetic domains.  

Magnetic x-ray scattering experiments have also played a key role in determining the 

importance of nanoscale inhomogeneities on ultrafast magnetization switching in 

GdFeCo, a collinear ferrimagnet with a strong magneto-optical response62. Near-

infrared laser pulses were used to excite electrons on a time scale shorter than that of 

exchange interaction (~100fs), reversing the total magnetization of this compound after 

each pulse6,63,64. Graves et al. employed small angle x-ray scattering to gain insight on 

the mechanisms possibly responsible for ultrafast switching5. Figure 1a shows the 

chemical inhomogeneities in GdFeCo on a 10-nm length scale that divide the material 

into Gd- and Fe-rich regions. The magnetic scattering signal Sq at low scattering 

momenta (q < 0.2nm-1) allows for retrieving the average sample magnetization of the 
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Gd and Fe spin sublattices, which are oppositely aligned at equilibrium. Figure 1b (top 

panel) showed that both net magnetizations are quenched rapidly within 1 ps after 

excitation. The magnetic scattering signal Sq at high scattering momenta (q > 0.2nm-1) 

is instead sensitive to the nanoscale structure of GdFeCo and showed significantly 

different dynamics (see Fig. 1b, bottom panel). Within the first picosecond, the signal 

from Fe 3d spins was significantly reduced while the one from the Gd 4f spins 

increased dramatically, which was interpreted as non-local angular momentum transfer 

from the Fe-rich to the Gd-rich regions, illustrated in figure 1c. Although magnetic 

switching was not directly observed, this process is probably relevant in the 

understanding of ultrafast magnetization reversal. 

Beyond ferro- and ferrimagnetic metallic compounds presented above, time-resolved 

x-ray scattering techniques are also powerful in clarifying the ultrafast dynamics in 

materials with antiferromagnetic ordering. Resonant x-ray scattering2,65,66 (RXS), 

recently extended to the time domain, has emerged as powerful tool to follow these 

dynamics, with element specificity and with sensitivity on nanometer length scales. 

The first reported femtosecond RXS experiment, performed by Holldack et al. in the 

magnetic semiconductor EuTe at the Eu M-edge, demonstrated that the optical 

excitation of 4fà5d transition reduces antiferromagnetic order on the europium sites 

with a time constant of <700 fs67. It was speculated that exchange interactions were 

modified as the result of optically induced lattice deformations that happen on the time 

scale of acoustic motion.  

More recently, Rettig et al. employed time-resolved RXS to probe magnetization 

dynamics in antiferromagnetic holmium68. On each Ho atom, the total magnetic 

moment is carried mostly by the localized 4f electrons and only partially by the 

itinerant, valence band forming 5d electrons. Time-resolved resonant magnetic 

scattering at different atomic transitions was used to reconstruct separately the 
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dynamics of the localized 4f and 5d spins when near-infrared femtosecond pulses 

selectively excited the 5d electrons. The experiment showed that the 4f-5d exchange 

coupling is so strong that the spins on these different electrons were quenched on the 

same time scale. 

Lastly, magnetic scattering allows for imaging magnetization dynamics using x-ray 

holography69. In a first experiment, Wang et al. demonstrated the possibility of 

collecting high-quality magnetic holograms using femtosecond soft x-ray pulses70. 

More recently, von Korff Schmising et al. used the same technique to directly image 

ultrafast demagnetization dynamics at domain wall boundaries in a Co/Pd compound71 

confirming the previous observations of Pfau et al.61. More recently, Seaberg et al. 

combined x-ray photon correlation spectroscopy (XPCS) with coherent resonant 

magnetic x-ray scattering to study spontaneous fluctuations of magnetic Skyrmions on 

nanosecond time scales.72 These results illustrate that x-ray photon correlation 

spectroscopy can now study excitations in the µeV energy range, possibly making it 

complementary to inelastic x-ray and neutron scattering.  

The area of femtosecond magnetism has hence made extensive use of ultrafast x-ray 

sources. In addition, these experiments have been effective in developing a whole set 

of new techniques, which will impact this and other areas of non-equilibrium dynamics 

as FEL sources improve in quality and grow in number. 

 

Charge, orbital, spin and lattice dynamics in complex oxides 

Many transition-metal oxides with fractionally filled d-shells exhibit interesting 

collective phenomena that descend from strong electronic correlations. Especially, new 

phases emerge that are not captured by the familiar concepts of band theory and 

classical magnetism. These phases are also delicate, in that they can be easily switched 

by external stimulation, for example with static magnetic or electric fields and 
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hydrostatic pressure. Excitation with light can also tip the balance between stable 

phases, sometimes switching the electronic properties on ultrafast time scales. As 

discussed above in the magnetism section, femtosecond resonant soft x-ray scattering 

(RSXS) is a natural tool to study the evolution of these electronic or magnetic degrees 

of freedom. In combination with time-resolved hard x-ray scattering, which tracks 

atomic structural rearrangements, or terahertz spectroscopy that measures the optical 

conductivity, time resolved RSXS determines directly how the electronic ordering is 

affected and through which stages the phase transition occurs. 

For example, in the photo-irradiated magnetite (Fe3O4)73,74 time-resolved Fe L3-edge 

RSXS was used to track the evolution of the electronic order after excitation. The 

dynamical changes observed in these measurements were interpreted in terms of the 

breaking of iron trimerons followed by mobile charge creation9.  

Resonant diffraction can also be applied at the metal K-edges to measure charge and 

orbital order on the metal sites in complex oxide compounds75,76. When combined with 

non-resonant scattering, this technique can be used to measure the dynamical interplay 

between charges and the lattice, as demonstrated by Beaud et al. in the case of the 

optically induced insulator-metal transition in the manganite Pr0.5Ca0.5MnO3
77. In this 

material, the equilibrium charge order is connected to long-range orbital order and to a 

Jahn-Teller distortion of the crystal lattice78. Time-resolved x-ray scattering techniques 

were used to track the time evolution of these orders. Both near-infrared optical 

excitation and mid-infrared excitation of the Mn-O stretching vibrations79 were shown 

to melt the charge order, followed by relaxation of a Jahn-Teller distortion and of the 

orbital order. 

Time-resolved RSXS experiments were performed in the single-layer manganite 

La0.5Sr1.5MnO4, in which charges, orbitals, and spin form the so-called CE-type 

ordering pattern80. While charge carrier excitation in the near-infrared perturbed short-
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range spin ordering very effectively81, the long-range Jahn-Teller distortions and 

resulting orbital order was only weakly affected82.  

Mid-infrared resonant driving of a Mn-O lattice mode was also shown to perturb spin 

and charge/orbital order in La0.5Sr1.5MnO4
83. This result was interpreted in the context 

of nonlinear lattice dynamics84-86, where the crystal lattice is displaced along the 

coordinates of an anharmonically coupled Jahn-Teller mode to exert a force on the spin 

and orbital order. Similar experiments were performed in the layered nickelate 

La1.75Sr0.25NiO4
87,88

, where charges and spins order in stripes within the Ni-O planes. 

Time-resolved RSXS studies at the Ni L-edge revealed that charge and spin order melt 

also in this material when excited by near-infrared electronic89,90, as well as mid-

infrared lattice excitation91. 

In multiferroic materials (anti-)ferromagnetic order and ferroelectricity coexist and 

interact by magnetoelectric coupling92-94. Coherent spin control by intense THz electric 

field pulses resonantly driving an electromagnon was demonstrated in multiferroic 

TbMnO3 95. A time-resolved RSXS experiment highlighted such multiferroic control 

on the sub-picosecond level, providing another new perspective for high-speed optical 

data storage devices.  

Johnson et al. showed that short-pulse optical excitation could also be used to tip the 

balance between different magnetically ordered states96. CuO exhibits a lattice-

commensurate (CM) collinear antiferromagnetic order in the ground state, but non-

collinear incommensurate (ICM) antiferromagnetism in a multiferroic state at 

intermediate temperatures around 220 K97. While the two phases typically coexist in 

different domains, near-infrared excitation induced a partial change of the average 

magnetic order in favor of the ICM state. Strikingly, this phase transition sets in after 

an intensity dependent delay. It was speculated that the magnetic phase transition 

might be mediated by acoustic-branch magnetic excitations in analogy to the way 
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structural phase transition are mediated by phonons. As the energy barrier between the 

ICM and CM phase decreases with increasing excitation energy the delay approaches 

the lower limit of 400 fs, equivalent to one quarter of the oscillation period of a spin 

wave in this material. 

Recently, Langner et al. used time-resolved RSXS to study the spin-scattering 

dynamics in the skyrmion and conical phases of Cu2OSeO3 upon excitation with near-

infrared and ultraviolet pulses.98 This material shows a complex phase diagram, with a 

rich number of competing phases that exhibit different magnetic structure,99 where the 

application of an external magnetic field to the conical phase creates a skyrmion phase. 

The skyrmions are topologically protected spin configurations that have recently 

attracted attention for their robustness to external perturbations and for their potential 

in data storage applications100. Interestingly, the work showed that the skyrmion phase 

is more robust to optical excitation than the conical phase, possibly due to different 

spin scattering processes involved in the two phases.  

 

Heterostructures 

Complex oxide heterostructures have attracted significant interest over the past years, 

since interfacial coupling allows one to manipulate the static electronic and magnetic 

material properties and to create new functionalities at equilibrium101. A striking 

extension of these physics to dynamical settings started when mid-infrared light fields, 

made resonant with specific phonon modes of the substrate, were used to trigger 

interfacial distortions and to modify the electronic properties of functional films 

dynamically. This was vividly demonstrated by Caviglia et al., who showed that large-

amplitude excitation of the Al-O stretch mode in a LaAlO3 substrate induces an 

ultrafast insulator-metal transition in a NdNiO3 thin film grown on top102. Detailed 

insight into the spatiotemporal evolution of the different degrees of freedom of this 
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“ultrafast strain engineering” phenomenon was obtained in a set of resonant and off-

resonant x-ray diffraction experiments by Först et al. where the concomitant dynamics 

of antiferromagnetic order103, charge disproportionation and lattice dynamics104 were 

investigated. Figure 2a shows the dynamic change of the (¼ ¼ ¼) diffraction peak 

measured in a time-resolved RSXS experiment at the 852-eV Ni L3-edge. The 

observed peak reduction and concomitant broadening indicate heterogeneous melting 

of antiferromagnetic order. Figure 2b plots the time evolution of the intensity of the 

(2½ 2½ 2½) peak measured on and off resonance with the 8.34-keV Ni K-edge. The 

on-resonance intensity comprises a charge order contribution (illustrated by the gray 

shaded region), which disappears on a time scale shorter than that of the off-resonant 

intensity, which is sensitive to purely structural dynamics. Combining these different 

measurements leads to the data shown in Figure 2c. The lattice, magnetic and 

insulator-metal dynamics are illustrated through different types of order-disorder fronts 

that were found to propagate from the interface into the functional film at different 

speeds, with charge order melting presumably being the driving force and advancing 

supersonically ahead of demagnetization and structural relaxation. A sketch of these 

propagation fronts in the heterostructure is shown in Figure 2d. 

 

Charge Density Wave Materials  

Charge density waves (CDW) are periodic modulations of the valence electron density 

in materials. CDWs emerge in materials with strong electron-phonon coupling, for 

which the total electron energy is reduced by a periodic modulation of the crystal 

lattice, resulting in a stable or dynamical pattern for low enough temperatures. As a 

result, a small energy gap forms at the Fermi energy at the wave vector q of the 

periodic modulation. Charge density waves exhibit peculiar electrical properties, such 
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as nonlinear currents in response to AC and DC electric fields, which have motivated 

significant interest for electronic device technology over the past several decades105,106.  

When driven out of equilibrium, the structural and electronic degrees of freedom, 

which are intertwined at equilibrium, may decouple and respond differently on 

ultrafast timescales107-111. Amongst the most studied cases of photo-induced dynamics 

in CDW materials we mention here K0.3MoO3 (blue bronze), which exhibits a one-

dimensional CDW along otherwise metallic chains of corner-sharing MoO6 octahedra. 

Above a certain light intensity threshold, the excitation of blue bronze with ultrashort 

infrared and visible pulses melts the charge density wave order on femtosecond 

timescales 112-115. Ultrafast x-ray studies reported by Huber et al. were interpreted by 

positing a prompt reshaping of the lattice potential as a cause for a structural relaxation 

within 100 fs116 that is able to launch coherent oscillations of the CDW amplitude 

mode. Indications of a more complex interplay between structural and electronic 

degrees of freedom were also found when the response of the CDW order was 

compared for optical excitation of either the electronic subsystem or the crystal lattice 

with mid-infrared pulses117. In both cases, the onset of melting was found above the 

same threshold magnitude of the coherently driven amplitude mode oscillations, 

highlighting the existence of a universal stability limit for charge density waves, 

reminiscent of the Lindemann criterion for the melting of a crystal lattice. In view of 

their competition with other types of orders, most prominently Cooper pairing in high-

TC superconductors, and their role in the formation of emergent functionalities, the 

study of charge density waves remains a key aspect in ultrafast research. 

 

Light-induced superconductivity in the cuprates 

Hole doped cuprates of the type YBa2Cu3O6+x are a family of high-TC superconductors 

with crystal structure as sketched in Fig. 3a. Coherent tunneling of Cooper pairs 
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between adjacent CuO2 bilayers along the crystal c axis makes the coherent transport 

below the critical temperature three-dimensional. Superconductivity is strongly 

enhanced by a reduction of the distance d between apical oxygen and planar copper 

atoms, as achieved at equilibrium by the application of pressure in the range of a few 

kbar118-121. This relation opens up interesting opportunities for the control of 

superconductivity with light. Mid-infrared pulses were used to resonantly excite large 

amplitude oscillations in this distance d, which induced picosecond-lived signatures of 

coherent transport above the critical temperature and even up to room temperature12,122. 

The underlying dynamics of the crystal lattice were only recently clarified in time-

resolved x-ray diffraction experiments by Mankowsky et al. at the LCLS free electron 

laser123. Light-induced changes in the intensity of selected Bragg reflections sensitive 

to the motion of Cu and O ions along the c axis, were measured to identify transient 

atomic rearrangements locked to the appearance and decay of the transient 

superconducting state (Figure 3b). In the framework of nonlinear lattice dynamics84, 

anharmonic coupling of the resonantly driven Cu-O stretch mode to Raman-active 

lattice modes was expected to displace the crystal lattice quasi-statically along the 

coordinates of the latter. 

Figure 3c depicts the key element of the photo-induced motions in YBa2Cu3O6.5 at 

100 K, a transient reduction of the important apical-oxygen planar-copper distance d. 

In analogy with static pressure-induced effects, this motion might facilitate the light-

induced coherent Cooper pair transport along the crystal c axis above the equilibrium 

critical temperature (TC = 50 K), as identified by density functional theory calculations 

of the electronic structure in the transient state123. Among other effects, they predicted 

the transfer of electrons from the CuO2 planes to the Cu-O chains, similar to hole 

doping. This interpretation was supported by femtosecond resonant soft x-ray 

absorption experiments124.  
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In high-TC cuprates with doping levels close to 12.5%, superconductivity competes 

with the ordering of charges to reduce the critical temperature. The best-known 

examples are two-dimensional charge density waves in bi-layer YBa2Cu3O6+x for 

x ≈ 0.6125,126 and charge stripes in the single-layer La2−xBaxCuO4 compounds for 

x = 0.125127,128, with the latter illustrated in Figure 4a. A key question in understanding 

light-induced superconductivity is how these competing orders evolve when the 

transient superconducting states are formed from the charge ordered state.  

Först et al. used time-resolved RSXS at the oxygen K-edge to find prompt and 

complete melting of the stripe order in the frustrated superconductor La1.875Ba0.125CuO4 

that was illuminated by intense mid-infrared pulses resonant with the in-plane Cu-O 

stretch mode129. Importantly, the same excitation in the closely related compound 

La1.675Eu0.2Sr0.125CuO4 induces transient superconductivity, as probed by time-resolved 

THz spectroscopy11. The combination of the two experiments, as shown in Figure 4b 

and 4c, strongly suggests that melting of the competing stripe order is prerequisite for 

the formation of the transient coherent state. A similar result was found in 

La1.885Ba0.115CuO4, where for certain temperatures superconductivity and stripe order 

co-exist at equilibrium128. The photo-induced destruction of charge order, measured by 

time-resolved RSXS, appears to be concomitant with the dynamical enhancement of 

the superconducting order observed in time-domain THz spectroscopy130.  

This dynamical interplay of competing orders was also observed in YBa2Cu3O6.6 above 

the equilibrium critical temperature. The resonant optical excitation of the apical 

oxygen vibrational mode, which induces out-of-plane interlayer coherence as discussed 

above, partially melts the in-plane charge-density wave order as identified in a time-

resolved RSXS experiment at the 932 eV Cu L3-edge131. 

For the first time, x-ray scattering measurements succeeded to capture the 

crystallographic and the electronic properties of a transient room temperature 
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superconductor. These findings may illustrate new pathways towards the design of 

novel materials exhibiting equilibrium room temperature superconductivity. 

 

Electron phonon coupling in high-TC superconductors 

As demonstrated in many cases above, combining direct measurements of the lattice 

structure with those of the electronic degree of freedom provides new important 

insights into the emergence of exotic states of matter. Information from 

complementary experiments such as time-resolved x-ray diffraction and time-resolved 

angular resolved photoemission spectroscopy (trARPES) can clarify the strength and 

origin of electron-phonon coupling in complex materials. Yang et al. observed global 

oscillations of the Fermi level in BaFe2As2, a parent compound of FeAs based high-TC 

superconductors, at the frequency of the A1g phonon mode, which themselves 

suggested the presence of a strong electron phonon coupling132. These results were 

then complemented by ultrafast x-ray diffraction experiments133,134 that quantified how 

the coherent excitation of the A1g mode modulates the Fe-As-Fe bond angle. In 

combination, these measurements lead to an estimate of the electron-phonon 

deformation potential and coupling constant for the A1g mode, which was in good 

agreement with density functional theory calculations.  

More recently, it has been proposed that electronic correlations strengthen electron-

phonon coupling in iron selenide and iron pnictides superconductors and may play a 

role in the emergence of superconductivity in these materials135. In a pioneering 

experiment, Gerber et al. were able to quantify the electron-phonon coupling in FeSe 

superconductors136. Photo-excitation of FeSe with 1.5eV femtosecond pulses triggered 

a coherent oscillation of the A1g mode. Time resolved hard x-ray diffraction tracked the 

motion of the selenium atom δZSe shown in figure 5a, while high-resolution time-

resolved ARPES tracked the shift of the dxy/yz and dz2 orbital bands shown in figures 5b 



 17 

and 5c, respectively. These measurements yielded orbital-resolved values for the 

electron-phonon deformation potential that could be compared directly to theory 

predictions. The retrieved experimental values could only be captured when DFT was 

combined with dynamical mean field theory to include electron-electron correlation 

effects, proving their importance in determining the electron-phonon coupling in FeSe 

and related materials. 

 

Probing Elementary Excitations in the Time Domain 

Probing low-energy excitations in solids and their dispersion reveals important 

information on the fundamental interactions at play. Resonant inelastic x-ray scattering 

(RIXS) is a photon-in photon-out technique that allows for the study of elementary 

excitations in solids at finite momenta with orbital and element selectivity137. Several 

elementary excitations can be probed using RIXS such as charge transfer excitations 

and d-d transistions138,139, magnons in 2D or 3D140,141 and phonons142,143. Time-

resolved RIXS would enable reconstructing the time evolution of such excitations, for 

example when the material is driven out of equilibrium by a short laser pulse. In a 

pioneering experiment Dean et al. employed time-resolved RIXS to study how 

magnetic correlation evolve upon photo-doping the Sr2IrO4 Mott insulator144. The 3D 

magnetic order, measured by time-resolved RSXS, was completely quenched within 

the first 2 ps and recovered with a fluence dependent time constant that varies between 

100 ps and 1 ns. Time-resolved RIXS then examined the evolution of magnetic 

excitations and revealed that 2D in-plane magnetic correlations recover on a much 

faster time scale, which is similar to that of charge recombination. It was speculated 

that such fast recovery time might be due to the fundamental link that exists in strongly 

correlated materials between the in-plane electron hopping parameter and the in-plane 

magnetic exchange. The slow recovery of the long-range magnetic order was instead 
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related to the weak inter-plane exchange coupling and energy dissipation into other 

degrees of freedom. 

Short x-ray pulses also allowed for inelastic measurements of non-equilibrium lattice 

dynamics. Trigo et al. demonstrated a highly interesting and new experimental 

technique to probe phonon dispersion curves in solids by measuring time resolved x-

ray scattering145. In this experiment, a germanium single crystal was excited with near-

infrared laser pulses to produce correlated phonon pairs at opposite momenta that 

modulate the x-ray diffuse scattering intensity around Bragg peaks at twice the phonon 

frequency. In contrast to typical x-ray measurements that analyze the incoherent 

thermal diffuse scattering and require an ab-initio model of the interatomic forces, this 

method allows to extract the phonon dispersion curves directly from Fourier 

transformations of the modulated diffuse scattering intensity. Figures 6b and 6c show 

the obtained dispersion relations for two transverse acoustic modes in germanium 

along the directions sketched in Figure 6a. The agreement with the calculated 

dispersions (white lines) is good, especially considering that there are no adjustable 

parameters. Jiang et al. employed this technique to investigate the origin of incipient 

ferroelectricity in PbTe. They found that the ferroelectric instability is due to the 

existence of strong electron-phonon interactions rather than phonon-phonon 

anharmonicities146.  

Probing excitations in the time domain also comes with significant advantages over 

equilibrium measurements such as inelastic neutron and x-ray scattering. For example, 

Fourier transform inelastic x-ray scattering in the time-domain allows easier access to 

the lower frequency part of the dispersion relations of an excitation. Furthermore, 

while traditional inelastic measurements only reveal harmonic properties of phonons in 

a momentum-resolved manner, time-resolved x-ray scattering can reveal the presence 

of anharmonic couplings between different phonon modes. In a recent experiment, 
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Teitelbaum et al. succeeded to directly identify the individual decay channel of the A1g 

phonon mode in bismuth147. In this experiment, they also obtained, for the first time, a 

quantitative measurement of the anharmonic force constants between the A1g mode and 

the anharmonically-coupled longitudinal acoustic modes.  

 

Perspectives and Conclusions 

All the experiments discussed above show how the advent of short x-ray pulses has 

enabled a far deeper understanding of non-equilibrium phenomena in complex solids. 

In most cases, free-electron laser operation is based on self-amplified spontaneous 

emission (SASE), producing pulses with a large bandwidth and strong shot-to-shot 

fluctuations in most of their key parameters, such as intensity, duration, and 

spectrum40. While one can often account for these fluctuations using single-shot 

diagnostics,148-150 the large bandwidth of the x-ray pulses severely limits the energy 

resolution achieved during experiments. This problem is typically mitigated by the use 

of monochromators, with the caveat that they cause a severe reduction (up to two 

orders of magnitude) in the available x-ray intensity.  

To overcome this limitation, a key aspect in the design of advanced FEL sources is the 

adoption of seeding schemes with the ultimate aim of reaching Fourier transform-

limited x-ray pulses.151-153 Compared to SASE operation, seeded FEL operation 

produces pulses with narrower bandwidth and significantly improved energy and 

intensity stability. Another important benefit of newly developed FEL sources is the 

increase in pulse repetition rate that will allow collecting data at reduced experimental 

time. In combination, we expect that seeded FEL sources with high repetition rates will 

foster a number of flux hungry techniques, such as time-resolved resonant x-ray 

diffraction or resonant inelastic x-ray scattering, with even higher time and spectral 

resolution.  
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Finally, these new sources promise the complete control of the x-ray pulse parameters, 

aiming to reach sub-fs duration with arbitrary pulse shape. With more precise 

synchronization between the x-ray pulses and the optical excitation fields, for example 

in the case of THz and mid-infrared pulses,154 it is already becoming possible to make 

the x-ray pulses stable with respect to the absolute phase of the pump pulses. We 

envision that this advancement will open up entirely new areas of research 

investigating coherence effects. For example, it will be possible to follow changes in 

the material structure and electronic properties as they are induced by the excitation 

electric field, promising further insight into the origin of nonlinear couplings between 

different excitations in condensed matter. 
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Box 1 – Time Resolved X-ray Techniques 
 
Pump-probe x-ray techniques constitute a valuable tool to reconstruct material dynamics by 
capturing directly the transient light-induced changes in the microscopic degrees of freedom. A 
typical x-ray time-resolved experiment is illustrated in the figure below. The sample under 
study is excited with a strong laser pulse, identified as pump, that triggers dynamics in the 
material. A time-delayed x-ray pulse probes the pump-induced changes by interaction with the 
material and subsequent collection of the scattered (or transmitted) beam on a detector. 
Depending on the choice of the photon energy in the hard and soft x-ray regimes, information 
about the atomic or electronic structure of the material can be retrieved using techniques such 
as x-ray diffraction, x-ray absorption spectroscopy and resonant x-ray diffraction. 
Discovered by Max von Laue in 1912, x-ray diffraction is arguably one of the most useful 
tools in material characterization. X-ray waves scattered by the periodically ordered atoms in a 
crystal interfere constructively or destructively along specific directions. The analysis of the 
measured interference patterns allows for determining the average position of each atom in the 
crystal with sub-picometer spatial resolution. For example, by monitoring the position and 
relative intensities of a purposely chosen set of Bragg peaks as a function of time, one can trace 
lattice dynamics triggered by the excitation of a coherent phonon25-27. With the symmetry of 
the material determining the measured diffraction pattern, one can also follow through which 
stages an ultrafast light-induced phase transition occurs28. As a last example, in analogy to the 
case of thermal diffuse scattering, the time-dependence of the scattered intensity in-between 
Bragg peaks reveals information about the dispersion of phonons without the need of ab-initio 
modeling of force constants145. 
X-ray absorption spectra contain fingerprints of materials’ electronic and magnetic structures. 
As the x-ray energy is tuned to resonance with an atomic transition, the absorption increases 
dramatically and electronic and magnetic states can be reconstructed in an element-specific 
manner. By analyzing how the absorption spectrum of a substance changes upon photo-
excitation, it is possible, for example, to gain insight into transient changes in the oxidation 
states and bond lengths of a compound124,155. Also, changes in the magnetic moment of a 
specific atom can be disclosed by measuring x-ray magnetic circular dichroism under 
resonance condition156. 
Such absorption spectroscopy captures sample properties without the possibility of spatial 
reconstruction, making it difficult to observe complex long-range ordering of charges, spins, 
and orbitals. Resonant x-ray diffraction combines the contrast mechanisms given by absorption 
spectroscopy with the spatial resolution given by diffraction. By performing diffraction 
experiments with incoming photons tuned in resonance with appropriate atomic transitions it is 
possible to study directly phenomena such as charge stripe order in cuprates128,129 or orbital and 
spin order in manganites75,77. In recent years, also this technique has been brought into the time 
domain and has become a standard experiment for materials research at x-ray FELs.  
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Figures 
 

 
 
Fig. 1| Ultrafast angular momentum transfer in a ferromagnetic film. Non-local, 
ultrafast transfer of angular momentum in GdFeCo was revealed by time resolved 
magnetic small angle X-ray scattering5. a| Local chemical nanoscale variations for Gd, 
Fe and Co in Gd24Fe66.5Co9.5 as measured with energy dispersive X-ray spectroscopy. 
Darker coloured areas indicate elemental enrichment, whereas white areas indicate 
below average concentrations. b| Temporal evolution of the magnetic diffraction, Sq, 
for Gd 4f (red) and Fe 3d (blue) spins. The time delay (Δt) is defined as the time 
interval between the arrival of the pump pulse and the x-ray probe pulse. The 
measurement of Sq at low-scattering momenta (q) (top part) probes the average sample 
magnetization, whereas the high-q Sq (bottom part) measures the evolution of the 
magnetization at the nanoscale, showing the transfer of angular momentum to the Gd-
rich regions. c| Time evolution of the angular momentum transfer to the Gd-rich 
regions as extracted from the analysis of the high-q Sq scattering data. The ultrafast 
transfer of angular momentum takes 1 ps and is followed by a slow recovery through 
spin dissipation within the Gd regions. Adapted with permission from Graves et al. 5, 
Nature Publishing Group. 
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Fig. 2| Ultrafast interfacial strain engineering. In a LaAlO3/NdNiO3 heterostructure, 
the dynamics of multiple magnetic, electronic and structural degrees of freedom in the 
NdNiO3 thin film can be observed when an insulator–metal transition is driven by 
resonant excitation of a high-frequency vibrational mode in the underlying LaAlO3 
substrate. a| Transient momentum-resolved intensity of the (¼ ¼ ¼) diffraction peak 
measured at the 852 eV Ni L3-edge, which is sensitive to antiferromagnetic ordering. b| 
Transient peak intensity of the NdNiO3 (2½ 2½ 2½) reflection measured at X-ray 
energies resonant (8.346 keV, blue) and off-resonant (8.329 keV, red) with the Ni K-
edge. The measured resonant diffraction intensity includes a charge order contribution 
(grey shaded region), which disappears on a time scale shorter than that of the off-
resonant intensity and is sensitive only to structural dynamics. c| Spatiotemporal 
evolution of the NdNiO3 lattice, magnetic and insulator–metal dynamics along the thin 
film out-of-plane direction, extracted from the time-resolved diffraction experiments. 
Individual phase fronts of insulator–metal, antiferromagnetic–paramagnetic and 
structural transitions propagate at different speeds from the LaAlO3/NdNiO3 
heterointerface into the nickelate film. d| Illustration of these dynamics induced by the 
substrate phonon excitation. Panel (a) adapted with permission from Först et al.,103 
Nature Publishing Group. Panels (b), (c) adapted with permission from Först et al.104, 
American Physical Society. 
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Fig. 3| Nonlinear phononics in a bilayer cuprate. Signatures of nonlinear phonon 
coupling in the high-temperature superconductor YBa2Cu3O6.5 can be identified upon 
driving the B1u phonon mode to large amplitudes with 15 µm ultrashort laser pulses. a| 
Schematic illustration of the crystal structure of bilayer YBa2Cu3O6.5 (right). CuO2 
bilayers (grey) are oriented perpendicular to the c axis and alternate with thicker layers 
containing Ba, Cu and O. Y and Ba atoms are not shown for clarity. d is the distance 
between an apical O atom and a Cu atom in the plane. Nonlinear coupling of the driven 
B1u mode to Ag modes induces changes in the intra-bilayer (+2.2 pm) and inter-bilayer 
(–2.2 pm) distances (left). Light and dark grey represent the CuO2 planes in the 
equilibrium and driven positions, respectively. b| Transient intensity (I) of two 
exemplary Bragg peaks. The solid curve is obtained from the ab initio calculated 
structure by considering nonlinear phonon coupling of the driven B1u mode to the Ag 
modes. c| Time-resolved change in the O–Cu distance d obtained from the calculated 
structure. Adapted with permission from Mankowsky et al. 123, Nature Publishing 
Group. 
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Fig. 4| Ultrafast stripe order melting in a single-layer cuprate. Stripe order melting 
in the single-layered high-temperature superconductor La1.875Ba0.125CuO4 (LBCO1/8) 
can be triggered by driving an in-plane Cu–O stretching mode to large amplitudes with 
14.5 µm ultrashort laser pulses. a| Illustration of the in-plane stripe order in single-
layered cuprates and the 1D modulation of charges and the spins responsible for 
suppressing superconductivity at equilibrium (top), emphasizing the buckling in the 
Cu–O planes (Cu atoms are blue, O atoms are red and the spins are represented by 
arrows). The stripes are periodically stacked along the c axis with a 90° rotation 
between adjacent layers (bottom). b| Transient intensity of the stripe order diffraction 
peak at the (0.24 0 0.5) wave vector, measured in LBCO1/8 at resonance with the O K-
edge at 528 eV. c| Evolution of the normalized superfluid density in 
La1.675Eu0.2Sr0.125CuO4, (LESCO1/8), a compound closely related to LBCO1/8, in which 
excitation of the same Cu–O stretching mode induces a transient superconducting state. 
Panels (a), (b) adapted with permission from Först et al.129, American Physical 
Society. Panel (c) adapted with permission from Fausti et al.,11 AAAS 
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Fig. 5| Electron–phonon deformation potential in an iron-based superconductor. 
The orbital-resolved electron–phonon deformation potential in an FeSe 
superconducting thin film was determined using time resolved X-ray diffraction and 
time-resolved angular-resolved photoemission spectroscopy (tr-ARPES). a| 
Displacement of the Se atom, δZSe, extracted from the evolution of the intensity of the 
(004) Bragg peak. b, c| Momentum-averaged energy shifts <E> of the dxz/yz and dz

2 
bands extracted from tr-ARPES measurements. All measurements are shown for 
different photoexcitation levels, ranging from 0.12 to 1.83 mJ cm–2. Adapted with 
permission from Gerber et al.136, AAAS. 
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Fig. 6| Phonon dispersion relation in germanium. The dispersion relations of the two 
transverse acoustic branches of Ge were obtained using Fourier-transform inelastic X-
ray scattering. The calculated equilibrium diffraction pattern is shown in panel a; the 
dashed lines indicate the directions along which the dispersion relations are shown in 
panel b as a function of the reciprocal space vector q, where q1 = (–0.1, 0, –0.07) and 
q2 = (–0.33, –0.75, 0.37), and panel c, where q3 = (0.13, –0.04, 0.05) and q4 = (–0.09, –
0.98, –0.08) (reciprocal lattice units). The solid white lines in panels b and c represent 
the calculated acoustic dispersion curves. Adapted with permission from Trigo et al.145, 
Nature Publishing Group. 
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