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Abstract

We study various properties of a Proca field coupled to gravity through minimal and quadrupole inter-
actions, described by a two-parameter family of Lagrangians. Stückelberg decomposition of the effective 
theory spells out its model-dependent ultraviolet cutoff, parametrically larger than the Proca mass. We 
present pp-wave solutions that the model admits, consider linear fluctuations on such backgrounds, and 
thereby constrain the parameter space of the theory by requiring null-energy condition and the absence of 
negative time delays in high-energy scattering. We briefly discuss the positivity constraints—derived from 
unitarity and analyticity of scattering amplitudes—that become ineffective in this regard.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Fundamental particles relevant to our world must interact with gravity because of its universal 
nature. For gravitational interactions in flat space, massive fields of arbitrary spin are immune 
from such severe restrictions as afflict their massless counterparts (see for example [1] for a re-
view). Indeed massive particles do couple to gravity, in particular at the cubic level, giving rise to 
nontrivial gravitational form factors. To be specific, a massive particle of spin s ≥ 1 may possess 
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as many as 2s mass multipole moments.1 Intuitively, what makes even a fundamental particle be-
have like an extended object sensitive to tidal forces is its non-zero Compton wavelength, which 
sets an intrinsic size.

When it comes to massive particles of low spin, such as the Proca field, there seem to be 
no issues with coupling to gravity. Minimal coupling does not lead to pathologies like Velo–
Zwanziger acausality [1]. Neither do non-minimal couplings, consistent with the symmetries 
of the theory, pose any obvious problems. Of course, the theory will have a cutoff, which—
depending on the model—may be parametrically smaller than the Planck scale. Can all such 
effective field theories be embedded in weakly coupled ultraviolet completions? The answer is 
expected to be in the negative, from arguments involving unitarity and analyticity of scattering 
amplitudes [4] or time delays in high-energy scattering [5].

In this article we will consider the gravitational interactions of a massive vector field. The 
Einstein–Proca theory [6] and its ghost-free generalizations [7–12] have generated a lot of 
interest in recent years, especially because they provide with an attractive framework for cos-
mology [13–17] and astrophysics [18–25] (see [26] for a recent review). In this context, one 
may investigate the Proca self interactions [27,28] or analyze the quantum aspects [29,30]. 
Sidestepping these interesting directions, we will study the effective field theory of generalized 
Einstein–Proca actions containing only up to quadratic terms in the Proca field. Explicitly, we 
will consider the following two-parameter family of Lagrangians:

L = √−g
[

1
2M2

P R − 1
4F 2

μν − 1
2m2A2 − 1

2αGμνA
μAν + 1

4β�−2Lμνρσ FμνFρσ
]
, (1)

which is an effective field theory of a real Proca field Aμ coupled to Einstein gravity that contains 
dimensionless parameters α and β , and has an ultraviolet cutoff �, where Fμν = ∇μAν − ∇νAμ

is the Faraday tensor, Gμν the Einstein tensor, and Lμνρσ the double dual of the Riemann tensor:

Lμν
ρσ = 1

4εμναβερσγ δRαβ
γ δ = −Rμν

ρσ + 4 δ
[μ
[ρ Rν]

σ ] − R δ
μ
[ρδν

σ ]. (2)

The particular choice of Eq. (1) corresponds to the most general Lagrangian with non-minimal 
couplings bilinear in the vector field and linear in curvature, such that higher-order derivative 
terms are absent in the equations of motion [10,31,32]. Moreover, when expanded around flat 
space, this Lagrangian will contain all possible Proca-graviton-Proca cubic couplings. Note that 
there are only two such nontrivial couplings: one with at most two derivatives and another with 
four derivatives [33,34]. The first one is encoded by minimal coupling, whereas the second by 
non-minimal quadrupole coupling to the Riemann tensor.2 Non-minimal couplings to the Ricci 
tensor and the scalar curvature do appear in our action (1) but they result in trivial cubic interac-
tions in flat space. Yet the inclusion of such terms is well justified. While the RμνA

μAν -term is 
a natural consequence of the ambiguity in minimal coupling prescription since covariant deriva-
tives do not commute, the other terms are essential for having second-order equations of motion 
in curved space [10], thanks to the transversality properties: ∇μGμν = 0, ∇μLμνρσ = 0.

We would like to study various aspects of the effective field theory described by the gener-
alized Proca model (1). While it is natural to have O(1) values of α and β , small values of α
and m/MP are technically natural [35] since there is a U(1) symmetry enhancement when these 
parameters are zero. We will therefore assume that

1 This count follows from considering the matrix element of the stress-energy tensor between two spin-s states [2]. The 
multipole expansion of the time-time component in terms of spherical tensors, for example, contains (2s + 1) nontrivial 
pieces, whereas a mass dipole moment is not physically meaningful [3].

2 Let us recall that a massive spin-1 field may possess only monopole (mass) and quadrupole moments.
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|α| � O(1), |β| ∼O(1). (3)

We will see that there appear specific constraints on the dimensionless couplings α and β , essen-
tially from requiring that the theory have a weakly coupled ultraviolet completion.

The organization of this article is as follows. The rest of this section clarifies our metric and 
curvature conventions. Section 2 employs the Stückelberg formalism to systematically study the 
degree of singularity in our model in the limit of vanishing Proca mass. This gives a model-
dependent effective field theory cutoff. Carried out in Section 3, a shock-wave analysis spells 
out constraints on α and β that rid our model of negative time delays in high-energy scattering 
events. Section 4 uses unitarity and analyticity properties of scattering amplitudes to derive pos-
itivity constraints, which turn out to be ineffective. Summary of our results and some concluding 
remarks appear in Section 5.

Conventions: Our metric signature is (− + ++). We use unit normalization for the totally 
symmetric expression (μ1 · · ·μn) as well as the totally antisymmetric expression [μ1 · · ·μn] in 
the indices μ1, . . . , μn. The curvature conventions are:

�ρ
μν = 1

2gρσ
(−∂σ gμν + ∂μgνσ + ∂νgμσ

)
,

Rρ
σμν = ∂μ�ρ

σν − ∂ν�
ρ
σμ + �

ρ
λμ�λ

σν − �
ρ
λν�

λ
σμ , Rμν = Rρ

μρν ,

so that [∇μ, ∇ν]Aρ = R
ρ
σμνA

σ . The Levi-Civita symbol is normalized as ε0123 = +1.

2. Effective field theory cutoff

Einstein gravity is understood as an effective field theory valid up to the Planck scale MP . 
When a single particle of spin s ≥ 1 and non-zero mass m � MP is coupled to it, the resulting 
theory has a cutoff no higher than 

(
m2s−2MP

)1/(2s−1)
, as conjectured in [36–38]. Then, for the 

Einstein–Proca theory the model independent cutoff upper bound should simply be MP . This is 
indeed true, as we will see shortly. However, depending on the model, the cutoff may actually be 
much lower than the Planck scale.

In this section we will find the cutoff scale � of the effective field theory described by the 
generalized Proca model (1). Note that, by assumption, the presence/absence of the quadrupole 
term does not affect the cutoff scale. One may therefore forgo the quadrupole coupling and work 
with Lagrangian (1) with β set to zero. The model-dependent cutoff will then be a function of the 
Proca mass m, the Planck scale MP and the dimensionless parameter α, but not of β . The latter 
parameter is assumed to be O(1), and so there is no contradiction since the cutoff is not sharply 
defined anyway. It is however reassuring to consider the quadrupole coupling term to see that its 
inclusion in the Lagrangian has no bearing on the cutoff analysis.

2.1. Stückelberg decomposition

In order to study the degree of singularity in our model in the limit of vanishing Proca mass, 
we take recourse to the Stückelberg formalism. Let us introduce a compensator scalar field φ in 
the action (1) by the substitution:

Aμ = Bμ − m−1∂μφ. (4)

Then the Lagrangian enjoys, along with diffeomorphism, the following gauge symmetry:

δBμ = ∂μλ, δφ = mλ, (5)
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where λ is a scalar gauge parameter. Known as Stückelberg invariance, the symmetry (5) is just 
an artifact; one can always choose the unitary gauge to set φ = 0, and write the Lagrangian in the 
original form (1). However, the redundancy is useful in that one can choose a different gauge, in 
which the Stückelberg fields, i.e., the vector mode Bμ and the scalar mode φ, acquire canonical 
kinetic terms [39–41]. This renders the corresponding propagators smooth in the massless limit. 
To be specific, after the substitution (4) has been made in the Lagrangian (1), one can add the 
gauge-fixing term:

�L = − 1
2

√−g
(∇μBμ − mφ

)2
. (6)

The result is the following gauge-fixed Lagrangian:

Lg.f. ≡ L+ �L = LEH +L0 +L1 +L′, (7)

where LEH is the Einstein–Hilbert part, L0 contains the scalar kinetic and mass terms:

L0 = − 1
2

√−g
(
gμν∂μφ∂νφ + m2φ2

)
, (8)

L1 incorporates the kinetic, mass and quadrupole-coupling terms of the vector mode:

L1 = − 1
2

√−ggμν
(
gρσ ∇μBρ∇νBσ + m2BμBν

)
− β�−2√−g Rμρνσ ∇μBρ∇νBσ , (9)

and L′ contains other non-minimal interactions of the Stückelberg fields with gravity:

L′ = √−g Gμν
(
X̂μν − α

2Yμν

)
, (10)

where the tensors X̂μν and Yμν are given by

X̂μν = − 1
2

(
BμBν − 1

2gμνB
2
)

+ β

�2

[
2∇[μBρ]

(∇νB
ρ − ∇ρBν

) − gμν

(∇[ρBσ ]
)2

]
, (11)

Yμν = BμBν − 2
m

B(μ∂ν)φ + 1
m2 ∂μφ∂νφ . (12)

Let us now consider gravitational fluctuations around flat space:

gμν = ημν + 2
MP

hμν, (13)

where the graviton field hμν is canonically normalized with mass dimension one. This helps 
assigning canonical dimensions to various operators in the gauge-fixed Lagrangian (7). The 
Einstein–Hilbert part of the Lagrangian reduces to a free quadratic part:

L(free)
EH = 1

2hμνGμν, Gμν ≡ ∂2hμν − 2∂(μ∂ρhν)ρ + ∂μ∂νh
ρ
ρ − ημν

(
∂2hρ

ρ − ∂ρ∂σ hρσ

)
,

(14)

plus Planck-suppressed graviton self interactions given in Eq. (A.1) in the Appendix. Expanding √−ggμν as in Eq. (A.2), up to a total derivative term one rewrites L0 as:

L0 = 1
2φ

(
∂2 − m2

)
φ + 1

MP

[
hμν∂μφ∂νφ − 1

2hμ
μ

(
∂ρφ∂ρφ + m2φ2

)]
+O

(
h2

)
. (15)

In order to rewrite L1, we would need the covariant derivative expansion (A.3) and the Riemann 
tensor expansion: Rμρ

νσ = − 4 ∂ [μ∂[νhρ]
σ ] +O(h2). Thereby we have:
MP
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L1 = 1
2Bμ

(
∂2 − m2

)
Bμ

+ 1
MP

hμν
(
∂μBρ∂νB

ρ + ∂ρBμ∂ρBν − 1
2ημν(∂ρBσ )2 + m2BμBν

)

+ 1
MP

(
2∂(μhν)ρ − ∂ρhμν

)
Bρ∂μBν − m2

2MP
hμ

μB2

+ 4β

�2Mp
∂μ∂νhρσ ∂[μBρ]∂[νBσ ] +O

(
h2

)
. (16)

On the other hand, the cubic cross-interaction terms arising from Eq. (10) are proportional to 
the linearized graviton equations of motion:

L′ = − 1
MP

Gμν
(
Xμν − α

2Yμν

) +O
(
h2

)
, (17)

where Xμν is the flat-space counterpart of X̂μν given in Eq. (12). These cubic terms can be 
eliminated by the following field redefinition:

hμν → hμν + 1
MP

(
Xμν − α

2Yμν

)
. (18)

To be explicit, after the field redefinition (18), one gets:

L(free)
EH +L′ → L(free)

EH − 1
2M2

P

(
Xμν − α

2Yμν

)
Kμνρσ

(
Xρσ − α

2Yρσ

) +O(h2), (19)

where Kμνρσ is the quadratic differential operator in the graviton kinetic term, i.e.,

Kμνρσ = (
ημν,ρσ − ημνηρσ

)
∂2 + ημν∂ρ∂σ + ηρσ ∂μ∂ν − ημ(ρ∂σ)∂ν − ην(ρ∂σ)∂μ , (20)

with ημν,ρσ ≡ 1
2 (ημρηνσ + ημσ ηνρ). Note that Eq. (19) encodes quartic interaction terms among 

the Stückelberg modes3 through operators up to dimension 10.

2.2. Cutoff estimation

In order for the effective field theory to make sense in the first place, it is essential to have 
m � MP. The high energy regime we are interested in is characterized by the center-of-mass 
energy m � √

s � MP. Let us define the following mass scale:

�3 ≡ 3
√

m2MP , �2 ≡ √
mMP , m � �3 � �2 � MP . (21)

Now that all fields have canonical dimension one and the propagators are nonsingular in the 
limit of vanishing Proca mass, the interaction terms are clearly non-renormalizable. Different 
nontrivial higher-dimensional operators may be suppressed by different mass scales. It is the 
lowest of these scales that defines the ultraviolet cutoff of the theory. In the following we consider 
different cases of interest depending on the model.

• Case I, α �= 0, No Counter Terms Added: In this case, if we forgo the quadrupole term, the 
lowest suppression scale turns out to be �3. In other words, �3-suppressed irrelevant operators 
become the most dangerous in the high-energy limit. Note that when the field redefinition (18)
is implemented in either the graviton self coupling (A.1) or L0 or L1, the resulting higher di-
mensional operators are suppressed only by a scale �2 or higher. The same happens with the 

3 Because the operator (20) has zero modes of the form ∂(μλν), where λμ is an arbitrary space-time function, the 
quartic interactions have different equivalent forms that differ by zero-mode contributions.
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various O(h2) terms we did not spell out. If we now include the quadrupole term, it is required 
that � � �3. Let us take the decoupling limit:

m → 0, MP → ∞, �3 = constant. (22)

Then the theory does not become free, but reduces to the following simple Lagrangian:

Lg.f. → 1
2Bμ∂2Bμ + 1

2φ∂2φ + 1
2hμνGμν − α2

8�6
3
∂μφ ∂νφKμναβ∂αφ ∂βφ . (23)

Without counter terms, the cutoff � of the effective field theory is therefore given by:

� ∼ �3
3
√|α| , 0 < |α| �O(1). (24)

It is reassuring to note that the dimension-10 operators appearing in Lagrangian (23) are nontriv-
ial quartic interactions, i.e., they cannot be removed by field redefinitions.

• Case II, α �= 0, Counter Terms Added: It is possible to push the cutoff scale beyond (24)
by adding suitable local counter terms. We would like to cancel the �3-suppressed quartic scalar 
interaction term in Lagrangian (19). The feat can be achieved by a counter term of the following 
form (in the unitary gauge):

Lc.t. = 1
8κα2M−2

P

√−g AμAνK̂μνρσ AρAσ , (25)

where K̂μναβ is a covariant counterpart of (20). After the substitution (4) is made in the above 
counter term, the desired cancelations happen if we set

κ = 1. (26)

This actually eliminates all the quartic interaction terms originating from (19) that contain at least 
three scalars. Then, forgoing the quadrupole term, one is left with higher-dimensional operators 
suppressed only by a scale �2 or higher. In particular, the analogue of Eq. (19) that spells out the 
4-Stückelberg interaction terms reads:

L(free)
EH +L′ +Lc.t. → L(free)

EH − 1
2M2

P

XμνKμνρσ
(
Xρσ − αYρσ

) +O(h2). (27)

Inclusion of the quadrupole term will then require � � �2. Because the �2-suppressed irrelevant 
operators are the most dangerous at high energies, we take the decoupling limit:

m → 0, MP → ∞, �2 = constant. (28)

In this limit, our Lagrangian reduces to the following form:

Lg.f. +Lc.t. → 1
2Bμ∂2Bμ + 1

2φ∂2φ + 1
2hμνGμν

+
∞∑

n=1

(
α

�4
2

)n (
O4n+4 + β�−2O4n+6

)
, (29)

where Od denotes an operator of mass dimension d . The infinite series of higher-dimensional 
operators originates from the non-linearity in the graviton fluctuations. At the interacting level, 
(n + 2)-point couplings may contain n canonically normalized gravitons, each of which appears 
with a factor M−1

P . Then, the field redefinition (18) of the graviton may bring an additional factor 

of 
(
m2MP /α

)−n
. As a result, in the limit (28) one is left with an infinite series of irrelevant 

operators in steps of mass dimension four.
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Because |β| ∼ O(1), it is clear from Lagrangian (29) that the addition of the local counter 
term (25)–(26) has pushed the effective field theory cutoff to a higher scale of

� ∼ �2
4
√|α| , 0 < |α| � O(1). (30)

We will now prove that � given in Eq. (30) is the upper bound of the effective field theory 
cutoff for α �= 0. It suffices to show that among the irrelevant operators in the Lagrangian (29)
there is at least one that can neither be field redefined away nor can be canceled up to a total 
derivative by local counter terms without worsening the ultraviolet behavior. With this end in 
view, let us single out the dimension-8 quartic interaction terms of 2 vectors and 2 scalars. The 
origin of such terms is twofold: the graviton field redefinition (18) acting on the vector-graviton-
vector cubic couplings in Eq. (16), and the 4-Stückelberg interaction terms in Eq. (27). These 
terms are captured, up to total derivatives, by the following dimension-8 operator:

O8 = − 1
2

[
∂2(BμBν)∂

μφ∂νφ + ∂2(Bμ∂μφ)Bν∂
νφ

+ 1
4∂2(Bμφ)∂2(Bμφ) − 1

8∂2B2∂2φ2
]
. (31)

In deriving the above result we have dropped terms containing ∂2Bμ or ∂2φ since we are 
interested in on-shell scattering amplitudes. It is clear that the quartic interactions (31) are 
nontrivial, i.e. they cannot all be eliminated by field redefinitions modulo total derivatives. On 
the other hand, cancellation of the operator (31) by local counter terms necessarily introduces 
new dimension-9 and dimension-10 operators which make the ultraviolet behavior worse. This 
can be seen by noting that, in unitary gauge, candidate counter terms have the schematic form 
M−2

P ∂2A4. After the substitution (4), one will not only obtain the desired �−4
2 ∂4B2φ2 terms but 

also nontrivial terms like �−2
2 �−3

3 ∂5Bφ3 and �−6
3 ∂6φ4, which are suppressed by scales much 

smaller than �2. This completes the proof.
• Case III, α = 0: The situation changes drastically when α = 0. In this case, the original 

Lagrangian (1) acquires a U(1) gauge invariance in the massless limit. This means that all the 
1/m dependencies in the gauge-fixed Lagrangian (7) must disappear. An inspection of the various 
terms in the Lagrangian confirms this. More precisely, the tensor Yμν given in Eq. (12) never 
appears since it is accompanied by a coefficient of −α/2. Subsequently, the field redefinition (18)
may produce Planck-suppressed operators only. Therefore, the cutoff in this case is nothing but 
the Planck scale itself:

� ∼ MP , α = 0. (32)

This is also the model-independent upper bound on the ultraviolet cutoff [36–38] of the Einstein–
Proca system, as already mentioned.

3. Shock-wave analysis

In this section we show, among other things, that the generalized Einstein–Proca model (1)
admits pp-wave solutions [42,43]. Note that similar solutions were found in [44] for general-
ized Einstein–Maxwell theories [45]. We consider linear fluctuations of the Proca field on this 
background in the probe approximation to demonstrate that, upon crossing the pp-wave, the 
fluctuations may undergo negative time delays unless the parameter space of the theory is appro-
priately constrained. Such arguments have already been used for constraining higher-derivative 
gravity [5] and massive gravity theories [46,47].
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3.1. pp-wave solution

Let us introduce the light-cone coordinate system (u, v, 
x), where u = t − x3, v = t + x3, and 

x = (x1, x2). Then, a generic pp-wave spacetime has the following metric:

ds2 = −dudv +F(u, 
x)du2 + d
x2 . (33)

This geometry enjoys the null Killing vector ∂v . One can introduce a covariantly constant null 
vector lμ = δμu to write this metric in the Kerr–Schild form:

ḡμν = ημν +F(u, 
x) lμlν . (34)

The inverse and the Christoffel symbols corresponding to the metric (34) are given by

ḡμν = ημν −F lμlν, �̄λ
μν = lλl(μ∂ν)F − 1

2 lμlν∂
λF, (35)

which in turn yield the following curvature quantities:

R̄ρ
σμν = lσ l[μ∂ν]∂ρF − lρ l[μ∂ν]∂σF, R̄μν = − 1

2 lμlν∂
2F, R̄ = 0. (36)

To see if the generalized Einstein–Proca system (1) admits pp-wave solutions, let us first write 
down the resulting equations of motion. The Einstein equations read:

Gμν = M−2
P Tμν ≡ M−2

P

[
T (0)

μν + αT (α)
μν + βT (β)

μν

]
, (37)

where the various parts comprising the stress-energy tensor are given by:

T (0)
μν = FμρFν

ρ − 1
4gμνF

2
ρσ + m2

(
AμAν − 1

2gμνA
2
)

,

T (α)
μν = 1

2

[
δρ
μδσ

ν (∇2 − R) + gμν(∇ρ∇σ − Gρσ ) − 2δ
ρ

(μ∇ν)∇σ + gρσ Rμν

]

×
(
AρAσ − 1

2gρσ A2
)

,

T (β)
μν = −�−2

(
Lμρνσ FρλFσ

λ + ∇ρF̃σμ∇σ F̃ ρ
ν

)
, (38)

with F̃ μν = 1
2εμνρσ Fρσ being the dual Faraday tensor. The Proca equations of motion are:(

gμσ gνρ + β�−2Lμνρσ
)

∇νFρσ −
(
m2gμν + α Gμν

)
Aν = 0. (39)

The system of equations (37)–(39) admits the solution:

gμν = ḡμν = ημν +F(u, 
x) lμlν , Aμ = Āμ = MPH(u, 
x) lμ , (40)

provided that the functions F and H satisfy the following equations:

∂2F̃ = 0 ,
(
∂2 − m2

)
H = 0 , (41)

where the function F̃ has been defined as

F̃ ≡F +
(

1 + α + 2β�−2m2 − 1
2β�−2∂2

)
H2 . (42)

Because F̃ and H are independent of v, the d’Alembertian operator in Eq. (41) can be replaced 
by the Laplace operator on the transverse plane. Assuming rotational symmetry on the transverse 
plane, the equations have the following solutions at 
x �= 0:
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F̃ = −A(u) ln(�|
x|) , H = B(u)K0(m|
x|) , (43)

where A(u) and B(u) are arbitrary functions of u, and K0 is the zeroth-order modified Bessel 
function of the second kind. Note that the singularity of the solutions (43) at 
x = 0 can be at-
tributed to delta function-type sources. To be explicit, one could consider the following source 
current on the right-hand side of Eq. (39):

jμ = −2πMPB(u)δ2(
x) lμ . (44)

Similarly, the stress-energy tensor in Eq. (37) ought to include a singular piece:

M−2
P Tμν = πlμlνA(u)δ2(
x)

+ m2lμlνB2(u)
[
K2

0 (m|
x|) + K2
1 (m|
x|)

] [
1 + α − β F(m|
x|)] , (45)

where we have defined the function:

F(m|
x|) ≡ 1
2�−2

[
K2

0 (m|
x|) + K2
1 (m|
x|)

]−1
∂2K2

1 (m|
x|) − m2�−2. (46)

Let us now find the consequences of imposing null-energy condition on the stress-energy 
tensor, i.e., Tμνn

μnν ≥ 0 for any null vector nμ. Because A(u) and B(u) are a priori arbitrary 
functions, it immediately follows that:

A(u) ≥ 0, 1 + α − β F(m|
x|) ≥ 0. (47)

Further conditions arise from noting that F(m|
x|) is a positive-definite function. In the effective 
field theory context, however, it only makes sense to talk about distances no smaller than 1/�. 
Now, starting from the value of F(m/�) equal to 2, the function decreases monotonically as 
|
x| increases, and approaches zero as |
x| → ∞. Then, within the effective field theory, positive 
semi-definiteness of F(m|
x|) is tantamount to:

1 + α − 2aβ ≥ 0, for a ∈ (0,1]. (48)

As already noted in [48–50], the violation of null-energy condition may give rise to super-
luminal propagation. In the next two subsections we will consider probe fluctuations on the 
background (40) and compute the time delays they suffer upon crossing the pp-wave.

3.2. Linear fluctuations

On the background (40) let us now consider, in the probe limit, linear Proca fluctuations:

wμ = Aμ − Āμ. (49)

Derived easily from Eq. (39), the equations of motion of these fluctuations read:(
∇̄2 − m2

)
wμ − ∇̄μ

(∇̄ · w) − (α + 1)Ḡμνw
ν + 2β�−2L̄μνρσ ∇̄ν∇̄ρwσ = 0, (50)

where barred quantities are constructed from and index contractions are performed by the back-
ground metric ḡμν and its inverse. A divergence of the equations of motion gives:

∇̄ · w = 1
2α m−2∂2F l · ∂ l · w, (51)

thanks to the transversality properties of Gμν and Lμνρσ . The divergence constraint (51) renders 
one component of the vector field wμ non-dynamical, leaving us with 3 dynamical degrees of 
freedom as expected. More specifically, one can rewrite Eq. (51) as:
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∂vwu = 1
2∂iwi − ∂uwv −

(
2F + αm−2∂2F

)
∂vwv. (52)

Because its v-derivative is completely determined by the other components, wu is clearly non-
dynamical if one chooses v as the light-cone time, as we will do.

The true dynamics of the system is found by substituting the constraint (51) in the equations 
of motion (50). The result is:(

∂2 − m2
)

wμ ≡
(
ḡρσ ∂ρ∂σ − m2

)
wμ = δRμ + lμδR, (53)

where the quantities δRμ and δR depend on the curvature through F . Explicitly,

δRμ = 4∂μF ∂vwv + 2α
m2 ∂μ

(
∂2F∂vwv

)

+ 8β

�2

(
∂μ∂ρF − ḡμρ∂2F

)(
∂2
vwρ − ∂ρ∂vwv

)
,

δR = 2∂ρF
(
∂vwρ − ∂ρwv

) + α∂2F wv

+ 4β

�2

(
∂ρ∂σF − ḡρσ ∂2F

)(
∂v∂ρwσ − ∂ρ∂σ wv

)
.

(54)

When we take the u-component of the equations of motion (53), we get(
∂2
i − m2

)
wu = 4 (∂u +F∂v) ∂vwu + δRu + δR. (55)

It is easy to see that in the right-hand side of the above equation wu appears always through its 
v-derivative, and so it can be completely eliminated by virtue of the constraint (52). This simply 
reconfirms the status of wu as a non-dynamical variable.

The dynamical equations correspond to the μ = v and μ = i components of the equations of 
motion (53). They take the form:(

ηρσ ∂ρ∂σ − m2
)

wv = Y∂2
vwv + Yi∂vwi ,(

ηρσ ∂ρ∂σ − m2
)

wi = Zi∂vwv + Zij ∂
2
vwj ,

(56)

where we have introduced the following functions and operators:

Y = 4
(
F + α

2m2 ∂2F
)

, Yi = 0,

Zi = 4∂i

(
F + α

2m2 ∂2F
)

+ 4
(

α
2m2 + 2β

�2

)
∂2F∂i − 8β

�2 ∂i∂jF∂j , (57)

Zij = 4
(
F − 2β

�2 ∂2F
)

δij + 8β

�2 ∂i∂jF .

In what follows, we will assume that the fluctuations do not propagate through 
x = 0, so that the 
background equations (41) can be used.

3.3. Shapiro time delay

The Proca-fluctuation modes will experience Shapiro time delay [51] as they cross the pp-
wave. Before computing this quantity, let us specify the u-profiles of our background solu-
tion (43). We will choose the following “sandwich wave” [42] profile:(

A(u)

B(u)

)
=

(
A0
B

)[
1 − θ

(
u2 − λ2

)]
exp

[
− λ2u2

2 2 2

]
, (58)
0 (u − λ )
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where numerical constants A0 and B0 define the amplitude, and the length scale λ defines the 
width of the smeared wave. We have chosen A(u) and B(u) to be smooth functions, A(u), B(u) ∈
C∞(R), with a compact support [−λ, λ]. Note that the sandwich wave moves at the speed of light 
in the v-direction. For future convenience, we introduce yet another pair of numerical constants 
Ā0 and B̄0, defined as:

Ā0 ≡ λ−1

+λ∫
−λ

duA(u) ≈ 1.07A0, B̄2
0 ≡ λ−1

+λ∫
−λ

duB2(u) ≈ 1.13B2
0. (59)

Let us write the general solutions of the equations of motion (53) and the constraint (51) as 
superpositions of eigensolutions of the form:

wμ(u, v, 
x) = w̃μ(u) ei(pv+
q·
x) , (60)

where p and 
q are the momenta in the u- and the transverse directions respectively. Because 
the probe experiences a radial impulse in the transverse plane during the course of the sandwich 
wave, u ∈ [−λ, λ], the transverse momenta will be u-dependent: 
q = 
q(u). We denote the in-
coming and outgoing transverse momenta by 
q− and 
q+ respectively. Let the impact parameter 
vector in the transverse plane at u = −λ be 
b = |
b| 
e = b 
e. For the incoming transverse momenta 
we make the choice: 
q− = q− 
e with q− > 0.

Given that there is a huge separation between the effective field theory cutoff � and the Proca 
mass m, it is possible to accommodate the following parametric relations:

� � 1

λ
� p � q− � 1

b
� m. (61)

The reasons we are interested in the regime (61) are the following. The condition q−b � 1
takes into account the requirement that the probe is far away from 
x = 0. The particle is chosen 
to be ultra-relativistic, p � q− � m, for the sake of simplicity. All its momenta are however 
much smaller than �. The sandwich wave, on the other hand, is taken to be thinner than all the 
characteristic length scales of the probe: λp � 1, but thick enough to be “seen” by the effective 
theory: λ� � 1. The small impact parameter, mb � 1, is meant for amplifying the effects of the 
sandwich wave on the probe.

The change in transverse position while the probe particle is passing through the sandwich 
wave is small: |
x − 
b| � λ, which we will neglect. The radial impulse deflects the particle but 
keeps 
q(u) aligned with 
e: 
q(u) = q(u)
e. Note that q(u) remains positive and small compared 
to p. This can be seen by using the deflection formula (A.36) of Ref. [43], which is a valid 
approximation because the sandwich wave is thin. With energy E ∼ M2

Pλ of the sandwich wave 
and 
q+ ≡ q+
e, we can write (q−/p) − (q+/p) ∼ λ/b. Given the separation of scales (61), we 
conclude that q+ > 0 and q+ ≈ q−. The same conclusion holds for q(u) as it varies continuously. 
The unit transverse position vector, 
n ≡ 
x/|
x|, always coincides with 
e in our setup.

Let us redefine the dynamical modes as

�1 = w̃v , �2 = δij eiw̃j , �3 = εij eiw̃j , (62)

where i, j = 1, 2 are indices in the transverse plane and εij is the Levi-Civita symbol. In terms 
of the new dynamical fields, collectively denoted as {�I(u)} with I = 1, 2, 3, the equations of 
motion (56) can be rewritten as:

(∂u − ipγ )�I (u) = ip
(
A(u)CIJ +B2(u)DIJ

)
�J (u), (63)
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where γ ≡ 1
4 (q2 + m2)/p2, and the 3 × 3 matrices CIJ and DIJ depend, apart from the La-

grangian parameters α, β and �, on the mass m and momenta p, q of the probe, the impact 
parameter b and the width λ of the sandwich wave. Their explicit forms appear in the Appendix 
through Eqs. (A.4)–(A.8). The a priori arbitrary functions A(u) and B(u) have been chosen 
as (58), but the values of the constants A0 and B0 are at our disposal. In particular, we can set 
either one of them to be zero and still have a nontrivial background solution. It serves our purpose 
to consider the following two choices.

• Choice I, Ā0 = ±1, B0 = 0: In this case it is easy to diagonalize the set of first-order cou-
pled differential equations (63). Note that the eigenvalues of C are given by:

c1 = ln (�b) , c2 = ln (�b) − 2β (�b)−2 , c3 = ln (�b) + 2β (�b)−2 , (64)

which are independent of the momenta p and q . The matrix U composed of the eigenvectors 
of C is u-dependent, but only as weakly as q(u)/p. Then, in terms of the modes �I ≡ U−1

IJ �J , 
Eqs. (63) are approximately diagonal, and hence can be integrated to

�I (+λ) ≈ �I (−λ) exp

⎡
⎣ip

+λ∫
−λ

du
[
γ + cIA(u)

]⎤⎦ . (65)

The integral in Eq. (65) is to be understood as the shift in the v-coordinate suffered by the I -th 
mode upon crossing the sandwich wave [5]. To find the shift relative to massless propagation in 
flat space, let us write the relevant terms originating from γ :

�γ = 1
4m2/p2 + 1

4 (q2 − q2−)/p2 . (66)

The first piece comes from non-zero Proca mass, whereas the second from non-zero curvature. 
Then, the v-shifts relative to flat-space massless propagation can be written as:

�vI ≡
+λ∫

−λ

du
[
�γ + cIA(u)

] ≈ (sgnA0) cI λ. (67)

A positive shift corresponds to a time delay, whereas a negative �v to a time advance. Because 
�b � 1 and |β| ∼ O(1), it is clear from Eq. (64) that all the cI ’s are large positive numbers. 
Negative time delays can be avoided by requiring that sgnA0 = +1. This requirement already 
follows from null-energy condition, which sets A(u) > 0.

• Choice II, A0 = 0, B̄0 = ±1: Here we can follow the logical steps of the previous choice 
almost verbatim. The v-shifts relative to flat-space massless propagation are:

�vI ≡
+λ∫

−λ

du
[
�γ + dIB2(u)

]
≈ dIλ, (68)

where dI are the eigenvalues of the matrix D, which should be positive semi-definite in order 
that negative time delays be absent. It suffices to write down only leading-order terms of the dI ’s 
in the regime of interest (61). For small impact parameters, ε ≡ mb � 1, the eigenvalues reduce 
to the simple form:

d1 ≈ α
(

1 + α − 2β(�b)−2
)

ε−2 + (1 + α)2 ln2 ε, d2 ≈ d3 ≈ (1 + α) ln2 ε. (69)
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We therefore require: α
(
1 + α − 2β(�b)−2

) ≥ 0 and (1 + α) ≥ 0. Given the requirement (48)
from null-energy condition, it follows that α must be constrained as: α ≥ 0.

To summarize, requiring null-energy condition on the pp-wave background and the absence 
of negative time delays in high-energy scattering results in the following set of necessary and 
sufficient conditions on the dimensionless parameters α and β:

α ≥ 0, β ≤ 1
2 (1 + α) . (70)

This equation comprises one of our main results.

4. Unitarity & analyticity constraints

The scattering amplitudes of a low-energy effective field theory ought to satisfy certain in-
equalities in order for a standard local, unitary, analytic and Lorentz-invariant ultraviolet com-
pletion to exist [4]. Independent of the details of the ultraviolet physics, these conditions take a 
simple form for crossing-symmetric amplitudes in the forward limit. Known as positivity con-
straints, they hinge on the compliance of high-energy scattering amplitudes with the optical 
theorem, the Froissart bound [52,53], and the S-matrix analyticity properties. Positivity con-
straints may put rigorous bounds on the parameter space of various effective field theories: 
Einstein gravity with higher-curvature corrections [54], ghost-free massive gravity [55], and 
pseudo-linear massive gravity [27], for example.4

In this section, we will see that the positivity arguments [4] are ineffective in constraining 
our Einstein–Proca effective theory (1). For the sake of completeness, we will also investigate 
the consequences of the counter term (25), keeping the parameter κ arbitrary. We are interested 
in on-shell 4-point scattering amplitudes of the Proca field that are simultaneously forward and 
invariant under crossing in the t -channel. Formally, t -channel crossing symmetry is tantamount 
to the invariance under the particle-label swapping 1 ↔ 3 or 2 ↔ 4. For external Proca particles, 
this is ensured if the exchanged particles have the same polarization relative to their momenta. 
Then, the forward limit corresponds to the following identification of particles: 1 ↔ 3 and 2 ↔ 4.

The presence of dynamical gravity creates an obstacle since t -channel graviton exchange gives 
a singular contribution in the forward limit: t → 0 (s, t and u are the Mandelstam variables). As 
a result, the Froissart bound is violated rendering the positivity arguments invalid. In this case 
an infrared regulator μ comes to rescue, as already noted in [4,54,61]. The regulator—much 
smaller than any physical mass scale in the theory—is introduced by sending t → t − μ2 in the 
amplitude. This alleviates the t -singularity in the forward limit as the t -channel exchange now 
produces a large but finite contribution to the amplitude. Our forward amplitudes will therefore 
correspond to the following kinematic regime of interest:

� � √
s � √−t = μ � m. (71)

We follow the procedure outlined in [4,55], and assume a perturbative ultraviolet completion 
of our theory, which allows for an h̄-expansion and justifies the consideration of only tree-level 
diagrams. For technical details related to non-zero particle spin and massless t -channel exchange 
we refer the readers to [54,59]. We consider the 4-point scattering amplitudes of the process 

4 It is possible to generalize the requirements to an infinite number of positivity bounds at and away from the forward 
scattering limit [56,57], which too could constrain various effective field theories [28,58]. Constraints for particles with 
nonzero spin and general polarizations, albeit subtle because of nontrivial crossing relations, have also been derived [57,
59]. See also [60] for bounds beyond positivity.
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1 + 2 → 3 + 4 involving on-shell Proca fields of definite helicity: Mλ1λ2; λ3λ4(s, t), where the 
λn is the polarization of the n-th particle. We choose particles 1 and 2 as incoming, particles 
3 and 4 as outgoing, and linear polarization basis λn = 0, 1, 2, where 0 denote the longitudinal 
polarization, and 1 and 2 the transverse polarizations parallel and perpendicular to the scattering 
plane respectively. Therefore, the infrared-regulated forward5 crossing-symmetric amplitudes of 
definite helicity are:

Mij (s) =Mij ; ij

(
s, t → −μ2

)
, i, j = 0,1,2, (72)

where the particle identifications 1 ↔ 3 and 2 ↔ 4 have been made. Then, we consider the 
following quantity:

fij ≡ 1

2πi

∮
�

ds
Mij (s)

(s − s0)3 , (73)

where s0 is an arbitrary point within the real-line segment (0, 4m2) on the complex s-plane, and 
the small contour � encircles the pole at s = s0. From analytic dispersion relations [4], it turns 
out that the fij ’s can be computed at tree level solely within the effective theory [55,60], as the 
negative residue of the integrand at large s:

fij = −Res
s=∞

[ Mij (s)

(s − s0)3

]
EFT

. (74)

Given that the Froissart bound holds on account of unitarity and locality—thanks to the in-
frared regulator—one can deform the contour C to encircle the multi-particle branch cuts starting 
at s = 0 and s = 4m2 dropping the boundary contribution, which vanishes at infinity. The value 
thus obtained is related to the total cross-section by virtue of the optical theorem and crossing 
symmetry. Because the total cross-section is positive, one finds that the fij ’s must be strictly 
positive [4,55]:

fij > 0, i, j = 0,1,2. (75)

To calculate the quantities fij in our model from Eq. (74), we recourse to the Mathematica 
packages xAct‘xTensor’, FeynRules [62] and FeynCalc [63]. The results are independent of the 
arbitrary mass scale 

√
s0, and given by:

f00 = (mMP )−2
[
(m/μ)2 + α

]
, (76a)

f10 = (mMP )−2
[
(m/μ)2 + 1

2α − 1
4α2(1 − κ)

]
, (76b)

f20 = (mMP )−2
[
(m/μ)2 + 1

2α − 1
4α2(1 − κ) − β (m/�)2

]
, (76c)

f11 = (�MP )−2
[
(�/μ)2 + 1

2β2 (m/�)2 − β
]
, (76d)

f22 = (�MP )−2
[
(�/μ)2 + 1

2β2 (m/�)2 − 3β
]
, (76e)

f12 = (�MP )−2
[
(�/μ)2 + 1

2β2 (m/�)2 − β(2 − α)
]

= f21. (76f)

5 Note that the derivation of positivity bounds does not require t to be strictly zero [53,54].



378 T.A. Chowdhury et al. / Nuclear Physics B 936 (2018) 364–382
We see that the t -channel graviton exchange dominates all the crossing-symmetric forward 
amplitudes through large positive contributions of O((m/μ)2) and O((�/μ)2). Clearly, the pos-
itivity constraints (75) do not give rise to any useful bounds on the parameters α and β; their 
contributions are washed out by that of the t -channel graviton exchange, and there is no param-
eter regime where the latter is subdominant.

A couple of remarks are in order. First, one may instead take indefinite-helicity amplitudes 
into consideration. For such amplitudes as well, it is easy to see that the graviton-exchange con-
tributions render the positivity constraints ineffective. Second, while we have made a nontrivial 
assumption of a perturbative ultraviolet completion, it is well known that loop corrections in 
quantum gravity are typically infrared divergent [64]. One may wonder whether there could be 
cancellations among the singular contributions in the full amplitudes, to which the positivity 
bounds apply after all. While it is a daunting task to compute the full amplitudes, we have in-
vestigated the 1-loop contributions to the 4-point scattering amplitudes under consideration. It 
is not difficult to be convinced that the singular terms arising from such quantum corrections 
are suppressed by small numbers, (�/MP )2 or (m/MP )2 for example, when compared to their 
tree-level counterparts. So, we cannot conclude anything concrete about the effective field theory 
parameters.

5. Summary & conclusions

In this article we have studied the gravitational properties of a massive spin-1 field in the con-
text of a two-parameter family of Einstein–Proca Lagrangians, which (i) is at most quadratic in 
the Proca field, (ii) admits no higher-derivative terms in the equations of motion, (iii) incorporates 
all possible Proca-graviton-Proca cubic couplings in flat space, and (iv) allows for an ambiguity 
term that arises naturally from minimal coupling. We have estimated the model-(in)dependent 
upper bound on the ultraviolet cutoff of the effective field theory under consideration. The cutoff 
scale � depends on the Proca mass m, the Planck mass MP and the ambiguity parameter α.

Let us clarify some points regarding the various estimates (24), (30) and (32) of the cutoff 
scale in order that the results fit nicely with each other. As already noted, it is technically natural 
to have a small value of α. Naïvely, the scales (24) and (30) blow up in the limit α → 0. However, 
as soon as |α| becomes O((m/MP )2), the separation of the scales (24) and (30) from the Planck 
mass disappear. Therefore, it makes more sense to summarize our cutoff estimates as:

� ∼

⎧⎪⎨
⎪⎩

�3
3√|α| , O((m/MP )2) � |α| � O(1), without counter terms,
�2
4√|α| , O((m/MP )2) � |α| � O(1), with counter terms,

MP , |α| �O((m/MP )2).

(77)

We emphasize that the model-independent upper bound on the ultraviolet cutoff is MP . Of course 
in a given consistent Proca–Einstein theory the cutoff scale can actually be much lower than this, 
e.g., Abelian Higgs model coupled to gravity with the Higgs field integrated out, in which case 
it is the Higgs mass that defines the cutoff scale.

We have found pp-wave solutions of the Einstein–Proca model (1). When subject to null-
energy conditions, these background solutions give rise to nontrivial constraints (48) on the 
parameters α and β of the effective theory. We have additionally required that the Proca fluc-
tuations on such a geometry (in the probe and ultra-relativistic limits) do not experience negative 
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time delays upon crossing the pp-wave.6 This further constrains the (α, β) parameter plane to the 
region (70). Following from Eq. (47), a stronger bound on β would appear if we had required that 
null-energy condition continues to hold for distance scales smaller than the effective field theory 
can resolve, i.e., 1/�. This would lead us to the conclusion: β < 0, which coincides with the 
findings reported in [32]. However, as already noted by some authors [65,66] such extrapolations 
may be misleading.

As we have seen, the positivity constraints—derived from unitarity and analyticity of scat-
tering amplitudes—have been quite inadequate since dominant contributions from t -channel 
graviton exchange diagrams preclude any useful bounds on the effective field theory parame-
ters. Nevertheless, it has been instructive to carry out this analysis; it helps us better appreciate 
the power of the shock-wave analysis, which is particularly useful in constraining theories that 
involve massless particles. Surely, the two analyses are inequivalent, and sometimes they give 
complementary results [46,55]. The shock-wave analysis captures 2 → 2 high-energy scattering 
events, or more precisely, resums horizontal ladder diagrams in the deflectionless limit: t/s → 0, 
as noted in [5].

It would be natural to extend the analyses presented in this article to more general Einstein–
Proca theories [7–12], whose parameter space may thereby be constrained. Another interesting 
direction is to do similar studies in the presence of a (negative) cosmological constant, especially 
because of the availability of various holographic techniques that could constrain bulk gravity 
theories (see for example [5,67–72] and references therein for a partial list of work in this direc-
tion). We leave this as future work.
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Appendix A

Throughout the bulk of the article, we have omitted some cumbersome expressions and tech-
nical details for the sake of readability. The purpose of this appendix is to make room for those 
details. We begin with the Planck-suppressed graviton self interaction terms:

L(int)
EH = 2

MP

(
∂μhνρ∂μhρσ hσ

ν − 1
2∂μhρσ ∂νhρσ hμν

− hμνhρσ ∂μ∂νhρσ + hμρhνσ ∂μ∂νhρσ
)

− 2
MP

(
∂μhμρ∂νh

νσ hρσ + ∂μh′∂μhρσ hρσ + 1
2∂μ∂νh

′hμρhν
ρ − ∂μh′∂ρhρ

νh
μν

)
(A.1)

+ 1
2MP

h′ (∂μh′∂μh′ − ∂μhνρ∂μhνρ + 2hμν∂
μ∂νh′ + 2∂μhμρ∂νh

ν
ρ

) +O(h4),

where h′ ≡ h
μ
μ. Next, we spell out the expansion of the 

√−ggμν term:
√−ggμν = ημν − 2

MP

(
hμν − 1

2ημνh′)

6 It is easy to see that the violation of null-energy condition may result in negative time delays in high-energy scattering, 
i.e., superluminal propagation. This point has been duly noted already in [48–50].
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+ 4
M2

P

(
hμρhρ

ν − 1
2h′hμν − 1

4ημν
(
h2

αβ − 1
2h′ 2

))
+O(h3). (A.2)

We also need an expansion for the Proca covariant derivative; it is given by:

∇μBρ = ∂μBρ + 1
MP

(
ηαβ − 2

MP
hαβ + · · ·

)(
∂αhμρ − 2∂(μhρ)α

)
Bβ, (A.3)

where the ellipses stand for higher-order terms.
The 3 × 3 matrices CIJ and DIJ appearing in Eq. (63) will appear below. The matrix C is 

given by:

CIJ =
[

ln (�b) − 2β (�b)−2 (δI2 − δI3)
]
δIJ −

[
i(pb)−1 − 2β(q/p) (�b)−2

]
δI2δJ1,

(A.4)

where we have no sum over repeated indices. The matrix D takes the form:

DIJ = D(0)
IJ + β(�b)−2 D(1)

IJ + β2(�b)−4 D(2)
IJ , (A.5)

whose elements are specified below. With the short-hand notations: kν ≡ Kν(mb) = and ε ≡ mb, 
the non-zero O

(
β0

)
-components are given by:

D(0)
11 = (1 + α)2 k2

0 + α (1 + α)k2
1, D(0)

22 =D(0)
33 = (1 + α)k2

0,

D(0)
21 = α (1 + α) (q/p)

(
k2

0 + k2
1

)
+ 2i (1 + α) (m/p) [(1 + 2α)k0 + αk1/ε] k1,

(A.6)

while the non-zero O (β)-components read:

D(1)
11 = − 1

2α (εk0 + k1) k1 + ε2
[
k2

0 − k2
1 + 3

8α
(
k2

0 − k2
2

)]
,

D(1)
22 =4ε(1 + α)k0k1 + ε2

(
k2

0 − k2
1

)
,

D(1)
33 = − 4ε(1 + α)k0k1 − 4ε2

[(
α + 3

4

)
k2

0 +
(
α + 5

4

)
k2

1

]
,

D(1)
21 = − 1

2 (q/p)
[
αk2

1 + ε(9α + 8)k0k1 − 3
4ε2α

(
k2

0 − k2
2

)]

+ i(m/p)
[
−11α (k0 + k1/ε) k1 − 1

4

(
11αk2

0 + 8(1 + α)k2
1 − 3αk2

2

)]
,

(A.7)

and the non-zero O
(
β2

)
-components are:

D(2)
22 = −4ε2k2

1, D(2)
33 = 6ε2

[
k2

1 + 1
3εk0k1 − 1

4ε2
(
k2

0 − k2
2

)]
, D(2)

21 = 4(q/p)ε2k2
1 .

(A.8)

This marks the end of our short technical appendix.
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