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Abstract

We study various properties of a Proca field coupled to gravity through mini-

mal and quadrupole interactions, described by a 2-parameter family of Lagrangians.

Stückelberg decomposition of the effective theory spells out a model-dependent up-

per bound on the ultraviolet cutoff, parametrically larger than the Proca mass. A

shock-wave analysis of the theory constrains its parameter space by requiring null-

energy condition and the absence of negative time delays in high-energy scattering.

Derived from unitarity and analyticity of scattering amplitudes, positivity bounds

on the effective theory have an important bearing on the ultraviolet cutoff.
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1 Introduction

Fundamental particles relevant to our world must interact with gravity because of its

universal nature. For gravitational interactions in flat space, massive fields of arbitrary

spin are immune from such severe restrictions as afflict their massless counterparts (see for

example [1] for a review). Indeed massive particles do couple to gravity, in particular at the

cubic level, giving rise to nontrivial gravitational form factors. To be specific, a massive

particle of spin s ≥ 1 may possess as many as 2s mass multipole moments1. Intuitively,

what makes even a fundamental particle behave like an extended object sensitive to tidal

forces is its non-zero Compton wavelength, which sets an intrinsic size.

When it comes to massive particles of low spin, such as the Proca field, there seem

to be no issues with coupling to gravity. Minimal coupling does not lead to pathologies

like Velo-Zwanziger acausality [1]. Neither do non-minimal couplings, consistent with the

symmetries of the theory, pose any obvious problems. Of course, the theory will have a

cutoff, which−depending on the model−may be parametrically smaller than the Planck

scale. Can all such effective field theories be embedded in weakly coupled ultraviolet com-

pletions? The answer is expected to be in the negative, from arguments involving unitarity

and analyticity of scattering amplitudes [4] or time delays in high-energy scattering [5].

In this article we will consider the gravitational interactions of a massive vector field.

The Einstein-Proca theory [6] and its ghost-free generalizations [7–12] have generated a lot

of interest in recent years, especially because they provide with an attractive framework

for cosmology [13–17] and astrophysics [18–25]. In this context, one may study the self

interactions of the Proca field [26, 27] or the quantum aspects of the theory [28, 29].

Sidestepping these extremely interesting directions, we will study the effective field theory

of generalized Einstein-Proca actions containing only up to quadratic terms in the Proca

field. Explicitly, we will consider the following 2-parameter family of Lagrangians:

L =
√−g

[

1
2
M2

PR − 1
4
F 2
µν − 1

2
m2A2 − 1

2
αGµνA

µAν + 1
4
βΛ−2LµνρσF

µνF ρσ
]

, (1)

which is an effective field theory of a real Proca field Aµ coupled to Einstein gravity

that contains dimensionless parameters α and β, and has an ultraviolet cutoff Λ, where

Fµν = ∇µAν−∇νAµ is the Faraday tensor, Gµν the Einstein tensor, and Lµνρσ the double

dual of the Riemann tensor:

Lµν
ρσ = 1

4
εµναβερσγδRαβ

γδ = −Rµν
ρσ + 4 δ

[µ
[ρR

ν]
σ] − R δµ[ρδ

ν
σ]. (2)

1This count follows from considering the matrix element of the stress-energy tensor between two spin-s

states [2]. The multipole expansion of the time-time component in terms of spherical tensors, for example,

contains (2s+ 1) nontrivial pieces, whereas a mass dipole moment is not physically meaningful [3].
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The particular choice of Eq. (1) corresponds to the most general Lagrangian with non-

minimal couplings bilinear in the vector field and linear in curvature, such that higher-

order derivative terms are absent in the equations of motion [10, 30, 31]. Moreover, when

expanded around flat space, this Lagrangian will contain all possible Proca-graviton-Proca

cubic couplings. Note that there are only two such nontrivial couplings: one with at

most two derivatives and another with four derivatives [32, 33]. The first one is encoded

by minimal coupling, whereas the second by non-minimal quadrupole coupling to the

Riemann tensor2. Non-minimal couplings to the Ricci tensor and the scalar curvature

do appear in our action (1) but they result in trivial cubic interactions in flat space.

Yet the inclusion of such terms is well justified. While the RµνA
µAν-term is a natural

consequence of the ambiguity in minimal coupling prescription since covariant derivatives

do not commute, the other terms are essential for having second-order equations of motion

in curved space [10], thanks to the transversality properties: ∇µGµν = 0, ∇µLµνρσ = 0.

We would like to study various aspects of the effective field theory described by the

generalized Proca model (1). While it is natural to have O(1) values of α and β, small

values of α and m/MP are technically natural [34] since there is a U(1) symmetry en-

hancement when these parameters are zero. We will therefore assume that

|α| . O(1), |β| ∼ O(1). (3)

We will see that there appear specific constraints on the dimensionless couplings α and β,

essentially from requiring that the theory have a weakly coupled ultraviolet completion.

The organization of this article is as follows. The rest of this section clarifies our

metric and curvature conventions. Section 2 employs the Stückelberg formalism to sys-

tematically study the degree of singularity in our model in the limit of vanishing Proca

mass. This gives a model-dependent effective field theory cutoff. Carried out in Section 3,

a shock-wave analysis spells out constraints on α and β that rid our model of negative

time delays in high-energy scattering events. Section 4 uses unitarity and analyticity

properties of scattering amplitudes to derive positivity constraints on the effective field

theory. Summary of our results and some concluding remarks appear in Section 5.

Conventions: Our metric signature is (−+++). We use unit normalization for the

totally symmetric expression (µ1 · · ·µn) as well as the totally antisymmetric expression

[µ1 · · ·µn] in the indices µ1, . . . , µn. The curvature conventions are:

Γρ
µν = 1

2
gρσ (−∂σgµν + ∂µgνσ + ∂νgµσ) ,

Rρ
σµν = ∂µΓ

ρ
σν − ∂νΓ

ρ
σµ + Γρ

λµΓ
λ
σν − Γρ

λνΓ
λ
σµ , Rµν = Rρ

µρν ,

so that [∇µ,∇ν ]A
ρ = Rρ

σµνA
σ. The Levi-Civita symbol is normalized as ε0123 = +1.

2Let us recall that a massive spin-1 field may possess only monopole (mass) and quadrupole moments.
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2 Effective Field Theory Cutoff

Einstein gravity is understood as an effective field theory valid up to the Planck scale MP .

When a single particle of spin s ≥ 1 and non-zero mass m ≪ MP is coupled to it, the

resulting theory has a cutoff no higher than (m2s−2MP )
1/(2s−1)

, as conjectured in [35–37].

Then, for the Einstein-Proca theory the model independent cutoff upper bound should

simply be MP . This is indeed true, as we will see shortly. However, depending on the

model, the cutoff may actually be much lower than the Planck scale.

In this section we will find the cutoff scale Λ of the effective field theory described by

the generalized Proca model (1). Note that, by assumption, the presence/absence of the

quadrupole term does not affect the cutoff scale. One may therefore forgo the quadrupole

coupling and work with Lagrangian (1) with β set to zero. The model-dependent cutoff

will then be a function of the Proca mass m, the Planck scale MP and the dimensionless

parameter α, but not of β. The latter parameter is assumed to be O(1), and so there is

no contradiction since the cutoff is not sharply defined anyway. It is however reassuring

to consider the quadrupole coupling term to see that its inclusion in the Lagrangian has

no bearing on the cutoff analysis.

2.1 Stückelberg Decomposition

In order to study the degree of singularity in our model in the limit of vanishing Proca

mass, we take recourse to the Stückelberg formalism. Let us introduce a compensator

scalar field φ in the action (1) by the substitution:

Aµ = Bµ −m−1∂µφ. (4)

Then the Lagrangian enjoys, along with diffeomorphism, the following gauge symmetry:

δBµ = ∂µλ, δφ = mλ, (5)

where λ is a scalar gauge parameter. Known as Stückelberg invariance, the symmetry (5)

is just an artifact; one can always choose the unitary gauge to set φ = 0, and write the

Lagrangian in the original form (1). However, the redundancy is useful in that one can

choose a different gauge, in which the Stückelberg fields, i.e., the vector mode Bµ and the

scalar mode φ, acquire canonical kinetic terms [38–40]. This renders the corresponding

propagators smooth in the massless limit. To be specific, after the substitution (4) has

been made in the Lagrangian (1), one can add the gauge-fixing term:

∆L = −1
2

√
−g (∇µB

µ −mφ)2 . (6)
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The result is the following gauge-fixed Lagrangian:

Lg.f. ≡ L+∆L = LEH + L0 + L1 + L′, (7)

where LEH is the Einstein-Hilbert part, L0 contains the scalar kinetic and mass terms:

L0 = −1
2

√
−g
(

gµν∂µφ∂νφ+m2φ2
)

, (8)

L1 incorporates the kinetic, mass and quadrupole-coupling terms of the vector mode:

L1 = −1
2

√−ggµν
(

gρσ∇µBρ∇νBσ +m2BµBν

)

− βΛ−2√−g Rµρνσ∇µBρ∇νBσ, (9)

and L′ contains other non-minimal interactions of the Stückelberg fields with gravity:

L′ =
√−g Gµν

(

X̂µν − α
2
Yµν

)

, (10)

where the tensors X̂µν and Yµν are given by

X̂µν = −1
2

(

BµBν − 1
2
gµνB

2
)

+ β
Λ2

[

2∇[µBρ] (∇νB
ρ −∇ρBν)− gµν

(

∇[ρBσ]

)2
]

, (11)

Yµν = BµBν − 2
m
B(µ∂ν)φ+ 1

m2∂µφ∂νφ . (12)

Let us now consider gravitational fluctuations around flat space:

gµν = ηµν +
2

MP
hµν , (13)

where the graviton field hµν is canonically normalized with mass dimension one. This helps

assigning canonical dimensions to various operators in the gauge-fixed Lagrangian (7).

The Einstein-Hilbert part of the Lagrangian reduces to a free quadratic part:

L(free)
EH = 1

2
hµνGµν , Gµν ≡ ∂2hµν − 2∂(µ∂

ρhν)ρ + ∂µ∂νh
ρ
ρ − ηµν

(

∂2hρ
ρ − ∂ρ∂σhρσ

)

, (14)

plus Planck-suppressed graviton self interactions given in Eq. (A.1) in the Appendix.

Expanding
√−ggµν as in Eq. (A.2), up to a total derivative term one rewrites L0 as:

L0 = 1
2
φ
(

∂2 −m2
)

φ+ 1
MP

[

hµν∂µφ∂νφ− 1
2
hµ
µ

(

∂ρφ∂
ρφ+m2φ2

)]

+O
(

h2
)

. (15)

In order to rewrite L1, we would need the covariant derivative expansion (A.3) and the

Riemann tensor expansion: Rµρ
νσ = − 4

MP
∂[µ∂[νh

ρ]
σ] +O(h2). Thereby we have:

L1 =
1
2
Bµ

(

∂2 −m2
)

Bµ + 1
MP

hµν
(

∂µBρ∂νB
ρ + ∂ρBµ∂

ρBν − 1
2
ηµν(∂ρBσ)

2 +m2BµBν

)

+ 1
MP

(

2∂(µhν)ρ − ∂ρhµν
)

Bρ∂µBν − m2

2MP
hµ
µB

2 + 4β
Λ2Mp

∂µ∂νhρσ∂[µBρ]∂[νBσ] +O
(

h2
)

. (16)

On the other hand, the cubic cross-interaction terms arising from Eq. (10) are propor-

tional to the linearized graviton equations of motion:

L′ = − 1
MP

Gµν
(

Xµν − α
2
Yµν

)

+O
(

h2
)

, (17)
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where Xµν is the flat-space counterpart of X̂µν given in Eq. (12). These cubic terms can

be eliminated by the following field redefinition:

hµν → hµν +
1

MP

(

Xµν − α
2
Yµν

)

. (18)

To be explicit, after the field redefinition (18), one gets:

L(free)
EH + L′ → L(free)

EH − 1
2M2

P

(

Xµν − α
2
Yµν

)

Eµνρσ
(

Xρσ − α
2
Yρσ

)

+O(h2), (19)

where Eµνρσ is the quadratic differential operator in the graviton kinetic term, i.e.,

Eµνρσ = (ηµν,ρσ − ηµνηρσ) ∂2 + ηµν∂ρ∂σ + ηρσ∂µ∂ν − ηµ(ρ∂σ)∂ν − ην(ρ∂σ)∂µ , (20)

with ηµν,ρσ ≡ 1
2
(ηµρηνσ + ηµσηνρ). Note that Eq. (19) encodes quartic interaction terms

among the Stückelberg modes3 through operators up to dimension 10.

2.2 Cutoff Estimation

In order for the effective field theory to make sense in the first place, it is essential to

have m ≪ MP. The high energy regime we are interested in is characterized by the

center-of-mass energy m ≪ √
s ≪ MP. Let us define the following mass scale:

Λ3 ≡ 3
√

m2MP , Λ2 ≡
√

mMP , m ≪ Λ3 ≪ Λ2 ≪ MP . (21)

Now that all fields have canonical dimension one and the propagators are nonsingular

in the limit of vanishing Proca mass, the interaction terms are clearly non-renormalizable.

Different nontrivial higher-dimensional operators may be suppressed by different mass

scales. It is the lowest of these scales that defines the ultraviolet cutoff of the theory. In

the following we consider different cases of interest depending on the model.

• Case I, α 6= 0, No Counter Terms Added: In this case, if we forgo the quadrupole

term, the lowest suppression scale turns out to be Λ3. In other words, Λ3-suppressed

irrelevant operators become the most dangerous in the high-energy limit. Note that when

the field redefinition (18) is implemented in either the graviton self coupling (A.1) or L0

or L1, the resulting higher dimensional operators are suppressed only by a scale Λ2 or

higher. The same happens with the various O(h2) terms we did not spell out. If we now

include the quadrupole term, it is required that Λ & Λ3. Let us take the decoupling limit:

m → 0, MP → ∞, Λ3 = constant. (22)

3Because the operator (20) has zero modes of the form ∂(µλν), where λµ is an arbitrary space-time

function, the quartic interactions have different equivalent forms that differ by zero-mode contributions.
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Then the theory does not become free, but reduces to the following simple Lagrangian:

Lg.f. → 1
2
Bµ∂

2Bµ + 1
2
φ∂2φ+ 1

2
hµνGµν − α2

8Λ6
3

∂µφ ∂νφ Eµναβ∂αφ ∂βφ . (23)

Without counter terms, the cutoff Λ of the effective field theory is therefore given by:

Λ ∼ Λ3

3
√

|α|
, 0 < |α| . O(1). (24)

It is reassuring to note that the dimension-10 operators appearing in Lagrangian (23) are

nontrivial quartic interactions, i.e., they cannot be removed by field redefinitions.

• Case II, α 6= 0, Counter Terms Added: It is possible to push the cutoff scale be-

yond (24) by adding suitable local counter terms. We would like to cancel the Λ3-

suppressed quartic scalar interaction term in Lagrangian (19). The feat can be achieved

by a counter term of the following form (in the unitary gauge):

Lc.t. =
1
8
κα2M−2

P

√
−g AµAν ÊµνρσAρAσ, (25)

where Êµναβ is the covariant counterpart of (20). After the substitution (4) is made in

the above counter term, the desired cancelations happen if we set

κ = 1. (26)

This actually eliminates all the quartic interaction terms originating from (19) that con-

tain at least three scalars. Then, forgoing the quadrupole term, one is left with higher-

dimensional operators suppressed only by a scale Λ2 or higher. In particular, the analogue

of Eq. (19) that spells out the 4-Stückelberg interaction terms reads:

L(free)
EH + L′ + Lc.t. → L(free)

EH − 1
2M2

P

XµνEµνρσ (Xρσ − αYρσ) +O(h2). (27)

Inclusion of the quadrupole term will then require Λ & Λ2. Because the Λ2-suppressed

irrelevant operators are the most dangerous at high energies, we take the decoupling limit:

m → 0, MP → ∞, Λ2 = constant. (28)

In this limit, our Lagrangian reduces to the following form:

Lg.f. + Lc.t. → 1
2
Bµ∂

2Bµ + 1
2
φ∂2φ+ 1

2
hµνGµν +

∞
∑

n=1

(

α
Λ4
2

)n
(

O4n+4 + βΛ−2O4n+6

)

, (29)

whereOd denotes an operator of mass dimension d. The infinite series of higher-dimensional

operators originates from the non-linearity in the graviton fluctuations. At the interact-

ing level, (n+2)-point couplings may contain n canonically normalized gravitons, each of

which appears with a factor M−1
P . Then, the field redefinition (18) of the graviton may
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bring an additional factor of (m2MP/α)
−n

. As a result, in the limit (28) one is left with

an infinite series of irrelevant operators in steps of mass dimension four.

Because |β| ∼ O(1), it is clear from Lagrangian (29) that the addition of the local

counter term (25)–(26) has pushed the effective field theory cutoff to a higher scale of

Λ ∼ Λ2

4
√

|α|
, 0 < |α| . O(1). (30)

We will now prove that Λ given in Eq. (30) is the upper bound of the effective field

theory cutoff for α 6= 0. It suffices to show that among the irrelevant operators in the

Lagrangian (29) there is at least one that can neither be field redefined away nor can be

canceled up to a total derivative by local counter terms without worsening the ultraviolet

behavior. With this end in view, let us single out the dimension-8 quartic interaction

terms of 2 vectors and 2 scalars. The origin of such terms is twofold: the graviton field

redefinition (18) acting on the vector-graviton-vector cubic couplings in Eq. (16), and

the 4-Stückelberg interaction terms in Eq. (27). These terms are captured, up to total

derivatives, by the following dimension-8 operator:

O8 = −1
2

[

∂2(BµBν)∂
µφ∂νφ+∂2(Bµ∂

µφ)Bν∂
νφ+ 1

4
∂2(Bµφ)∂

2(Bµφ)− 1
8
∂2B2∂2φ2

]

. (31)

In deriving the above result we have dropped terms containing ∂2Bµ or ∂
2φ since we are in-

terested in on-shell scattering amplitudes. It is clear that the quartic interactions (31) are

nontrivial, i.e. they cannot all be eliminated by field redefinitions modulo total derivatives.

On the other hand, cancellation of the operator (31) by local counter terms necessarily

introduces new dimension-9 and dimension-10 operators which make the ultraviolet be-

havior worse. This can be seen by noting that, in unitary gauge, candidate counter terms

have the schematic form M−2
P ∂2A4. After the substitution (4), one will not only obtain

the desired Λ−4
2 ∂4B2φ2 terms but also nontrivial terms like Λ−2

2 Λ−3
3 ∂5Bφ3 and Λ−6

3 ∂6φ4,

which are suppressed by scales much smaller than Λ2. This completes the proof.

• Case III, α = 0: The situation changes drastically when α = 0. In this case, the

original Lagrangian (1) acquires a U(1) gauge invariance in the massless limit. This

means that all the 1/m dependencies in the gauge-fixed Lagrangian (7) must disappear.

An inspection of the various terms in the Lagrangian confirms this. More precisely, the

tensor Yµν given in Eq. (12) never appears since it is accompanied by a coefficient of

−α/2. Subsequently, the field redefinition (18) may produce Planck-suppressed operators

only. Therefore, the cutoff in this case is nothing but the Planck scale itself:

Λ ∼ MP , α = 0. (32)

This is also the model-independent upper bound on the ultraviolet cutoff [35–37] of the

Einstein-Proca system, as already mentioned.
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3 Shock-Wave Analysis

In this section we show, among other things, that the generalized Einstein-Proca model (1)

admits pp-wave solutions [41, 42]. Note that similar solutions were found in [43] for

generalized Einstein-Maxwell theories [44]. We consider linear fluctuations of the Proca

field on this background in the probe approximation to demonstrate that, upon crossing

the pp-wave, the fluctuations may undergo negative time advances unless the parameter

space of the theory is appropriately constrained. Such arguments have already been used

for constraining higher-derivative gravity [5] and massive gravity theories [45, 46].

3.1 pp-Wave Solution

Let us introduce the light-cone coordinate system (u, v, ~x), where u = t− x3, v = t+ x3,

and ~x = (x1, x2). Then, a generic pp-wave spacetime has the following metric:

ds2 = −dudv + F(u, ~x)du2 + d~x2 . (33)

This geometry enjoys the null Killing vector ∂v. One can introduce a covariantly constant

null vector lµ = δµu to write this metric in the Kerr–Schild form:

ḡµν = ηµν + F(u, ~x) lµlν . (34)

The inverse and the Christoffel symbols corresponding to the metric (34) are given by

ḡµν = ηµν −F lµlν , Γ̄λ
µν = lλl(µ∂ν)F − 1

2
lµlν∂

λF , (35)

which in turn yield the following curvature quantities:

R̄ρ
σµν = lσl[µ∂ν]∂

ρF − lρl[µ∂ν]∂σF , R̄µν = −1
2
lµlν∂

2F , R̄ = 0. (36)

To see if the generalized Einstein-Proca system (1) admits pp-wave solutions, let us

first write down the resulting equations of motion. The Einstein equations read:

Gµν = M−2
P Tµν ≡ M−2

P

[

T (0)
µν + αT (α)

µν + βT (β)
µν

]

, (37)

where the various parts comprising the stress-energy tensor are given by:

T
(0)
µν = FµρFν

ρ − 1
4
gµνF

2
ρσ +m2

(

AµAν − 1
2
gµνA

2
)

,

T
(α)
µν = 1

2

[

δρµδ
σ
ν (∇2−R)+gµν(∇ρ∇σ−Gρσ)−2δρ(µ∇ν)∇σ+gρσRµν

]

(

AρAσ− 1
2
gρσA

2
)

, (38)

T
(β)
µν = −Λ−2

(

LµρνσF
ρλF σ

λ +∇ρF̃σµ∇σF̃ ρ
ν

)

,

with F̃ µν = 1
2
εµνρσFρσ being the dual Faraday tensor. The Proca equations of motion are:

(

gµσgνρ + βΛ−2Lµνρσ
)

∇νFρσ −
(

m2gµν + αGµν
)

Aν = 0. (39)
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The system of equations (37)–(39) admits the solution:

gµν = ḡµν = ηµν + F(u, ~x) lµlν , Aµ = Āµ = MPH(u, ~x) lµ , (40)

provided that the functions F and H satisfy the following equations:

∂2F̃ = 0 ,
(

∂2 −m2
)

H = 0 , (41)

where the function F̃ has been defined as

F̃ ≡ F +
(

1 + α + 2βΛ−2m2 − 1
2
βΛ−2∂2

)

H2 . (42)

Because F̃ and H are independent of v, the d’Alembertian operator in Eq. (41) can be

replaced by the Laplace operator on the transverse plane. Assuming rotational symmetry

on the transverse plane, the equations have the following solutions at ~x 6= 0:

F̃ = −A(u) ln(Λ|~x|) , H = B(u)K0(m|~x|) , (43)

where A(u) and B(u) are arbitrary functions of u, and K0 is the zeroth-order modified

Bessel function of the second kind. Note that the singularity of the solutions (43) at ~x = 0

can be attributed to delta function-type sources. To be explicit, one could consider the

following source current on the right-hand side of Eq. (39):

jµ = −2πMPB(u)δ2(~x) lµ . (44)

Similarly, the stress-energy tensor in Eq. (37) ought to include a singular piece:

M−2
P Tµν = πlµlνA(u)δ2(~x)+m2lµlνB2(u)

[

K2
0 (m|~x|)+K2

1(m|~x|)
]

[1+α−β F(m|~x|)] , (45)

where we have defined the function:

F(m|~x|) ≡ 1
2
Λ−2

[

K2
0(m|~x|) +K2

1 (m|~x|)
]−1

∂2K2
1(m|~x|)−m2Λ−2. (46)

Let us now find the consequences of imposing null-energy condition on the stress-

energy tensor, i.e., Tµνn
µnν ≥ 0 for any null vector nµ. Because A(u) and B(u) are a

priori arbitrary functions, it immediately follows that:

A(u) ≥ 0, 1 + α− β F(m|~x|) ≥ 0. (47)

Further conditions arise from noting that F(m|~x|) is a positive-definite function. In the

effective field theory context, however, it only makes sense to talk about distances no

smaller than 1/Λ. Now, starting from the value of F(m/Λ) equal to 2, the function

decreases monotonically as |~x| increases, and approaches zero as |~x| → ∞. Then, within

the effective field theory, positive semi-definiteness of F(m|~x|) is tantamount to:

1 + α− 2aβ ≥ 0, for a ∈ (0, 1]. (48)

As already noted in [47–49], the violation of null-energy condition may give rise to super-

luminal propagation. In the next two subsections we will consider probe fluctuations on

the background (40) and compute the time delays they suffer upon crossing the pp-wave.
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3.2 Linear Fluctuations

On the background (40) let us now consider, in the probe limit, linear Proca fluctuations:

wµ = Aµ − Āµ. (49)

Derived easily from Eq. (39), the equations of motion of these fluctuations read:

(

∇̄2 −m2
)

wµ − ∇̄µ

(

∇̄·w
)

− (α + 1)Ḡµνw
ν + 2βΛ−2L̄µνρσ∇ν∇ρwσ = 0, (50)

with index contractions performed by and the covariant derivative ∇̄µ built from the

background metric ḡµν and its inverse. A divergence of the equations of motion gives:

∇̄·w = 1
2
αm−2∂2F l·∂ l·w, (51)

thanks to the transversality properties of Gµν and Lµνρσ. The divergence constraint (51)

renders one component of the vector field wµ non-dynamical, leaving us with 3 dynamical

degrees of freedom as expected. More specifically, one can rewrite Eq. (51) as:

∂vwu = 1
2
∂iwi − ∂uwv −

(

2F + αm−2∂2F
)

∂vwv. (52)

Because its v-derivative is completely determined by the other components, wu is clearly

non-dynamical if one chooses v as the light-cone time, as we will do.

The true dynamics of the system is found by substituting the constraint (51) in the

equations of motion (50). The result is:

(

∂2 −m2
)

wµ ≡
(

ḡρσ∂ρ∂σ −m2
)

wµ = δRµ + lµδR, (53)

where the quantities δRµ and δR depend on the curvature through F . Explicitly,

δRµ = 4∂µF ∂vwv +
2α
m2 ∂µ

(

∂2F∂vwv

)

+ 8β
Λ2

(

∂µ∂ρF − ḡµρ∂
2F
)(

∂2
vw

ρ − ∂ρ∂vwv

)

,

δR = 2∂ρF (∂vwρ − ∂ρwv) + α∂2F wv +
4β
Λ2

(

∂ρ∂σF − ḡρσ∂2F
)

(∂v∂ρwσ − ∂ρ∂σwv) .
(54)

When we take the u-component of the equations of motion (53), we get

(

∂2
i −m2

)

wu = 4 (∂u + F∂v) ∂vwu + δRu + δR. (55)

It is easy to see that in the right-hand side of the above equation wu appears always

through its v-derivative, and so it can be completely eliminated by virtue of the con-

straint (52). This simply reconfirms the status of wu as a non-dynamical variable.

The dynamical equations correspond to the µ=v and µ= i components of the equations

of motion (53). They take the form:

(

ηρσ∂ρ∂σ −m2
)

wv = Y ∂2
vwv + Yi∂vwi ,

(

ηρσ∂ρ∂σ −m2
)

wi = Zi∂vwv + Zij∂
2
vwj ,

(56)

10



where we have introduced the following functions and operators:

Y = 4
(

F + α
2m2∂

2F
)

, Yi = 0,

Zi = 4∂i
(

F + α
2m2∂

2F
)

+ 4
(

α
2m2 +

2β
Λ2

)

∂2F∂i − 8β
Λ2 ∂i∂jF∂j, (57)

Zij = 4
(

F − 2β
Λ2∂

2F
)

δij +
8β
Λ2 ∂i∂jF .

In what follows, we will assume that the fluctuations do not propagate through ~x = 0, so

that the background equations (41) can be used.

3.3 Shapiro Time Delay

The Proca-fluctuation modes will experience Shapiro time delay [50] as they cross the

pp-wave. Before computing this quantity let us specify the u-profiles of our background

solution (43). We will choose the following “sandwich wave” [41] profile:
(

A(u)

B(u)

)

=

(

A0

B0

)

[

1− θ
(

u2 − λ2
)]

exp

[

− λ2u2

(u2 − λ2)2

]

, (58)

where numerical constants A0 and B0 define the amplitude, and the length scale λ defines

the width of the smeared wave. We have chosen A(u) and B(u) to be smooth functions,

A(u),B(u) ∈ C∞(R), with a compact support [−λ, λ]. Note that the sandwich wave

moves at the speed of light in the v-direction. For future convenience, we introduce yet

another pair of numerical constants Ā0 and B̄0, defined as:

Ā0 ≡ λ−1

∫ +λ

−λ

duA(u) ≈ 1.07A0, B̄2
0 ≡ λ−1

∫ +λ

−λ

duB2(u) ≈ 1.13B2
0. (59)

Let us write the general solutions of the equations of motion (53) and the con-

straint (51) as superpositions of eigensolutions of the form:

wµ(u, v, ~x) = w̃µ(u) e
i(pv+~q·~x) , (60)

where p and ~q are the momenta in the u- and the transverse directions respectively.

Because the probe experiences a radial impulse in the transverse plane during the course

of the sandwich wave, u ∈ [−λ, λ], the transverse momenta will be u-dependent: ~q = ~q(u).

We denote the incoming and outgoing transverse momenta by ~q
−

and ~q
+
respectively. Let

the impact parameter vector in the transverse plane at u = −λ be ~b = |~b|~e = b~e. For the

incoming transverse momenta we make the choice: ~q
−

= q
−

~e with q
−

> 0.

Given that there is a huge separation between the effective field theory cutoff Λ and

the Proca mass m, it is possible to accommodate the following parametric relations:

Λ &
1

λ
≫ p ≫ q

−

≫ 1

b
≫ m. (61)
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The reasons we are interested in the regime (61) are the following. The condition q
−

b ≫ 1

takes into account the requirement that the probe is far away from ~x = 0. The particle is

chosen to be ultra-relativistic, p ≫ q
−

≫ m, for the sake of simplicity. All its momenta

are however much smaller than Λ. The sandwich wave, on the other hand, is taken to be

thinner than all the characteristic length scales of the probe: λp ≪ 1, but thick enough

to be “seen” by the effective theory: λΛ & 1. The small impact parameter, mb ≪ 1, is

meant for amplifying the effects of the sandwich wave on the probe.

The change in the probe particle’s transverse position while passing through the sand-

wich wave is small: |~x −~b| . λ, which we will neglect. The radial impulse deflects the

particle but keeps ~q(u) aligned with ~e: ~q(u) = q(u)~e. Note that q(u) remains positive

and small compared to p. This can be seen by using the deflection formula (A.36) of

Ref. [42], which is a valid approximation because the sandwich wave is thin. With energy

E ∼ M2
Pλ of the sandwich wave and ~q

+
≡ q

+
~e, we can write (q

−

/p)− (q
+
/p) ∼ λ/b. Given

the separation of scales (61), we conclude that q
+
> 0 and q

+
≈ q

−

. The same conclusion

holds for q(u) as it varies continuously. The unit transverse position vector, ~n ≡ ~x/|~x|,
always coincides with ~e in our setup.

Let us redefine the dynamical modes as

Φ1 = w̃v , Φ2 = δijeiw̃j , Φ3 = εijeiw̃j , (62)

where i, j = 1, 2 are indices in the transverse plane and εij is the Levi-Civita symbol. In

terms of the new dynamical fields, collectively denoted as {ΦI(u)} with I = 1, 2, 3, the

equations of motion (56) can be rewritten as:

(∂u − ipγ) ΦI(u) = ip
(

A(u)CIJ + B2(u)DIJ

)

ΦJ(u), (63)

where γ ≡ 1
4
(q2 + m2)/p2, and the 3 × 3 matrices CIJ and DIJ depend, apart from the

Lagrangian parameters α, β and Λ, on the mass m and momenta p, q of the probe, the

impact parameter b and the width λ of the sandwich wave. Their explicit forms appear

in the Appendix through Eqs. (A.4)–(A.8). The a priori arbitrary functions A(u) and

B(u) have been chosen as (58), but the values of the constants A0 and B0 are at our

disposal. In particular, we can set either one of them to be zero and still have a nontrivial

background solution. It serves our purpose to consider the following two choices.

• Choice I, Ā0 = ±1, B0 = 0: In this case it is easy to diagonalize the set of first-order

coupled differential equations (63). Note that the eigenvalues of C are given by:

c1 = ln(Λb) , c2 = ln(Λb)− 2β (Λb)−2 , c3 = ln(Λb) + 2β (Λb)−2 , (64)

which are independent of the momenta p and q. The matrix U composed of the eigen-

vectors of C is u-dependent, but only as weakly as q(u)/p. Then, in terms of the modes
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ΨI ≡ U−1
IJ ΦJ , Eqs. (63) are approximately diagonal, and hence can be integrated to

ΨI(+λ) ≈ ΨI(−λ) exp

[

ip

∫ +λ

−λ

du [γ + cIA(u)]

]

. (65)

The integral in Eq. (65) is to be understood as the shift in the v-coordinate suffered by

the I-th mode upon crossing the sandwich wave [5]. To find the shift relative to massless

propagation in flat space, we write the relevant terms originating from γ:

∆γ = 1
4
m2/p2 + 1

4
(q2 − q2

−

)/p2 . (66)

The first piece comes from non-zero Proca mass, whereas the second from non-zero cur-

vature. Then, the v-shifts relative to flat-space massless propagation can be written as:

∆vI ≡
∫ +λ

−λ

du [∆γ + cIA(u)] ≈ (sgnA0) cIλ. (67)

A positive shift corresponds to a time delay, whereas a negative ∆v to a time advance.

Because Λb ≫ 1 and |β| ∼ O(1), it is clear from Eq. (64) that all the cI ’s are large

positive numbers. Negative time delays can be avoided by requiring that sgnA0 = +1.

This requirement also follows from null-energy condition, which sets A(u) > 0.

• Choice II, A0 = 0, B̄0 = ±1: Here we can follow the logical steps of the previous

choice almost verbatim. The v-shifts relative to flat-space massless propagation are:

∆vI ≡
∫ +λ

−λ

du
[

∆γ + dIB2(u)
]

≈ dIλ, (68)

where dI are the eigenvalues of the matrix D, which should be positive semi-definite in

order that negative time delays be absent. It suffices to write down only leading-order

terms of the dI ’s in the regime of interest (61). For small impact parameters, ǫ ≡ mb ≪ 1,

the eigenvalues reduce to the simple form:

d1 ≈ α
(

1 + α− 2β(Λb)−2
)

ǫ−2 + (1 + α)2 ln2 ǫ, d2 ≈ d3 ≈ (1 + α) ln2 ǫ. (69)

We therefore require: α (1 + α− 2β(Λb)−2) ≥ 0 and (1 + α) ≥ 0. Given the require-

ment (48) from null-energy condition, it follows that α must be constrained as: α ≥ 0.

To summarize, requiring null-energy condition on the pp-wave background and the

absence of negative time delays in high-energy scattering results in the following set of

necessary and sufficient conditions on the dimensionless parameters α and β:

α ≥ 0, β ≤ 1
2
(1 + α) . (70)
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4 Unitarity & Analyticity Constraints

The scattering amplitudes of a low-energy effective field theory ought to satisfy certain

inequalities in order for a standard local, unitary, analytic and Lorentz-invariant ultravi-

olet completion to exist [4]. Independent of the details of the ultraviolet physics, these

conditions take a simple form for crossing-symmetric amplitudes in the forward limit.

Known as positivity constraints, they hinge on the compliance of high-energy scattering

amplitudes with the optical theorem, the Froissart bound [51,52], and the S-matrix ana-

lyticity properties. Positivity constraints may put rigorous bounds on the parameter space

of various effective field theories: Einstein gravity with higher-curvature corrections [53],

ghost-free massive gravity [54], and pseudo-linear massive gravity [26], for example4.

In this section, we will use the positivity arguments [4] to constrain our Einstein-Proca

effective theory (1). For the sake of completeness, we will also investigate the consequences

of the counter term (25), keeping the parameter κ arbitrary. We are interested in on-shell

4-point scattering amplitudes M(s, t) of the Proca field (s, t and u are the Mandelstam

variables) that are simultaneously forward and invariant under crossing in the t-channel.

Formally, t-channel crossing symmetry is tantamount to the invariance under the particle-

label swapping 1 ↔ 3 or 2 ↔ 4. For external Proca particles, this is ensured if the

exchanged particles have the same polarization relative to their momenta. Then the

forward limit corresponds to the following identification of particles: 1 ↔ 3 and 2 ↔ 4.

We assume a perturbative ultraviolet completion of our theory, which allows for an ~-

expansion and justifies the consideration of only tree-level diagrams.

The presence of dynamical gravity creates an obstacle since t-channel graviton ex-

change gives a singular contribution in the forward limit: t → 0. As a result, the Frois-

sart bound is violated rendering the positivity arguments invalid. In this case an infrared

regulator µ comes to rescue, as already noted in [4, 53, 60]. The regulator−much smaller

than any physical mass scale in the theory−is introduced by sending t → t − µ2 in the

amplitude. This alleviates the t-singularity in the forward limit as the t-channel exchange

now produces a large but finite contribution to the amplitude. Our forward amplitudes

will therefore correspond to the following kinematic regime of interest:

Λ ≫
√
s ≫

√
−t = µ ≪ m. (71)

To derive constrains on our effective field theory, we follow the procedure outlined

in [4, 54]. For technical details related to non-zero particle spin and massless t-channel

4It is possible to generalize the requirements to an infinite number of positivity bounds at and away

from the forward scattering limit [55,56], which too could constrain various effective field theories [27,57].

Constraints for particles with nonzero spin and general polarizations, albeit subtle because of nontrivial

crossing relations, have also been derived [56, 58]. See also [59] for bounds beyond positivity.
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exchange we refer the readers to [53, 58]. We consider the 4-point scattering amplitudes

Mλ1λ2;λ3λ4
(s, t) of the process 1+2 → 3+4 involving on-shell Proca fields, where the λi’s

(i = 0, 1, 2) comprise some crossing-symmetric choice of the three external polarizations.

We choose particles 1 and 2 as incoming, and particles 3 and 4 as outgoing. Let λ0

denote the longitudinal polarization, and λ1 and λ2 the transverse polarizations parallel

and perpendicular to the scattering plane respectively (linear polarization basis). Then,

the infrared-regulated forward limits5 of crossing-symmetric amplitudes are:

Mij(s) = Mλiλj ;λiλj

(

s, t→−µ2
)

, i, j = 0, 1, 2, (72)

where the particle identifications 1 ↔ 3 and 2 ↔ 4 have been made. Then we consider

the following quantity:

fij ≡
1

2πi

∮

C

ds
Mij(s)

(s− s0)3
, (73)

where s0 is an arbitrary point within the real-line segment (0, 4m2) on the complex s-

plane, and the small contour C encircles the pole at s = s0. From analytic dispersion

relations [4], it turns out that the fij ’s can be computed at tree level solely within the

effective theory [54, 59], as the negative residue of the integrand at large s:

fij = − Res
s=−∞

[ Mij(s)

(s− s0)3

]

EFT

. (74)

Given that the Froissart bound holds on account of unitarity and locality−thanks to

the infrared regulator−one can deform the contour C to encircle the multi-particle branch

cuts starting at s = 0 and s = 4m2 dropping the boundary contribution, which vanishes

at infinity. The value thus obtained is related to the total cross-section by virtue of the

optical theorem and crossing symmetry. Because the total cross-section is positive, one

finds that the fij ’s must be strictly positive [4, 54]:

fij > 0, i, j = 0, 1, 2. (75)

To calculate the quantities fij in our model from Eq. (74), we recourse to the Mathe-

matica packages xAct‘xTensor’, FeynRules [61] and FeynCalc [62]. The results are inde-

pendent of the arbitrary mass scale
√
s0, and given by:

f00 = (mMP )
−2
[

(m/µ)2 + α
]

, (76.1)

f10 =
3
8
(mMP )

−2α2(1− κ) = f20, (76.2)

f11 = (ΛMP )
−2
[

(Λ/µ)2 + 1
2
β2 (m/Λ)2 − β

]

, (76.3)

f22 = (ΛMP )
−2
[

(Λ/µ)2 + 1
2
β2 (m/Λ)2 − 3β

]

, (76.4)

f12 = (ΛMP )
−2
[

(Λ/µ)2 + 1
2
β2 (m/Λ)2 − β(2 + α)

]

= f21. (76.5)

5Note that the derivation of positivity bounds does not require t to be strictly zero [52, 53].
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We immediately see that the t-channel graviton exchange dominates most of the fij

values through large contributions of O((m/µ)2) and O((Λ/µ)2). The scattering ampli-

tudes of two longitudinal polarizations (76.1) or two transverse polarizations (76.3)–(76.5)

do not give rise to any sensible bounds on the effective field theory parameters. This is

because the O((m/µ)2) and O((Λ/µ)2) terms, with their very large positive values, always

wash out any contributions involving the parameters α and β. On the other hand, from

f10 = f20 given in (76.2), it follows that: α2(1− κ) > 0, which in turn imposes that α be

non-zero and κ be less than unity:

α 6= 0, κ < 1. (77)

The significance of the inequalities (77) can hardly be overstated. First, α 6= 0 means

that the RµνAµAν-term in Lagrangian (1) arising naturally from the ambiguity in mini-

mal coupling prescription must be present. Therefore, models in which this term is not

included cannot be embedded in a sensible ultraviolet completion. Second, because the

choice κ = 1 is not allowed, the very cancellations the counter term (25) is meant for

cannot take place. Consequently, existence of a weakly coupled ultraviolet completion

requires that the näıve upper bound (24) is also the model-independent upper bound on

the ultraviolet cutoff, which is as low as Λ ∼ Λ3/
3
√

|α| .

5 Summary & Conclusions

In this article we have studied the gravitational properties of a massive spin-1 field in

the context of a 2-parameter family of Einstein-Proca Lagrangians, which (i) is at most

quadratic in the Proca field, (ii) admits no higher-derivative terms in the equations of

motion, (iii) incorporates all possible graviton-Proca-graviton cubic couplings in flat space,

and (iv) allows for an ambiguity term that arises naturally from minimal coupling. We

have estimated the model-(in)dependent upper bound on the ultraviolet cutoff of the

effective field theory under consideration. The cutoff scale Λ depends on the Proca mass

m, the Planck mass MP and the ambiguity parameter α. Below we clarify some points

regarding the various estimates (24), (30) and (32) of the cutoff scale in order that the

results fit nicely with each other.

As already noted, it is technically natural to have a small value of α. Näıvely, the

scales (24) and (30) blow up in the limit α → 0. However, as soon as |α| becomes

O((m/Λ)2), the separation of the scales (24) and (30) from the Planck mass disappear.
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Therefore, it is more correct to summarize our cutoff estimates as:

Λ ∼















Λ3

3
√

|α|
, O((m/Λ)2) . |α| . O(1), without counter terms,

Λ2

4
√

|α|
, O((m/Λ)2) . |α| . O(1), with counter terms,

MP , |α| . O((m/Λ)2).

(78)

The model-independent cutoff upper-bound of MP has been estimated without requiring

the existence of any sensible ultraviolet completion of the theory. When the latter require-

ment is added, the model-independent upper bound plummets to the value Λ ∼ Λ3/
3
√

|α| .
We have found a pp-wave solution for the Einstein-Proca model (1). When subject to

null-energy conditions, this background solution gives rise to nontrivial constraints (48)

on the two parameters α and β of the theory. We moreover require that Proca fluctuations

on this geometry (in the probe and ultra-relativistic limits) do not experience negative

time delays upon crossing the pp-wave. This further constrains the (α, β) parameter plane

to the region (70). It is easy to see that the violation of null-energy condition may result

in negative time delays in high-energy scattering, i.e., superluminal propagation. This

point has been duly noted already in [47–49].

We have also derived positivity constraints (77) by considering crossing-symmetric

4-point forward scattering amplitudes with external Proca fields. These results have

an important bearing on the cutoff scale up to which the effective field theory can be

trusted. Dominant contributions from t-channel graviton exchange diagrams preclude

further constraints. Nevertheless, if somehow the singular contributions could be consis-

tently subtracted [4, 60, 63], additional bound(s) on the parameters would follow. They

would essentially require that α be positive and β be negative.

When the results from the shock-wave analysis (70) and forward-scattering-amplitude

analysis (77) are combined, we get the following constraints on the parameters:

α > 0, β ≤ 1
2
(1 + α) . (79)

Following from Eq. (47), a stronger bound on β would appear if we had required that

null-energy condition continues to hold for distance scales smaller than the effective field

theory can resolve, i.e., 1/Λ. Again, we would be led to the condition: β < 0. This

conclusion coincides with the findings reported in [31]. However, as already noted by

some authors [64, 65] such extrapolations may be misleading.

It would be particularly interesting to do similar studies in the presence of a (negative)

cosmological constant, especially because of the availability of various holographic tech-

niques that could constrain bulk gravity theories (see for example [5,66–71] and references

therein for a partial list of work in this direction). We leave this as future work.
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A Appendix

Throughout the bulk of the article, we have omitted some cumbersome expressions and

technical details for the sake of readability. The purpose of this appendix is to make room

for those details. We begin with the Planck-suppressed graviton self interaction terms:

L(int)
EH = 2

MP

(

∂µhνρ∂
µhρσhσ

ν − 1
2
∂µhρσ∂νhρσhµν − hµνhρσ∂

µ∂νhρσ + hµρhνσ∂
µ∂νhρσ

)

− 2
MP

(

∂µh
µρ∂νh

νσhρσ + ∂µh
′∂µhρσhρσ +

1
2
∂µ∂νh

′hµρhν
ρ − ∂µh

′∂ρh
ρ
νh

µν
)

(A.1)

+ 1
2MP

h′ (∂µh
′∂µh′ − ∂µh

νρ∂µhνρ + 2hµν∂
µ∂νh′ + 2∂µh

µρ∂νh
ν
ρ) +O(h4),

where h′ ≡ hµ
µ . Next, we spell out the expansion of the

√−ggµν term:

√−ggµν = ηµν− 2
MP

(

hµν − 1
2
ηµνh′

)

+ 4
M2

P

(

hµρhρ
ν − 1

2
h′hµν − 1

4
ηµν
(

h2
αβ − 1

2
h′2
))

+O(h3).

(A.2)

We also need an expansion for the Proca covariant derivative; it is given by:

∇µBρ = ∂µBρ +
1

MP

(

ηαβ − 2
MP

hαβ + · · ·
)

(

∂αhµρ − 2∂(µhρ)α

)

Bβ, (A.3)

where the ellipses stand for higher-order terms.

The 3× 3 matrices CIJ and DIJ appearing in Eq. (63) will appear below. The matrix

C is given by:

CIJ =
[

ln(Λb)− 2β (Λb)−2 (δI2 − δI3)
]

δIJ −
[

i(pb)−1 − 2β(q/p) (Λb)−2 ] δI2δJ1, (A.4)

where we have no sum over repeated indices. The matrix D takes the form:

DIJ = D(0)
IJ + β(Λb)−2D(1)

IJ + β2(Λb)−4D(2)
IJ , (A.5)

whose elements are specified below. With the short-hand notations: kν ≡ Kν(mb) = and

ǫ ≡ mb, the non-zero O(β0)-components are given by:

D(0)
11 = (1 + α)2 k2

0 + α (1 + α) k2
1, D(0)

22 = D(0)
33 = (1 + α) k2

0,

D(0)
21 = α (1 + α) (q/p)

(

k2
0 + k2

1

)

+ 2i (1 + α) (m/p) [(1 + 2α)k0 + αk1/ǫ] k1,
(A.6)
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while the non-zero O(β)-components read:

D(1)
11 =− 1

2
α (ǫk0 + k1) k1 + ǫ2

[

k2
0 − k2

1 +
3
8
α
(

k2
0 − k2

2

)]

,

D(1)
22 =4ǫ(1 + α)k0k1 + ǫ2

(

k2
0 − k2

1

)

,

D(1)
33 =− 4ǫ(1 + α)k0k1 − 4ǫ2

[(

α+ 3
4

)

k2
0 +

(

α + 5
4

)

k2
1

]

,

D(1)
21 =− 1

2
(q/p)

[

αk2
1 + ǫ(9α + 8)k0k1 − 3

4
ǫ2α

(

k2
0 − k2

2

)]

+ i(m/p)
[

−11α (k0 + k1/ǫ) k1 − 1
4

(

11αk2
0 + 8(1 + α)k2

1 − 3αk2
2

)]

,

(A.7)

and the non-zero O(β2)-components are:

D(2)
22 = −4ǫ2k2

1, D(2)
33 = 6ǫ2

[

k2
1 +

1
3
ǫk0k1 − 1

4
ǫ2
(

k2
0 − k2

2

)]

, D(2)
21 = 4(q/p)ǫ2k2

1. (A.8)

This marks the end of our short technical appendix.
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