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Abstract. Ab initio calculations of the magnon dispersion in ferromagnetic materials typically rely on
the adiabatic local density approximation (ALDA) in which the effective exchange-correlation field is
everywhere parallel to the magnetization. These calculations, however, tend to overestimate the “magnon
stiffness”, defined as the curvature of the magnon frequency vs. wave vector relation evaluated at zero
wave vector. Here we suggest a simple procedure to improve the magnon dispersion by taking into account
gradient corrections to the ALDA at the exchange-only level. We find that this gradient correction always
reduces the magnon stiffness. The surprisingly large size of these corrections (∼30%) greatly improves the
agreement between the calculated and the observed magnon stiffness for cobalt and nickel, which are known
to be overestimated within the ALDA.

1 Introduction

Hardy Gross, in whose honor this article is written, led
many important developments in the density-functional
theory (DFT) of magnetic materials. One of his impor-
tant contributions, and an area of strong overlap between
his interests and ours [1], was the recognition that
non-collinear spin systems require exchange-correlation
magnetic fields that are not necessarily parallel to the
magnetization [2]. These transverse exchange-correlation
(xc) fields appear as soon as one goes beyond a naive
local spin density approximation, and are clearly seen, for
example, in the exact-exchange formulation, which Hardy
spearheaded several years ago [3].

This paper is devoted to the effect of transverse xc
fields on the magnon stiffness of ferromagnetic materials.
A magnon is an elementary excitation of a ferromag-
netic material, characterized by a frequency ωm and a
wave vector q, which correspond to a collective preces-
sional motion of the magnetization around its equilibrium
value. In Figure 1 we sketch a typical absorption spectrum
of a ferromagnet. The green-shaded area corresponds to
single spin-flip excitations, i.e., the so-called Stoner con-
tinuum. The red curve depicts the dispersion relation of
the magnons. For small q (small on the scale of the inverse
of the lattice constant) the dispersion has the form
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ωm(q) ≈ Dq2, (1)

which defines the “magnon stiffness” D. We refer to
the q2-coefficient of the magnon dispersion as “magnon
stiffness” in order to make the distinction to the “spin
stiffness” which is the minus the inverse of the homoge-
neous spin susceptibility – a q = 0 property. In contrast
to the spin stiffness, which is always a positive quan-
tity guaranteeing the stability of the system, the magnon
stiffness may become negative, e.g., when the system is
spin-polarized due to an external magnetic field.

A fully ab initio calculation of the magnon disper-
sion requires finding the poles of the q- and ω-dependent
spin-susceptibility, or, equivalently the zeros of its inverse
Π−1(q, ω) [4–11]. The latter is conveniently represented
as the sum of an inverse Kohn–Sham susceptibility,
which can be calculated by well established methods
within static density-functional theory, and an exchange-
correlation kernel, which needs to be approximated:

[Π−1]αβ(q, ω) = [Π−1s ]αβ(q, ω)− fxc,αβ(q, ω), (2)

where the Greek indices refer to Cartesian coordinates
of spin space. The so-called ALDA is the approximation
in which the q- and ω-dependence of fxc is completely
neglected, i.e., one sets fxc(q, ω) = fxc(0, 0). It is evi-
dent that this approximation neglects retardation effects
in time (hence it is an adiabatic approximation), as well as
non-locality in space (hence it is a local density approxi-
mation). If spin-orbit interactions are neglected and exter-
nal magnetic fields are absent, then the condition that the
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Fig. 1. Sketch of a typical transverse magnetic absorption
spectrum based on a spin-polarized uniform electron gas (den-
sity of states of magnetic excitations). The Stoner continuum
is shown as the green-shaded area and the dispersion rela-
tion of the magnons is highlighted as the red curve outside
the Stoner continuum. For a ferromagnetic material – in the
absence of spin-orbit coupling – the dispersion relation starts
from zero energy at zero momentum, which reflects the fact
that a global rotation of the spins does not change the energy
of the ferromagnet (Goldstone mode).

magnon frequency tend to zero for q → 0 (Goldstone’s
theorem) completely determines the value of f(0, 0) [12].
This is the same as requiring that [Π−1]αβ(0, 0) vanishes
(or equals the external magnetic field if one is present),
i.e., the transverse spin susceptibility diverges at q = 0,
implying a zero-frequency spin wave in the absence of any
symmetry-breaking fields.

The magnon dispersion calculated in this manner is
found to produce a magnon stiffness that, at least in
the case of the metallic ferromagnets cobalt and nickel,
is substantially larger than the measured values. A pos-
sible reason for this overestimation is the neglect of
the q-dependence of fxc. Continuing to work within the
framework of the adiabatic approximation we can write

fxc,αβ(q, ω) ' fxc,αβ(0, 0) +
[
Axc

]
αi,βj

qiqj , (3)

which is valid when q is much smaller than microscopic
length scales such as the electronic Fermi wave vector
and the inverse of the lattice constant (Latin indices
correspond to Cartesian coordinates of the momenta, sum-
mation over repeated indices is implied). The q-dependent
term introduces gradient corrections to the xc field (i.e.,
it goes beyond the local density approximation) and
can thus modify the magnon dispersion at small q.
In equation (3) (and throughout the paper) we assume
inversion symmetry, which implies that there is no q1 con-
tribution to the response. The inverse of the static spin
susceptibility can now be written as[

Π−1
]
αβ

(q, 0) '
[
Π−1

]
αβ

(0, 0)

−
[
As +Axc

]
αi,βj

qiqj . (4)

where As,αi,βj is the coefficient of the small-q expansion
of the inverse Kohn–Sham response function[

Π−1s

]
αβ

(q, 0) '
[
Π−1s

]
αβ

(0, 0)−
[
As

]
αi,βj

qiqj . (5)

The tensor, Aαi,βj ≡
[
As + Axc

]
αi,βj

, determines the

energy cost of a spatial variation of the spin according
to the formula

∆E =
1

2

(
∇iM̃α

)
Aαi,βj

(
∇jM̃β

)
, (6)

where M̃α ≡Mα−M (0)
α is the deviation of the magnetiza-

tion from its equilibrium value M
(0)
α . Formally, Aiα,jβ can

be identified as the (negative) coefficient of the quadratic
term in the expansion of the inverse spin-spin response
function in powers of the wave vector q as can be seen
from equation (4). This establishes a connection with the
so-called “frozen-magnon” approach [13–15] to the cal-
culation of magnon frequencies in which the magnetic
moments of the ferromagnet are constrained to form a
spin spiral (as shown at the bottom of Fig. 1) and the
energy difference to the ground state is calculated.

In many cases the magnitude of the magnetization can
be assumed to be essentially constant, implying that a
small change in magnetization M̃α is everywhere orthog-
onal, i.e., transverse to, the equilibrium magnetization.
Further, one can often reasonably neglect the relatively
small anisotropy due to the spin-orbit coupling experi-
enced by electrons in the lattice (crystalline anisotropy).
With these simplifications, the tensor reduces to a single
number A, such that

∆E =
1

2
A
(
∇iM̃α

)(
∇iM̃α

)
. (7)

This number controls important material properties such
as the width of domain walls and the magnon dispersion.
In particular, we will now show that the exchange correc-
tion to A has a surprisingly large impact on the magnon
stiffness.

The remainder of this paper is organized as follows:
in Section 2, we derive the dispersion of magnons in a
weakly inhomogeneous electron gas at the level of an
exchange-only approximation; in Section 3, we exhibit the
remarkable effect of gradient corrections on the magnon
dispersion using a simple estimate based on the results
for the uniform electron gas; in Section 4, we conclude
and point out a possible way to capture more rigorously
the effects of realistic magnetic inhomogeneities.

2 Weakly inhomogeneous transverse spin
fluctuations in the uniform electron gas

Let us start by considering a uniform gas which is polar-
ized along z-possibly by means of a magnetic field along
z. The Zeeman term, coupling the spin magnetization
to the magnetic field, contributes to the Hamiltonian
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with a term

ĤB = −σ ·B, (8)

and the expectation value of the vector of Pauli matri-
ces, σ, defines the spin magnetization, m = 〈σ〉. Within
Spin density-functional theory (SDFT) the magnetization
of the interacting system is reproduces by a fictitious
non-interacting (Kohn–Sham) system exposed to an effec-
tive (Kohn–Sham) magnetic field Bs = Bext +Bxc. Bext

corresponds to the magnetic field applied to the inter-
acting system and Bxc is the so-called xc magnetic field,
representing an effective internal magnetic field due to
the electron–electron interaction. The sign convention
for the Zeeman term (8) and the decomposition of the
Kohn–Sham magnetic field implies that the xc magnetic
field is given by Bxc = −δExc/δm. In order to describe
transverse magnetic fluctuations it is customary to intro-
duce transverse magnetic fields B± = Bx ± iBy [16].
These fields couple to the transverse Pauli matrices
σ∓ = σx ∓ iσy, respectively. The transverse spin-spin
response function, Π+− = 2

[
Πx,x − iΠxy

]
1 contains the

information of the transverse magnetic excitations in the
system. The crucial point is that Π+− supports collective
modes (magnons), which are transverse spin-fluctuations
and are characterized by a dispersion relation ωm(q).
The dispersion relation is determined by the zeros of the
inverse of Π+−(q, ω).

Within time-dependent SDFT (TD-SDFT) the inverse
of Π+−(q, ω) can be expressed as follows:

Π−1+−(q, ω) = Π−1+−,s(q, ω)− f+−,xc(q, ω). (9)

In our work on the gradient expansion of the exchange
energy, we have computed the long wavelength limit of
the static exchange kernel Ix ≡ fx(q, ω = 0) [17]. More
precisely, we have computed I⊥,x ≡ Ixx,x = Iyy,x, which
differs from I+−,x by a factor of 2, i.e., I+−,x = 1

2I⊥,x.
Note that the xy-response vanishes in the adiabatic limit
ω = 0, i.e., Πxy(ω = 0) = 0. In the following, we drop the
subscript “+−” for brevity. The long wavelength expan-
sion for the static exchange kernel is given by (atomic
units are used throughout the paper):

Ix(q) ≈ I(0)x + I(2)x q2 , (10a)

I(0)x = −∆x

4m
=
∂mεx
2m

= − 1

4m

kF [κ+ − κ−]

π
, (10b)

I(2)x =
Dx

4m
=

1

4m

8
9p

2 − 2
5

(
κ5+ − κ5−

)
(κ+ − κ−)

pπkF
[
κ2+ − κ2−

]2 . (10c)

The previous equations are written exclusively in terms
of the density, n, and the spin magnetization, m, not
to be confused with the electron mass which is one in
atomic units. Moreover, we have introduced the Fermi

wave vector kF =
(
3π2n

)1/3
, the relative spin polariza-

tion p = m/n and the relative spin-up and spin down

1 Due to rotational symmetry we have Πx,x = Πy,y , furthermore
we used Πxy = −Πyx.

wave vectors κ± = (1± p)1/3. This means that the spin-
up and spin-down Fermi wave vectors, kF↑/↓, are given

by kF↑ = kFκ+ and kF↓ = kFκ− and fulfill k3F = (k3F↑ +

k3F↓)/2. ∆x = 2Bx = −2∂mεx is the exchange contribution
to the spin splitting energy determined from the deriva-
tive of the exchange energy density, εx, with respect to
the magnetization. Note that q is the wave vector in
atomic units and not in units of kF. Equation (10b) fol-
lows from the fact that the transverse (static) xc kernel of
the electron gas is given by I⊥,xc(q = 0) = m−1∂mεxc. The
q2-coefficient (10c) corresponds to half of equation (44) in
reference [17], which provides details of its derivation.

The frequency-dependent Kohn–Sham response func-
tion for the uniform electron gas is given by [18]

Πs(q, ω) ≈ 4m

ω −∆s
+

2n

(ω −∆s)
2

[
1 +

k2F
(
κ5+ − κ5−

)
5 (ω −∆s)

]
q2,

(11)

again, in the long wavelength limit.2 ∆s = 2Bs is the spin
splitting energy of the Kohn–Sham system. Consequently,
the magnon dispersion at small q is determined by

0 = Π−1 = Π−1s − Ix ≈
1

4m

[
ω −∆s +∆x

−

{
1

2p

[
1 +

k2F
(
κ5+ − κ5−

)
5 (ω −∆s)

]
+Dx

}
q2

]
. (12)

We can solve equation (12) at q = 0 which yields
ωm(q = 0) = ∆s −∆x. The solution at q = 0 can be used
to eliminate the ω-dependence in the q2 coefficient leading
to the magnon dispersion

ωm(q) ≈ ∆s −∆x +
(
Ds +Dx

)
q2. (13)

In equation (13) we have introduced

Ds =
1

2p

[
1−

k2F
(
κ5+ − κ5−

)
5∆x

]

=
1

2p

[
1−

πkF
(
κ5+ − κ5−

)
5 (κ+ − κ−)

]
, (14)

where in the second line we used the explicit expression
for the exchange splitting ∆x given in equation (10b).
Dx has been defined in equation (10c). Note that the
Kohn–Sham contribution to the magnon stiffness,Ds, con-
tains exchange effects “in disguise”, since it depends on
the exchange contribution to the spin splitting energy.

In Figure 2 we showDs as function of the density – given

in terms of the Wigner-Seitz radius rs = (9π/4)
1/3

k−1F –
for various relative spin polarizations p. At high densities
(small rs) Ds is negative and at low densities (large rs) Ds

2 Note that equations (4.14) and (E4.1) of reference [18] are miss-
ing a factor of 2, which has been corrected in the errata available at
http://faculty.missouri.edu/∼vignaleg/books/.
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Fig. 2. Plot of Ds as function of rs for various relative spin
polarization p. Note the change of sign as rs increases. The
vertical black line corresponds to the critical rs above which
the uniform electron gas is spontaneously–without an external
magnetic field–fully spin polarized (p = 1).

becomes positive (cf. also Eq. (14)). The vertical black line
denotes the boundary between the paramagnetic electron
gas (p = 0, rs . 5.45) and the ferromagnetic electron gas
(p = 1, rs & 5.45) in the exchange-only approximation. A
negative magnon stiffness in a ferromagnet would imply
that there is an instability with respect to the formation
of a static spin wave. However, in the electron gas it is
simply due to the fact that the electron gas at high den-
sities (rs < 5.45) is not ferromagnetic. This means that
in order to stabilize a spin polarization an external mag-
netic field, Bext is required, which – at the same time
– causes the magnon dispersion to start at ωm(q = 0) =
∆s−∆x = 2Bext at zero momentum transfer. Accordingly,
the stability of the electron gas is not compromised if the
curvature Ds of the magnon dispersion is negative. Note
that even if the previous discussion has been limited to the
exchange-only approximation for the electron gas, noth-
ing qualitatively changes if we consider correlation. In fact,
the only substantial change is that including correlation
moves the transition to the spin polarized electron gas to
much smaller densities (larger rs).

In Figure 3 we plot the exchange correction to the
magnon stiffness Dx. From equation (10c) it is evident
that Dx is proportional to rs. At first sight it is surpris-
ing that the proportionality coefficient, which depends
on the relative spin polarization p, is strictly negative,
because the exchange energy tends to align spins. Hence,
a transverse fluctuation – implying that spin are no longer
perfectly aligned – is expected to have a positive contri-
bution due to the exchange interaction. The reason why
there is a gain in energy is the following: equation (10c)
has two contribution with opposite signs. The first term in
the numerator, 8

9p
2, corresponds to the first-order vertex

and self-energy contributions, i.e., to the exchange energy
and is, in fact, positive. However, as we have shown in
reference [17] there is an “anomalous” contribution to the
first-order correction. This term arises because the per-
turbative expansion in SDFT is performed at constant

Fig. 3. Plot of Dx vs. rs at polarization p. From equation (10c)
we can see that Dx is a linear function of rs with a neg-
ative slope depending on the spin polarization p, since the
only density dependence enters via the Fermi wave vector,
which is inversely proportional to rs for the uniform electron
gas.

density and spin magnetization, while standard perturba-
tion theory is performed at constant chemical potential
and magnetic field. The second term in the numerator of
equation (10c), − 2

5

(
κ5+ − κ5−

)
(κ+ − κ−), corresponds to

this anomalous contribution, is negative and dominates
the first term for all p leading to an overall reduction of
the magnon stiffness – at least at the level of the first-
oder approximation. For a careful analysis and discussion
of this anomalous term we refer the interested reader to
reference [17]. Comparing Figures 2 and 3 we can see
that the exchange correction to the magnon stiffness is
relatively small compared to Ds.

3 Magnon dispersion in ferromagnets

In the previous section, we have noted that the uni-
form gas does not polarize spontaneously at densi-
ties relevant for ferromagnets and the corresponding
transverse spin fluctuations start at finite frequency:
ωm(q = 0) = ∆s −∆x = 2Bext. Magnons in ferromagnets,
instead, have vanishing frequency for q → 0. Thus, adopt-
ing the expressions derived in the previous section to
estimate the dispersion of real magnons, we may addi-
tionally impose the condition ∆s ≡ ∆x. This can be
accommodated by replacing ∆x → ∆s in the denominator
of Ds (see the first line in Eq. (14)),

Ds → D0 =
1

2p

[
1−

k2F
(
κ5+ − κ5−

)
5∆s

]

=
1

2p

[
1−

2
(
κ5+ − κ5−

)
5
(
κ2+ − κ2−

)] . (15)

In the second line of equation (15) we have used
the explicit expression for Kohn–Sham spin splitting
∆s = 1

2k
2
F

(
κ2+ − κ2−

)
.
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Fig. 4. Plot shows the renormalization factor 1+γx as function
of the relative spin polarization p for the effective rs corre-
sponding to the ferromagnetic transition metals iron, cobalt
and nickel. The vertical lines are at the relative spin polariza-
tions of iron (p = 0.37), cobalt (p = 0.23) and nickel (p = 0.08).

It is reassuring to note that the aforementioned replace-
ment is equivalent of adopting a frozen-magnon approach,
in which the magnon dispersion is obtained from energy
differences from constrained ground-state calculations.
This can be easily verified by expanding directly the
inverse of the static response function. For small q, we
get ω ≈ Dq2 with D = D0 + Dx. It should be clear that
the overall procedure may be extended to include correla-
tion contributions as well. Notice that D0 depends only on
the relative spin polarization p, so D = D0 +Dx has the
form of a perturbative expansion in rs. The idea now is to
use this expansion to define a renormalization factor for
the magnon stiffness based on the results for the uniform
electron gas, i.e.,

D

D0
= 1 + γx(rs, p) = 1 +

Dx

D0
= 1 +

dx(p)

d0(p)
rs ,(16a)

dx(p) =

[
8
9p

2 − 2
5

(
κ5+ − κ5−

)
(κ+ − κ−)

]
(9π/4)

1/3
π
[
κ2+ − κ2−

]2 , (16b)

d0(p) =
1

2
− 1

5

κ5+ − κ5−
κ2+ − κ2−

. (16c)

Finally, we can use equation (16a) to correct the magnon
stiffness obtained from a calculation of D employing the
ALDA, i.e., D ≈ DALDA(1 + γx).

In Figure 4 we show the renormalization factor in
the exchange approximation, 1 + γx, as function of p for
densities (specified in terms of rs) corresponding to the fer-
romagnetic transition metals iron, cobalt and nickel. Since
the spin magnetization is due to electrons in the 3d-bands
we determine an effective density based on the number of
3d-electrons per atom and the unit cell volume of the tran-
sition metals. The relative spin polarization is determined
by the spin magnetization per atom divided by the effec-
tive density. A comparison of the available experimental
data for the magnon stiffness in iron, cobalt and nickel

Table 1. Comparison of the experimental results
(Dexp) for the magnon stiffness to the results obtained
within ALDA (DALDA) and the gradient-corrected

D̃ = DALDA(1 + γx) (see Eq. (16a) for the definition of
γx). Magnon stiffnesses are given in meVÅ2.

D [meVÅ2] Dexp DALDA [19] D̃

Fe (BCC) 270−310 [20,21] 250 170
Co (FCC) 300−350 [22] 490 340
Ni (FCC) 400−550 [22] 850 610

to linear-response TD-SDFT results obtained within the
ALDA [19] and the ALDA results augmented by the renor-
malization 1 + γx is presented in Table 1. We can see that
the renormalization reduces the magnon stiffness obtained
within the ALDA and that the reduction of D due to
the renormalization brings the computed magnon stiffness
closer to the experimental results for cobalt and nickel.
The ALDA result for iron is already in good agreement
with the available experimental data and the renormal-
ization moves the stiffness to smaller values. A possible
explanation is that we are ignoring screening effects
since we are using an exchange-only approximations. The
d-electrons in iron are more delocalized compared to the
d-electrons in cobalt and nickel, which could explain why
screening plays an important role in iron, but is less
important for cobalt and nickel.

4 Conclusion and outlook

The ALDA has long been the workhorse of ab initio calcu-
lations of magnon dispersions in ferromagnetic materials.
The main merit of this approximation is to produce a
reliable value for the magnon frequency at q = 0. Specif-
ically it guarantees that the magnon dispersion starts
at the spin splitting energy due to the applied external
magnetic field for zero momentum, which implies that in a
ferromagnetic material it has zero energy at zero momen-
tum. The calculation of the frequency vs. wave vector
dispersion relation is less satisfactory, and usually results
in an overestimation of the magnon stiffness. In this paper
we have argued that this overestimation most likely arises
from the neglect of gradient corrections, which produce
transverse components of the exchange-correlation fields.
We have then devised a simple way to estimate these
corrections by making use of analytic results from our pre-
vious work on the exchange-only energy of a non-uniform
magnetized state in the homogeneous electron gas. A key
step in this estimate was the replacement of the complex
ferromagnetic material by a homogeneous electron gas
with reference density equal to the average density of the
electrons that are responsible for magnetism (d-electrons
in the case of the “canonical” metallic ferromagnets
iron, cobalt and nickel) and an average spin polarization
obtained from the equilibrium magnetization. The gra-
dient corrections to the magnon dispersion are found to
be surprisingly large (∼30%) and negative. Thus they
significantly improve the agreement between calculated
and measured values of the magnon stiffness for cobalt
and nickel. Admittedly, our empirical prescription falls
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shorts of the requirements for a true ab initio calculation
and also does not work well for iron. However, it points
unambiguously to the importance of gradient corrections,
and suggests that more rigorous work able to capture
more realistically the effects of magnetic inhomogeneities,
based for example on the U(1)×SU(2)-invariant func-
tionals for non-collinear SDFT proposed in reference [23]
would go a long way in solving this long-standing problem
in the ab initio theory of magnetism.
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