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Tailoring van der Waals dispersion interactions
with external electric charges
Andrii Kleshchonok1 & Alexandre Tkatchenko2

van der Waals (vdW) dispersion interactions strongly impact the properties of molecules and

materials. Often, the description of vdW interactions should account for the coupling with

pervasive electric fields, stemming from membranes, ionic channels, liquids, or nearby

charged functional groups. However, this quantum-mechanical effect has been omitted in

atomistic simulations, even in widely employed electronic-structure methods. Here, we

develop a model and study the effects of an external charge on long-range vdW correlations.

We show that a positive external charge stabilizes dispersion interactions, whereas a

negative charge has an opposite effect. Our analytical results are benchmarked on a series of

(bio)molecular dimers and supported by calculations with high-level correlated quantum-

chemical methods, which estimate the induced dispersion to reach up to 35% of inter-

molecular binding energy (4 kT for amino-acid dimers at room temperature). Our analysis

bridges electrostatic and electrodynamic descriptions of intermolecular interactions and may

have implications for non-covalent reactions, exfoliation, dissolution, and permeation through

biological membranes.
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van der Waals (vdW) dispersion interactions play an
important role in the structure formation, energetic stability,
and reaction mechanisms for a large variety of molecules

and materials1–4. These interactions originate from spontaneous
charge oscillations that consequently induce fluctuating multipole
moments on surrounding atoms and molecules. As vdW inter-
actions do not require the presence of permanent multipole
moments, they arise between any polarizable bodies. Even though
these intermolecular interactions are typically much weaker than
intramolecular ones, they are responsible for many observable
macroscopic phenomena5.

In addition to internal permanent and fluctuating electrostatic
moments, molecules are substantially affected by external electric
fields of various origins. For instance, in biological systems,
intermolecular interactions usually occur in solvents with certain
salt concentration or in acidic environments1,6–8. One of the most
illustrative examples are biological membranes, formed by lipid
bilayers, which constitute an essential component of a living cell.
Dispersion energy contributes to the interlayer interaction and its
properties can be modified by changing the salt concentration9,10.

The synthesis and tuning of materials properties is another area
where external fields serve as an essential tool. For example, gra-
phene can be exfoliated from graphite in the presence of a weak
electric field11,12, and subsequently used in the synthesis of
nanoribbons and carbon nanotubes13,14, in catalysis15,16, and in
dissociation reactions17. In addition, the observation of reaction
acceleration in positively charged microdroplets18,19 demonstrates
that reaction rates depend on the polarity of the droplet. Charged
droplets are also employed in the soft-landing technique to form
non-covalent molecular nanostructures on surfaces under ambient
conditions20,21.

These examples taken together strongly suggest that inter-
molecular interactions can be tailored by electric fields.
Obviously, electrostatic contributions arising from static
external fields are already included in electronic-structure cal-
culations. However, in many systems the dominant inter-
molecular interactions are of electrodynamic origin. Naively,
one would expect that only time-dependent oscillating electric
fields should have a significant impact on spontaneous charge
oscillations and, therefore, on van der Waals dispersion inter-
actions. However, here we show that an external static charge
can also substantially affect intermolecular dispersion interac-
tions. The correlation energy term derived herein is not
included either in standard or dispersion-corrected density-
functional theory (DFT), semi-empirical and second-order
quantum perturbation theory (MP2), or classical force fields

(see for example binding energies obtained by different
numerical methods in Table 1). Hereafter, we will refer to the
vdW part of intermolecular correlation energy that is modified
by an external charge as field-induced dispersion (FID).

The calculation of FID energies requires the development of
quantum-mechanical techniques beyond second-order pertur-
bation theory and simultaneously consider multipole expansion
terms beyond the dipole approximation in the treatment of
electronic correlation. This allows to account for the effect of an
electric field on excited states, while conventional DFT+ vdW
approaches capture influence of electric field on static density
only. Therefore, FID is included only in excessively expensive
electronic-structure approaches, such as the random-phase
approximation (RPA), coupled cluster, or quantum Monte
Carlo methods. In this work, we generalize the treatment of
vdW interactions to include the effect of an inhomogeneous
electric field and demonstrate an analytical method of evalu-
ating the FID contribution to binding energies, thus bridging
electrostatic and electrodynamic models of intermolecular
interactions. This paves the way to efficiently include FID
energies in classical force fields and electronic-structure
calculations.

Results
Intermolecular interactions from quantum Drude oscillators.
Electrons in systems with finite band gaps, such as organic mole-
cules, nonmetallic solids, and nanostructures, are well described by a
localized representation. Therefore, collective charge density fluc-
tuations in these systems arise from the dynamically correlated
motions of local multipole excitations. Accordingly, we treat the
response of valence electrons of a given molecule as that of a set of
interacting atomic response functions. Quantum-mechanical para-
meterization of the valence electronic response in terms of coupled
atomic fluctuations is done efficiently and accurately within the
quantum Drude oscillator (QDO) approach22–31. The QDO model
replaces oscillations of the electron cloud on each atom with an
effective quantum harmonic oscillator, characterized by a set of three
effective parameters: mass, frequency, and charge (μ, ω, q)24–26.

The coupled Drude oscillator model has been shown to yield a
quantitatively accurate description of many-body dispersion
interactions in the dipole limit29,31–33, which makes it a
promising approach for higher multipole generalization and
coupling to external electric fields26,28,34,35.

The Hamiltonian of a system of N QDOs interacting via
Coulomb forces between themselves and M point charges δj,

Table 1 Field-induced dispersion (FID) energy, defined by Eq. (2), and its comparison with ab initio RPA and MP2 methods

Molecular dimer EFID, meV
(analytic)

Wbind
c ðδÞ, meV

(RPA@PBE0)
Wbind

c ðδÞ, meV
(MBD@PBE0)

ΔEbindc ðþδÞ, meV
(MP2@HF)

ΔEbindc ð�δÞ, meV
(MP2@HF)

Ebindtotalðδ ¼ 0Þ, meV
(RPA@PBE0)

Ammonia 26.2 20.0 0.3 −14.6 7.2 134.2
Cyclopentane 47.4 62.8 0.9 −43.3 21.7 134.6
Neopentane 11.5 13.0 0.6 −8.1 12.9 81.4
Ethyne 6.3 6.0 0.5 −9.0 3.5 69.5
Benzene* 11.5 12.8 0.3 −13.8 9.9 96.5
N-methylacetamide* 21.0 17.9 3.2 −7.2 3.9 339.9
Pyrazine* 17.0 9.6 0.7 −11.3 7.6 179.2
Pyridine* 9.8 9.0 0.6 −9.5 6.9 156.5
Water 0.6 1.8 0.0 0.0 0.0 150.9

First column: analytical EFID energy, which can be directly compared with the reference RPA correlation contribution to the binding energies Wbind
c ðδÞ= 1

2 Ebindc ð�δÞ � Ebindc ðδÞ� �
, shown in the second

column; third column: Wbind
c ðδÞ for the MBD method, evaluating conventional dipole–dipole vdW interactions; fourth and fifth columns: the effect of an external charge on MP2 correlation binding

energies. In the last column, total RPA-binding energies without an external field are provided to put the FID energy magnitude into perspective. With the “*” symbol we denote cases with 5 Å distance
from the dimer center of mass to the external charge, or 3 Å otherwise

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05407-x

2 NATURE COMMUNICATIONS |  (2018) 9:3017 | DOI: 10.1038/s41467-018-05407-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


placed at eRj, is given by:

H ¼ PN
i
H0i þ

PN
i

PM
j
δjqi

1

Ri �eRj

�� ��� 1

ri �eRj

�� ��� �
þ 1

2

PN
i≠i′

qiqi′
1

Ri �Ri′j j þ 1
ri � ri′j j

�
� 1

ri �Ri′j j � 1
Ri � ri′j j

�
;

ð1Þ

where H0i=� �h2

2μi
∇2

ri
þ 1

2 μiω
2
i Ri � rið Þ2 is the unperturbed QDO

Hamiltonian, assuming fixed oscillation center position Ri and ri
is a position of the Drude particle. Details of the unperturbed
QDO solution may be found in the Supplementary Note 1.
Equation (1) is similar to the conventional molecular Hamilto-
nian, however the full electronic-nuclear system is replaced by
Drude quasiparticles, placed on each atom. Owing to its quantum
nature, the QDO represents a spatial distribution of charge, which
could be modified by other QDOs or external fields, giving this
model the ability to capture complex electronic response effects.
Owing to the full Coulomb coupling between charges, the exact
quantum-mechanical solution of the QDO Hamiltonian in Eq.
(1) contains all multipoles and many-body effects to all orders of
perturbation theory26. This makes the QDO Hamiltonian an
optimal starting point to develop approximations. For example,
within classical mechanics one would recover polarizable force
fields36–38, whereas within the quantum-mechanical dipole
approximation one obtains the previously developed many-
body dispersion (MBD) model29.

Here, we study the effect of an electric field induced by an
external point charge on dispersion interactions between QDOs
in the linear response regime. We initially consider a system
made of two QDOs, A and B, and a point charge δ, placed at
distances ~RA=B from them (see Fig. 1). The quantum-mechanical
Drude model allows to describe electrostatics, induction, and
dispersion effects in isolation and induced by external charges.
The approach presented here could be generalized to a set of
external charges and QDOs in a straightforward manner.

The last two terms in Eq. (1) could be treated as perturbation
H′=HA+HB+HAB of H0, which are caused by the interaction
of each QDO with an external point charge HA/B, and the
interaction between QDOs, HAB. Henceforth, we use the indices
A and B to mark variables related to different oscillators. In terms
of the spherical multipole tensor Qlm (of order l, −l ≤m ≤ l), the
interaction of test charge δ with a negatively charged Drude

quasiparticle and positively charged oscillation center is expressed
in a compact form3,26: HA/B=�δ

P1
l¼1

Pm¼l
m¼�l Q

A=B
lm =~Rlþ1

A=B.
The interaction between two QDOs at a distance R between

them is given by the multipole interaction tensor TAB
lm;l′m′, which

depends on this distance and relative orientation3,26,39–43: HAB=P1
l;l′¼0

P
m;m′ Q

A
lmT

AB
lm;l′m′Q

B
l′m′. The response to an external

electric field produced by a charge is given by the polarizabilities
αlm,l′m′, defined in second-order Rayleigh-Schrödinger perturba-
tion theory3,26. Herein, we consider input atomic polarizabilities
to be isotropic αlm,l′m′= αlδl;l′δm;m′, where l defines the multipole
order (l= 1 corresponds to the dipole, l= 2 to quadrupole, etc.)
and αl is given by the analytical expression αl=

q2

μω2

� �
ð2l�1Þ!!

l

h i
�h

2μω

� �l�1
26. This is an excellent approximation

within the employed atomic Tkatchenko–Scheffler model (see
below and in ref. 44).

Analytic expression for the field–induced dispersion energy.
Building the perturbation theory on eigenvectors of H0 and
treating H′ as a perturbation, Martyna and co-authors developed
a Jastrow-type diagrammatic technique26,45, which proves to be a
very useful tool for understanding coupled QDOs. In brief, dia-
grammatic rules are the following: the yellow blocks are asso-
ciated with the electrostatic multipole interaction between two
QDOs and their number indicates successive orders of pertur-
bation expansion; connectors, coming out of one end of a yellow
bar, show the multipole order. The asymptotic interaction power
laws are given by combination of R and ~R and can be obtained by
analyzing separate parts of diagrams: yellow bar gives R′−1 decay
and connector contributes as R′−2, where R′ 2 R; ~R

	 

. For the

detailed discussion of the diagrammatic principles we refer the
reader to ref. 26 and references therein. Several representative
diagrams for two (three) QDOs are shown in Fig. 2. Within this
framework, dispersion terms arise from the bubble-like closed
diagrams (Fig. 2c, f, h, i) and the open ends indicate the polar-
ization terms (Fig. 2b, d, e), which arise from interaction with
external fields.

In this work, we focus on the leading dispersion term modified
by an external charge δ, corresponding to the dipole–quadrupole
polarization–dispersion interaction (Fig. 2i), which appears in the
third order of perturbation theory. This diagram arises from the
dispersion interaction between two QDOs, one being in a dipolar
state, the other in an excited quadrupolar state owing to
polarization via the external charge. The diagram on Fig. 2i is
not symmetric, as it relates to the polarization of one out of two
interacting QDOs. However, the total dipole–quadrupole charge-
induced dispersion (FID–(DQ)) energy should be completed with
another diagram that relates to the quadrupole polarization of the
second QDO. The sum of these two diagrams will be referred to
as EFID in this study.

This first non-trivial FID diagram, shown on Fig. 2i, translates
into the analytic form as follows (details of the derivation and
general form of the dispersion terms are provided in Supple-
mentary Note 1 along with discussion of Fig. 2g):

EA
FID ¼ � δ

2
αB1α

A
2ωAωB

2ωA þ ωBð Þ ωA þ ωBð Þ
1
~R2
A

´
X
mA;mB

T2;�mA;1;�mB
T1;mA;1;mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�m2

A

q ð2Þ

Equation (2) depends quadratically on ~R�1
A and linearly on δ,

reflecting that only one QDO is polarized by the external charge.
This dispersion term scales as R−7 with distance between two
oscillators, which makes it noticeable compared with the

R

�, –q,�

+q

r

A B

�

RA
~

RB
~

Fig. 1Model for field-induced dispersion. A system made of two QDOs with
distance R between them and a point charge δ placed at a distance ~RA and
~RB from the oscillator centers A and B, respectively. QDOs are sketched by
blue circles with red oscillation center and yellow oscillating Drude
quasiparticle. The external charge is marked by a green dot
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conventional dipole–dipole dispersion interaction decaying as R−6.
Also we note that the FID energy is a purely quantum effect, as
α2∝ ℏ vanishes in the classical limit for a QDO26. A similar effect
is expected in case of other non-uniform electric fields, for
example that induced by a finite-size dipole. FID would scale as
~R�9 with the distance to the dipole, making dispersion induced by
a point charge a leading-order effect.

In this work, we model each atom by a separate QDO and
parametrize it with a Tkatchenko–Scheffler (TS)-like approach46,
extended to the quadrupole polarizability in the following way

(see Supplementary Note 1 for details): αeff2 = αfree2
Veff
h

V free
h

� �2
. This

approach takes into account local electronic environment by
weighting the free-atom quadrupole polarizability αfree2

47,48 with
the ratio between free and effective Hirshfeld volumes. The
angular dependence of dipole–quadrupole FID is expressed by the
sum over angular momentum indices m of the interaction
function product. It takes the simplest form when two identical
QDOs αAl ¼ αBl ¼ αl lie on the same z axis with the same distance

to the external charge ~RA ¼ ~RB ¼ ~R. In this case, the frequency
dependence is canceled out and the sum of two QDOs FID
contribution EA

FID þ EB
FID, given by Eq. (2), simplifies to:

EFID ¼ �3δα2α1
1
~R2

1
R7

: ð3Þ

We note that a positive sign of the external charge δ > 0
corresponds to a negative energy contribution EFID < 0. An
intuitive mechanism behind this charge dependence is the
following: as positive δ attracts the interacting pair of Drude
particles, it polarizes both their orbitals in the same direction
toward the external charge, which leads to stabilization. Similar
arguments are valid for the inverse effect in the field of a negative
charge. These findings could be explained in terms of the
Hellmann–Feynman theorem as well. External charge populates
excited states of the QDO system, leading to anisotropic
delocalization of the electron cloud, which gives rise to Feynman
forces49. Therefore, alternatively one can derive the FID
contribution in terms of high-order hyperpolarizabilities, simi-
larly to the Feynman dipole approach described in ref.50. We
note, however, that the FID contribution is present already in the
linear response regime.

Along with the dispersion term, described by Eq. (2), the total
energy of the system contains classical electrostatic interaction
terms, which might be important for polar molecules. However,
these terms do not scale with molecular polarizability, hence
dispersion interactions remain dominant for large molecules.
Furthermore, electrostatic interactions are already included in
force fields and DFT calculations employing semilocal func-
tionals. In contrast, to the best of our knowledge FID terms have
so far not been included in any atomistic simulation. Next, we
will show that FID contributes significantly to the binding
energies of relatively small molecules and its importance grows
with molecular size and polarizability.

Field–induced dispersion interaction between small molecular
dimers. Before presenting the importance of FID effects in bio-
logical systems, we first discuss the FID contribution to the cor-
relation part of the binding energy between small molecular
dimers and benchmark our analytic results (see Eq. (2)) with
direct ab initio calculations. Ab initio calculations were carried
out using the RPA method51,52 converged at a complete one-
electron basis set limit (see Methods section for details), and these
results serve as an accurate reference for comparison with analytic
FID values. The RPA approach computes the correlation energy
to infinite order in perturbation theory and treats the influence of
an external charge on excited states of molecules, hence being an
appropriate reference for FID.

We start by benchmarking the FID effect on a molecular
cyclopentane dimer system. Figure 3 shows EFID as a function of the
cyclopentane dimer center of mass separation, whereas keeping
fixed the distance from each QDO to the external charge,
~RA ¼ ~RB ¼ 5 Å. The interaction energy computed with the analytic
formula in Eq. (2) is in excellent agreement with reference RPA
calculations. In addition, both RPA and analytic FID formula are
essentially antisymmetric with respect to the sign of the external
charge. In contrast, all popular methods for vdW interactions in
DFT are unable to capture the FID effect, as the direct change in the
electron density by external charge is negligible (identical conclu-
sions hold for vdW methods such as D3, vdW-DF, XDM, TS, and
MBD29,46,53–57). Molecular orbitals employed in second-order
Møller–Plesset perturbation theory (MP2) framework are more
responsive to electric fields than the ground-state electron density.
Hence, MP2 correlation energy is affected by external charges.

Field-induced dispersion

a

c

e

g h

f

d

b

i

Fig. 2 Diagrammatic expansion of interacting quantum Drude oscillators.
Representative low-order interaction energy diagrams for coupled QDOs,
associated with the following expansion terms: a bare Coulomb
electrostatic interaction; b dipole polarization; c conventional vdW
dipole–dipole dispersion; d quadrupole polarization; e many-body dipole
polarization; f dipole–quadrupole dispersion; g dipole–quadrupole
electrostatic interaction; h three-body dipole–dipole-dipole dispersion; i
charge-induced pairwise dipole–quadrupole dispersion (called FID in this
paper). QDOs are sketched by blue circles with red oscillation center and
the external charge is shown with a green dot, polarization is indicated with
elongation of the inner circle
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However, MP2-binding energies in this case arise from hyperpolar-
ization effects (not linear polarization as in RPA) and are not
antisymmetric with respect to δ→−δ, having a smaller magnitude
compared to the reference RPA calculations (also see Table 1). This
is particularly significant for practically relevant distances, when the
external charge is close to the molecule.

Extending our study to larger systems, we tested the magnitude
of FID effect on molecular dimers from the S66 benchmark
database of non-covalent interactions58 (see Table 1). We
consider dimer geometries at equilibrium separation58. We chose
the position of the external charge such that the electric field at
the center of mass of the dimer reaches 109–1010 V/m, by placing
an external charge at 3 or 5 Å. This range of distances reflects
realistic environments present in biological systems. FID calcula-
tions are summarized in Table 1, where the following notation is
used. The molecular dimer correlation binding energy in the
presence of an external charge δ is defined as: Ebind

c ðδÞ=
EAB
c ðδÞ � EA

c ðδÞ � EB
c ðδÞ, where EAB

c is a correlation energy of the
molecular dimer, and EA=B

c are the correlation energies of the
separate moieties A and B. The effect of the external charge on
correlation energy is given by the difference: ΔEbind

c ðδÞ=
Ebind
c ðδÞ � Ebind

c ðδ ¼ 0Þ. In order to separate the vdW dispersion
contribution in Eq. (2) from other terms of electrostatic-
induction origin (see Supplementary Fig. 1) we use the fact that
FID changes sign with δ and define the following linear
combination: Wbind

c ðδÞ= 1
2 Ebind

c ð�δÞ � Ebind
c ðδÞ� �

. Overall, our
analytic formula for FID yields an excellent agreement with full
RPA calculations. Largest deviations amount to 30% and stem
mainly from the fact that our formula is the leading-order term,
whereas RPA includes contributions up to infinite order. Our
model can be generalized to infinite order in a straightforward
way as a potential future work.

There are several noteworthy observations that can be drawn from
Table 1. First, the FID energy can reach up to 35% (47.4meV) of the
total binding energy for the cyclopentane dimer. FID also contributes
substantially in benzene, N-methylacetamide and pyrazine dimers.
Second, it is clear that existing methods for vdW dispersion energy in
DFT29,46,53–57 are unable to describe FID because they do not have
any mechanism to couple to external electric fields. In contrast, MP2

correlation energies are affected by the external charge due to orbital
polarization via the external charge. However this effect is smaller
than reference RPA@PBE0 results and non-symmetric with respect
to the change of the external charge sign (compare second column in
Table 1 with fourth and fifth columns).

For non-polar molecules (i.e., ammonia, cyclopentane, N-
methylacetamide), FID energies are larger or comparable to the
electrostatic contribution to the binding energy in the presence of
an external charge (see Supplementary Table 1). In general,
electrostatics will be dominant for polar molecules (i.e., water
dimer in the last row of Table 1). However, the sign of the FID
contribution is proportional to −sign(δ) in contrast to the charge-
induced electrostatic term, which depends on the relative orienta-
tion of the molecular dipole. Consequently, in many practical
situations, we expect an interplay between electrostatic energies and
FID and tuning this delicate balance paves a novel way to control
structure and dynamics via externally applied electric fields.

Field-induced dispersion interaction in biological systems. In
this section, we discuss the importance of FID in biological sys-
tems, namely in ionic channel models (Fig. 4) and amino-acid
dimers (Fig. 5), both of which are key to biomolecular function.
Amino acids serve as building blocks for proteins, which are in
turn essential components of living cells. Amino acids are
responsible for ion channel formation that serve for selective ion
transport through the cell membrane7. Ion mobility can be
controlled by external stimuli such as voltage, mechanical stress,
protein phosphorylation, ligand binding, or changes in pH7. The
last two gating mechanisms occur in the presence of external
charges, and here we show that FID energies may contribute
substantially to these processes.

We start with a set of amino-acid dimers at equilibrium
separation with their geometries optimized using the DFT+
MBD29 method in the absence of external fields. Subsequently, a
point charge was added at 3.5 Å distance from the center of mass of
the dimer and the FID energy was determined, by carrying out RPA
calculations (see Supplementary Table 2 for details). The results are
summarized in Fig. 5, where we show FID contributions obtained
from RPA correlations and the analytical formula in Eq. (2). In
order to assess the significance of the FID contribution, we compare
it with the dispersion binding energy obtained with MBD for the
amino-acid dimer in absence of any field. Remarkably, FID
contribution reaches up to 35% of the dipole–dipole dispersion
binding energy, varying in the range from 3 to 15% of the total
binding energy. Hence, we conclude that FID energies for biological
systems can substantially exceed 1 kcal/mol—the minimum desired
level of accuracy for atomistic modeling.

As a final example we consider the selectivity filter region of the
Kcv ion channel59 and dispersion interactions therein. We focus
on one of the preferred binding sites—S4 (shown in Fig. 4a), that
is typically composed of four threonine residues that provide four
backbone carbonyl oxygens and four side-chain hydroxyl oxygens
for ion coordination59–61. S4 site plays a special role in the ion
gating mechanism, as Ba2+ ions can bind to this site as well,
blocking K+ permeation60,62. Besides ion substitution, sequence
decoding shows that within the channel a threonine residue could
be replaced by serine (identical to threonine except for one
missing methyl group)60 (see Fig. 4a). Site-directed mutagenesis
experiments suggest that threonine-to-serine (T → S) substitution
in the S4 sites reduces the channel susceptibility to Ba2+ and its
overall opening probability61. The key role of methyl groups for
understanding the polarization and as a consequence vdW
interactions in Kcv channels as well as dramatic ion affinities
reduction during T → S substitutions was already suggested61.
This leads us to the question of whether an inhomogeneous
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Fig. 3 Field-induced dispersion effect in cyclopentane dimer. FID as a
function of intermolecular distance R in Å, calculated at a fixed distance to
the external unit charge ~R ¼ 5 Å for the cyclopentane dimer (geometry
shown as inset). The analytical result is shown in blue. The reference
RPA@PBE0 calculations are marked with a red curve. The effect of the
charge in conventional vdW methods such as MBD@PBE0 (purple) is
negligible. The effect of the charge on MP2@HF correlation energies
(dashed green) is visible, however having a different origin than FID. Upper
positive halfplane corresponds to the negative sign of the external charge δ
=−1, and negative—to the positive sign δ= 1
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electric field could have considerable effect on dispersion
interactions and binding in Kcv channel beyond direct electron
density polarization. To address this question, we first compare
FID energies to the MBD-binding energy of Ba2+ (see
Supplementary Fig. 2 for K+ and Na+ ions) for isolated S4 site
geometries, composed of threonine or serine residues (Fig. 4b). As
the ions are positively charged, FID stabilizes dispersion energy
with a relative contribution ranging from 10% in the case of K+

to 30% for Ba2+ complex, having a considerable effect in the total
binding energy (total energies are shown in the Supplementary
Tables 3–5).

To better understand the role of FID and its contribution to the
vdW dispersion energy, we now consider substitution energies for
the methylation process in ionic channels. The substitution
energy is calculated as the energy difference between the left and

right hand side of the following reaction:

AT4 þ nS"AT4 nSn þ nT; ð4Þ

where n is the unit increment of threonine vs. serine substitu-
tions, A represents one of the K+, Na+, Ba2+ ions and nT or nS
are amino acids in the gas phase. These substitutions result in
minor geometry changes, so we used geometries reported in ref.61,
modeling an ion by a point charge. Corresponding substitution
binding energies of the Ba2+ complex, where threonine groups
were systematically substituted by serine groups, are shown in
Fig. 4c (see Supplementary Tables 3–5 for total binding energies).
Substitutional energies are also largely affected by FID. One T → S
substitution (n= 1) almost doubles FID stabilization of the
dispersion energy and reaches −35 meV in the case of complete
T → S substitution. The main finding here is that FID enhances
the methylation stabilization effect. Overall, our results provide
compelling evidence that FID is an essential energy contribution
to biological systems in the presence of external electric fields.

Figure 4b also indicates the need for further theoretical
developments of the FID model. Namely, the largest deviation
between reference RPA calculations and analytical FID model occurs
for the most polarizable BaT4 system and suggests that higher-order
polarization–dispersion terms beyond that shown in Fig. 2i must be
included to achieve a quantitative treatment of FID effects.

Discussion
Our analysis demonstrates the possibility of tailoring inter-
molecular van der Waals dispersion interactions with external
electric charges. Further analysis on graphene exfoliation from
graphite (K.A. & T.A., manuscript in preparation) indicates that
similar tunability will hold for more general homogeneous and
inhomogeneous electric fields. As charged groups and electric
fields are ubiquitous in (bio)molecular systems and materials, we
expect our findings to have broad implications for modeling and
understanding intermolecular interactions in the presence of such
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complex environments. For example, FID interactions might
substantially affect a range of phenomena, including non-covalent
reactions, exfoliation, dissolution, and permeation through bio-
logical membranes.

A distinctive aspect of FID interactions is that they can stabilize
or destabilize a given complex depending on the sign of the
electric charge. Hence, given the fact that FID can reach up to 4
kT ≈ 103 meV in amino-acid dimers at room temperature, one
would expect non-trivial FID effects on molecular orientations,
equilibrium distances, and energy ranking of competing poly-
morphic structures. Furthermore, the dependence of FID energy
on the sign of an external charge could rationalize the reaction
acceleration rate in microdroplet experiments18,19, as the reaction
barrier would be decreased in the presence of a positive external
charge. Biochemical reactions in certain pH environment is yet
another illustration, where a qualitatively correct description
requires an accurate treatment of external charges from both
electrostatic and electrodynamic points of view.

The analytic approach developed in this work can be
straightforwardly incorporated in classical force fields and
dispersion-inclusive DFT calculations. All the ingredients nee-
ded for evaluating Eq. (2) are readily available in polarizable
force fields38. The developed approach for FID energy could
also be coarse grained and incorporated in continuum solvation
models, which are up to now devoid of any coupling between
electrostatic and electrodynamic effects. Further extension of
our theory is also possible by including higher-order diagrams
akin to that shown in Fig. 2i. The FID energy stemming from
such higher-order diagrams is asymmetric with respect to the
sign of the external charge (unlike Eq. (2)) and thus higher-
order effects could become important for modeling the fine
details of the field-molecule coupling.

In a more general context, our study indicates the possibility of
a noticeable coupling between electrostatic multipole moments
with electrodynamic fluctuating moments. This indicates that
both static and dynamic intermolecular interactions must be
treated on an equal footing, and that the QDO model23–26 pro-
vides an adequate approach that includes proper coupling
between electrostatics, polarization, and dispersion for systems in
isolation or subject to external fields. As vdW dispersion inter-
actions can also have a direct effect on the electron charge dis-
tribution in large molecules and materials63,64, we emphasize the
need to treat classical electrostatics and quantum vdW interac-
tions in a unified and self-consistent manner. Only such advanced
methods will ultimately allow to achieve predictive power in
atomistic modeling of complex molecular materials.

Methods
FID derivation. Expressions of FID energies are derived building the Rayleigh-
Schrödinger perturbation theory (RSPT) on unperturbed QDO eigenfunctions.
First three consecutive orders of RSPT are given by the well-known equations:

Eð1Þ ¼ 0h jH′ 0j i;
Eð2Þ ¼ P

k≠0

0h jH′ kj ij j2
Eð0Þ�EðkÞð Þ

ð1Þ

Eð3Þ ¼
X

k≠0;m≠0

0h jH′ mj i mh jH′ kj i kh jH′ 0j i
Eð0Þ � EðkÞð Þ Eð0Þ � EðmÞð Þ � 0h jH′ 0j i

X
m≠0

0h jH′ mj ij j2
Eð0Þ � EðmÞð Þ2

; ð2Þ

where the perturbation includes the interaction between QDOs and influence of
the external field H′=HA+HB+HAB. Interaction of each QDO with external
charge in terms of spherical multipole tensor has the form: HA/B=�δ

P1
l¼1Pm¼l

m¼�l Q
A=B
lm =~Rlþ1

A=B, where
~RA=B is a distance between QDO and external charge.

Using addition theorem for spherical harmonics one can factorize the Coulomb
potential and write the Hamiltonian of the interacting multipoles in the form: HAB

=
P1

l;l′¼0

P
m;m′ Q

A
lmT

AB
lm;l′m′ðRÞQB

l′m′ , where R is a vector connecting the centers of

multipoles, QA=B
lm are complex multipole tensors in a spherical representation and

defined in the global coordinate system. The multipole interaction function takes
the form:

TlAmAlBmB
ðRÞ ¼ ð�1ÞlA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lA þ 2lB þ 1Þ!

2lAð Þ! 2lBð Þ!

s

´
lA lB lA þ lB
mA mB � mA þmBð Þ

� �
IlAþlB ;� mAþmBð ÞðRÞ;

ð3Þ

where Il,m(R) are normalized irregular spherical harmonics and large brackets represent
Wigner 3j symbol. FID term arises from the matrix element proportional to
0h jHAB mj i mh jHA kj i kh jHAB 0j i and symmetric one with respect to A⇆ B substitution. In case
of spherically symmetric QDO, matrix elements that appear in the perturbation series can be
calculated explicitly.

Ab initio calculations. RPA and MP2 calculations51,52 were carried out with the
FHI-aims code65. Numerical results are obtained using different exchange-
correlation functionals (to assess the role of self-interaction error): PBE66, Hartree-
Fock and hybrid PBE067,68 with atom-centered orbital(NAO) basis sets with
valence-correlation consistency (VCC), designed to contain explicit sums over
unoccupied states69 within full-potential all-electron approach. The basis set
incompleteness error was reduced by the two-point extrapolation scheme applied
to the basis set sequence NAO-VCC-4Z and NAO-VCC-5Z69:

Eð1Þ ¼ E n1ð Þn31 � E n2ð Þn32
n31 � n32

ð4Þ

where n1,2—are indexes of NAO-VCC-nZ basis sets, being equal to 4 and 5 in this
work.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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