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Abstract: We compute the classical effective action of color charges moving along world-

lines by integrating out the Yang-Mills gauge field to next-to leading order in the cou-

pling. An adapted version of the Bern-Carrasco-Johansson (BCJ) double-copy construc-

tion known from quantum scattering amplitudes is then applied to the Feynman integrands,

yielding the prediction for the classical effective action of point-masses in dilaton gravity.

We check the validity of the result by independently constructing the effective action in

dilaton gravity employing field redefinitions and gauge choices that greatly simplify the

perturbative construction. Complete agreement is found at next-to-leading order. Finally,

upon performing the post-Newtonian expansion of our result, we find agreement with the

corresponding action of scalar-tensor theories known from the literature. Our results rep-

resent a proof of concept for the classical double-copy construction of the gravitational

effective action and provides another application of a BCJ-like double copy beyond scat-

tering amplitudes.
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1 Introduction

There is a growing body of evidence for a fascinating perturbative duality between Yang-

Mills theory and quantum gravity known as the double-copy construction or color-kinematic

duality due to Bern, Carrasco and Johansson (BCJ) [1–3]. It provides a concrete prescrip-

tion for transforming scattering amplitudes in non-Abelian gauge theories into scattering

amplitudes in gravitational theories upon replacing the non-Abelian color degrees of free-

dom by kinematical ones. In the simplest scenario pure Yang-Mills theory double copies

to dilaton gravity coupled to an axion also termed as N = 0 supergravity (the massless

sector of bosonic strings). This relation was proven for tree-level amplitudes [2], where

the double copy is equivalent to the Kawai–Lewellen–Tye relations of string theory [4], a

precursor of the BCJ duality. It is also manifest in the Cachazo–He–Yuan formulation of

gluon and graviton tree-level amplitudes [5]. While remaining conjectural at the loop-level,

the double-copy procedure is extremely efficient in generating integrands for gravitational

theories at high-perturbative orders in theories with and without supersymmetry [6–14]

and as such has passed many non-trivial checks. The present record being at the four

point five-loop level for maximal supergravity [15]. Moreover, an elaborate web of theories

connected via color-kinematics duality exists that includes matter couplings and various

numbers of supersymmetries [16–18]. All these results point towards the double copy being

a generic property of gravity alluding at a hidden kinematical algebra which has resisted

discovery so far.

In light of these findings the natural question arises, whether the double copy gener-

alizes beyond the realm of scattering amplitudes. In particular, does it also play a role

in classical general relativity? Here a number of encouraging results have been obtained:

Schwarzschild, Kerr and Taub-NUT space-times were shown to be double copies of classical

gauge theory solutions [19, 20] and were further extended to certain classes of perturbative

spacetimes [21]. A very interesting setting is that of gravitational radiation produced by
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binary sources, not the least due to the spectacular observations of gravitational waves and

the need for high precision predictions to generate waveform templates [22]. Pioneering

work was done in [23–25] where perturbative classical solutions to color charged point par-

ticles coupled to Yang-Mills theory [26] were shown to double copy to their counterparts in

dilaton-gravity radiation (see also [27, 28]). In these works certain color-kinematic replace-

ment rules were employed which appear somewhat distinct to the color factor/numerator

replacement rules familiar from scattering amplitudes. Also the question of a double-copy-

respecting representation of the perturbative gauge-theory solutions remained open. This

situation was clarified very recently in the work of Shen [29], which pushed the perturbative

approach of solving the equations of motions via double copy to the next-to-leading order

in the coupling constant expansion. In this process a color-kinematic duality representation

of the Yang-Mills-radiation solution was found, which parallels the color-kinematic duality

rules of BCJ [1] and replaces the non-standard double-copy rules of [23]. An alternative

route for finding the graviton radiation of binaries via the double copy was taken in [30],

where a tree scattering amplitude in gauge theory coupled to scalar fields was double copied

to establish the leading order gravitational radiation emitted from the scattering of two

black holes (modeled by two massive scalar fields).

In our present work, we generalize these approaches to the double copy of gravitation-

ally interacting binaries by ascending from the level of equations of motion to the classical

effective action. This approach makes direct contact to the post-Minkowskian (weak-field)

and post-Newtonian (weak-field and slow-motion) expansions of the gravitational potential

for which high-order results exist in the literature, namely at the fourth post-Newtonian

order (four loop) for nonspinning bodies: using a canonical formalism of general relativity

[31], a Fokker Lagrangian [32, 33], and partial results within an effective field theory for-

malism [34]. The latter makes use of Feynman diagrammatic methods and sophisticated

tools for effective field theories in the context of classical gravity [35]. The question how

the classical gravitational potential may be extracted from the quantum scattering ampli-

tude of massive scalars has in fact a long history starting in the 1970s [36–38]. Recent

works have updated this by employing modern unitarity methods of quantum field the-

ory [39–41]. Damour recently proposed an alternative approach for converting scattering

angles and amplitudes to the effective one-body Hamitlonian [42, 43]. Hence, in order

to perform the construction of the interaction potential using the double copy, one could

study the scattering amplitude of a massive scalar field coupled to either Yang-Mills or

dilaton-gravity theory and relate to a potential using one of the mentioned works. Repre-

senting the gauge theory result in a color-kinematic respecting fashion should then yield

the effective gravitational potential via a suitably defined double copy. Here we follow a

more direct approach, where the classical interaction potential is the direct outcome of a

path integral. For this purpose, we start out with color charges moving along a worldline

as in [23–25, 29]. This may be viewed as a classical limit of the massive scalar field.

Our paper is organized as follows: In section two we give an overview of the structure

of a theory of classical color charged massive point particles moving along worldlines,

interacting via a Yang-Mills theory, in the first order formalism. In section three we propose

a double copy prescription for the classical effective action. We compute the effective
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action of the theory introduced in section two up to next-to-leading order in the gluon

coupling. Along the way we introduce the notion of a trivalent representation for graphs

involving worldlines and at the end of the section we perform the double copy. In section

four we repeat the computation of the effective action in the weak-field/post-Minkowskian

approximation for massive point particles interacting in dilaton-gravity theory and we

compare the resulting expression to the double copy result. In section five we re-expand our

result for the post-Minkowskian dilaton-gravity effective action in velocities, thus yielding

the post-Newtonian approximation. After solving the Feynman integrals, we compare the

resulting expression to known results in the literature. Our conclusions are presented in

section six. Finally, our conventions, the Feynman rules and a discussion of self-interactions

can be found in the appendices.

2 Yang-Mills interaction of color charged massive particles

We consider the worldline action of a massive, color-charged (non-Abelian) point particle

coupled to the Yang-Mills gauge field Aaµ; see appendix A for notation and conventions.

The action for the classical colored point charge (pc) is given by [23, 24, 26]

Spc = −
∫
dτLpc = −

∫
dτ
(
m
√
u2 − ψ†iuµDµψ

)
(2.1)

= −
∫
dτ
(
m
√
u2 − iψ†ψ̇ − guµAaµca

)
, (2.2)

which is invariant under reparametrization of τ . Here uµ = ẋµ is the 4-velocity of the

particle along the worldline xµ(τ) and ψ(τ) an associated fundamental vector carrying the

color degrees of freedom of the particle – often called the color wave-function. Moreover

ca := ψ†T aψ , (2.3)

is the color charge carried by the particle. In this form, there is only a single gluon coupling

to the scalar worldline. As the gravity counterpart also has higher graviton couplings to the

worldline of a massive particle, this poses an immediate obstacle to a double-copy relation.

Also a massive scalar field, for which a double copy of scattering amplitudes exist [30], has

linear and quadratic couplings to gluons. However, in a first-order formalism this situation

is remedied. Defining canonical momenta

pµ =
∂Lpc

∂uµ
= m

uµ√
u2
− gAaµca, ⇒ m2 = (p+ gAc)2, (2.4)

we find the Hamiltonian and the action in the first order formalism

Hpc = Hcan + λ
[
(p+ gAc)2 −m2

]
, Hcan = pµu

µ − Lpc
(2.4)
= iψ†ψ̇, (2.5)

Spc = −
∫
dτ(pµu

µ −Hpc)

= −
∫
dτ
(
pµu

µ − iψ†ψ̇ − λ
[
p2 + 2gpµA

µ
ac
a + g2Abµc

bAµac
a −m2

])
. (2.6)
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Here, Hcan is the “canonical” Hamiltonian and Hpc is the “Dirac” Hamiltonian where the

mass-shell constraint was added using a Lagrange multiplier λ(τ). Now we have both a

single and a double gluon coupling to the worldline, similar to a massive scalar field. Note

that λ(τ)dτ is reparametrization invariant.

We now consider Yang-Mills gauge theory coupled to a set of two scalar particles in

the worldline description. Notationally we separate the worldlines by placing a tilde on

all variables associated to one of the worldlines. Therefore the full action for classical

Yang-Mills (cYM) reads

ScYM = SYM + Sgf + Spc + S̃pc = Sfree,cYM + Sint,cYM , (2.7)

where a gauge fixing part Sgf was added and as usual the action is separated into a free

part, independent of the coupling, and an interacting part. With this, the gluon propagator

reads

〈Aaµ(x)Abν(y)〉0 =
~
i
ηµν δabD(x− y) , (2.8)

where D(x− y) is defined via

�D(x− y) = −δ(x− y) . (2.9)

3 Effective action of colored massive particles and its double copy

3.1 Principle of the double-copy construction

The double-copy scheme to be applied here is to first integrate out the gauge field Aaµ in

order to obtain the effective action Seff,YM for two colored, massive particles with Yang-

Mills interactions, i.e.

e
i
~Seff,YM =MYM =

∫
DAe

i
~ScYM . (3.1)

The perturbative expansion in the coupling g of MYM can always be brought into the

schematic form

MYM =
∞∑
n=1

(2g)2n
∑
I∈Γn

(
i

~

)xI ∫ ∏
iI

dτ̂iI

∫
d4lIx

CI NI

SI DI
, (3.2)

where Γn is the set of Nn−1LO trivalent graphs with two external worldlines of the colored

point particles, CI denotes the color factor associated with graph I, i.e. functions of the

c(τ)’s, NI the associated kinematic numerator factors and DI the space-time propagators

appearing in the graph I. The xI is defined as the number of vertices minus the number of

propagators in the trivalent diagram. Note that the integral measure along the worldline

dτ always comes with a corresponding Lagrange multiplier λ(τ) in order to guarantee

reparametrization invariance. We collect this into a new densisty notation via

dτ̂i := dτi λ(τi) . (3.3)
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The SI finally, denote the symmetry factor of the graph I in the trivalent representation,

i.e. the graph has to be drawn in such a way that it reproduces the color structure CI . We

will explain our notion of a trivalent representation more precisely in the next section.

The double-copy prescription that we are adopting here then amounts to representing

the exponential of the effective action of two massive particles coupled to a weak-field

(post-Minkowskian) expansion of dilaton gravity (dg) as

Mdg =

∞∑
n=1

(iκ)2n
∑
I∈Γn

(
i

~

)xI ∫ ∏
iI

dτ̂iI

∫
d4lIx

NI NI

SI DI
, (3.4)

where κ is the gravitational coupling constant. After that, the effective action in dilaton

gravity follows from e
i
~Seff,dg = Mdg. Only classical terms (~ → 0) are retained in Seff,dg

in our considerations. At higher order, CI and NI are required to fulfil the usual BCJ

color-kinematics duality (Jacobi relations). We conclude this section by stressing that our

double-copy prescription is proposed at the level ofM and not at the level of the effective

action.

3.2 The trivalent representation of the effective action of colored particles to

next-to-leading order

We now compute the effective action for two color charged massive point particles moving

on their worldlines to next-to-leading order, O(g4). Furthermore, we will clarify what we

mean by a trivalent representation of a diagram involving worldlines. We will use the

short-hand notation

ci := c(τi) , pi := p(τi) , Dij := D(x(τi)− x(τj)) , dτ̂1...n :=
n∏
i=1

dτi λ(τi) . (3.5)

Additionally, we will use the tilde notation for the “right” worldline in our diagrams.

At leading order we have the three graphs

τ1 τ̃2 = 4g2 i

~

∫
dτ̂12̃(c1 · c̃2) (p1 · p̃2) D12̃ , (3.6)

τ2

τ1
= 2g2 i

~

∫
dτ̂12(c1 · c2) (p1 · p2)D12 , (3.7)

τ1 ∝
∫
dτ1D11 = 0 in dimensonal regularization . (3.8)
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Since the last term vanishes in dimensional regularization, we neglect any graph involving

a bubble, as shown above, or any other scaleless integral. Note that we do not mention the

mirrored counterparts to every graph with an uneven number of untilded and tilded vari-

ables. They can be trivially obtained by replacing untilded and tilded and it is understood

that we add them to our final results.

At the next-to-leading order we encounter the graphs

τ1

τ3

τ̃2

τ̃4
= 8 g4

(
i

~

)2 ∫
dτ̂12̃34̃ (c1 · c̃2) (c3 · c̃4) (p1 · p̃2) (p3 · p̃4)D12̃D34̃ , (3.9)

τ1
τ̃2

τ̃4
= 4g4 i

~

∫
dτ̂12̃4̃ (c1 · c̃2) (c1 · c̃4) (p̃2 · p̃4)D12̃D14̃

= 4g4 i

~

∫
dτ̂12̃4̃3 (c1 · c̃2) (c3 · c̃4) (p̃2 · p̃4)D12̃D34̃

δ(τ3 − τ1)

λ3
, (3.10)

where we used a delta function in the last step in order to introduce a dummy τ3 integration.

This can be understood as pulling apart the gluon-gluon-worldline vertex into two gluon-

worldline vertices, i.e. arriving at our definition of a trivalent representation necessary for

our proposed double-copy prescription (3.4).

The next graph is

τ1
τ̃2

τ̃3x
= −4 g4 i

~

∫
dτ̂12̃3̃ f

abc ca1 c̃
b
2c̃
c
3 V

µνρ

12̃3̃
p1µ p̃2ν p̃3ρG12̃3̃ , (3.11)

where V µ1µ2µ3
123 is the color independent part of the Yang-Mills three gluon vertex

V µ1µ2µ3
123 = ηµ1µ2 (∂µ3

1 − ∂
µ3
2 ) + cyclic , (3.12)

and G12̃3̃ =
∫
d4xD1xD2̃xD3̃x. We proceed in an analogous fashion with

τ1

τ̃2

τ̃3
= 8 g4 i

~

∫
dτ̂12̃3̃ (c1 · c̃2) (c̃2 · c̃3) (p1 · p̃3)D12̃D2̃3̃

= 8 g4 i

~

∫
dτ̂12̃3̃4̃ (c1 · c̃2) (c̃4 · c̃3) (p1 · p̃3)D12̃D4̃3̃

δ(τ̃4 − τ̃2)

λ̃4

, (3.13)

τ1

τ̃4

τ̃2

τ̃3

= 8 g4

(
i

~

)2 ∫
dτ̂12̃3̃4̃ (c1 · c̃2) (c̃3 · c̃4) (p1 · p̃2) (p̃3 · p̃4)D12̃D3̃4̃ , (3.14)

– 6 –



τ2

τ1

τ4

τ3

= 2 g4

(
i

~

)2 ∫
dτ̂1234 (c1 · c2) (c3 · c4) (p1 · p2)(p3 · p4)D12D43 , (3.15)

τ2

τ1

τ3

= 4 g4 i

~

∫
dτ̂123 (c1 · c2) (c1 · c3) (p2 · p3)D12D13

= 4 g4 i

~

∫
dτ̂1234 (c1 · c2) (c4 · c3) (p2 · p3)D12D43

δ(τ4 − τ1)

λ4
. (3.16)

We also have graphs that are not mirrored counterparts of above mentioned graphs, i.e.

, , (3.17)

which we only include implicitly due to their very similar analytic form as previously

computed graphs. In addition we neglect graphs that represent quantum corrections, since

they are suppressed in the classical effective action. In particular we neglect the following

type of graphs

, (3.18)

where the grey blob denotes loop topologies.

3.3 The double copy of the gauge theory effective action

In order to perform the double copy according to (3.2) we first need to investigate the

independent color structures from the previous section. They are given by

LO: (c · c̃) , (c · c) , (c̃ · c̃) .

NLO: (c · c̃)2 , (c · c̃) (c̃ · c̃) , (c̃ · c) (c · c) , (c · c)2 , (c̃ · c̃)2 , (3.19)

fabc cacbcc , f
abccac̃bc̃c, f

abcc̃acbcc , f
abc c̃ac̃bc̃c ,

yielding the backbone to write down the terms in (3.2). We start with the H-graph

H : τ1 τ̃2 = (2g)2

(
i

~

) ∫
dτ̂12̃

CH NH

SH DH
, (3.20)

where

CH = (c1 · c̃2) , D−1
H = D12̃ , SH = 1 , NH = (p1 · p̃2) . (3.21)
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Next we have the single-worldline (self-interaction) D-graph

D :
τ2

τ1
= (2g)2

(
i

~

) ∫
dτ̂12

CDND

SDDD
, (3.22)

where

CD = (c1 · c2) , D−1
D = D12 , SD = 2 , ND = (p1 · p2) . (3.23)

Turning to next-to-leading order contributions, we have the V-graph

V :
τ1

τ2

τ̃3

τ̃4
+ τ1

τ̃3

τ̃4
+ τ̃3
τ1

τ2

= (2g)4

(
i

~

)2 ∫
dτ̂123̃4̃

CV NV

SV DV
, (3.24)

where

D−1
V = D13̃D24̃ , CV = (c1 · c̃3)(c2 · c̃4) , SV = 2 ,

NV = (p1 · p̃3) (p2 · p̃4) +
~
2i

δ(τ1 − τ2)

λ2
(p̃3 · p̃4) +

~
2i

δ(τ̃3 − τ̃4)

λ̃4

(p1 · p2) ,
(3.25)

and the Y-graph

Y : τ1
τ̃2

τ̃3x
= (2g)4

(
i

~

) ∫
dτ̂12̃3̃

CY NY

SY DY
, (3.26)

where

CY = fabc ca1 c̃
b
2c̃
c
3 , D−1

Y = G12̃3̃ , SY = 2 ,

NY = −1

2
V µνρ

12̃3̃
p1µ p̃2ν p̃3ρ .

(3.27)

Next there is the C-graph

C : τ1

τ̃4

τ̃2

τ̃3

+ τ1

τ̃2

τ̃3
= (2g)4

(
i

~

)2 ∫
dτ̂12̃3̃4̃

CC NC

SC DC
, (3.28)

where

CC = (c1 · c̃2) (c̃3 · c̃4) , D−1
C = D12̃D3̃4̃ , SC = 2 ,

NC = (p1 · p̃2) (p̃3 · p̃4) +
~
i

δ(τ̃2 − τ̃4)

λ̃4

(p1 · p̃3) .
(3.29)

– 8 –



Note that here we use the symmetry factor of the first topology of the C-graph. This is

consistent with our double-copy prescription which states that the correct symmetry factor

is the one attributed to the trivalent graph.

Next in line is the B-graph

B :

τ̃2

τ̃1

τ̃4

τ̃3

+

τ̃2

τ̃1

τ̃3

= (2g)4

(
i

~

)2 ∫
dτ̂1̃2̃3̃4̃

CB NB

SB DB
, (3.30)

where

CB = (c̃1 · c̃2) (c̃4 · c̃3) , D−1
B = D1̃2̃D3̃4̃ , SB = 8 ,

NB = (p̃1 · p̃2)(p̃3 · p̃4) + 2
~
i

δ(τ̃4 − τ̃1)

λ̃4

(p̃2 · p̃3) .
(3.31)

Again, the symmetry factor is given by the first topology of the B-graph.

The same constructions apply to the mirrored graphs and the graphs mentioned in (3.17).

Performing the double copy as discussed in section 3.1 yields our prediction for the expo-

nential of the effective action in dilaton-gravity

M̄dg = −κ2 i

~

(∫
dτ̂H

NH NH

SH DH
+

∫
dτ̂D

NDND

SDDD

)

+ κ4

(
i

~

)2 (∫
dτ̂V

NV NV

SV DV
+

∫
dτ̂C

NC NC

SC DC
+

∫
dτ̂B

NB NB

SB DB

)

+ κ4 i

~

∫
dτ̂Y

NY NY

SY DY
+ (mirrored) ,

(3.32)

where we introduced the bar notation for M̄dg to point out that it is computed via our

double-copy prescription. At this point it is necessary to comment on a subtle feature

of the above result. An essential technicality in the previous construction was the notion

of pulling apart the gluon-gluon-worldline vertex using a delta function, i.e. obtaining a

trivalent representation. Doing so, our double-copy prescription introduces δ(0) terms in

M̄dg. This is a potential hazard but since such terms are of O(~0), they are quantum

corrections to Seff,dg and we neglect them for the time being.

Another important property of Seff,dg is that all negative powers of ~ exponentiate,

which is a priori not obvious. We check this by taking the logarithm of our double copy

result, obtaining a perturbative expansion of the effective action,

S̄eff,dg =
~
i

log M̃Ed = Sfree,YM − κ2

∫
dτ̂12̃ (p1 · p̃2)2D12̃ −

κ2

2

∫
dτ̂12 (p1 · p2)2D12

+
κ4

2

∫
dτ̂12̃3̃

(
1

2
V µνρ

12̃3̃
p1µ p̃2ν p̃3ρ

)2

G12̃3̃

+
κ4

2

∫
dτ̂12̃3̃ (p1 · p̃2) (p1 · p̃3)(p̃3 · p̃2)D12̃D13̃
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+ κ4

∫
dτ̂12̃3̃ (p1 · p̃3) (p1 · p̃2) (p̃3 · p̃2)D12̃D2̃3̃

+
κ4

2

∫
dτ̂123 (p1 · p2) (p1 · p3) (p2 · p3)D12D13

+ (mirrored) +O(~) . (3.33)

In the following we will check whether a direct construction within dilaton-gravity repro-

duces this prediction.

4 Interaction of point-masses in dilaton gravity

In this section we are performing an analogous analysis as in the previous section for a

system of two massive worldlines that are interacting in dilaton-gravity.

4.1 Dilaton gravity

The action of dilaton gravity is given by1

Sdg = − 2

κ2

∫
d4x
√
−g [R− 2∂µφ∂

µφ] + (GHY boundary term) (4.1)

= − 2

κ2

∫
d4x
√
−g
[
gµν

(
ΓρµλΓλνρ − ΓρµνΓλρλ

)
− 2∂µφ∂

µφ
]
, (4.2)

where κ = m−1
Pl =

√
32πG is the gravitational coupling (with Newton constant G and

Planck mass mPl), φ is a real scalar field called the dilaton, R is the usual Ricci scalar,

Γαµν = (∂µgνβ + ∂νgµβ − ∂βgµν)gαβ/2 is the Christoffel connection, gµν is the metric, and

g = det(gµν). The worldline action of a point mass (pm) coupled to gravity and a dilaton

is defined by

Spm = −m
∫
dτ eφ

√
gµνuµuν , (4.3)

with the worldline xµ(τ), the 4-velocity uµ = ẋµ and φ, gµν are evaluated at xµ(τ). We

again pass to the first-order version

Spm = −
∫
dτ
(
pµu

µ − λ
[
e−2φgµνpµpν −m2

])
. (4.4)

The full action reads

Sdg + Sgf + Spm + S̃pm = Sfree,dg + Sint,dg, (4.5)

with a gauge fixing part Sgf specified below. Note that we do not need an axion field here,

which will be important when adding spin to the point particles [25].

1Note that the Gibbons-Hawking-York (GHY) boundary term [44, 45] is nonzero also in dimensional

regularization for asymptotically flat spacetimes, leading to (4.2).
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4.2 Weak-field expansion

The weak-field approximation is defined as the expansion of the full metric around a flat

Minkowski background, i.e.

gµν(x) = ηµν + κhµν(x), (4.6)

gµν(x) = ηµν − κhµν(x) + κ2 hµλ(x)h ν
λ (x) +O(κ3), (4.7)

√
−g = 1 + κhµµ(x)− κ2

2

(
hµν(x)hµν(x)− (hµµ(x))2

)
+O(κ3), (4.8)

where κ is our weak-field (or post-Minkowskian) perturbation parameter and hµν is the

graviton. In principle we are ready to start the computation of the effective action by inte-

grating out the graviton and dilaton field. Nevertheless, at this point one encounters large

expressions during intermediate steps, e.g. the three-graviton vertex will have around 170

terms [46]. However, it is known that one can achieve a high simplification by performing

field redefinitions and adding the appropriate gauge fixings [47]. Here, we aim at a field

redefinition that removes the coupling of the dilaton to the worldline and also simplifies

the three graviton vertex to the square of the Yang-Mills one. Our procedure is given by:

First, choosing the following gauge fixing terms to O(κ2),

Sgf =
1

κ2

∫
d4x
√
−gfµfµ, (4.9)

fµ = Γµνσ g
νσ +

κ2

2

[
− 1

4
(∂κ h

κλ)h µ
λ −

1

4
(∂µ hκλ)hκλ + (∂κ hµλ)hκλ

+
3

16
(∂µ hκκ)hλλ −

3

8
(∂κ hµκ)hλλ −

3

8
(∂λ hκκ)hµλ

]
,

(4.10)

then performing the field redefinitions

hµν → hµν − ηµν
(

1

2
hµµ + 2φ

)
(4.11)

+ κ
(
− 1

2
hµν h

ρ
ρ +

1

8
ηµν h

ρ
ρ h

σ
σ +

1

2
hµρ h

ρ
ν − 2φhµν + 2φ2 ηµν + φhµν h

ρ
ρ

)
,

φ → φ+
1

4
hµµ , (4.12)

and finally, adding the total derivative

0 = STD =

∫
d4x

[
∂µ( (∂ν h

µκ)hνκ)− ∂µ (hµν (∂κ h
κ
ν))

+ κ
(1

4
∂µ(hµν(∂ν h

σν)hσν)− 1

4
∂µ ((∂ν h

µλ)hλκ h
κν)

− 1

4
∂µ (hµν (∂λ hνρ)h

ρλ) +
1

4
∂µ (hµν h

νλ (∂σ h
σ
λ ))

)]
,

(4.13)
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to the action. This procedure decouples the point-masses on the worldline from the dilaton,

Spm = −
∫
dτ

(
pµu

µ − λ
[(
ηµν − κhµν +

κ2

2
hµρh

ρν

)
pµpν −m2

])
+O(κ3), (4.14)

which means we only need to worry about the graviton-dependent part of the field action

for the computation of the classical effective action Seff,dg at next-to-leading order. Fur-

thermore we observe a considerable simplification in the three graviton interaction, i.e. it

is given by

Sdg + Sgf + STD (4.15)

=

∫
d4x

[
1

2
∂ρhµν∂

ρhµν +
κ

4

(
hµν ∂

µ ∂ν hρσ h
ρσ + 2hµν ∂

σ hµρ ∂
ν hρσ (4.16)

− hµν ∂σ hρµ ∂ρ hνσ − hρσ ∂ρ hµν ∂σ hµν − ∂ρ ∂σ hµν hρµ hσν
)]

+O(κ2, φ)

=

∫
d4x

[
1

2
∂ρhµν∂

ρhµν +
κ

4 · 3!
V µαγ

123 V νβδ
123 h1µνh2αβh3γδ

]
+O(κ2, φ) , (4.17)

where V µαγ
123 is again the color independent part of the three gluon interaction defined by

(3.12). We also introduced fiducial indices 1, 2, 3, on hµν to indicate on which hµν the

partial derivatives in V µ1µ2µ3
123 are applied. The propagator therefore reads

〈hµν(x)hρσ(y)〉0 =
~
i
ηµ(ρησ)ν D(x− y) , (4.18)

where the round brackets on the indices indicate a symmetrization of unit weight,

ηµ(ρησ)ν =
1

2
(ηµρ ησν + ηµσ ηρν) . (4.19)

4.3 Effective action of gravitating particles to next-to-leading order

Similar to the Yang-Mills case in section 3.2, we compute Seff,dg by integrating out the

graviton and scalar fields,

e
i
~Seff,dg =MEd =

∫
DhDφ e

i
~ (Sdg+Sgf+Spm+S̃pm) , (4.20)

where we again neglect quantum corrections and keep all mirrored graphs implicit. The

relevant classical diagrams for Mdg to order κ4 read

τ1 τ̃2 = − iκ
2

~

∫
dτ̂12̃ (p1 · p̃2)2D12̃ , (4.21)

τ2

τ1
= − i κ

2

2 ~

∫
dτ̂12 (p1 · p2)2D12 , (4.22)
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τ1

τ4

τ̃2

τ̃3
=
i2κ4

2~2

∫
dτ̂12̃3̃4 (p1 · p̃2)2(p4 · p̃3)2D12̃D43̃ , (4.23)

τ1

τ̃2

τ̃3

=
iκ4

2~

∫
dτ̂12̃3̃ (p1 · p̃2)(p1 · p̃3)(p̃2 · p̃3)D12̃D13̃ , (4.24)

τ1

τ̃2

τ̃3
x

=
iκ4

8~

∫
dτ̂12̃3̃

(
V µνρ

12̃3̃
p1µp̃2ν p̃3ρ

)2
G12̃3̃ , (4.25)

τ2

τ1

τ4

τ3

=
i2κ4

23~2

∫
dτ̂1234 (p1 · p2)2(p4 · p3)2D12D43 , (4.26)

τ2

τ1

τ3

=
iκ4

2~

∫
dτ̂123 (p1 · p2)(p1 · p3)(p2 · p3)D12D13 , (4.27)

τ2 τ̃1

τ̃4

τ̃3

=
i2κ4

2~2

∫
dτ̂1̃23̃4̃ (p̃1 · p2)2(p̃4 · p̃3)2D1̃2D4̃3̃, (4.28)

τ2 τ̃1

τ̃3

=
iκ4

~

∫
dτ̂1̃23̃ (p̃1 · p2)(p̃1 · p̃3)(p2 · p̃3)D1̃2D1̃3̃ . (4.29)

Summarizing, we find upon taking the logarithm that the effective action in dilaton gravity

in a graphical notation reads

Seff,dg =
~
i

logMdg = Sfree,dg + + +

+ + + + (mirrored) . (4.30)

Now that we have obtained all classical contributions from integrating out the graviton and

dilaton, we can compare this result with that from the double copy (3.32). Going through

the expression term by term we indeed find

S̄eff,dg = Seff,dg +

∫
dτ i(ψ†ψ̇ + ψ̃†

˙̃
ψ) , (4.31)
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where the last term comes from the difference between Sfree,YM and Sfree,dg. However, the

dynamics of the auxiliary field ψ is now decoupled and trivial such that it may be dropped.

Therefore we conclude that our double-copy prescription (3.4) yields the correct classical

effective action up to next-to-leading order in the weak-field expansion.

5 Post-Newtonian evaluation of the effective action

In this section, we evaluate the effective action in the post-Newtonian approximation. After

adopting a gauge for the worldline parameter, the equations of motion for the Lagrange

multipliers λ and the energies p0 of the particles become algebraic and these variables can

be eliminated from the action. This leads to an action in Hamiltonian form, which agrees

with previous results in scalar-tensor theory [48], that includes dilaton gravity as a special

case.

The post-Newtonian approximation is a refinement of the weak-field approximation

to bound binaries. The third Kepler law, or the virial theorem, then tells us that (with

equality in the circular orbit case)

v2
r

c2
∼ κ2(m+ m̃)

c232πr
, (5.1)

where r = |x − x̃| , vr is the relative velocity of the two particles, and we have restored

the speed of light c. The weak-field approximation therefore implies small velocities in the

case of bound binaries. It is convenient to use c−1 as a formal post-Newtonian counting

parameter, such that κ = O(c−1) as well as

(uµ) = (1,v) = (O(c0),O(c−1)), (5.2)

(pµ) = (E,−p) = (O(c0),O(c−1)), (5.3)

λ = O(c0) and ∂t = O(c−1). The post-Newtonian expansion of the propagator then reads

D(x) =

∫
d4k

(2π)4

e−ikµx
µ

kµkµ + iε
= −

∫
d3k

(2π)3

eik·x

k2

[
1− ∂2

t

k2
+
∂4
t

k4
+ . . .

]
δ(t). (5.4)

Recall that the effective action is invariant under reparametrizations of the worldline

parameters. We may therefore pick a gauge for them. In the post-Newtonian approxima-

tion, it is useful to fix τ = t = coordinate time. Then the effective action is the sum of

the free terms Sfree,dg and the connected graphs shown in (4.30). Most of these graphs are

actually vanishing self-interactions, see appendix B. This leaves us with (stripping off the

overall factors i/~)

=
κ2

4π

∫
dt
λλ̃E2Ẽ2

2r

[
2− 4

p · p̃
EẼ

+ v · ṽ − (n · v)(n · ṽ)

]
+O(c−6), (5.5)

=
κ4

(4π)2

∫
dt
λλ̃2E2Ẽ4

2r2
+O(c−6), (5.6)

– 14 –



= 0 +O(c−6), (5.7)

where n = (x− x̃)/r, and we used∫
ddk

(2π)d
eik·x

(k2)α
=

1

(4π)d/2
Γ(d/2− α)

Γ(α)

(
x2

4

)α−d/2
, (5.8)

moreover in (5.5) we anticipated that λ = const + O(c−2) = E, allowing us to drop time

derivatives of λ, E. The effective action in the post-Newtonian approximation finally reads

Seff,dg =

∫
dt

[
p · v − E + λ(E2 −m2 − p2) + p̃ · ṽ − Ẽ + λ̃(Ẽ2 − m̃2 − p̃2)

+
κ2λλ̃E2Ẽ2

8πr

(
2− 4

p · p̃
EẼ

+ v · ṽ − (n · v)(n · ṽ)

)

+
κ4λλ̃2E2Ẽ4

2(4πr)2
+
κ4λ̃λ2Ẽ2E4

2(4πr)2
+O(c−6)

]
.

(5.9)

Next, we vary the effective action with respect to λ and E to arrive at

0 = E2 −m2 − p2 +
κ2λ̃E2Ẽ2

8πr

[
2− 4

p · p̃
EẼ

+ v · ṽ − (n · v)(n · ṽ)

]

+
κ4

(4π)2

λ̃2E2Ẽ4 + 2λλ̃E4Ẽ2

2r2
+O(c−6),

(5.10)

0 = −1 + 2λE +
κ2λλ̃EẼ2

2πr
+O(c−4), (5.11)

and similar for the tilded variables. Solving iteratively for λ,E, using also p = mv+O(c−3),

E = m+
p2

2m
− κ2mm̃

16πr
− p4

8m3
+

2κ4mm̃(2m+ m̃)

(32πr)2
(5.12)

− κ2mm̃

32πr

[
p2

m2
+

p̃2

m̃2
− 3(p · p̃)

mm̃
− (n · p)(n · p̃)

mm̃

]
+O(c−6), (5.13)

λ =
1

2m

[
1− p2

2m2
− κ2m̃

16πr

]
+O(c−4), (5.14)

and substituting these solutions into the action, we arrive at (recall κ2 = 32πG)

Seff,dg =

∫
dt [p · v + p̃ · ṽ −H] , (5.15)

H = m+ m̃+
p2

2m
+

p̃2

2m̃
− 2Gmm̃

r
− p4

8m3
− p̃4

8m3
+

2G2mm̃(m+ m̃)

r2

− Gmm̃

r

[
p2

m2
+

p̃2

m̃2
− 3p · p̃

mm̃
− (n · p)(n · p̃)

mm̃

]
+O(c−6).

(5.16)
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Notice the extra factor of two in the Newtonian potential, which is due to the dilaton.

Throughout this derivation, higher-order time derivatives (like accelerations) are removed

by inserting the respective equations of motion. This corresponds to a variable redefinition

at the considered order [49]. [In particular, this justifies the dropping of time derivatives

of λ, E and the use of p = mv +O(c−2) above.] Further note that H is the Hamiltonian

describing the motion of the binary system in dilaton gravity.

We may compare our result to scalar-tensor theory [48]. Scalar-tensor theories (in

the so called Einstein frame) are based on the same field action as dilaton gravity (4.1).

However, the source part (4.3) is more generic in scalar-tensor theories,

Spm,st = −m
∫
dτ
√
gµνuµuν

[
1 + α0φ+

1

2
(α2

0 + β0)φ2 +O(c−6)

]
, (5.17)

with the so called sensitivities α0 and β0. Comparing to (4.3) we find that α0 = 1 and

β0 = 0 for dilaton gravity. The Hamiltonian for scalar-tensor gravity, following via a trivial

Legendre transform from the Lagrangian, reads [48]

H = m+ m̃+
p2

2m
+

p̃2

2m̃
− G̃mm̃

r
− p4

8m3
− p̃4

8m̃3

− G̃mm̃

r

[
3p2

2m2
+

3p̃2

2m̃2
− 7p · p̃

2mm̃
− (n · p)(n · p̃)

2mm̃

]
+

2Gmα0m̃α̃0

r

[
p

m
− p̃

m̃

]2

+
G̃2mm̃

2r2
(m+ m̃) +

G2mm̃

2r2
(mα2

0β̃0 + m̃α̃2
0β0) +O(c−6),

(5.18)

where G̃ = G(1 + α0α̃0). This Hamiltonian agrees with ours for α0 = 1 and β0 = 0, as

expected. Note that for α0 = 0 = β0 one obtains the result of general relativity.

6 Conclusions

In the present paper, we proposed an adaption of the BCJ double copy [1–3] to the classical

effective action of binary systems and demonstrated its validity to next-to-leading order in

the weak-field/post-Minkowskian approximation. This is another application for a BCJ-

like double copy beyond (quantum) scattering amplitudes, next to classical solutions for

the field equations [19–21] and weak-field approximations for the radiation from classical

binary point-sources [23–25, 27–29]. The former application of the double copy operates at

the level of the gauge field and metric which are gauge-covariant quantities, unlike gauge-

invariant scattering amplitudes. Similarly, in the present work, we formulated a double

copy between effective actions, which are not manifestly gauge independent either: the

actions depend on gauge-dependent canonical momenta, and on the dilaton-gravity side

the positions are gauge dependent, too.2 This provides growing evidence that the BCJ

double copy can be adapted to gauge-covariant quantities, which, if true, would liberate it

2The (conservative) effective actions encode the binding energy (energy levels in a quantum mechanical

analog), which are gauge independent. However, the variables (like momenta) that are used when the

double copy is performed are not gauge invariant.

– 16 –



to a considerably larger realm of applications. Furthermore, our work is an adaptation of

the BCJ double copy to classical gravity. This is an important research direction due to

the foreseeable improvements of gravitational wave observations over the next decade(s),

demanding ever more accurate predictions for the motion and radiation of compact astro-

physical binaries.

An improvable part of our double-copy procedure is the split of worldline vertices with

more than one gluon, using a delta distribution of the worldline parameter. This leads to

singular terms involving δ(0) in the quantum corrections to the effective action, which we

boldly drop in our classical consideration. While one cannot expect a consistent treatment

of all quantum corrections in an approach based on classical worldlines, addressing this

problem might still lead to a crucial improvement of our approach. An interesting solu-

tion is to integrate out the auxiliary field ψ along the worldline. Since its propagator is a

step function, the delta distributions used to split worldline vertices can be produced by

derivatives in the numerators acting on these worldline propagators. This will avoid the

terms δ(0). However, after the double copy, this will produce an auxiliary field ψ propa-

gating along the worldline in the dilaton gravity, too. But it appears possible to surgically

remove this unwanted feature from each integrand. Alternatively, one can possibly give

the auxiliary field an additional property that one desires of the theory, like a spin. It is

interesting to note that step-function propagators along the worldline basically introduce

a time ordering. This time ordering is also present in the Wilson loop, which can be used

to calculate the potential between a quark-antiquark pair.

We may also compare our work to a direct calculation of radiation via equations of

motion in [23–25, 29], which is based on the same classical color charges (Yang-Mills) and

point-masses (dilaton gravity) as our work. If we descend from the effective action to the

equations of motion through a variation, then derivatives of the propagators may appear.

These derivatives are not part of the numerators which take part in the double copy.

Adapting the double copy at the level of equations of motion then faces the challenge of

identifying numerators and (derivatives of) propagators. This problem was elegantly solved

by Shen [29]: replacing the Yang-Mills numerators by a copy of the color factor should

lead to the corresponding result in bi-adjoint scalar theory, thus providing a prescription

to separate numerator and propagator structures. Here we avoided this complication by

working at the action level. On the other hand, it is straightforward to calculate the (gauge

independent) radiation emitted by a binary system when working with equations of motion

[23–25, 29].

While maybe less straightforward, extending our work to radiation from binaries will

be an interesting future direction. Note that the calculation of classical binary interaction

potentials presented here was an effective field theory approach similar to [35]. Following

this line of research [50], the calculation of radiation aided by a double copy (at the level of

the action) could succeed. Past work also suggests that an extension of our work to spin-

ning point-particles [25] or a projection to pure general relativity [14, 30] will be possible.

But the most important future extension of our present paper will be to demonstrate the

double-copy prescription at higher orders. At next-to-next-to-leading order in the effective

action, the BCJ color-kinematics duality (Jacobi identity) will start to play a crucial role
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in identifying suitable color factors and numerators for the double copy. As for all work in

the area of color-kinematics duality and double copy, it will be highly interesting to see if

our proposal (or a modification thereof) survives at the next order. For the original BCJ

case, the answer to this was so far always positive.
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A Conventions and Feynman rules

The signature of spacetime is −2 (“mostly minus”). We use units such that the speed of

light c = 1 and use c−1 as a formal post-Newtonian counting parameter.

The Yang-Mills action is the standard one, SYM = −1
4

∫
d4x (F aµν)2, with the color

convention tr(T aT b) = δab/2. The field strength F aµν is given by

[Dµ, Dν ] = −igF aµνT a ⇒ F aµν = ∂µA
a
ν − ∂νAaµ + gf bcaAbµA

c
ν , (A.1)

where Dµ = ∂µ − igAaµT a, [T a, T b] = ifabcT c and the structure constants fabc are totally

antisymmetric here. Working in Feynman gauge we have the coordinate space Feynman

rules of Yang-Mills theory,

〈Aaµ(x)Abν(y)〉0 = a µ b ν =
~
i
ηµν δabD(x− y), (A.2)

a µτ =
i

~
2g λ(τ) pµ(τ) ca(τ), (A.3)

a µ

b ν

τ =
i

~
2g2 λ(τ) ca(τ) cb(τ) ηµν , (A.4)

c µ3

a µ1

b µ2

= − i
~
g fabc V µ1µ2µ3

123 , (A.5)

where we used the abbreviation V µ1µ2µ3
123 from (3.12).

Our definition for the Riemann tensor is Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓµλαΓλνβ −
ΓµλβΓλνα, from which the Ricci tensor Rµν = Rαµαν and Ricci scalar R = Rµµ are obtained

through contractions. The Feynman rules for dilaton gravity, for our choice of gauge and

field redefinitions, follow straightforwardly from (4.17) and (4.14) as

〈gµν(x) gαβ(y)〉0 = αβ µν = −~
i
PµναβD(x− y), (A.6)
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µντ = − i
~
κλ(τ) pµ(τ) pν(τ), (A.7)

µν

αβ

τ =
i

~
κ2 λ(τ) p(µ(τ) ην)(α pβ)(τ), (A.8)

µ3ν3

µ1ν1

µ2ν2

=
i

~
κ

4
V α1α2α3

123 V β1β2β3
123

3∏
i=1

Pαiβi
µiνi , (A.9)

where Pµναβ = 1
2(ηµαηνβ + ηναηµβ).

By comparing the Yang-Mills and dilaton-gravity Feynman rules, it is clear that the

double copy of many diagrams is be trivial, since the vertices already show the double-copy

structure, except for the vertex (A.8).

B Self-interactions in the post-Newtonian approximation

In this appendix, we wish to discuss the self-interactions, which vanish using the post-

Newtonian expansion of the propagator (5.4). Using the gauge choice τ = t, the simplest

self-interaction at leading order reads

= − iκ
2

2~

∫
dtdt′ [p(t) · p(t′)]2D(x(t)− x(t′)) (B.1)

= − iκ
2

2~

∫
d3kdtdt′

(2π)3
[p(t) · p(t′)]2 e

ik·[x(t)−x(t′)]

k2

[
1 +

∂t∂t′

k2
+ . . .

]
δ(t− t′).

(B.2)

After performing one of the time integrations, the times are identified t = t′ and in the end

eik·[x(t)−x(t′)] = 1. The k-integral then turns into a scaleless one and vanishes in dimensional

regularization. Hence one gets a vanishing result at each post-Newtonian order. This result

is physically sensible. Indeed, a crucial property of the propagator (in Minkowski signature)

is that its support is on the light-cone. Now, the worldlines of massive particles can not

intersect the light-cones emanating from them, so that these self-interaction should be

zero. Similar arguments apply to the other self-interactions at next-to-leading order in the

effective action

, , ,

which all vanish in dimensional regularization.
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