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Section 1.  Illustrations of theoretical model with simulations 
In this section we illustrate the theory discussed in the Supplementary Note 1 section “Theoretical description of 

RNA velocity”, by plotting solutions to the time-dependent differential equations (1) and (2) under different 

parameter settings. Figure 1 below shows the solution of the rate equations (solid lines), the master equation 

(shaded) as well as individual realizations of the stochastic process described the master equation (dots). In each 

case, we show the behavior of a single gene, as our model does not account for gene interactions. 

We first illustrate the result of a step change in the transcription rate 𝛼, starting from zero and with abundance zero 

(Figure 1a). The expected values (given by the rate equations) of unspliced and spliced molecules rise rapidly and 

converge on the new equilibrium values, with unspliced rising before spliced. However, in any specific realization 

of this process, there will be stochastic variation around the expectation, given by the master equation (Figure 1a, 

shaded region) which gives the probability, at any timepoint, of observing n molecules of RNA. When the 

transcription rate returns to zero, the expected values of both spliced and unspliced mRNA molecules return to zero 

at an exponential rate.  

Viewing this same process as a phase portrait (Figure 1b), reveals how the shapes of unspliced and spliced mRNA 

expectations are related to the diagonal line representing 𝛾. A single realization of the process, with 500 cells 

sampled uniformly in time, shows how most cells (observations) appear close to the two steady-state points 

(corresponding to 𝛼 = 20 and 𝛼 = 0. Intermediate points are rarer, because the approach to the steady state in both 

cases is exponential. 

Next, examining the effect of 𝛼 (Figure 1c) shows that it sets the position of the steady state along the diagonal 

given by 𝛾. Thus, if expression levels are regulated by the transcription rate, rather than degradation, steady state 

equilibria are expected to line up along the diagonal where 𝛾 = &
'
 and 𝛼 = 𝑢. In contrast, changes to 𝛾 change the 

location of the steady state (Fig. 1d), but it remains true that 𝛾 = &
'
 and 𝛼 = 𝑢.  

More complex scenarios can also be accounted for by allowing 𝛼 to vary over time in more complex ways. For 

example, oscillatory gene expression can be described as a transcription rate 𝛼 that varies according to a 

trigonometric function, e.g. 𝛼 = 25(1 − cos(𝑡)), resulting in oscillating abundances of spliced and unspliced 

molecules (Figure 1e). In this case, there is no strict steady state, but 𝛾 can still be obtained as the centerpoint 

(attractor) of the oscillation. 
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Figure 1. Master equation and model predictions of different dynamics. a. A typical dynamics obtained by our 
model of transcription as in Fig 1a, here we compute the full probability distribution over the counts described by 
the master equation Ψ(s, u, t). b. A realization of the master equation and the expected value of the u-s relationship 
shown as a phase portrait. Dots show individual samples (n=500) from the master equation shown in (a), sampled 
uniformly in time. Jitter was added for clarity, since samples are strictly integers. c. The effect of different 
transcription rates (α) on the u-s dynamics. d. Dynamics corresponding to different degradation rates. e. Left, the 
solution of the rate equations for an oscillating transcription rate (e.g. like in a biological clock). Right, the phase 
portrait of the same solution with a realization of Ψ. 

Section 2.  The rationale behind the extreme quantile fit procedure 
To achieve more accurate estimation of gene-specific steady-state coefficient 𝛾, the gene-relative estimates use 

regression based on the cells found in the extreme quantiles of expression. Specifically, given a quantile value 𝛼, 

the quantile fit uses cells with 𝑖: 8'9
:
≥ 	𝛼= ∪	8'9

:
≤ 	1 − 𝛼=, where  𝑆 is the maximal observed expression magnitude 

of that gene in the dataset. Alternatively, diagonal quantiles are calculated based on a normalized sum of spliced 

and unspliced expression magnitude (𝑥B = 𝑠B/𝑆 + 𝑢B/𝑈), where 𝑈 is the maximal unspliced expression. The 

properties of the quantile fit under several common scenarios are illustrated in Figure 2. In cases when a full cycle 

of a gene is observed, the regular regression fit and the extreme quantile fit give similar results. The quantile fit 

results in more exact estimates when only up- or down-regulation of a gene is observed. In more extreme cases, 

where the gene is not observed in steady state, the quantile estimates will result in more conservative velocity 

estimates. For instance, in Figure 2c, the quantile fit will report gene as being downregulated, however at lower 

magnitude relative to the true slope. In contrast, a regular regression fit will show gene as being up-regulated in 

some regions. The under-estimation of velocity in such partial-observation cases can be corrected using gene-

structure model (Supp. Figure 4).  
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To account for contribution of extraneous transcripts, the fitting model allows for an offset. Several options are 

available for determining offsets. In the case of regular regression fit, the offset can be determined as a mean of a 

lower quantile. In case of a quantile fit, the regression model is fit with an intercept, which is then used as gene 

offset. We note that in steady state situations (Figure 2e), regression fits 

can produce unstable angles. The quantile fit will result in a positive 

gamma slope. However, such genes are typically filtered out, because of 

either low values of gamma or because they fail to meet minimum 

requirements for correlation between unspliced and spliced abundances 

(Pearson r>0.05 by default). Even in the cases when such steady state 

genes are not filtered out, we expect the residuals and the resulting 

velocity estimates to be randomly distributed among cells, and thus have 

little impact on the low-dimensional projections. 

The alternative procedure for fitting offsets relies on “spanning reads” – 

reads that cover both exonic and intronic sequence of the gene, and have higher likelihood of originating from the 

underlying gene as opposed to some extraneous transcript. Such reads are sufficiently abundant in the SMART-

seq2 data to allow fitting offset values by contrasting spanning and intronic reads (Figure 4). 

Figure 3. Annotated t-SNE embedding 
of the chromaffin E12.5 dataset. 
(n=385 cells) 
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Figure 4. Fitting offset of intronic read counts using spanning reads on the chromaffin E12.5 dataset. Fitting 
of non-specific unspliced count offset using spanning read counts is shown for five example genes (rows). Gene 
name is given in the lower right corner of each plot. For each gene (row), the first column (a) shows expression 
(spliced count abundance) of the gene using t-SNE layout (see Figure 3). The second panel (b) shows a scatter plot 
illustrating the observed dependence between the spanning (x axis) and intron-only (y axis) read counts. The dashed 
line shows the regression fit that is used to determine the y axis intercept (intronic read count offset). The third 
panel (c) shows relationship between exonic and intronic (intron-only) counts. The dashed black line shows a 
gamma fit using the intronic count intercept determined from panel b, and grey dashed line uses zero intercept. The 
fourth column (d) shows unspliced count residuals (basis of the subsequent velocity estimates) calculated using 
spanning-read based offset from b. The last column (e) shows residuals calculated using default zero-offset. Genes 
with high offset values were chosen as examples. 
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Section 3.  The range of expression regimes acceptable for the proposed model 
To characterize the theoretical range of gene expression regimes and parameter settings under which the 

implemented velocity estimation procedure can function, we simulated spliced/unspliced RNA dynamics using a 

wide range of time-dependent parameter settings and compared the velocyto estimates with the ground truth. 

Importantly, to characterize the stability of the velocyto estimates beyond the assumed simple models of gene 

expression behavior, we have abolished the assumption of the constant rates (see Theory section in Supplementary 

Note 1), simulating data for cases where rates change (smoothly) as a function of time. Such parametrization yields 

more complex situations that do not allow for perfect fits by the simplified constant-rate model implemented in the 

velocyto. In other words, we have tested how deviations from the basic assumptions break the velocyto estimation 

procedure.  

In testing the performance of velocyto in recovering correct RNA velocity estimates we covered a wide parameter 

space. Specifically, we devised a minimal set of nine parameters (Figure 5a) describing dynamic gene behavior. To 

generate simulations, the values of these parameters were drawn from the prior distributions (Figure 5b) under 

general assumption of parameter independence, with only exception being scale and variance parameters that were 

considered to be correlated. The prior distributions were chosen to yield realistic physical scenarios, however as we 

see from the results some unrealistic border cases were drawn as well. The simulated datasets, composed of 7000 

independently sampled genes were processed by the velocyto pipeline in the same way as real datasets, including 

size normalization, dimensionality reduction and cell kNN pooling (feature selection was not performed).  

The analysis allowed the identification of the regions of the parameter space where the model is more error prone 

and others where it performs particularly well (Figure 5). First, we confirmed that scenarios where we observe both 

up- and down-regulation phases of the gene (going through the steady state) are particularly informative for 

accurate estimation of velocity direction and magnitude. This is evident from the performance plot marginalized for 

the pairs of parameters “start-width” and “start-ramp up”: if “ramp up” and “width” are small, then complete up-

regulation and down-regulation arcs end up being observed and γ fit performs well. In an opposite scenario, where 

α starts to raise at time 0 with a slow ramp up, and therefore the system is observed in a constantly accelerating 

state, it is difficult to estimate magnitude of velocity correctly. Another notable scenario is where we observe only 

the very beginning of an upregulation process (i.e. the “start” parameter is very large). In such scenario, the 

estimation will be overfit to the initial observations.  
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Figure 5. Range of acceptable gene expression model parameters for the velocyto pipeline a. Illustration of the 
simulation framework. On the left, a graphical representation of the 9 parameters used to simulate a wide range of 
possible dynamics. On the right, the resulting expression dynamic generated by the parameter profiles shown on the 
left. (n=1500) b. Histograms of the parameters that were used to simulate data of 7000 genes. c. Randomly selected 
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examples of dynamics generated by the simulation. The standard velocyto analysis pipeline was run on the 
simulated data and the performance of the algorithm on each simulated gene was ranked. d. Randomly drawn 
examples of high performance (> 80th percentile), typical performance (from 20th to 80th percentile) and low 
performance (lower than 20th percentile) as determined by correlation coefficient (shown on the left) and fraction 
of concordant signs (on the right). Plots on the left show spliced and unspliced dynamics, colored by ground truth 
velocity, on the right the parameters profiles that generate the dynamics. e. Systematic performance evaluation on 
the whole parameter space. Lower triangle showing the parameter space explored. Diagonal is showing the bias 
marginalized for individual parameters. Upper triangle is showing the bias for different parameter pairs. The red 
and green symbols mark the values of parameters that generated by two high and low performance genes 
respectively (the first two of the random selection as shown in (d)). 

The simulations showed sensitivity of performance to the magnitude and variance of γ (modeled to be correlated to 

avoid unrealistic situations). For high γ, the curvature of the phase portrait with respect of the unspliced magnitude 

is reduced, providing little dynamic range for the velocity residuals and making such estimates sensitive to 

stochastic fluctuations. This corresponds to border-case scenarios where the spliced transcripts are degraded too 

rapidly to observe their accumulation. This behavior is worsened by increase of the scale of β and dampened by the 

increase of α.  

Simulation details: 

For each realization of the nine parameters, the system of differential equations was solved by numerical integration 

using the function scipy.integrate.odeint a python interface to LSODE (Livermore Solver for Ordinary Differential 

equation). Given the analytical results on the master equation provided by the theory (see Supplementary Note 1, 

theory section), we could draw a realization of the dynamical system by simply drawing a sample from a Poisson 

distribution with expectation equal to the solution of differential equations. In this way we simulated the spliced 

and unpliced expression of 3000 cells and 7000 genes. This data was used as input of a standard velocyto analysis 

pipeline. After velocity estimation we used two different scores to evaluate the performance of velocyto compared 

to the ground truth velocity: (1) the correlation coefficient of the estimated velocity and ground truth velocity and 

(2) the fraction of concordant signs: 

𝐽𝑎𝑐J =
∑ 𝑓(𝑣NOPQQ,J, 𝑣OPQQ,J)R
OPQQST

𝑁  

𝑤ℎ𝑒𝑟𝑒					𝑓(𝑥, 𝑦) = [0					𝑠𝑔𝑛
(𝑥) ≠ 𝑠𝑔𝑛(𝑦)	

1					𝑠𝑔𝑛(𝑥) = 	𝑠𝑔𝑛(𝑦) 

All the genes were ranked using these two scores and examples were randomly chosen from the top 20% and 

bottom 20% scoring genes. To evaluate the effect of different parameters on the estimation performance we defined 

two set of genes on the basis of the velocity estimation matching with the ground truth, those were defined as the 

set of genes whose both scores ranked above the 75th (“good performing” genes) or below the 25th percentile and 

bottom 25th percentile (“poorly performing” genes). To generate the plots shown in Figure 5, the density in 
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parameter space of both good performing and poorly performing genes was determined by kernel density 

estimation (scikit-learn implementation) and the log-ratio of the densities of the two groups was reported as a 

measure of the increase tendency of estimating the velocity poorly. 

Section 4.  Gene-specific velocity estimation failures and mechanisms 
As illustrated by Supp. Figure 8, while velocity estimates for most genes show positive correlation with the 

empirically-estimated gene expression derivatives, the velocity estimation procedure fails for a smaller subset of 

genes. While some of this may be attributed to complex dynamics regulating nascent transcription, splicing, and 

degradation (as in Figure 4d of the main manuscript), we can identify specific classes of genes for which the 

velocity estimation ends up being inaccurate.  

Some genes show strikingly different gamma coefficients within different populations (see also Supp. Figure 3). 

Most such variation is observed between very different tissues, however, such examples can be found even within 

closely related subpopulatoins, such as the ones captured in the chromaffin differentiation or hippocampus 

development datasets. Some such occurrences are tied to shifts in expression of alternative splice isoforms between 

the measured subpopulations (Figure 6a-f, Figure 7a-d), which would directly impact the ratio of unspliced and 

spliced molecules. In other cases, however, no obvious alternative splicing difference can be detected (Figure 7g,h), 

suggesting that other mechanisms, such as subpopulation-specific control of the degradation rates may be in play.  

The unspliced/spliced ratios can also be skewed by presence of extraneous transcripts, such as non-coding RNAs 

that can be found in many intronic regions (Figure 6g,h). If the expression of such extraneous transcripts remains 

constant or is randomized with respect to the underlying biological process, then their contribution can often be 

controlled for by the offset parameter. However, if the extraneous transcripts are also differentially regulated 

throughout the measured biological process, that can lead to erroneous velocity estimates.  In many cases, presence 

of a high-expressing extraneous transcript will result in an atypical phase portrait and a low overall correlation 

between unspliced and spliced signals. Such low-correlated genes are filtered out by the velocyto pipeline by 

default. 

A different class of errors is associated with velocity estimates of genes observed far away from their steady state. 

These are typically genes that are either induced very late in the observed trajectories, and thus are seen only with 

increased unspliced/spliced ratios, or genes that are already being actively downregulated in the earliest parts of the 

observed trajectories, and are hence seen with low or absent unspliced abundance. Examples of such genes can be 

found in most datasets (Figure 6i-l, Figure 7i). For such difficult cases, we show that equilibrium slopes gamma can 

be estimated based on gene structure parameters (Supp. Figure 4). 
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Figure 6. Examples of genes representing different modes of velocity estimation errors. Taken from the 
chromaffin differentiation E12.5 dataset, for each example gene, four panels show patterns of spliced (a) and 
unspliced (b) expression, phase portrait with gamma fit (c), and the residual (d). Browser screenshot (e) showing 
read intensity profiles for two subpopulations (blue – SCPs, purple – sympathoblasts) are shown for some genes. 
Ece2 and Phactr1 (f) examples show impact of alternative splicing, which results in very different gamma 
coefficients for different subpopulations of cells, violating the assumptions of the model. (g,h) show examples of 
extraneous transcripts (highlighted with red blocks on the browser screenshots) that increase offset and distort the 
phase portrait. Note that such genes would be normally filtered out because of the poor u vs. s correlation. (i,j) 
show examples of late genes, observed far away from the steady state point. (k,l) show examples of early genes that 
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are also observed only far from the steady state. (m,n) show complex examples that do not fall into well-defined 
failure categories.  

 

 

Figure 7. Examples of different types of velocity estimation errors on the hippocampal dataset. (a,b) Example 
of a gene exhibiting different gamma slopes within different populations, driven by alternative 3’UTR usage. (c,d) 
A gene exhibiting gradual shift of the dominant 3’UTR during development, which also manifests itself as two 
distinct gamma slopes on the phase portrait. (e,f) Genes showing mixed or opposing phase portrait curvatures. (g,h) 
Examples of multiple slope trends in the phase portrait, that do not appear to be explained by an obvious alterative 
splicing pattern. (i) An example of a late-expressing gene, observed far from the steady state. (j) Example of a gene 
with uncorrelated spliced-unspliced pattern. Such genes are normally filtered out by the velocyto pipeline. 

Section 5.  Illustrations of different velocity fits and visualizations on chromaffin data 
Various corrections can be considered when estimating multi-dimensional velocity vectors, and visualizing them on 

two-dimensional plots. In this section we use chromaffin differentiation E12.5 dataset to illustrate the results of 

different such procedures.  Visualization of velocity estimates in PCA space are shown in Figure 8, including 

estimates based on individual cells (without pooling of information from neighboring cells), with k-nearest gene 

clustering, and with different ways of estimating gene-specific offsets. The velocity pattern is generally robust for 

all these estimates.   
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Figure 8. PCA visualization of 
chromaffin E12.5 velocities. a-d. 
Projections on the first five 
principal components are shown. 
Please refer to Figure 3 for the 
annotation of the subpopulations. 
The velocity was estimated using 
gene-relative fit for individual cells 
(i.e. without cell or gene pooling). 
Overall, PC1 captures the main 
chromaffin differentiation axis, PC2 
captures separation between 
sympathoblasts and other cell types, 
PC3 separates bridge-specific (red) 
cells from others, PC4 and PC5 
together capture cell cycle signature 
of the cycling bridge cells (yellow) 
- as seen in the last (PC4 vs. PC5) 
panel. e. Gene-relative velocity 
estimates are shown with k=5 cell 
kNN read pooling. f. Velocities 
estimated pooling reads across 
neighboring cells (kcells=5) and 
well-correlated genes (kgenes=20). 
g. Velocity estimates, with γ slope 
and offset fit using only cells within 
the top/bottom 2% expression 
quantile of each gene. As such 
approach works robustly on 
smoothed data, cell kNN pooling 
(kcells=5) was used in calculating 
the estimates. h. To emphasize cell 
cycle trends, velocity estimates 
from the previous panel were subset 
to include only cell cycle-related. 
The genes were selected using GO 
annotations. The resulting observed 
and extrapolated states were 
visualized by projecting on the first 
two PCs. Sympathoblast cells, 
which also undergo cell cycle 
within the dataset, were excluded 
from this visualization. 

While PCA space allows for straightforward projection of the velocity vectors, PCA embeddings are generally not 

effective for visualizing samples with high complexity of subpopulations. Joint embedding of current and 

extrapolated cell states using t-SNE can be effective for some datasets (see Figure 9), however in some cases can be 
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sensitive to gene-specific errors in velocity estimation. For that reason, we have devised a neighborhood-based 

projection procedure that can be used to visualize velocity on pre-defined embeddings (see Figure 2h,i of the main 

manuscript, as well as Section 11 below). 

 

Figure 9. Joint t-SNE visualization of observed and extrapolated chromaffin E12.5 cells.  a. The chromaffin 
E12.5 velocities estimated using gene-relative fit, with k=5 cell pooling are shown by joint embedding of observed 
(circles) and extrapolated cells (end of arrows) using t-SNE.  b. Analogous joint t-SNE embedding for the 
chromaffin E12.5 velocities estimated using structure-based model. 

Section 6. Extrapolation distance and interpretation of velocity magnitude 
The RNA velocity estimates the first time derivative of the expression state, and a linear extrapolation is used to 

estimate the state of the cell short period of time into the future. In general, the time at which such extrapolation 

will be effective depends on the curvature of the manifold that the underlying biological process is following. For 

instance, in the circadian cycle examples shown in Figure 1h of the main manuscript, it is noticeable that the 

extrapolated states lie on tangent lines and lag behind a circular shape of the circadian trajectory. While the 

effective extrapolation time will vary depending on the biological process, we used a simple chromaffin linear 

differentiation trajectory to estimate the extrapolation time for that particular case (Figure 10). To do so, we 

identified the pseudotime difference between each cell and the cell most closely resembling the extrapolated cell. 

Scaling this distribution by the experimentally-determined 14 hour total chromaffin differentiation time, we 

obtained the distribution shown in the Figure 2g of the main manuscript.  

a b
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Figure 10. Effective extrapolation 
distance for chromaffin 
differentiation. a. PCA projection of 
E12.5 dataset showing, as a reference, 
major subpopulations in the chromaffin 
differentiation (same as in Figure 2a of 
the main manuscript). b. Optimal 
extrapolation distance along the 
chromaffin differentiation trajectory. 
The plots show correlation between the 
velocity vector and cell expression 
difference vector (y axis) for the cells 
ordered by chromaffin differentiation 
pseudotime (x axis). Correlation profiles 
for three example cells are shown, with 
pseudotime of each cell (t0) and 
pseudotime of the maximal correlation 
(t*) marked by the black and red dashed 
lines, respectively. c. The optimal 
extrapolation distances (from t0 to t*, x 
axis) are shown for all of the cells along 
the chromaffin differentiation 

pseudotime (y axis). The distribution of these distances is shown in the Figure 2g of the main manuscript. The cells 
at the extreme of the pseudotime (beyond the 10% thresholds marked by vertical dashed lines on the current plot) 
were excluded, as estimation of pseudotime within such extremes is not expected to be robust. For the Figure 2g of 
the main manuscript, the pseudotime time differences were translated into real hours, based on the 14 hour total 
chromaffin differentiation time (see Figure 12). Even though we have trimmed 10% populations on each side of the 
measured chromaffin time course, we have not adjusted the 14 hour total differentiation time accordingly, as the 
trimmed populations likely represent static subpopulations that would not be captured in the 14 hour window. 
Applying such adjustment, would reduce the estimated mean effective timescale to 1.7 hours. 

To confirm that our approach was able to capture differences in the magnitude of transcription velocity, we 

examined another mouse chromaffin differentiation dataset, taken at a later developmental time point (E13.5). The 

resulting velocities recapitulate chromaffin differentiation in a way similar to the earlier time point (Figure 11), 

however showing lower apparent velocity magnitude for the chromaffin bridge (red and yellow clusters).  

Direct comparison of unspliced / spliced abundances between different subpopulations confirmed statistically 

significant decrease in predicted velocity in E13.5 time point compared to E12.5 (Figure 12c). To confirm this, we 

quantified the relative abundance of Sox10+ Schwann cell precursors, Htr3a-GFP+ bridge cells, and Th+ 

chromaffin cells in tissue sections. Indeed, we found that the developmental dynamics of chromaffin cell 

production slowed down at E13.5 as compared to E12.5 based on the ratio of progenitors and resulting TH+ cells, 

consistent with lower predicted velocity (Figure 12). 
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Mouse lines 

For all experiments, the day the plug was detected was considered as E0.5. All animal work was permitted by the 

Ethical Committee on Animal Experiments (Stockholm North committee) and conducted according to The Swedish 

Animal Agency’s Provisions and Guidelines for Animal Experimentation recommendations. Htr3aEGFP animals 

were received from MMRRC and provided by J. Hjerling-Leffler laboratory (Karolinska Institutet, Sweden) 

(https://www.mmrrc.org/catalog/sds.php?mmrrc_id=273). 

 

Figure 11. PCA visualization of chromaffin E13.5 velocities using estimated using gene-relative model. PCA 
projections are used to show E13.5 chromaffin dataset velocities (n=362 cells), as estimated by the gene-relative 
model with k=5 cell kNN pooling. Projections onto the first five PCs are shown. The cell clusters are colored using 
the same color scheme as for E12.5 dataset (see Figure 2a of the main manuscript). 
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Figure 12. Analysis of developmental dynamics in early adrenal medulla. a. Immunofluorescence of the 
developing adrenal medulla during embryonic stages E11.5 to E13.5. During this period of development, there is a 
continuous differentiation of TH+ chromaffin cells from intermediate Htr3a-EGFP+ bridge cells that is in turn 
formed from the only massively proliferating Sox10+ SCP progenitors. It is possible to observe the dynamics of 
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differentiation at different developmental days by tracking the numbers of Sox10+ progenitors, bridge and 
differentiated chromaffin cells.  The panels on the left show immunohistochemistry analysis of SOX10, Htr3a-
EGFP and TH at different developmental stages of adrenal medulla. In all three stages, a minimum of N=3 embryos 
were analysed, from two independent litters (N=3 for E11.5, N= 5 for E12.5 and N=6 for E13.5). The graphs of the 
right show how the ratios of progenitors, intermediate cells and differentiated cells are changing over time, in each 
case as mean±SEM. The graph shows the transition from the first “wave” of SCP progenitors to the first population 
of differentiated chromaffin cells (first detected at E12.5), as well as that of the second “wave” (generated from 
SCPs from E12.5 and detected at E13.5) as depicted by the two tracers in the plot shown in two hues of pink. Note 
that at E13.5 the pool of bridge cells decreases as compared to the pool of bridge cells at to E12.5, whereas Sox10+ 
progenitors keep increasing their numbers from E12.5 to E13.5. This supports the decreased transition of SCP 
progenitors into bridge state between E12.5 and E13.5 as compared to the same transition between E11.5 to E12.5 
especially taking into account that the speed of accumulation of mature TH+ cells changes only slightly.  b. 
Proportion of SOX10+ progenitors over generated TH+ chromaffin cells per next developmental stage (TH+ cells 
accumulated at the previous developmental stages were subtracted). Note that bigger numbers of Sox10+ 
progenitors generate proportionally less TH+ chromaffin cells at E13.5 as compared to E12.5. Data were collected 
from N=3 for E11.5 embryos, N=5 for E12.5 and N=6 for E13.5, and represented as mean±SEM (E12.5: 
0.3103±0.0455, E13.5: 0.4664±0.0138). Statistical significance was calculated using a two-tailed unpaired t-test 
with 95% confidence level. c. The barplots compare the ratio of total unspliced and spliced mRNA molecules 
between E12.5 (solid bars) and E13.5 (shaded bars) time points. The bars and whiskers show mean±SEM. 
Statistically significant (p<10-5, two-sided t test) decrease in the unspliced/spliced molecule count ratio is observed 
for the cycling subpopulation (yellow) of the chromaffin bridge at E13.5, indicating lower cell expression velocity. 
d. Measurements of EdU incorporation and retaining in various populations of adrenal medulla 14 and 24 hours 
after the single pulse. The analysis stage is E13.5. Data were collected from N=5 E13.5 embryos which received 
EdU 14 hrs prior to collection, and N=5 for E13.5 which received EdU 14 hrs prior to collection, and represented as 
mean±SEM (E13.5 - 14 hrs EdU: SOX10+ cells=24.580±0.989, bridge cells=26.060±2.449, early TH+ 
cells=3.183±0.460, late TH+ cells=5.305±0.557, E13.5 - 24 hrs EdU: SOX10+ cells=10.370±1.980, bridge 
cells=24.860±4.541, early TH+ cells=17.640±3.145, late TH+ cells=12.160±2.630). Note that the very first TH+ 
cells that retain both weak GFP and EdU (immediate progeny of Htr3a-EGFP+ bridge cells) are identified in the 
tissue 14 hours after EdU injection, which suggests the minimal time of the trajectory from Sox10+ proliferative 
SCPs to differentiated TH+ chromaffin cells. Yellow arrowheads in immunohistochemistry panel point at EGFP-
retaining TH+ cells. e. Schematic explanation of differentiation progression in chromaffin cell lineage. Note that 
Sox10+ SCPs proliferate strongly. At the same time, very few independently dividing cells were detected in more 
mature GFP-/TH+ population of chromaffin cells 4 hours after EdU pulse (data not shown). 

EdU incorporation and analysis 

14 hrs or 24 hrs prior to embryo collection, pregnant females received an intraperitoneal injection of  EdU (50 µg/g 

of body weight). EdU was visualized using the Click-iT EdU Alexa Fluor 647 Imaging Kit (Life Technologies) 

according to manufacturer’s instructions. 

Immunohistochemistry 

Immunohistochemistry was performed as previously described22. Briefly, embryos were collected and fixed in 4% 

paraformaldehyde in PBS (pH 7.4) at 4°C for 5 hours. Samples were washed in PBS at 4°C for one hour and 

cryoprotected by incubating at 4°C overnight in 30% sucrose in PBS. Tissue samples were subsequently embedded 

in OCT and frozen at -20°C.  Tissue samples were sectioned at 14 µm and frozen at -20°C after drying at RT for at 

least one hour. Antigen retrieval was performed by immersing the sections in 1x Target Retrieval Solution (Dako, 
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S1699) in water for 20 min, pre-heated at 80°C. Sections were washed three times in PBS containing 0.1% Tween-

20 (PBSt), incubated at 4°C overnight with primary antibodies diluted in PBSt and coverslipped with parafilm. 

Finally, sections were washed in PBSt and incubated with secondary antibodies diluted in PBSt at RT for one hour, 

washed again three times in PBSt and mounted using Fluorescent mounting medium (Dako, #S3023).  

 

Primary antibodies 

Goat anti-GFP (1:500, Abcam, #ab6662), mouse anti-Neurofilaments  (1:100, clone 2H3, DSHB),  goat anti-

SOX10 (1:500, Santa-Cruz, #sc-17342), mouse anti-SOX10 (1:500, Santa-Cruz, #sc-374170), rabbit anti-TH 

(1:1000, Pel-Freez Biologicals, #P40101-150). 

DAPI (Thermo Fisher Scientific, 1:10,000, #D1306) was diluted in PBS and applied on sections for 20 min at 20–

25 °C, after immunohistochemistry. 

For detection of the primary antibodies, secondary antibodies raised in donkey and conjugated with 

Alexa-488, -555 and -647 fluorophores were used (1:1000, Molecular Probes, ThermoFisher Scientific).  

Microscopy 

Images were acquired using LSM 710 and LSM 780 Zeiss confocal microscopes equipped with 20x, 40x and 63x 

objectives. Images were acquired in the .lsm format and processed with ImageJ or IMARIS (8.0).  

 

Section 7.  Visualizing cell diffusion trajectories over longer time scales 
To extrapolate the movement of the cell over longer periods of time, one can assume that the underlying biological 

process is ergodic – that is all of its properties and intermediate transition states can be observed given that 

sufficiently large number of cells has been measured. One such extrapolation approach is to approximate the shape 

of the expression manifold using k nearest neighbor graphs, and then track velocity-biased diffusion of cells within 

this graph. In a discrete setting this can be done as a simulation of a Markov process with transition probabilities 

biased by the estimated velocity vectors for each cell (Figure 13). 

Modeling of cell trajectories was performed based on a Euclidean transition probability matrix, as it provides better 

control over distant transitions by allowing to explicitly describe the drop off in the transition probability with the 

increasing expression distance.  

𝑷Ba = 𝐾cd𝒔Nf,B , 𝒔Ng,ah	 

where 𝒔g,a is the (size-normalized) observed spliced expression state of a cell j , and 𝒔f,B is the extrapolated state of 
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the cell i at a time t. 𝒔N designates a projection of vector 𝒔 onto the first 30 principal components. 𝜎 = 2.5 was used. 

The background transition probability capturing the observed cell similarities was calculated as: 

𝑩Ba = 𝐾cd𝒔Ng,B , 𝒔Ng,ah 

Transition probabilities between cells were restricted to 𝑘 = 40 nearest neighbors by setting other values to 0. To 

correct for local cell density, the rows of each matrix was multiplied by the 𝑑𝑖𝑎𝑔(𝑩o). The matrices were row-

normalized to unity. The probability of a cell i at a discrete 

time t was estimated as 𝑷f. Most likely position of each cell 

after 𝑡p = 500 were estimated as the maximum likelihood 

positions. A trajectory 𝑝B for cell i was determined as a path 

maximizing the total log likelihood:  

𝑎𝑟𝑔𝑚𝑎𝑥s9 ∑ 𝑙𝑜𝑔d𝑷fB,s9(f)h
fv
fSg   

where 𝑝B(𝑡) is the predicted trajectory position of the cell i at 

a time t . To determine prevalent trajectories within a 

population, individual trajectories 𝑝B were clustered using 

manhattan distance measuring the difference in the set of cells 

covered by each path using k-means clustering. 10 clusters 

were used. The cluster medoids were visualized using spline 

smoothing. 

 

Section 8.  Uncertainty of velocity projections with respect to the exact gene and cell set 
To evaluate to what extent the velocity estimates are driven by specific genes or specific cells, we have performed 

velocity estimation under bootstrap sampling of cells (or genes). Performing multiple rounds of such bootstrapping 

we assessed variability of the resulting projections (under different neighborhood size parameters, see Section 11 

for further discussion of that parameter). Overall, we find that velocity directions are stable, showing very low 

sensitivity to the exact set of cells and genes (Figure 14).  

  

tSNE2

tSNE1

Figure 13. Predicted cellular trajectories for 
chromaffin E12.5 dataset. Cell diffusion was 
modeled by a Markov process with transition 
probabilities determined based on the velocity 
estimates. Trajectories were simulated for each cell 
and clustered into 10 clusters. The centroid 
trajectories of each cluster are shown, using spline 
smoothing. 
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Figure 14. Sensitivity of velocity estimates to the exact gene and cell set. a. Examples of the projected velocity 
arrow directions for multiple cell bootstrapping rounds are shown for the three example cells from the hippocampal 
dataset (upper, middle and bottom set of panels).  The effect of the neighborhood size visualization parameter (n) is 
also shown (left: n=200, middle: n=1000, right: n=5000). b. Distribution of standard deviations of cell arrow angles 
for 100 random cells (x-axis is shows angle in radians). Standard deviation of the projected velocity arrow angle is 
estimated based on cell bootstrap ensemble of arrows. The distributions are shown for three values of the 
neighborhood size parameter (left: n=200, middle: n=1000, right: n=5000). c. Examples of velocity arrow 
directions obtained after gene bootstrapping. d. Distribution of standard deviations of velocity arrow angles for 100 
cells of gene bootstrap-based arrow ensembles (orange). Standard deviations of random (binomial) velocity 
estimates are shown for comparison (grey). e-h. Analogous panels showing example velocity projection uncertainty 
and dataset-wide velocity arrow angle variance under random cell (e,g) and gene (f,h) bootstrapping results are 
shown for the chromaffin E12.5 dataset. 

 

Section 9.  Estimates of velocity on random data 
To assess the biases that may be introduced by the velocity estimation and visualization procedures, we examined 

the velocities generated under different null background distributions, where we do not expect to see pronounced 

velocity. Randomization of the data was performed using three different schemes. A naïve scheme where the 

residuals from the gamma fit where randomized among samples, in particular the values of 𝛥𝑠 = 𝑣𝑡 were permuted 

for each gene independently and sign was randomly flipped, velocity projection was then calculated as usual. A 

binomial-based randomization first modeled the expected expression noise (expression variance v) as a function of 

mean expression magnitude of the gene using log	(𝑣)~log	(𝑠). The expected unspliced intensity 𝜇O,J for each gene 

g in each cell c was sampled as:  

𝜇O,J~𝑠O,J ∗ 𝑁d0, 𝑣Jh ∗ 𝜉 ∗ 𝛾J 

𝛾J~exp	[𝑁(0,0.5)] 

where 𝜉 = 0.2 (a ratio of random noise variance to the dataset-wide gene variance), and 𝛾J is the randomly sampled 

equilibrium slope for a given gene g. After that, the observed unspliced counts for each gene (𝑢O,J) were sampled 

using binomial distribution with the number of trials equal to empirically observed size of a cell, and probability 

being equal to 𝜇O,J. 

The binomial-based randomization yielded low velocity field in two small patches of the embedding – a residual 

effect likely driven by size normalization and t-SNE projection procedures. We note that such residual signal is 

unstable under gene bootstrap sampling (Figure 14d,h). To probe to which extent these projected velocity directions 

corresponded to the high dimensional velocity estimates, we scaled the arrow by a trimmed cosine projection of the 

high-dimensional velocity vector onto the expected expression shift, as calculated from the transition probabilities.  
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Figure 15. Velocity estimates for randomized data for the mouse hippocampus dataset. a-c. Velocity field and 
phase portraits in the dentate gyrus dataset, along with phase portraits of sample genes (c). d-f The results of a 
naïve randomization procedure where residuals of the gamma fit were reassigned to the cells randomly. g-i The 
generation of simulated unspliced molecule counts using a bionomial model that assumes no velocity information 
(only noise) is contained in the unspliced counts. The velocity field on the right columns (b, e and h) shows 
velocities after a rescaling that takes in consideration how well the represented velocity arrow summarizes the high 
dimensional velocity (see details above).  
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Specifically, we calculated a scaling factor h as follows: 

ℎ =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0			𝑖𝑓	

𝒗𝒗�
‖𝒗�‖ < 0

1	𝑖𝑓	
𝒗𝒗�
‖𝒗�‖ > 1

𝒗𝒗�
‖𝒗�‖ 		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑤ℎ𝑒𝑟𝑒 

𝒗� = 𝑃𝒔− 𝑈𝒔								𝑃Ba = 8𝑝(𝑖 → 𝑗)	𝑖𝑓	𝑗	 ∈ 𝑘𝑁𝑁(𝑖)
0											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

						𝑈Ba = �	
1
𝑘 	𝑖𝑓	𝑗	 ∈ 𝑘𝑁𝑁(𝑖)
0								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

After this “velocity scaling” correction the randomized samples did not show any noticeable velocities, indicating 

that they were driven by correlation of low-magnitude components. At the same time, applying the same scaling 

strategy to the real data did not have a noticeable impact (Figure 15). 

 

Figure 16. Velocity estimates for randomized data for the chromaffin E12.5 dataset. The left panel shows grid 
view of velocities predicted for the real chromaffin E12.5 dataset. The subsequent two panels show grid 
visualization of velocities for binomial random data, without cell kNN smoothing (k=1), and with kNN smoothing 
(k=5). 

 

Section 10.  Sensitivity to estimation parameters 
To examine robustness of the velocity estimates to the variations in gene filtering and other parameters, we have 

evaluated variation in the direction and magnitude of the projected velocity vector field under different parameter 

variations on the hippocampus dataset (Figure 17). 
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Sensitivity analysis was performed varying one parameter at a time for the set of parameters shown in the figure 

(Figure 16). Change in the velocity vector filed (as computed on a grid) were summarized in two scores reported 

taking into account the change in direction and magnitude respectively. The scores were computed as: 

𝑠𝑐𝑜𝑟𝑒1 = 	𝑣𝑎𝑟(𝛥𝜃) 

𝑠𝑐𝑜𝑟𝑒2 = 	𝑐𝑜𝑟𝑟(𝒎𝒓𝒆𝒇,𝒎fP'f) 

where m is the vector of magnitudes associated at every point w of the grid that is used to visualize the field: 𝑚� =

	‖𝑣(𝑤)‖ = �𝑣(𝑤)�� + 𝑣(𝑤)��  

 

Figure 17. Sensitivity of velocity field estimation to different estimation parameters. a. The deviation of the 
velocity field from the default reference (Figure 3 of the main manuscript) is shown for variation of different 
parameters. Two summary scores are provided: the average variance of the projected velocity arrow direction, and 
the correlation of arrow magnitudes. The bars labeled with letters have corresponding velocity field shown below. 
Notice that the input parameter that influence the estimation the most is the “n sight” parameter, which defines the 
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size of the neighborhood size taken in consideration when projecting the velocity from high dimensional space onto 
pre-defined low-dimensional cell embeddings. The angles are measured in radians. b-d. Illustration of the velocity 
projections with default (b) and altered (c,d) parameter settings. 

Section 11.  Uncertainty and limitations of neighborhood-based velocity projections 
The “n sight” parameter, defining the size of the neighborhood used for projecting the velocity onto pre-defined 

embeddings appears to be the most sensitive parameter (Figure 17, Figure 18).  

 

Figure 18. Projections of hippocampus velocity estimates using different neighborhood sizes. 

Projections of velocity onto embeddings without gene-defined axes is generally challenging. The approach 

implemented in velocyto (see Methods and Supplementary Note 1) relies on looking at a neighborhood around each 

cell, examining expression state (spliced) differences with different cells in the neighborhood, and drawing a 

velocity arrow in the direction of expected cell shift after accounting for the cell density (see Supplementary Note 

1). Specifically, the 

procedure calculates the 

difference between expected 

cell transition direction 

based on velocities and the 

direction based on the even 

transition probability (which 

will point towards the center 

of mass, see Figure 19a).  

Figure 19. Edge effect in 
neighborhood-based 
projections. a. A 
straightforward example of a 
cell velocity projection is 
shown, with the 
neighborhood of the cell 

d. e. f.

cell for which velocity is being shown

true target of cell trajectory

center of mass

background expectation

velocity-based expectation

difference

resulting velocity arrow

n: 6000n: 1500n: 500

a. b. c.
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pictured as an oval, and positions of the cell velocity target and center of mass indicated by star and cross symbols, 
respectively. The difference between velocity-biased (red arrow) and flat (green arrow) transition probability 
direction expectations defines the direction and the magnitude of the velocity arrow (grey arrow shows the original 
difference, black arrow shows the same vector shifted into the position of the cell). b. An edge effect, where the 
center of mass is located further away from the cell target (i.e. a very large cell neighborhood was used). In such 
case, the resulting velocity arrow will point in the direction opposite of the true cell trajectory target. c. Region of 
the hyppocampus manifold (see Figure 3 of the main manuscript) being analyzed is highlighted in black. d-f. An 
example of this effect on the real data, shown for increasing neighborhood sizes. All arrow sizes were scaled by a 
constant factor for the purposes of this visualization. 

The neighborhood-based procedure has several biases and unintuitive effects. First, if the neighborhood size is 

larger than the distance to the ultimate trajectory target, it is possible to have edge effects that will rotate or even 

invert the direction of the projection away from its intended target (Figure 19). Second, the measured 

subpopulations may contain several distinct subpopulations that share some expression similarity with the direction 

of the predicted velocity extrapolation. As the velocity projection is based on the expected transition direction, such 

“multiple attractors” can result in a rotation of the velocity directions (Figure 20).  

 

Figure 20. Effect of multiple attractors in the hippocampus dataset. a. The effect of multiple attractors is shown 
for a single cell in the hippocampus dataset. At low neighborhood sizes, the projection points correctly towards the 
terminally-differentiated end of the corresponding trajectory arm. However, as the neighborhood size increases, 
other maturing neuronal populations (CA2/4 and CA3) come into view. As the tips of these branches also represent 
maturing neurons, they exhibit strong expression similarity to velocity direction of the chosen cell, and end up 

a.

b.

n: 6000n: 2000 n: 14000
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rotating the expected transition direction towards them. b. The neighborhood can be defined using high-
dimensional cell-cell distance, in which case, the terminally differentiating tips of other neuronal branches will 
come into view even faster as the neighborhood expands, rotating the velocity projection sooner.  

Finally, it is important to point out that as velocity vectors are estimated in high-dimensional space, their 

projections onto low-dimensional space can create situations where different populations appear to be in 

intersecting or diverging course, whereas in high-dimensional their trajectories never cross or come near each other.  


