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Abstract

Recently, an extended version of magnetohydrodynamics that incorporates elec-
tron inertia, dubbed inertial magnetohydrodynamics, has been proposed [Lingam
et al., Physics Letters A, Vol. 379, pp. 570–576, 2015]. This model features a
noncanonical Hamiltonian formulation with a number of conserved quantities, in-
cluding the total energy and modified versions of magnetic and cross helicity. In this
work, a variational integrator is presented which preserves these conservation laws
to machine accuracy. As long as effects due to finite electron mass are neglected, the
scheme preserves the magnetic field line topology so that unphysical reconnection is
absent. Only when effects of finite electron mass are added, magnetic reconnection
takes place. The excellent conservation properties of the method are illustrated by
numerical examples in 2D.

Keywords: Conservation Laws, Geometric Discretization, Lagrangian Field Theory, Magne-

tohydrodynamics, Variational Integrators

1 Introduction

Ideal magnetohydrodynamics (MHD) is one of the most widely applied theories in labo-
ratory as well as astrophysical plasma physics [49, 20, 8, 13, 17]. Although the system of
equations is rather simple, it can used to describe many different macroscopic phenomena
like equilibrium states in tokamaks or stellarators, large scale turbulence, or dynamos that
generate magnetic fields of stars and planets. In addition, the system is endowed with a
rich geometric structure. It is a Hamiltonian system [41], described in terms of noncanon-
ical Poisson brackets, which have several Casimir invariants associated to them. It has a
variational structure, both in Lagrangian [42] and Eulerian [24] coordinates. But it has
also interesting topological properties like the frozen-in magnetic flux [3]. Even though
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ideal MHD is applicable to an impressive number of problems, its regime of validity is
limited. Therefore various extended MHD models have been derived over the years. One
member of this family of models is inertial MHD [37], which adds effects of finite electron
inertia to the ideal MHD model, allowing for example for the study of collisionless recon-
nection. While such an extension was long known for reduced MHD [48], the extension of
the ideal model came along only very recently. An interesting feature of the inertial MHD
model is that it has almost the same Hamiltonian structure as the ideal MHD model, just
expressed in terms of a modified magnetic field variable. That is, it has the same kind of
Casimir invariants and it is also energy-preserving.

The simplicity of the ideal MHD system combined with this rich geometric structure
makes it an ideal prototyping system for the development of structure-preserving numer-
ical algorithms. By now, several such algorithms for ideal MHD have been proposed. Liu
and Wang [38] approached the problem by coupling the MAC scheme [22] for the Navier-
Stokes equation with Yee’s scheme [55] for the Maxwell equations. Gawlik et al. [18] used
a discrete Euler-Poincaré principle (see also the work of Pavlov et al. [44]), which yields
a similar scheme as that of Liu and Wang, but with different time discretisation. While
this is the most natural discretisation approach in the Eulerian framework, it is currently
not easily possible to obtain higher-order integrators or work in different numerical frame-
work like finite elements or isogeometric analysis. A variational integrator in Lagrangian
variables, based on directly discretising Newcomb’s Lagrangian [42], has been derived by
Zhou et al. [56]. In the Lagrangian framework, this provides a very natural discretisation
with excellent conservation properties. Unfortunately, its applicability is somewhat lim-
ited, as in many problems the distortion of the mesh will quickly lead to a deterioration
of the numerical solution and so far re-meshing strategies which preserve the variational
structure have not been found. Recently, Kraus and Maj [30] proposed a variational
discretisation in Eulerian variables based on a formal Lagrangian formulation [4, 26, 29]
combined with ideas from discrete differential forms [47, 16, 23]. While the discretisation
of the variational formulation leads to exact conservation of energy, magnetic helicity and
cross helicity, preserving the differential forms character of the physical variables ensures
that the divergence of the magnetic field is preserved and prevents checker-boarding, a
spurious phenomenon often observed with finite difference discretisations of incompress-
ible fluid equations. In this paper, the work of Kraus and Maj [30] is extended towards
the inertial MHD model.

We proceed as follows. In Section 2, we start by reviewing the ideal incompressible
MHD equations, their Hamiltonian formulation and important conservation laws. We
review the concept of formal Lagrangians, which constitutes the starting point for the
derivation of variational integrators and show how to apply this concept to the ideal
MHD equations. Finally, we describe the modifications of the ideal MHD equations that
lead to the inertial MHD system. In Section 3, we explain the variational discretisation
and the staggered grid approach, which is motivated by discrete differential forms. Here,
we use the same approach as Kraus and Maj [30], but we describe the discretisation in
a more heuristic way, that should be understandable also without in-depth knowledge
of differential forms. In Section 4, we provide numerical examples, which demonstrate
the good conservation properties and long-time stability of the scheme. In particular, we
consider a typical current sheet model as it is used in collisionless reconnection studies
and show that reconnection takes place only when electron inertia effects are present but
not in the ideal case.
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2 Incompressible Magnetohydrodynamics

The equations of magnetohydrodynamics (MHD) result from the combination of the
Navier-Stokes equation for an incompressible fluid with the induction equation of elec-
trodynamics. In particular, the system of incompressible MHD equations is given by

ρ (∂tV + (V · ∇)V ) = (∇×B)×B + µ∇2V −∇p, ∇ · V = 0, (1a)

∂tB = ∇× (V ×B) + η∇2B, ∇ ·B = 0, (1b)

where V is the fluid velocity, B is the magnetic field, p is the gas pressure, and ρ is the
density, assumed to be constant, ∂t denotes the time derivative and the constants µ and
η determine the strength of viscosity and resistivity, respectively. The density is set to
ρ = 1 and the equations are normalised such that the magnetic field B equals the Alfvén
velocity.

The first equation (1a) is called the momentum equation, the second equation (1b)
the induction equation. Both V and B are divergence-free, V as we are considering an
incompressible fluid, and B as there are no magnetic monopoles. But while ∇ · B = 0
is implied by the induction equation, provided that the initial magnetic field B(t = 0) is
divergence-free, ∇ · V = 0 is a dynamical constraint determining the pressure p.

2.1 Ideal Incompressible Magnetohydrodynamics

In the following, we will discuss the ideal version of the incompressible MHD equations in
two dimensions, that is equations (1a) and (1b) with velocity V = (V x(x, y), V y(x, y), 0)T ,
magnetic field B = (Bx(x, y), By(x, y), B0)

T , i.e., there might be a constant guide field
B0, pressure p = p(x, y) and µ = η = 0, thus neglecting viscous as well as resistive effects.
We rewrite the advective derivative of the fluid velocity,

(V · ∇)V = (∇× V )× V + 1
2
∇(V · V ), (2)

so that the the ideal incompressible MHD equations become

∂tV + ψ(V, V ) = ψ(B,B)−∇P, (3a)

∂tB + ϕ(V,B) = 0, (3b)

∇ · V = 0, (3c)

where P = p+ 1
2
∥V ∥2. For concise notation, we introduced two bi-linear operators ψ and

ϕ with components

ψx(V,B) ≡ V y
(
∂yB

x − ∂xB
y
)
, ϕx(V,B) ≡ ∂y

(
V yBx − V xBy

)
, (4a)

ψy(V,B) ≡ V x
(
∂xB

y − ∂yB
x
)
, ϕy(V,B) ≡ ∂x

(
V xBy − V yBx

)
, (4b)

which is the same definitions used by Gawlik et al. [18]. Note that Equations (3) consti-
tute a saddle-point problem, where the pressure P acts as a Lagrange multiplier and is
determined such that div V = 0 is satisfied.

Neglecting resistivity, η = 0, equation (1b) states that the magnetic field is advected
with the fluid flow, which implies the conservation of the magnetic flux through a surface
moving with the fluid [3]. In other words, the topology of the magnetic field lines is
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conserved. They are not allowed to open up and reconnect. A property that is worthwhile
to maintain on the discrete level. In a resistive plasma, η∇2B describes diffusive effects,
for which the magnetic field lines are not just dragged along with the field, but are free
to change their topology.

As in addition viscosity is neglected, µ = 0, one has three important conserved quan-
tities of ideal MHD in two dimensions [3], namely the total energy,

E =
1

2

∫ [
∥V ∥2 + ∥B∥2

]
dx dy, (5)

cross helicity

CCH =

∫
V ·B dx dy, (6)

and magnetic helicity

CMH =

∫
ψ dx dy, (7)

where ψ is the z-component of the magnetic vector potential A. Note that for a magnetic
field of the form

B = ∇ψ × ẑ +B0ẑ,

with B0 a constant and ẑ the unit vector in z-direction, and the corresponding vector
potential

A =
(
− 1

2
B0y,

1
2
B0x, ψ

)T
,

the usual definition of the magnetic helicity is given by∫
A ·B dx dy =

∫ [
−1

2
B0y∂yψ − 1

2
B0x∂xψ +B0ψ

]
dx dy = 2B0

∫
ψ dx dy,

which is proportional to CMH. The conservation of the quantities (5)-(7) arises from
the Hamiltonian structure of the equations (see Morrison and Greene [41] for details).
While energy conservation follows from the anti-symmetry of the Poisson bracket, cross
helicity and magnetic helicity are so-called Casimir invariants that are associated with
the degeneracy of the Poisson structure. Conservation of all three quantities is desirable
in numerical simulations in order to obtain reliable and physically accurate results. In
the next step, we construct a formal Lagrangian for equations (3).

2.2 Formal Lagrangians

In order to derive variational integrators for the ideal MHD equations, we need a La-
grangian formulation in Eulerian coordinates. As such a Lagrangian is not readily avail-
able, we have to resort to a formal Lagrangian formulation [29, 26, 4]. To that end,
we treat the ideal MHD system as part of a larger system, which features a Lagrangian
formulation. This approach is described in details in reference [29]. Here we outline the
procedure for the case at hand without theoretical details. In practice, each equation of
(3), including the incompressibility constraint, is multiplied with an auxiliary variable, α,
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β and γ, respectively, in a similar fashion to a Lagrange multiplier or a test function. Note,
however, that these additional variables are really auxiliary fields that are on an equal
footing with the physical fields and thus neither Lagrange multipliers nor test functions.
The formal Lagrangian is given as the sum of the resulting expressions,

L(φ, φt, φx, φy) = α ·
[
∂tV + ψ(V, V )− ψ(B,B) +∇P

]
+ β ·

[
∂tB + ϕ(V,B)

]
+ γ

[
∇ · V

]
. (8)

For concise notation, we write φ to denote all variables,

φ = (V,B, P, α, β, γ), (9)

and φt, φx, and φy to denote the corresponding derivatives with respect to t, x and y,
respectively. Requiring stationarity of the action functional (Hamilton’s principle),

δA[φ] = δ

∫
L(φ, φt, φx, φy) dt dx dy = 0, (10)

for variations δφ of the variables, which vanish at the boundaries but are otherwise arbi-
trary, gives the ideal MHD equations (3) as well as additional equations which determine
the evolution of the auxiliary variables,

∂tα + ψ(α, V ) = ψ(B, β) + ϕ(α, V )−∇γ, (11a)

∂tβ + ϕ(α,B) = ψ(α,B)− ψ(V, β), (11b)

∇ · α = 0. (11c)

We see that solutions of the equations for the physical variables V , B and P , will also be
solutions of the equations for the auxiliary variables α, β and γ, when setting α(t, x, y) =
V (t, x, y), β(t, x, y) = B(t, x, y) and γ(t, x, y) = P (t, x, y).

Within the formal Lagrangian framework, conservation laws can be determined by
Noether’s theorem in the same way as with standard Lagrangians [27, 29]. However, it
is important to note that conservation laws like momentum and energy conservation do
generally not arise from invariance of the formal Lagrangian with respect to translations
of space and time but from invariance with respect to translations of the fields. This is
key to preserving these conservation laws at the discrete level, where space and time are
not continuous anymore but the fields still are (up to finite precision). For a detailed
discussion of this topic, including the foundations of the continuous and discrete versions
of the Noether theorem, the reader is referred to Kraus and Maj [29].

2.3 Inertial Magnetohydrodynamics

We can add effects of electron inertia to the model by introducing a modified magnetic
field B̄ as follows [37],

∂tV + ψ(V, V ) = ψ(B̄, B)−∇P, (12a)

∂tB̄ + ϕ(V, B̄) = 0, (12b)

∇ · V = 0, (12c)

B̄ = B + d2e(∇× (∇×B)), (12d)

where de denotes the electron skin depth. From the last equation, we see that ∇ · B̄ = 0.
The formal Lagrangian is constructed analogously to (8), introducing another auxiliary
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variable σ. The only difference is that we integrate the σ · (∇×∇×B) term by parts, in
order to avoid second order derivatives in the Lagrangian,

L̄(φ̄, φ̄t, φ̄x, φ̄y) = α ·
[
∂tV + ψ(V, V )− ψ(B̄, B) +∇P

]
+ β ·

[
∂tB̄ + ϕ(V, B̄)

]
+ γ

[
∇ · V

]
+ σ ·

[
B̄ −B

]
− d2e

[
∇× σ

]
·
[
∇×B

]
, (13)

with φ̄ the extended solution vector

φ̄ = (V, B̄, P,B, α, β, γ, σ). (14)

The inertial MHD system has a modified set of conservation laws, namely energy

Ē =
1

2

∫ [
∥V ∥2 +B · B̄

]
dx dy, (15)

cross helicity

C̄CH =

∫
V · B̄ dx dy, (16)

and magnetic helicity

C̄MH =

∫
Ā dx dy, (17)

where Ā is the generalised vector potential, so that B̄ = ∇ × Ā. Note that within
the approximations of the inertial MHD model [37], Ā is proportional to the canonical
momentum Pe = meve+qeA of the electrons, where me, qe and ve denote the mass, charge
and velocity of the electrons, respectively. Thus the canonical helicity,

Ke =

∫
Pe · ∇ × Pe dx dy,

is proportional to the generalised magnetic helicity∫
Ā · B̄ dx dy,

which is a Casimir invariant of the inertial MHD Poisson bracket [37] and in 2D reduces
to C̄MH in a similar fashion as the standard magnetic helicity reduces to CMH in (7).

3 Variational Discretisation

In order to obtain a numerical method for the ideal MHD equations (3), we discretise
the action functional A and apply a discrete version of Hamilton’s principle of stationary
action [39, 29, 30]. Standard variational discretisations on cartesian meshes like Veselov-
type discretisations [53, 54, 39] or the box scheme [45] usually lead to centred finite
difference schemes, which are problematic for Euler’s equation. Such schemes are known
to be prone to instabilities referred to as checker-boarding (see e.g. Langtangen et al.
[34] or McDonough [40]), originating from co-locating the components of the velocity
vector and the pressure at the same grid points. This often leads to solutions with highly
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(a) Momentum and Induction Equation (b) Divergence Constraint

Figure 1: Staggered grid in the xy-plane. Left: Primal grid with natural positions for
the pressure and the velocity components for the computation of the advection operators.
Right: Dual grid for the computation of the divergence constraint.

oscillatory pressure as symmetric difference operators for the gradient, e.g., with stencil
[−1 0 + 1], annihilate pressures which oscillate between neighbouring grid points, e.g.,
between −1 and +1. With finite difference methods, this is usually circumvented by
introducing a staggered grid, where only the pressure at a single grid point enforces the
divergence of the velocity of the surrounding grid points to vanish (c.f. Figure 1b).

The discretisation described next follows such an approach and is based on discrete
differential forms as is explained in detail by Kraus and Maj [30]. Here, we employ a more
heuristic derivation that is accessible also without an in-depth background in differential
forms and discrete differential geometry. It is worthwhile to note, though, that all of what
is presented in the next section follows from a rigorous framework.

3.1 Staggered Grid

We introduce a staggered grid, where the pressure is collocated at the vertices of a grid cell
and the velocity components at the edges, like it is depicted in Figure 1(a). The location
of the physical quantities comes natural when viewed as differential forms. The pressure
is a zero-form and is therefore collocated at the vertices of a cell of the primal grid. The
velocity (and in two dimensions also the magnetic field) is a one-form and is therefore
collocated at the edges of a cell, x-components on the horizontal edges and y-components
on the vertical edges (c.f. Figure 1(a)).

On the dual grid, the pressure becomes a two-form, collocated at the cell centre. The
velocity and magnetic field are still one-forms, but twisted, so that x-components are col-
located on the vertical edges and y-components on the horizontal edges (c.f. Figure 1(b)).
This can also be seen by considering the discrete divergence-free constraint of the velocity
field,

(∇ · V )i+1/2, j+1/2, n =
V x
i+1, j+1/2, n − V x

i, j+1/2, n

hx
+
V y
i+1/2, j+1, n − V y

i+1/2, j, n

hy
= 0, (18)

which is defined in such a way that the natural location of the divergence coincides
with the location of the pressure. This is important as the function of the pressure in
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incompressible fluid dynamics can be described as enforcing the divergence-free constraint
of the velocity field.

On the primal grid, we define point-wise discrete time-derivatives,

∂tV
x → (∆tV

x)i, j+1/2, n+1/2 ≡
V x
i, j+1/2, n+1 − V x

i, j+1/2, n

ht
, (19a)

∂tV
y → (∆tV )yi+1/2, j, n+1/2 ≡

V y
i+1/2, j, n+1 − V y

i+1/2, j, n

ht
. (19b)

For the spatial derivatives of the vectors, we use midpoint averaging with respect to time.
The x-derivative of x-components and the y-derivative of y-components are defined on
the dual grid as

∂xV
x → (∆xV

x)i+1/2, j+1/2, n+1/2 ≡
1

2

[
V x
i+1, j+1/2, n − V x

i, j+1/2, n

hx

+
V x
i+1, j+1/2, n+1 − V x

i, j+1/2, n+1

hx

]
, (20a)

∂yV
y → (∆yV

y)i+1/2, j+1/2, n+1/2 ≡ 1

2

[
V y
i+1/2, j+1, n − V y

i+1/2, j, n

hy

+
V y
i+1/2, j+1, n+1 − V y

i+1/2, j, n+1

hy

]
, (20b)

while the y-derivative of x-components and the x-derivative of y-components are defined
on the primal grid as

∂yV
x → (∆yV

x)i, j, n+1/2 ≡
1

2

[
V x
i, j+1/2, n − V x

i, j−1/2, n

hy

+
V x
i, j+1/2, n+1 − V x

i, j−1/2, n+1

hy

]
, (20c)

∂xV
y → (∆xV

y)i, j, n+1/2 ≡
1

2

[
V y
i+1/2, j, n − V y

i−1/2, j, n

hx

+
V y
i+1/2, j, n+1 − V y

i−1/2, j, n+1

hx

]
, (21a)

Note, that the x-derivative of V x and the y-derivative of V y are defined on the grid in
Figure 1(b), while the y-derivative of V x and the x-derivative of V y are defined on the
dual grid in Figure 1(a). The indices of the derivatives denote the natural collocation of
the derivative, which is always the cell centre.

Derivatives of the pressure can only be defined on the primal grid (c.f. Figure 1(a)).
They are naturally defined along the edges of the cells. The staggering approach is applied
to P also with respect to time, i.e., the pressure nodes are (i + 1/2, j + 1/2, n + 1/2).
Taking all of this into account, we define

∂xP → (∆xP )i, j+1/2, n+1/2 ≡
Pi+1/2, j+1/2, n+1/2 − Pi−1/2, j+1/2, n+1/2

hx
, (22a)

∂yP → (∆yP )i+1/2, j, n+1/2 ≡
Pi+1/2, j+1/2, n+1/2 − Pi+1/2, j−1/2, n+1/2

hy
. (22b)
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Averages of the vector fields are only needed on the primal grid, so we are defining them
only there. For V and B, the averaging is applied with respect to both space and time,⟨

V x
⟩
i, j, n+1/2

≡ 1

4

[
V x
i, j−1/2, n + V x

i, j+1/2, n + V x
i, j−1/2, n+1 + V x

i, j+1/2, n+1

]
, (23a)⟨

V y
⟩
i, j, n+1/2

≡ 1

4

[
V y
i−1/2, j, n + V y

i+1/2, j, n + V y
i−1/2, j, n+1 + V y

i+1/2, j, n+1

]
, (23b)

but as α and β will be collocated at n + 1/2 (see comment in the next section), their
averages do not involve time, but only space, in particular⟨

αx
⟩
i, j, n+1/2

≡ 1

2

[
αx
i, j−1/2, n+1/2 + αx

i, j+1/2, n+1/2

]
, (24a)⟨

αy
⟩
i, j, n+1/2

≡ 1

2

[
αy
i−1/2, j, n+1/2 + αy

i+1/2, j, n+1/2

]
. (24b)

With these definitions we will now construct the discrete Lagrangians.

3.2 Euler Equation

We start the derivation of the variational integrator by considering the incompressible
Euler equation,

∂tV + ψ(V, V )− ψ(B,B) +∇P = 0, ∇ · V = 0. (25)

The action integral of the formal Lagrangian (8), reduced to this subsystem, is

A =

∫ [
...+ α ·

[
∂tV + ψ(V, V )− ψ(B,B) +∇P

]
+ γ

[
∇ · V

]
+ ...

]
dt dx dy. (26)

To be able to discretise all of the derivatives in the first term of the Lagrangian, we have
to use the primal grid, as depicted in Figure 1(a). The time derivatives are approximated
using the trapezoidal rule in space,

αx ∂tV
x → 1

2

[
αx
i, j−1/2, n+1/2 (∆tV

x)i, j−1/2, n+1/2

+ αx
i, j+1/2, n+1/2 (∆tV

x)i, j+1/2, n+1/2

]
, (27a)

αy ∂tV
y → 1

2

[
αy
i−1/2, j, n+1/2 (∆tV

y)i−1/2, j, n+1/2

+ αy
i+1/2, j, n+1/2 (∆tV

y)i+1/2, j, n+1/2

]
. (27b)

The multiplier α is collocated at n+1/2, just as the time derivative. We use a trapezoidal
approximation to avoid spatial averaging of the time derivatives in the resulting scheme,
as that might lead to grid oscillations (checker-boarding) in the velocity field. We apply
the same approximation to the pressure gradient term, for the same reason, namely

αx ∂xP → 1

2

[
αx
i, j−1/2, n+1/2 (∆xP )i, j−1/2, n+1/2

+ αx
i, j+1/2, n+1/2 (∆xP )i, j+1/2, n+1/2

]
, (28a)

αy ∂yP → 1

2

[
αy
i−1/2, j, n+1/2 (∆xP )i−1/2, j, n+1/2

+ αy
i+1/2, j, n+1/2 (∆yP )i+1/2, j, n+1/2

]
. (28b)
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As previously mentioned, the pressure is collocated at n+1/2, such that no time average
of P is needed. The ψ operator (4) is discretised by a midpoint approximation, both with
respect to space and time, i.e.,

ψx(V, V ) → ψx
i, j, n+1/2(V, V ) ≡

⟨
V y

⟩
i, j, n+1/2

[
(∆yV

x)i, j, n+1/2

− (∆xV
y)i, j, n+1/2

]
, (29a)

ψy(V, V ) → ψy
i, j, n+1/2(V, V ) ≡

⟨
V x

⟩
i, j, n+1/2

[
(∆xV

y)i, j, n+1/2

− (∆yV
x)i, j, n+1/2

]
, (29b)

so that

αxψx(V, V ) →
⟨
αx

⟩
i, j, n+1/2

ψx
i, j, n+1/2(V, V ), (30a)

αyψy(V, V ) →
⟨
αy

⟩
i, j, n+1/2

ψy
i, j, n+1/2(V, V ), (30b)

and analogously for the magnetic force term ψ(B,B).
The discretisation of the divergence term in (26) is implemented on the dual grid in

Figure 1(b). Recognising that γ is a scalar field and thus collocated at the same position
as the pressure, the discretisation follows directly from (18), i.e.,

γ
(
∇ · V

)
→ γi+1/2, j+1/2, n

[
(∆xV

x)i+1/2, j+1/2, n + (∆yV
y)i+1/2, j+1/2, n

]
. (31)

Summing up all contributions yields the discrete Lagrangian for the momentum equation,

LM
i,j,n+1/2 = hthxhy

{
1

2

[
αx
i, j−1/2, n+1/2 (∆tV

x)i, j−1/2, n+1/2 + αx
i, j+1/2, n+1/2 (∆tV

x)i, j+1/2, n+1/2

]
+
1

2

[
αy
i−1/2, j, n+1/2 (∆tV

y)i−1/2, j, n+1/2 + αy
i+1/2, j, n+1/2 (∆tV

y)i+1/2, j, n+1/2

]
+
1

2

[
αx
i, j−1/2, n+1/2 (∆xP )i, j−1/2, n+1/2 + αx

i, j+1/2, n+1/2 (∆xP )i, j+1/2, n+1/2

]
+
1

2

[
αy
i−1/2, j, n+1/2 (∆xP )i−1/2, j, n+1/2 + αy

i+1/2, j, n+1/2 (∆yP )i+1/2, j, n+1/2

]
+
⟨
αx

⟩
i, j, n+1/2

ψx
i, j, n+1/2(V, V )−

⟨
αx

⟩
i, j, n+1/2

ψx
i, j, n+1/2(B,B)

+
⟨
αy

⟩
i, j, n+1/2

ψy
i, j, n+1/2(V, V )−

⟨
αy

⟩
i, j, n+1/2

ψy
i, j, n+1/2(B,B)

}
. (32)

In addition we obtain the Lagrangian for the divergence constraint,

LD
i,j,n = hthxhy γi+1/2, j+1/2, n

[
(∆xV

x)i+1/2, j+1/2, n + (∆yV
y)i+1/2, j+1/2, n

]
, (33)

which in contrast to LM
i,j,n+1/2 is not defined at the midpoint but at integer times. We

can, however, define

LD
i,j,n+1/2 =

1

2

[
LD
i,j,n + LD

i,j,n+1

]
, (34)

so that all Lagrangians are collocated at the same point in space as well as in time.
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3.3 Induction Equation

Now we consider those terms of the action that will yield the induction equation, i.e.,

A =

∫ [
...+ β ·

[
∂tB + ϕ(V,B)

]
+ ...

]
dt dx dy. (35)

To find a discretisation of the ϕ(V,B) operator (4) on a single grid cell, we have to perform
an integration by parts, such that

A =

∫ [
...+ βx

[
∂tB

x − ∂y(V
xBy − V yBx)

]
+ βy

[
∂tB

y + ∂x(V
xBy − V yBx)

]
+ ...

]
dt dx dy

=

∫ [
...+ βx ∂tB

x + (∂yβ
x)(V xBy − V yBx)

+ βy ∂tB
y − (∂xβ

y)(V xBy − V yBx) + ...
]
dt dx dy, (36)

assuming appropriate boundary conditions, such that the boundary terms vanish (e.g., pe-
riodic or homogeneous Dirichlet). The discretisation of the time derivative is the same as
in the case of the momentum equation, i.e., using the trapezoidal rule in space,

βx ∂tB
x → 1

2

[
βx
i, j−1/2, n+1/2 (∆tB

x)i, j−1/2, n+1/2

+ βx
i, j+1/2, n+1/2 (∆tB

x)i, j+1/2, n+1/2

]
, (37a)

βy ∂tB
y → 1

2

[
βy
i−1/2, j, n+1/2 (∆tB

y)i−1/2, j, n+1/2

+ βy
i+1/2, j, n+1/2 (∆tB

y)i+1/2, j, n+1/2

]
. (37b)

The factors of the operator ϕ are collocated at different positions of the grid, i.e., ∆yβ
x and

∆xβ
y are collocated at (i, j), while V x and Bx are collocated at (i, j+1/2), and V y and By

are collocated at (i+1/2, j). In order to compute products of these expressions, all factors
should be collocated at the same position, namely the cell centres (i, j). Therefore, we
multiply ∆yβ

x and ∆xβ
y, which are already collocated at the cell centres, with midpoint

averages of the vector fields V and B, that is

(∂yβ
x)(V xBy − V yBx) → ∆yβ

x
i, j, n+1/2

[⟨
V x

⟩
i, j, n+1/2

⟨
By

⟩
i, j, n+1/2

−
⟨
V y

⟩
i, j, n+1/2

⟨
Bx

⟩
i, j, n+1/2

]
, (38a)

(∂xβ
y)(V xBy − V yBx) → ∆xβ

y
i, j, n+1/2

[⟨
V x

⟩
i, j, n+1/2

⟨
By

⟩
i, j, n+1/2

−
⟨
V y

⟩
i, j, n+1/2

⟨
Bx

⟩
i, j, n+1/2

]
. (38b)

Putting all terms together, we obtain the discrete Lagrangian for the induction equation,

LI
i,j,n+1/2 = hthxhy

{
1

2

[
βx
i, j−1/2, n+1/2 (∆tB

x)i, j−1/2, n+1/2

+ βx
i, j+1/2, n+1/2 (∆tB

x)i, j+1/2, n+1/2

]
11



+
1

2

[
βy
i−1/2, j, n+1/2 (∆tB

y)i−1/2, j, n+1/2

+ βy
i+1/2, j, n+1/2 (∆tB

y)i+1/2, j, n+1/2

]
−(∆yβ

x)i, j, n+1/2

[⟨
V y

⟩
i, j, n+1/2

⟨
Bx

⟩
i, j, n+1/2

−
⟨
V x

⟩
i, j, n+1/2

⟨
By

⟩
i, j, n+1/2

]
−(∆xβ

y)i, j, n+1/2

[⟨
V x

⟩
i, j, n+1/2

⟨
By

⟩
i, j, n+1/2

−
⟨
V y

⟩
i, j, n+1/2

⟨
Bx

⟩
i, j, n+1/2

]}
. (39)

Now we have all the ingredients for a complete discretisation of the action integral corre-
sponding to (3).

3.4 Variational Integrator

Requiring stationarity of the discrete action,

δAd[φd] = δ
nx∑
i=1

ny∑
j=1

nt−1∑
n=0

[
LM
i,j,n+1/2 + LD

i,j,n+1/2 + LI
i,j,n+1/2

]
= 0, (40)

yields the discrete ideal MHD equations,

(∆tV
x)i, j+1/2, n+1/2 + ψx

i, j+1/2, n+1/2(V, V )

− ψx
i, j+1/2, n+1/2(B,B) + (∆xP )i, j+1/2, n+1/2 = 0, (41a)

(∆tV
y)i+1/2, j, n+1/2 + ψy

i+1/2, j, n+1/2(V, V )

− ψy
i+1/2, j, n+1/2(B,B) + (∆yPi+1/2, j, n+1/2 = 0, (41b)

(∆tB
x)i, j+1/2, n+1/2 + ϕx

i, j+1/2, n+1/2(V,B) = 0, (41c)

(∆tB
y)i+1/2, j, n+1/2 + ϕy

i+1/2, j, n+1/2(V,B) = 0, (41d)

(∆xV
x)i+1/2, j+1/2, n+1/2 + (∆yV

y)i+1/2, j+1/2, n+1/2 = 0. (41e)

Here, φd denotes the discrete solution,

φd =
{
V x
i,j+1/2,n, V

y
i+1/2,j,n, B

x
i,j+1/2,n, B

y
i+1/2,j,n, Pi+1/2,j+1/2,m+1/2,

αx
i,j+1/2,m+1/2, α

y
i+1/2,j,m+1/2, β

x
i,j+1/2,m+1/2, β

y
i+1/2,j,m+1/2, γi+1/2,j+1/2,n∣∣∣ 1 ≤ i ≤ nx, 1 ≤ j ≤ ny, 0 ≤ m < nt − 1, 0 ≤ n ≤ nt

}
, (42)

where in the following we are considering a periodic domain, so that e.g. the index nx+1/2
denotes the same grid point as the index 1/2, etc., and the discrete operators are defined
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by

ψx
i, j+1/2, n+1/2(V, V ) =

1

2

[
ψx
i, j, n+1/2(V, V ) + ψx

i, j+1, n+1/2(V, V )
]

=
1

2

⟨
V x

⟩
i, j, n+1/2

[
∆yV

x
i, j, n+1/2 −∆xV

y
i, j, n+1/2

]
+

1

2

⟨
V x

⟩
i, j+1, n+1/2

[
∆yV

x
i, j+1, n+1/2 −∆xV

y
i, j+1, n+1/2

]
, (43a)

ψy
i+1/2, j, n+1/2(V, V ) =

1

2

[
ψy
i, j, n+1/2(V, V ) + ψy

i+1, j, n+1/2(V, V )
]

=
1

2

⟨
V y

⟩
i, j, n+1/2

[
∆xV

y
i, j, n+1/2 −∆yV

x
i, j, n+1/2

]
+

1

2

⟨
V y

⟩
i+1, j, n+1/2

[
∆xV

y
i+1, j, n+1/2 −∆yV

x
i+1, j, n+1/2

]
, (43b)

and

ϕx
i, j+1/2, n+1/2(V,B) =

1

2

[⟨
V x

⟩
i, j+1, n+1/2

⟨
By

⟩
i, j+1, n+1/2

−
⟨
V y

⟩
i, j+1, n+1/2

⟨
Bx

⟩
i, j+1, n+1/2

−
⟨
V x

⟩
i, j, n+1/2

⟨
By

⟩
i, j, n+1/2

+
⟨
V y

⟩
i, j, n+1/2

⟨
Bx

⟩
i, j, n+1/2

]
, (44a)

ϕy
i+1/2, j, n+1/2(V,B) =

1

2

[⟨
V y

⟩
i+1, j, n+1/2

⟨
Bx

⟩
i+1, j, n+1/2

−
⟨
V x

⟩
i+1, j, n+1/2

⟨
By

⟩
i+1, j, n+1/2

−
⟨
V y

⟩
i,j, n+1/2

⟨
Bx

⟩
i,j, n+1/2

+
⟨
V x

⟩
i,j, n+1/2

⟨
By

⟩
i,j, n+1/2

]
. (44b)

By slight abuse of notation ψx
i, j+1/2, n+1/2 denotes the average of ψ

x
i, j, n+1/2 and ψ

x
i, j+1, n+1/2

while ψy
i+1/2, j, n+1/2 denotes the average of ψ

y
i, j, n+1/2 and ψ

y
i+1, j, n+1/2 (c.f. Equations (29)).

Figure 2 shows the cells covered by the stencils of each equation. The discretisation of
the operators ψ and ϕ is the very same as the one obtained by Gawlik et al. [18] and Liu
and Wang [38], but the variational discretisation yields a different time stepping scheme,
namely the implicit midpoint method, thus leading to improved conservation properties.
In particular, energy, magnetic helicity and cross helicity are preserved exactly (up to
machine accuracy). Applying the discrete divergence operator (18) to the discrete ϕ
operator (44), it can be seen after direct calculation that the result vanishes,

(∇ · ϕ)i+1/2, j+1/2, n+1/2 =
ϕx
i+1, j+1/2, n+1/2 − ϕx

i, j+1/2, n+1/2

hx

+
ϕy
i+1/2, j+1, n+1/2 − ϕy

i+1/2, j, n+1/2

hy
= 0. (45)

This guarantees that the divergence of the discrete magnetic field is preserved and thus
stays zero if the initial magnetic field is divergence-free.

3.5 Inertial Magnetohydrodynamics

If we add effects due to electron inertia to the system, we have to consider the following
additional terms in the action,

A =

∫ [
...+ σ ·

[
B̄ −B

]
− d2e

[
∇× σ

]
·
[
∇×B

]
+ ...

]
dt dx dy. (46)
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Figure 2: Stencils on the staggered grid in the xy-plane: x-component (red) and y-
component (green) of momentum and induction equation, divergence constraint (blue).

The remaining parts are exactly the same as before, except that in some places B is
replaced with B̄, which however does not affect the discretisation. The first term is
discretised in a similar way as the terms of the time derivatives, that is

σxB̄x → 1

2

[
σx
i, j−1/2, n B̄

x
i, j−1/2, n + σx

i, j+1/2, n B̄
x
i, j+1/2, n

]
, (47a)

σyB̄y → 1

2

[
σy
i−1/2, j, n B̄

y
i−1/2, j, n + σy

i+1/2, j, n B̄
y
i+1/2, j, n

]
. (47b)

The multiplier σ is collocated at n, similar to γ in the divergence-free constraint. The
curl terms, ∇× σ and ∇×B, are discretised as

∇×B = ∂xB
y − ∂yB

x →
[
(∆xB̄

y)i, j, n − (∆yB̄
x)i, j, n

]
, (48)

where the discrete derivatives ∆x and ∆y are defined as in (20)-(21), but without the time
average. With this, the discrete Lagrangian for the electron inertia terms becomes

LE
i,j,n =

1

2

[
σx
i, j−1/2, n (B̄

x
i, j−1/2, n −Bx

i, j−1/2, n) + σx
i, j+1/2, n (B̄

x
i, j+1/2, n −Bx

i, j+1/2, n)
]

+
1

2

[
σy
i−1/2, j, n (B̄

y
i−1/2, j, n −By

i−1/2, j, n) + σy
i+1/2, j, n (B̄

y
i+1/2, j, n −By

i+1/2, j, n)
]

− d2e

[
(∆xσ

y)i, j, n − (∆yσ
x)i, j, n

][
(∆xB̄

y)i, j, n − (∆yB̄
x)i, j, n

]
. (49)

Again, we can define an averaged Lagrangian,

LE
i,j,n+1/2 =

1
2

[
LD
i,j,n + LD

i,j,n+1

]
, (50)

so that all Lagrangians are collocated at the same point in space and time. Requiring
stationarity of the modified discrete action,

δĀd[φ̄d] = δ

nx∑
i=1

ny∑
j=1

nt−1∑
n=0

[
LM
i,j,n+1/2 + LD

i,j,n+1/2 + LI
i,j,n+1/2 + LE

i,j,n+1/2

]
= 0, (51)
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yields the discrete inertial MHD equations,

(∆tV
x)i, j+1/2, n+1/2 + ψx

i, j+1/2, n+1/2(V, V )

− ψx
i, j+1/2, n+1/2(B̄, B) + (∆xP )i, j+1/2, n+1/2 = 0, (52a)

(∆tV
y)i+1/2, j, n+1/2 + ψy

i+1/2, j, n+1/2(V, V )

− ψy
i+1/2, j, n+1/2(B̄, B) + (∆yP )i+1/2, j, n+1/2 = 0, (52b)

(∆tB̄)xi, j+1/2, n+1/2 + ϕx
i, j+1/2, n+1/2(V, B̄) = 0, (52c)

(∆tB̄)yi+1/2, j, n+1/2 + ϕy
i+1/2, j, n+1/2(V, B̄) = 0, (52d)

(∆xV
x)i+1/2, j+1/2, n+1/2 + (∆yV

y)i+1/2, j+1/2, n+1/2 = 0, (52e)

Bx
i, j+1/2, n + d2e

(
(∆x∆yB

y)i, j+1/2, n − (∆y∆yB
x)i, j+1/2, n

)
= B̄x

i, j+1/2, n, (52f)

By
i+1/2, j, n + d2e

(
(∆y∆xB

x)i+1/2, j, n − (∆x∆xB
y)i+1/2, j, n

)
= B̄y

i+1/2, j, n, (52g)

with φ̄d denoting the discrete solution,

φ̄d =
{
V x
i,j+1/2,n, V

y
i+1/2,j,n, B̄

x
i,j+1/2,n, B̄

y
i+1/2,j,n, Pi+1/2,j+1/2,m+1/2, B

x
i,j+1/2,n, B

y
i+1/2,j,n,

αx
i,j+1/2,m+1/2, α

y
i+1/2,j,m+1/2, β

x
i,j+1/2,m+1/2, β

y
i+1/2,j,m+1/2, γi+1/2,j+1/2,n, σi+1/2,j+1/2,n∣∣∣ 1 ≤ i ≤ nx, 1 ≤ j ≤ ny, 0 ≤ m < nt − 1, 0 ≤ n ≤ nt

}
, (53)

and the discrete derivatives being defined by

(∆x∆yB
x)i+1/2, j, n =

1

hxhy

[(
Bx

i+1, j+1/2, n −Bx
i+1, j−1/2, n

)
−
(
Bx

i, j+1/2, n −Bx
i, j−1/2, n

)]
, (54a)

(∆x∆yB
y)i, j+1/2, n =

1

hxhy

[(
By

i+1/2, j+1, n −By
i−1/2, j+1, n

)
−

(
By

i+1/2, j, n −By
i−1/2, j, n

)]
, (54b)

(∆x∆xB
y)i+1/2, j, n =

1

h2x

[
By

i+3/2, j, n − 2By
i+1/2, j, n +By

i−1/2, j, n

]
, (54c)

(∆y∆yB
x)i, j+1/2, n =

1

h2y

[
Bx

i, j+3/2, n − 2Bx
i, j+1/2, n +Bx

i, j−1/2, n

]
, (54d)

thus using only points within the same red and green grid cells in Figure 2 as the other
discrete operators.

4 Numerical Examples

In this section, we use the variational integrator for the inertial MHD system to simulate a
current sheet, first in the ideal case, in order to verify that the solution is free from spurious
reconnection, and then in the inertial case, where reconnection is supposed to happen. We
compare our results with another variational integrator for reduced MHD [31]. Numerical
examples for the ideal MHD integrator have already been reported in Kraus and Maj [30].

The variational integrator (41) is implemented using Python [50, 33], Cython [7],
PETSc [5, 6] and petsc4py [12]. Visualisation was done using NumPy [52], SciPy [28] and
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matplotlib [25]. The nonlinear system is solved with Picard’s method, where in each iter-
ation three linear systems are solved: the momentum equation (12a) and the divergence
constraint (12c) for V and P , the induction equation (12b) for B̄, and the constraint (12d)
for B. Each linear system is solved via LU decomposition with SuperLU [35, 36]. More
efficient solvers can be constructed using iterative solvers like GMRES and conjugate gra-
dients with appropriate preconditioning for the various sub-systems, but this is not the
topic of this work. The tolerance of the nonlinear solver is set to 10−10 or smaller, which
for the time steps chosen is usually reached after 3− 5 iterations.

4.1 Diagnostics

In the following we give discrete expressions of the conserved quantities, energy (15), cross
helicity (16) and magnetic helicity (17), which are monitored in the simulations, as well
as the discrete equations for the reconstruction of the vector potential and the current
density.

Energy

The total energy of the system is the sum of kinetic energy and magnetic energy, which
are computed by

Ekin(tn) = hx hy
1

2

∑
i, j

[(
V x
i, j+1/2, n

)2
+
(
V y
i+1/2, j, n

)2]
, (55)

Emag(tn) = hx hy
1

2

∑
i, j

[
Bx

i, j+1/2, n B̄
x
i, j+1/2, n +By

i+1/2, j, n B̄
y
i+1/2, j, n

]
. (56)

As there is no dissipation term in the ideal and inertial MHD equations, (3) and (12),
respectively, the total energy should always be preserved.

Cross Helicity

The cross helicity is the integral of the scalar product of the velocity and magnetic field,

CCH(tn) = hx hy
1

2

∑
i, j

[
V x
i, j+1/2, n B̄

x
i, j+1/2, n + V y

i+1/2, j, n B̄
y
i+1/2, j, n

]
. (57)

In ideal and inertial MHD, the parallel components of the velocity and magnetic field do
not interact, so that the integral of their product over the spatial domain stays constant.

Magnetic Helicity

In two dimensions, magnetic helicity reduces to the integral of the vector potential,

CMH(tn) = hx hy
∑
i, j

Āi, j, n, (58)

where Āi,j is reconstructed as described below.
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Vector Potential

In two dimensions, the magnetic field is given by

B̄x = ∂yĀ and B̄y = −∂xĀ, (59)

where Ā is the z-component of the generalised vector potential. The potential Ā is
collocated at the cell centres of Figure 1(a). Therefore these equations are discretised as

B̄x
i, j+1/2, n =

Āi, j+1, n − Āi, j, n

hy
and B̄y

i+1/2, j, n = −Āi+1, j, n − Āi, j, n

hx
. (60)

Equations (60) can be rewritten as recurrence relations for Āi,j, namely

Āi, j+1, n = Āi, j, n + hy B̄
x
i, j+1/2, n and Āi+1, j, n = Āi, j, n − hx B̄

y
i+1/2, j, n. (61)

The vector potential is obtained by fixing the value of Ā in the point (i, j) = (1, 1) and
looping over the whole grid, using the first equation to compute columns and the second
to jump between rows, or the other way around. To which value Ā1,1 is fixed is not
important as Ā is determined only up to a constant. The contour lines of the generalised
magnetic potential Ā correspond to field lines of the generalised magnetic field B̄. Hence,
Ā is an important diagnostic.

4.2 Current Sheet
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Figure 3: Current sheet. Contour lines of the flux function A.

In this example we adopt the variational integrator (41) to solve the ideal MHD
equations (3). We consider the following initial condition

ϕ = ϕ0

(
cos(x+ y)− cos(x− y)

)
, A =

A0

cosh2(x)
, (62)

with A0 = 1.29 and ϕ0 = 10−3, which in the field description used here corresponds to

V = ϕ0

(
sin(x+ y) + sin(x− y)
sin(x− y)− sin(x+ y)

)
, B = A0

(
0

−2 tanh(x)/ cosh(x)2

)
. (63)
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Figure 4: Current sheet with the variational integrator. Error of the total energy E,
magnetic helicity CMH and cross helicity CCH.

The initial pressure is set to p = 1 everywhere. These initial conditions lead to the
formation of a current sheet centred at x = 0. The same initial condition was adopted
for collisionless reconnection studies [21, 51]. The spatial domain is (x, y) ∈ [−π,+π) ×
[−π,+π) with periodic boundaries, resolved by nx×ny = 1024×512 grid points. In order
to satisfy the periodicity condition in the x direction a Fourier series representation of the
equilibrium magnetic field has been adopted. Namely, we expand the expression for B in
Equation (63) in a Fourier series, truncated up to 22 modes. This truncation has already
been shown [21] to provide a good representation of the equilibrium flux function.

Figure 3 shows the magnetic potential A at various points in time. The topology of
the contour lines of the magnetic potential is preserved throughout the whole simulation.
Artificial reconnection due to spurious effects of the numerics is absent. This is also
reflected in the good conservation properties regarding energy, magnetic helicity and cross
helicity (see Figure 4).

4.3 Magnetic Reconnection

In the previous example we verified that in the ideal case, the variational integrator (41)
for the ideal MHD system (3) is free of artificial reconnection due to numerical resistivity
or other spurious effects. Now we consider the variational integrator (52) for the inertial
MHD system (12). We use the same setup and the same initial condition as in the example
of Section 4.2, but we solve the inertial MHD model with electron inertia effects, setting
the electron skin depth de to 0.2, so that reconnection of magnetic field lines is expected to
take place. We compare the results obtained from the variational integrator for ideal MHD
with those obtained from a variational integrator for reduced MHD [31]. The simulations
have been performed on a spatial domain of (x, y) ∈ [−π,+π) × [−π,+π) with periodic
boundaries using nx × ny = 1024 × 512 grid points. In both simulations we use time
steps ht = 0.1 for t ∈ [0, 22] and ht = 0.01 for t ∈ [22, 30]. For the ideal MHD solver the
time step needs to be reduced further to ht = 0.001 during the strongly nonlinear phase,
t ∈ [30, 32], while for the reduced MHD solver we also use ht = 0.01 for t ∈ [30, 32]. The
necessity for reducing the time step towards the end of the simulation with the ideal MHD
integrator stems fron the strong nonlinearity in conjunction with using Picard’s method
for solving the nonlinear system. It is expected that with Newton’s method we can use
the same time step as with the reduced MHD integrator, for which we are indeed using
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Figure 5: Growth rate γ of the magnetic island computed with both integrators.

Newton’s method to solve the nonlinear system.
An important quantity to consider in reconnection studies is the linear growth rate of

the initial perturbation, which is defined as

γ(t) =
d

dt
ln(A(t, 0, π)− A(0, π, 0)). (64)

From Figure 5 the growth rate is seen to follow the expected behaviour consisting of
a transient phase up to about t = 6, followed by the linear phase, from about t = 6
to t = 12, where γ is nearly constant, before entering the nonlinear phase for t > 12.
We observe that growth rates determined with the two variational integrators are almost
identical.

The dynamics of the island growth is practically identically modelled by both vari-
ational integrators (see Figure 6). This does not appear too surprising, given the good
conservation properties of both methods. Only after t = 30 we observe minor differences in
the solutions at the inside of the island. At this point, a secondary Kelvin-Helmholtz-type
of instability starts to evolve and the simulations are under-resolved for both integrators.
This instability is followed by a turbulent regime, where energy is continuously transferred
to ever finer scales with the constraint of total energy conservation due to the Hamilto-
nian nature of the system [14, 15]. In this situation, from Figure 6 it emerges that the
variational integrator for reduced MHD does not preserve the intrinsic parity symmetry
of the equations, A(x, y) = A(−x, y) and A(x, y) = A(x,−y), anymore. While this is
expected in the turbulent regime as a consequence of chaotic dynamics, the ideal MHD
integrator seems to preserve this symmetry much better. On the other hand, the reduced
MHD integrator seems to retain more detail of the turbulent fine scale structures along
the x = 0 and more prominently the y = 0 axes, which appear at about t = 30. Thus
the symmetry breaking is also more pronounced. That aside, the results of both integra-
tors agree very well in the generalised magnetic potential Ā (see Figure 7) as well as the
vorticity ω and the fields B̄ and V (not shown here). Throughout the simulation, both
variational integrators show excellent preservation of energy, the generalised magnetic
helicity and cross helicity (see Figure 8).

It is worthwhile to note that the variational integrators perform very well even if the
simulation is under-resolved. The growth rate of the island is correctly obtained already at
a resolution of 256×128 grid points (see Figure 5). Solely the secondary Kelvin-Helmholtz

19



instability towards the end of the simulation cannot be resolved at lower resolutions.
This stability of the integrators with respect to grid resolution stems from their good
conservation properties. In many numerical schemes with dissipation there is no control
over the sign of the dissipation, i.e., energy can be spuriously dissipated or fed into the
system. The latter usually leads to instabilities or, worse, wrong simulation results. With
variational integrators such effects are absent, so that qualitatively and to some extend
even quantitatively correct results can be obtained if the simulation is under-resolved (see
Figure 9).

5 Summary

In this work we extended the variational integrator for ideal magnetohydrodynamics
of Kraus and Maj [30] to inertial magnetohydrodynamics. To our knowledge, neither
an integrator tailored to the structure of this system nor any numerical simulations of
the latter have been presented as of yet. The formal Lagrangian approach [29] together
with a staggered grid, motivated by discrete differential forms, lead to an integrator that
guarantees exact conservation of energy, generalised magnetic helicity and cross helicity as
well as the divergence of the magnetic field. These excellent conservation properties have
been demonstrated in numerical examples relevant to collisionless reconnection studies.
Particularly remarkable is the absence of artificial magnetic reconnection in the ideal case,
even for long integration times. This is expected from the physics, as the magnetic flux
is frozen and the magnetic field line topology is preserved, but often this is not what is
observed in numerical simulations due to spurious dissipation, especially in simple finite
difference schemes like the one presented. We showed that with the variational integrators
reconnection indeed takes place only when electron inertia effects are added.

In contrast to conservative discretisation techniques such as finite volume or discon-
tinuous Galerkin methods, the formal Lagrangian approach allows for the construction
of numerical schemes that do not only preserve conservation laws associated to the prog-
nostic variables but also more complicated invariants. As a result, schemes that preserve
energy or cross helicity can be obtained, even if these quantities are not used as variables.

A theoretical limitation of the presented method is the finite-difference staggered grid
approach, which is not easily generalised to higher-order methods and to more compli-
cated geometries. This work, however, should rather be understood as a proof-of-principle
of the applicability of the formal Lagrangian approach [29] to extended magnetohydrody-
namics models like inertial MHD. It is quite remarkable that exact conservation properties
can be achieved even with very low-order discretisations and with very low resolutions.
The robustness of the integrators with respect to resolution is particularly noteworthy.
Let us note that the formal Lagrangian approach could also be used on the dissipative
equations (1) as it does not rely on the Hamiltonian nature of the equations and can be
applied to practically any system of equations. However, its use is only meaningful if the
equations at hand possess some symmetry and related conservation law that should be
preserved in the discretisation.

For more involved applications, it is straight-forward to apply the ideas presented
here in conjunction with other numerical frameworks, such as finite element exterior
calculus [1, 2, 11], mimetic spectral elements [19, 32, 43] or spline differential forms [10, 9,
46], in order to obtain numerical schemes of arbitrary order as well as on general meshes.
The extensions to 3D is similarly straight-forward due to the generality of the formal
Lagrangian approach. Solely the spatial discretisation needs to be adapted, but that is
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Figure 6: Magnetic reconnection with ideal MHD variational integrator (left) and reduced
MHD variational integrator (right). Vector potential A.
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Figure 7: Magnetic reconnection with ideal MHD variational integrator (left) and reduced
MHD variational integrator (right). Generalised vector potential Ā. Fixed colour scale.
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Figure 8: Magnetic reconnection with ideal (left) and reduced (right) MHD variational
integrator. Error of the total energy E, magnetic helicity CMH and cross helicity CCH.
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Figure 9: Magnetic reconnection with ideal MHD variational integrator. Generalised
vector potential Ā at t = 30 for various resolutions.
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easily possible using one of the aforementioned numerical frameworks.
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