arXiv:1808.05510v1 [math.NA] 16 Aug 2018

Greedy low-rank algorithm for spatial connectome
regression

Patrick Kiirschner* Sergey Dolgov | Kameron Decker Harris?
Peter Benner®

August 15, 2018

Abstract

We study a smooth matrix regression problem formulated to recover brain connec-
tivity from data. The problem is set up as a general algebraic linear matrix equation of
high dimension, and the desired solution is approximated by a low-rank factorization.
This factorization is computed iteratively by an efficient greedy low-rank algorithm
that exploits important properties of the original matrix equation, such as sparsity
and positive definiteness. The performance of the method is evaluated on three test
cases: a toy artificial dataset and two cortical problems employing data from the Allen
Mouse Brain Connectivity Atlas. We find numerically that the method is significantly
faster than previous gradient-based methods and converges to the full rank solution as
the rank increases. This speedup allows for the estimation of increasingly large-scale
connectomes as these data become available from tracing experiments.

Keywords: Matriz equations, computational neuroscience, low-rank approximation,
networks

1 Introduction

Neuroscience and machine learning are now enjoying a shared moment of intense interest
and exciting progress. Many computational neuroscientists find themselves inspired by
unprecedented datasets to develop innovative methods of analysis. Exciting examples of
such next-generation experimental methodology and datasets are large-scale recordings and
precise manipulations of brain activity, genetic atlases, and neuronal network tracing efforts.
Building on previous work [15] [I8], we present a scalable method to infer spatially-resolved
brain network structure using data from the Allen Mouse Brain Connectivity Atlas [25].
This resource is one of the most comprehensive publicly available datasets, but similar data
are being collected for fly [17], rat [5], and marmoset [23], among others. Thus, techniques
which summarize many experiments into a consensus network are increasingly important.

*Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg
(kuerschner@mpi-magdeburg.mpg.de).

fUniversity of Bath, Mathematical Sciences (s.dolgov@bath.ac.uk)

FUniversity of Washington, Computer Science & Engineering (kamdh@uw. edu).

$Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg
(benner@mpi-magdeburg.mpg.de).

Many believe that uncovering such network structures will help us unlock the principles
underlying neural computation and brain disorders [13].

Structural connectivity refers to the synaptic connections formed between axons (output
processes) and dendrites (inputs) of neurons, which allow them to communicate chemically
and electrically. We represent such networks as a weighted, directed graph encoded by a
nonnegative adjacency matrix W. The network of whole-brain connections or connectome is
currently studied at a number of scales [31]: Microscopic connectivity catalogues individual
neuron connections but currently is restricted to small volumes due to difficult tracing of
convoluted geometries. Macroscopic connectivity refers to connections between larger brain
regions and is currently known for a number of model organisms. Mesoscopic connectivity
[24] lies between these two extremes, and captures projection patterns of groups of hundreds
to thousands of neurons (of the 10-10'° neurons in a typical mammalian brain).

We focus on the mesoscale because it is naturally captured by viral tracing experiments.
In these experiments, a virus is injected into a specific location in the brain, where it loads the
cells with proteins that can then be imaged, tracing out the projections of those neurons with
cell bodies located in the injection site. Performing many such experiments and varying the
injection sites to cover the brain, one can then “stitch” together a mesoscopic connectome.
We refer the interested reader to [25] for more details of the experimental procedures.

1.1 Previous methods of mesoscale connectome regression

Much of the work on mesoscale connectomes that we are familiar with leverages the data
and processing pipelines of the Allen Mouse Brain Connectivity Atlas available at http:
//connectivity.brain-map.org [21], 25]. In the early examples of such work, Oh et al.
used viral tracing data to construct regional connectivity matrices [25]. The mathematical
techniques employed for regional connectivity was a multivariate (i.e. matrix) nonnegative
regression. First, the injection data were processed into a pair of matrices X®® and YRee
containing the regionalized injection volumes and projection volumes, respectively. Oh et
al. then used nonnegative least squares to fit a matrix W such that YRes ~ JJ/Res x Ree,
Due to numerical ill-conditioning and a lack of data, some regions were excluded from the
analysis. Ypma and Bullmore [34] used a different, likelihood-based Markov chain Monte
Carlo method to infer regional connectivity and weight uncertainty with the same data.

Harris et al. [I5] made a conceptual and methodological leap when they presented a
method to use such data for spatially-explicit mesoscopic connectivity. The Allen Mouse
Brain Atlas is essentially a coordinate mapping which discretizes the “average” mouse brain
into 10-100 pm cubic voxels, where each voxel is assigned to a given region in a hierarchy of
brain regions. They developed a method which used an assumption of spatial smoothness
to fit the very large matrix of nonnegative voxel-voxel connection weights. See Figure [L.1
for a depiction of the data used and the interpretation of the matrix. The problem was
cast as nonnegative matrix regression with a Tikhonov smoothing penalty and applied to
the visual areas of the mouse brain. The smoothing term is essentially a high-dimensional
thin plate spline [33]. Using a simple low-rank version, Harris et al. argued that such a
method could scale to larger brain areas. However, the initial low-rank implementation,
employing projected gradient descent, turned out to be too slow to converge for large-scale
applications. Times to convergence were not reported in [I5], but the full rank version
typically took around a day, while the low-rank version needed multiple days to reach a
minimum/]

KD Harris, personal communication, 2017.

http://connectivity.brain-map.org
http://connectivity.brain-map.org

Wi, j
\]\\jl } ! % - T
|\\ /—:5 “*H_H—L 1i \\‘
. |
<\] le’] .|
~ \ = N\
[\
) Wa, s)
~ 13,] =

Figure 1.1: Schematic of the mesoscale connectome inference problem. A) The goal is to
find a matrix W so that the pattern of neural projections y arising from an injection x is
recovered via matrix-vector multiplication: y &~ Wxz. These vectors x,y come from viral
tracing experiments. B) An example of the data, in this case a coronal slice from a tracing
experiment delivered to primary motor cortex (MOp). Bright green areas are neural cells
expressing the green fluorescent protein. C) The raw data are preprocessed to separate the
injection site (red/orange) from its projections (green). Fluorescence values in the injection
site enter into the source vector x, whereas fluorescence everywhere else is stored in the
entries of the target vector y. Each of these vectors is a discretized volume image of the
brain. An entry W;; in the connectome matrix is the amount of fluorescence at location
¢ given one unit of source fluorescence at location j. The matrix W is a linear operator
mapping source images to target images. Image credit (B and C): Allen Institute for Brain
Science.

In their next attempt, Knox et al. [I§] simplified the mathematical problem by assuming
that the injections were delivered to just the center of mass of the injection volume. Further-
more, smoothing was performed in just the injection space, i.e. over just the columns rather
than both columns and rows of W. The multivariate regression problem ends up simplifying
into a kernel regression problem which is explicitly low-rank, due to the “kernel trick” [33].
Such a method was then applied to the whole mouse brain, yielding the first estimate of
voxel-voxel whole-brain connectivity for this animal. However, because the smoothing was
performed only in the source space, it would be better to improve the low-rank method for
the original spline problem [I5] and apply it to the whole brain.

1.2 Mathematical outline of the spatial connectome regression
problem

Here, we present a new low-rank approach to solving the smoothness-regularized optimiza-
tion problem posed by Harris et al. [I5]. Specifically, they considered solving

. 1 , A -,
W = arggin S [PaWX = V)l[}+ S ILW + WL, (1)

where the minimum is taken over all nonnegative matrices, Py, defines an entry-wise product
(Hadamard product) Po(M) = M o), for any matrix M € R"™*™ni and () is a binary
matrix, masking out the injection sites where the entries of Y are unknown. Moreover, the
data matrices are X € R™*"n and Y € R™>*"niand the smoothing matrices L, € R™*™
and L, € R™ "™ The parameters nx and ny are the number of locations in the discretized
source and target regions of the brain. In general, these could be unequal, e.g. if injections
were only delivered to the right hemisphere of the brain. The other parameter ni,; is the
number of injections performed, i.e. the number of pairs (z;,y;) we have available. Note
that we choose a regularization parameter A and set A = 5\7;—;2 to avoid dependence on
the problem size. Also note that, in this paper, we take a different convention for Q0 (the
complement) as in the previous paper [15].

The spatial problem (|1.1]), with orders of magnitude more entries in W than the regional
case, is highly underdetermined. The gridded brain at 100 pm resolution contains approxi-
mately nx, ny =€ O(10°) voxels in 3-D. On the other hand, the number of experiments ny;
is less than O(10%). By projecting the 3-D cortical data into 2-D, as we do in this paper,
we can reduce the size by an order of magnitude nx,ny € O(10%). However, focusing on
the cortex also leads to a reduced n;,; € O(10?). In any case, inferring a full spatial connec-
tivity will always be an underdetermined problem until orders of magnitude more tracing
experiments are performed. The smooth regularizer is thus essential for filling the gaps in
injection coverage. Furthermore, the vast size of the ny x nx matrix W for whole-brain
connectivities has motivated our search for scalable, fast low-rank methods. As in many
regularized underdetermined problems, low-rank solutions will often fit the data nearly as
well as a full-rank ones.

1.2.1 Continuum version explains the numerical difficulties of naive iterative
methods

We will now describe some of the mathematical properties of this problem, in order to
illuminate some of the reasons why it can be challenging to solve. Equation (1.1)) can be
seen as a discrete version of a continuous problem, where the cost which is minimized is:

%nzl/zm (/SW(x,y)Xi(x)dx—Yz-(y)>2dy+%LL(AW(x,y))dedy. (1.2)

Here, W : T x S — R is the continuous connectome to be fit, in this case represented as the
kernel of an integral operator from source space S to target space T'. These regions S and T'
are both compact subsets of R3. For simplicity, one can consider S =T = the whole brain.
The mask region §2; C T is the subset of the brain excluding the injection site. Finally, the
discrete Laplacian terms L have been replaced by the continuum Laplacian operator A.
For simplicity, consider €); =T for all ¢ = 1, ..., ni,; and relax the constraint of nonneg-
ativity on W. Taking the first variational derivative of and setting it to zero yields

the Euler-Lagrange equations for this problem without the nonnegativity constraint on W.
After simplification, these are

0 = AA?W iX /Wm Y) (iX)dx'
= MAW(z,y) — g(x,y) +/SW(x’,y)f(ﬁf’,x)dﬂf’, (1.3)

where for convenience we have defined the functions

Minj Minj

x) = ZXi(x/)Xi(I) and g(r,y) =) Xi(2)Yi(y).

Note that f and ¢ are analogous to X X7 and Y X7, respectively, which represent data
covariance matrices that occur in the discrete version of the problem. The smoothing
operator A? is the biharmonic operator (also known as the bi-Laplacian).

Equation is a fourth-order partial integro-differential equation. These equations
are typically quite difficult to solve because they are monlocal. Iterative solutions such as
gradient-based methods to biharmonic and similar equations can be pathologically slow to
converge. It takes many iterations to propagate the highly local action of the biharmonic
differential operator across global spatial scales; this can be likened to the slow O(\/f)
convergence of the heat equation to a stationary distribution. In these problems, appropriate
preconditioners or multigrid methods are very important. However, they might be difficult
to derive for the mixed integro-differential equation.

Very slow convergence is what we have found when applying gradient-based methods to
problem and low-rank versions of it. When we attempted to solve the whole-cortex top
view and flatmap problems in Sections and , the method had not converged (from a
naive initialization) after a week of computation. However, initializing with the output of
the method we present here speeds things up significantly.

1.2.2 QOutline of the paper

As an alternative, we present a greedy low-rank algorithm tailored to the previously men-
tioned problem. Specifically, we relax the nonnegativity constraint and consider solutions
to

1 A
W* = arg min §||PQ(WX -Y)|%+ §||LyW +WLI|%, (1.4)

where all of the matrices and parameters are as in ([.1)). In practice, we find that the
solutions to the linear problem are very close to those of the nonnegative problem
, since the data matrices X and Y themselves are nonnegative. Setting any negative
entries in the computed solution W* to zero is adequate, or can serve as an excellent initial
guess to an iterative solver for the slower nonnegative problem.

Equation is a regularized least-squares problem. In Section , we show that taking
the gradient and setting it equal to zero leads to a linear matrix equation in the unknown
W the normal equations for this problem. This takes the form of a generalized Sylvester
equation with coefficient matrices formed from the data and Laplacian terms. The data
matrices are, in fact, of low rank since ni,; < nx,ny, and thus we can expect a low-rank
approximation W a UV'T to the full solution to perform well (see [I5], although we are not
sure how to justify this rigorously in our specific case).

We provide a brief survey of some low-rank methods for linear matrix equations in
Section . We employ a greedy solver that finds rank-one components w;v] one at a
time, explained in Section After a new component is found, it is orthogonalized and a
Galerkin refinement step is applied. This leads to our complete method, Algorithm [T}

We then test the method on a few connectome fitting problems. First, in Section we
test on a fake “toy” connectome, where we know the truth. This is the same test problem
considered in [I5], consisting of a 1-D brain with smooth connectivity. We find that the
output of our algorithm converges to the true solution as the rank increases and as the
stopping tolerance decreases.

Next, we present two benchmarks using real viral tracing data from the isocortices of
mice, provided by the Allen Institute for Brain Science (see Section || for details and links
to data and code to reproduce our results). In each case, we work with 2-D data in order
to limit the problem size and because the cortex is a relatively flat, 2-D shape. It has also
been argued that such a projection also denoises such data [32], [14]. In Section , we work
with data that are averaged directly over the superior-inferior axis to obtain a flattened
cortex. We refer to this as the top view projection. In contrast, for Section [3.3] the data are
flattened by averaging along curved streamlines of cortical depth. We call this the flatmap
projection.

2 Greedy low-rank method

In this section, we detail our method for problem ([1.4)).

2.1 Linear matrix equation for the unknown connectivity

Denote the objective function in (1.4) as J(W); then it can be decomposed as
1 A
TOV) = Jo(W) + Ju(W) = L[PalWX — ¥)[[5+ SIL,W + WL,

Writing Jp indexwise, we obtain (note that Qo Q = Q)

T, Minj

2
Z Qza (ZWszka_ za) .

zal

The derivative reads

(9Jp

7, Mnj

ZQZQ <ZWszka_ >Xka5m

,a=1

Tinj

=3 Yo, (Xk,awi,k ~ Xu@iaYia)

or in the vector form

av(z({(];v) = Z [(XoX]) ® diag(Qa)] vec(W) — vec (20 Y)XT),

a=1

where X, is the a-th column of X. Setting the derivative equal to zeros leads to the system
of normal equations

Avec(W) =vec((Q0Y)XT), (2.1)

6

where vec(W) is the vector of all columns of W stacked on top of each other. This linear
system features the following matrix, consisting of ni,; + 3 Kronecker products,

MNinj

A=) (X X]) ® diag(Qa) + ML ® T + 2L, @ L, + 1 ® L}). (2.2)
a=1

Note that without the observation mask, 2 is a matrix of all ones, and the first term
compresses to X XT® [.
Linear system ([2.1)) can be recast as linear matrix equation

A(W) = D, (2.3)

with the operator A(W) := AB(W) + C(W), where

TMinj

BW):=WL2+2L,WL, +L2W, C(W):=) _diag(Q)WX,X],
a=1

and the right hand side is
D:=(QoY)XT.

Note that the smoothing term B can be expressed as a squared standard Sylvester operator
BW)=S8(S(W)), where SW):=LW+WL,.

Operator S is the discrete Laplacian operator on the tensor product space T' x S. Further-
more, the right hand side D is a matrix of rank nj,j, since it is an outer product of two rank
Ninj Matrices.

2.2 Numerical low-rank methods for linear matrix equations

Because of the potentially high dimensions nx,ny, directly solving the algebraic matrix
equation ([2.3)) is numerically inefficient since the solution will be a dense ny X nx matrix,
making even storing it infeasible. However, since (20Y) € R™*™ni X € R™*™ni the
rank of the right hand side of is at most ni,j. By assumption, this is much smaller
than the sizes of overall problem dimensions nx, ny. It is often observed and theoretically
shown [I2], 2, [16] that the solutions of large matrix equations with low-rank right hand
sides exhibit rapidly decaying singular values. Hence, the solution W is expected to have a
very small numerical rank in the sense that only very few of its singular values are larger
than the machine precision. This motivates us to approximate the solution of by a
low-rank approximation W ~ UVT with U € R™*" V € R™*" and r < min(nx,ny). The
low-rank factors are then typically computed by iterative methods which never form the
approximation UV'T explicitly because they operate on the factors instead.

Consider a standard Sylvester equation AX + X B = D, with low-rank right hand side
D. This case has been intensively researched and several efficient numerical algorithms for
computing low-rank solution factors were developed [I], 3, [4, 30]. For general linear matrix
equations, like the one we are faced with in , computing low-rank solution factors
is significantly more demanding. Often, specialized low-rank methods are considered for
problems having particular structures or properties [8, 2 29| 10 16, 28] (e.g., B, C have
to form a convergent splitting of A), which are not present in the problem at hand.
However, our problem is positive definite.

One possibility for dealing with general linear matrix equations are iterative matrix-
valued Krylov subspace methods [8, 20l 2] that work with low-rank matrices instead of
vectors. For rapid convergence of these methods, we typically need a preconditioner, whose
selection is not always easily possible. In our problem, (2.3)), these Krylov methods per-
formed rather poorly, since we need to perform rank truncations after major subcalculations
(updates of iterates, preconditioner and operator applications), which occur at every itera-
tion step. Rank truncation can, e.g., be carried out via thin QR or SVD decompositions.
However, computing these decompositions was very quickly getting too expensive because
of the sheer amount of necessary rank truncations in the Krylov method.

An approach that does not have these drawbacks is a greedy method, as proposed by
Kressner and Sirkovi¢ [19], which is based on successive rank-1 approximations of the error.
As first explained by Kressner and Sirkovi¢, this method has a number of advantages which
we recap here. Each rank-1 approximation requires solving the original problem reduced to
a column or row space only. This reduction inherits the sparsity of the original matrices (in
our case, L, and L, are sparse), while reducing the unknown variable from a matrix to a
vector. Hence, it can be solved efficiently using sparse direct linear solvers.

Approximating directly the error in the solution instead of the residual or Krylov vec-
tors is beneficial for two reasons. First, the convergence of the low-rank approximation is
governed by the smoothness of the solution, and not the condition number of the matrix A
. The error-greedy method should converge dependent on only the condition numbers
of the reduced systems. However, we can employ efficient and accurate solvers to these re-
duced systems, leading to good performance on the overall problem. Second, by improving
the approximations only by rank-1 updates in every step, and by getting rid of the resid-
ual and Krylov vectors, we avoid the exponentially fast increasing column ranks in later
iterations, and no expensive rank truncation operations are required. After computing a
rank-1 increment, we refine the solution by solving the Galerkin projection onto the bases
of all previous rank-1 greedy approximations in both rows and columns. This makes this
extra Galerkin system small and well-conditioned, and thus amenable to unpreconditioned
iterative methods. In turn, the Galerkin refinement reweights the sub-optimal components
produced by the greedy steps in a global way. This improves the convergence rate and
prevents the ranks from becoming unnecessarily high. Since we never assume any particular
properties of the matrix expansion besides sparsity of certain matrices, the greedy
method is adequate for the general matrix equation ([2.1)).

2.3 Description and application of the greedy low-rank solver

Here we briefly review the algorithm from [19] and give information on how it is employed
for handling our particular problem ([2.3)).

Starting from an approximate solution W; ~ W of the linear matrix equation A(W) =
D, equation (2.3), we attempt to improve it by a update of rank one: W,y = W; +
uj+1v}+1, where u;1; € R™ and v;4; € R™. The update vectors u;,;, vj4; are computed
by minimizing a certain error functional. In our case, the matrix A associated to A is
positive definite and, thus, induces the A-inner product (X,Y) 4 = Tr(YTA(X)) and the A-
norm ||Y|| 4 := /(Y,Y). Hence, uji1,vj41 can be determined by minimizing the squared

error in the A-norm:
(uj+1,vj41) = arg Tzllvn W =W — uoT|% (2.4)
= arg min Tr((W — W; —uv™)TA(W — W; — uvT))
= argmin Tr((W — W; — wv™)T(D — A(W;) — A(uwvT))) .

Discarding constant terms, noting that (X,Y)4 = (Y, X) 4, since we are dealing with real
matrices, and setting R; = D — A(W)) leads to

(Wjy1,vj41) = arg HulivanT’ uvT) 4 — 2 Tr(uww™R;) . (2.5)
Notice that the rank-1 decomposition wvT is not unique: we can rescale the factors by any
nonzero scalar ¢ such that (uc)(v/c)T represents the same matrix. This reflects the fact that
the optimization problem (2.5 is not convex. However, it is convex in each of the factors u
and v separately.

We obtain the updates u;i1, vj41 via an alternating least squares (ALS) scheme [26].
First, a fixed v is used in and a minimizing u is computed which is in the next stage
kept fixed and (| .) is solved for a minimizing v. Of course, the order of this calculation
can be reversed. For a fixed vector v with ||v|| = 1 the minimizing problem is

4 = argmin(uvT, uv") 4 — 2 Tr(uwv™R))

= arg min ()\ ((uTu)oTL2v + 2(u” Lyv) (07 Lyv) + uT L)
+ Z(quiag(QQ)u)(vTXanv)> —2u'Rjv

and, hence, 4 is obtained by solving the linear system of equations

A= Ryo, A=\ ((0TL20)T + 2L, (v L) + L2) + 3 diag(Qu) (0T Xu XIv). (2.60)

a=1

The second half iteration starts from the fixed u = @/||@]| and tries to find a minimizing v
by solving

Minj

Bio = Rlu, B:=X(L2+2L,(u"Lyu)+ (u"L2u) +Z (uTdiag(Q)u)(XoXT) (2.6h)

which can be derived by similar steps. The linear systems and (inherit the
sparsity from L., L, and . Therefore they can be solved by sparse dlrect or iterative
methods. We chose to employ a sparse direct solver for as this was faster than
other alternatives. The coefficient matrix B in (2.6b)) is the sum of a sparse (Laplacian
terms) and a low-rank (rank n;,; data terms) matrix. In this case, we solve using the
Sherman-Morrison-Woodbury formula [11] and a direct solver for the sparse inversion.
Both half steps form the ALS iteration which should be stopped when the iterates
are close enough to a critical point. This, however, might be difficult to check. Here we
propose a simpler approach compared to the one in [19]. Since we rescale u and v such that
llu|l2 = ||v]]2 = 1, the norm of the other factor is equal to the norm of the full matrix. In

other words, |||z = ||GvT||, after solving for @, and hence |||/ should converge to the norm
of the exact solution. This motivates a simple criterion: we stop the ALS when

(I =d)[[all < |o]l2 < (1 +0)||ul-,

where @ and v are taken from two consecutive ALS steps, and § < 1 is a small threshold. It
turns out that a relatively crude tolerance of § = 0.1, corresponding to 2—4 ALS iterations,
is sufficient in practice for the overall convergence of the algorithm.

The second stage of the method is a non-greedy Galerkin refinement of the low-rank
J
factors. Suppose arank j approximation W; = > w;v] of W has been already computed. Let
i=1
U € R™>J and V € R™*J have orthonormal columns, spanning the spaces span{uy, ..., u;}
and span{vy, . .., v;}, respectively. We compute a refined approximation UZVT for Z € R7*J

by imposing a Galerkin condition onto the residual:
Find Z so that ~ A(UZVT)—D 1 {UZVT e R™"™ 7 c R}
This leads to the dense, square matrix equation in Z

AZ(VTLEV) +2(UTL,U)Z(VTL,V) + (UTLIU) Z)
< (2.7)
+) (UTdiag(Qa)U)Z(VTXX]V) = UTDV

a=1

of dimension j < r < nx, ny.

Equation is a projected version of and inherits its structure, especially the
positive definiteness of the defining operator. Instead of using a direct method to solve
as in [19], we employ an iterative method similarly to [28]. Due to the positive definiteness,
the obvious method of choice is a dense, matrix-valued conjugate gradient method (CG).
Moreover, we reduce the number of iterations significantly by taking the solution Z from
the previous greedy step as an initial guess. The improved solution W, = UZVT yields
a new residual Rj 1, = D — A(W;11) onto which the ALS scheme is applied to obtain the
next rank-1 updates. As shown in [19], this Galerkin refinement will typically substantially
improve the greedy approximation, leading to a faster convergence rate. We can say that
the ALS scheme is primarily used to sketch the projection bases for the Galerkin solution,

which justifies the limited number of ALS steps. The complete procedure is illustrated in
Algorithm [1}

3 Performance of the greedy low-rank solver on three
problems

There are three test problems to which we apply Algorithm [I} a toy problem with synthetic
data (Section , the top view projected mouse connectivity data (Section , and the
flatmap projected data (Section .

The goal of this study is to investigate the computational complexity and convergence of
the greedy algorithm. Since the matrices in are sparse, the ALS steps need O(nr?niy;)
operations in total for the final solution rank r, where n = max(nx,ny). In turn, if the
solution of takes v CG iterations, this step will have a cost of O(yr°ny,;). Although v
can be kept at the same level for all j, it depends on the stopping tolerance 7, as does the

10

Algorithm 1: Greedy rank-1 method with Galerkin projection for ([2.3))
Input : Matrices L,, Ly, X,Q,Y defining (2.3), maximal allowed rank r, tolerance

0<rK1
Output: Low-rank approximation of W = UZVT in factored form
1 Initialize Wy =0, Ry=D, Uy=Vo =[], =0
2 repeat
3 Pick initial vector v for ALS with ||v|| = 1, then get rank-1 update:
4 while 0 > 0.1 do
5 Solve At = Rjv for 4 and set u = @/ Eqn.
6 Solve B = Rlu for ¢ and set v = o/|/9 Eqn. (2.6D)
7 0= H — 1’
8 Ujt1 = orth([U;, ul]), Vj41 = orth([V},v]) Orthogonalize new factors
Increment rank 7 <— 5+ 1
10 Solve Eqn. for Z; using conjugate gradients Galerkin update
u | Rj=D-AU;Z;V]) Update residual
12 | W = |U;Z;V] = U Z; VL e U Z3V] | e

13 until j =7 or OW <7

rank . We will therefore investigate the cost in terms of the total computation time and
the corresponding solution accuracy for a range of solution rank values.

The numerical experiments were performed on an Intel® E5-2650 v2 CPU with 8 threads
and 64Gb RAM, as well as a Nvibia® P100 GPU card for certain subtasks. In particular,
the Galerkin update relies primarily on dense linear algebra for solving by means of
the CG method, such that this stage admits an efficient GPU implementation. We use
MATLAB® R2017b for all computations in Algorithm |1 running on the Balena High Per-
formance Computing (HPC) Service at the University of Bath. See Section |5| for additional
data and code resources.

Throughout the experiments, we measure errors in the solution using the root mean
squared error. Given any reference solution W, of size ny X nx, e.g. the truth or a full-rank
solution when the truth is unknown, and a low-rank solution W,, the RMS error is computed

as follows,

EW,,W,) = W, — Wl . (3.1)

A/ Ty
Also, we report the relative error in the Frobenius norm,
_ HWT _ W*HF

Srel(WmW*) = W . (32)
*F

3.1 Test problem: a toy brain

7

We use the same test problem as in [I5], a one-dimensional “toy brain.” The source and
target space are S = T = [0,1]. The true connectivity kernel corresponds to a Gaussian
profile about the diagonal plus an off-diagonal bump:

Wiree(2,y) = exp {— (xoly) } +0.9 exp {— S 0.8)(0;)(2?/ —01) } : (3.3)

11

Table 3.1: Computing times and errors for the toy brain test problem. The output W is
compared to truth and a rank 140 reference solution. In this case, the truth Wi, is known
from (3.3)).

rank (W) 10 20 40 60 80
CPU time (sec.) 0.0396 0.1554 0.9653 2.6398 3.1108
E(W, Wigo) 3.2324e-01 5.5407e-02 1.4162e-02 1.2125e-03 3.1549e-04
EW, Wirne) 2.9418e-01 7.9921e-02 7.1537e-02 6.9777e-02 6.9821e-02
Ead (W, Wiyg) | 4.3320e-01 8.9700e-02 2.4900e-02 2.5000e-03 5.1300e-04
Eet(W, Wirwe) | 4.0130e-01 1.1410e-01 1.0350e-01 1.0040e-01 1.0040e-01
Figure 3.1: Top: true connectivity map Wiy (left) and the low-rank solution for the test
problem with rank = 40 and A = 100 (right). Bottom: solutions with 2 = 1 (left) and
A =0 (right). The locations of simulated injections are shown by the grey bars.

w
40
0
. 0.2 .
. 0.4 .
. 0.6 .
0.3
0.2 0.8 0.2
0.1
I L L l n L O
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0=1 A
0 0 :
0.4 . 0.4
0.6 ' 0.6
0.2
0.8 0.8
0
1 ‘ : 1 ‘
0 0.2 0.4 0.6 0.8 1 .

See Fig. 3.1l The input and output spaces were discretized using nx = ny = 200 uniformly
spaced lattice points. Injections are delivered at ni,; = 5 approximately evenly-space loca-
tions in S, with a width of 0.12 4+ 0.1¢, where € ~ Uniform(0,1). The values of X are set
to 1 within the injection region and 0 elsewhere, Y is set to 0 within the injection region,
and we add Gaussian noise with standard deviation o = 0.1. The matrices L, = L, are the
5-point finite difference Laplacians for the rectangular lattice.

In Fig. m we depict the true toy connectivity Wi as well as a number of low-rank
solutions output by our method. As in [15], we show that both the mask and regularization
are required for good performance. If we remove the mask, setting {2 equal to the matrix of

true

0.2

0.4

0.6

0.8

1

]
o =R =
o) NSRS

o
o
N
e
N
o
=]
=

0.8

12

Figure 3.2: Computing times and errors for the top view data.

CPU time (sec.) of low-rank method

€rrors

51 —o— E(W, Wigno)
10 10—2 1 — rel(w WlOOO)
1073 1
10* | 107§
107 |
: 1076 ¢
10 | —— CPU
- GPU
= : : : : | 1077 + } } : o— ;
200 400 600 800 1,000 200 400 600 800 1,000
r T

Figure 3.3: Computing times and errors for the flatmap data.

CPU time (sec.) of low-rank method
errors

—— 5(W7 Wmoo)
10-2 | = rel(W-, Wlooo)
10° |
1073 ¢
104 +
10% ¢
105 +
—6 |
—o— CPU 10
o | = GPU
© 200 400 600 800 1,000 200 400 600 800 1,000
r r

all ones, then there are holes in the data at the location of the injections. If we try fitting
with A = 0, i.e. no smoothing, then the method cannot fill in holes or extrapolate outside
the injection sites. It is only with the combination of all ingredients (a mask that reflects
the injection sites and in this case A = 100), that we recover the true connectivity.

In Tab. we show the performance of the algorithm for ranks 10, 20, 40, 60, and 80.
The output W is compared to Wi, as well as the rank 140 output of the algorithm. We see
that the RMS distance to the reference solution Wi, decreases as we increase the rank, as
does the relative distance. However, the RMS and relative distances from W, asymptote
to roughly 0.07 and 10%, respectively, by rank 40. This shows that rank 40 is a suitable
maximum rank for this problem given the standard deviation of the problem.

3.2 Mouse cortex: top view connectivity

We next benchmark the low-rank greedy solver on mouse cortical data projected into a top-
down view. See Section |5 for details about how we obtained these data. Here, the problem

13

Figure 3.4: Cost functions of the low-rank solutions

4,700 W) 10,400 TW)
4,680 |
10,300 |
4,660 |
10,200 |
4,640 |
10,100 |
4,620 |
4,600 1 1 1 1 | 10,000 ‘ ‘ ‘ ‘ >
200 400 600 800 1,000 200 400 600 800 1,000
T r

sizes are ny = 44478 and nx = 22377 and the number of injections n;,j = 126. We use the
smoothing parameter A = 106,

We run the low-rank solver with the target solution rank varying from 125 to 1000. The
stopping tolerances for the inner PCG iteration for were decreased geometrically from
1073 for r = 125 to 107 for » = 1000. This delivers accurate but cheap solution to the
Galerkin system (2.7).

These low-rank solutions are compared to the full full-rank solution W, (i.e. rank
= nx = 22377) produced by an iterative, gradient-based method. Note that this full rank
algorithm was initialized from the output of the low-rank algorithm. This led to a very
significant speedup; the full rank method had not reached a considerable value of the cost
function after multiple days of computation.

The computing times and errors are presented in Fig. [3.2] We see that the RMS errors
are relatively small for ranks above 500, below 1075, Neither the RMS or relative error
seem to have plateaued at rank 1000, but they are small. At rank 1000, the vector /.
error (maximum absolute deviation of the matrices as vectors, not the matrix oo-norm)
[W1000 — Weanl| oo is less than 1079, which is certainly within experimental uncertainty.

Note that the output of the algorithm is W, = UZVT. We perform a final SVD of the
Galerkin matrix, Z = ULV and set U=0UUand V = V'V, so that W, = USVT is the
SVD of the output.

The first four of these singular vectors of the solution are shown in Fig. 3.5} Note that
the orientation here has the medial to lateral axis aligned from left to right and anterior to
posterior aligned from top to bottom, as in a transverse slice. The midline of the cortex
is in the center of the target plots, whereas it is on the left edge of the source plots. We
observe that the leading rank-1 component is a strong projection from medial areas of the
cortex near the midline to nearby locations. The second component provides a correction
which adds local connectivity among posterior areas and anterior areas. Note that increased
anterior connectivity arises from negative entries in both source and target vectors. The
sign change along the roughly anterior-posterior axis manifests as a reduction in connectivity
from anterior to posterior regions as well as from posterior to anterior regions. The third
component is a strong local connectivity among somatomotor areas located medially along
the anterior-posterior axis and stronger on the lateral side where the barrel fields, important
sensory areas for whisking, are located. Finally, the fourth component is concentrated in

14

Figure 3.5: Top four singular vectors of the top view connectivity with r = 500. Left: scaled

target vectors Us. Right: source vectors V.

Factor

Factor

Factor

U
= 2

Factor

1

0.2

0.1

-0.1

-0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

0.15

0.05

-0.05

-0.15

0.02
0.01
0
-0.01
-0.02

"

»

0.03
0.025
0.02
0.015
0.01
0.005

-0.005

0.015

0.01

0.005

-0.005

-0.01

-0.015

0.03

0.02

0.01

-0.01

-0.02

-0.03

posterior locations, mostly corresponding to the visual areas, as well as more anterior and
medial locations in the retrosplenial cortex (thought to be a memory and association area).
The visual and retrosplenial parts of the component show opposite signs, reflecting stronger
local connectivity within these regions than distal connectivity between them.

The patterns we observe in Fig. are reasonable, since connectivity in the brain is

15

dominantly local with some specific long-range projections. We also observe that the pro-
jection patterns (left components U Y)) are fairly symmetric across the midline. This is also
expected due to the mirroring of major brain areas in both hemispheres, despite the evi-
dence for some lateralization, especially in humans. The more specific projections between
brain regions will show up in later, higher frequency components. However, it becomes
increasingly difficult to interpret lower energy components as specific pathways, since these
combine in complicated ways.

3.3 Mouse cortex: flatmap connectivity

Finally, we test the method on another problem which is a flatmap projection of the brain
(see Section || for details). This projection more faithfully represents areas of the cortex
which are missing from the top view since they curl underneath that vantage point. The
flatmap is closer to the kind of transformation used by cartographers to flatten the globe,
whereas the top view is like a satellite image taken far from the globe.

The problem size is now larger by roughly a factor of three relative to the top view.
Here, ny = 126847 and nx = 63435. The number of experiments is the same, ni,; = 126,
whereas the regularization parameter is set to A =3x10". The smoothing parameter was
set to give the same level of smoothness, measured “by eye,” in the components as A = 10°
in the top view experiment.

In this case, the computing time of the full solver would be excessively large, so we do
not estimate the error by comparison to the full solution. Instead, we take the low-rank
solution with r» = 1000 as the reference solution W, = Wigp. The computing times and the
errors are shown in Fig.

Again, we see that by r = 500 the distance from W, is smaller than 10%. Furthermore,
the RMS error between rank 500 and 1000 is again less than 1075, so we believe rank 500
is probably a very good approximation to the full solution. Here, the benefits by using
the GPU implementation for solving were more significant than for the top view case.
We obtained the rank 500 solution in approximately 1.5 hours, which is significantly less
than pure CPU implementation, which took 6.4 hours. Comparing Figs. and [3.3] the
computation times for the flatmap problem with » = 500 and 1000 are roughly twice as
large as for the top view problem. On the other hand, for » = 125 and 250, the compute
times are about three times as long for flatmap versus top view. The observed scaling in
compute time appears slightly slower than O(n) in these tests.

The four dominant singular vectors of the flatmap solution are shown in Fig. The
orientation is the same as in Fig. 3.5 with the anterior-posterior axis from top to bottom
and the medial-lateral axis from left to right. The first two rank-1 components are directly
comparable between the two problem outputs, although we see more structure in the flatmap
components. This could be due to employing a projection which more accurately represents
these 3-D data in 2-D, or due to the choice of smoothing parameter A\. The third and fourth
components, on the other hand, are comparable to the fourth and third components in the
top view problem, respectively.

Again, all of these patterns are reasonable and expected. The raw 3-D data that were
fed into the top view and flatmap projections were the same, but the greedy algorithm is
run using different projected datasets. It is reassuring that we can interpret the first few
factors and directly compare them against those in the top view.

16

Figure 3.6: Top four singular vectors of the flatmap connectivity with r = 500. Left: scaled
target vectors UX.. Right: source vectors V.

Factor 1
0.12 0.010
01 ‘ 0.008
0.08 0.006
0.06 0.004
0.002
0.04
0.000
0.02 A
-0.002
Factor 2
0.015
0.1
9 N 0.01
. 0.05 . 0.005
0 Q- ;
' -0.005
0.05 .
0.01
0.1
-0.015
Factor 3
0.02
0.1
0.015
0.01
0.05
0.005
0 0
‘ -0.005
@
-0.05 5 0.01
-0.015
0.1
0.02
Factor 4
o1 0.015
0.05 4 el
. “ 0.005
° 4 °
-0.005
-0.05 .
, Q -0.01
01 -0.015

17

4 Discussion

We have studied a numerical method specifically tailored for the important neuroscience
problem of connectome regression from mesoscopic tract tracing experiments. This connec-
tome inference problem was formulated as a regularized, multivariate, structured regression
problem, the convex program (I.4). The optimality conditions for this problem turn out to
be a linear matrix equation in the unknown connectivity W. Our numerical results show
that the low-rank greedy algorithm, as proposed by Kressner and Sirkovié¢ [19], is a viable
choice for acquiring low-rank factors of W with a computation cost that was significantly
smaller compared to other approaches [19] 2 20]. This allows us to infer the flatmap matrix,
with approximately 140x more entries than previously obtained for the visual system, while
taking less timd?l The first few components of these 2-D cortical connectivity matrices are
interpretable and reasonable, although a full anatomical study of this inferred connectivity
is outside the scope of the current paper.

The major required ingredients for Algorithm (1| were: (1) solving large, sparse linear sys-
tems of equations at each ALS iteration, and (2) solving a much smaller, dense, projected
version of the original linear matrix equation for the Galerkin step. The last
subtask can be seen as a numerical bottleneck of the algorithm because of the cubic com-
plexity required for solving and also due to the absence of direct numerical methods
to handle dense, moderately sized general linear matrix equations. Hence, any progress in
this direction could improve the workload coming from the Galerkin acceleration. Here, we
employed a matrix valued CG iteration for approximately solving that was carried out
on a GPU to decrease the computation time of this stage. One could, of course, also argue
that equipping this CG iteration with a preconditioner might speed up its convergence, but
so far we were not successful in finding a preconditioner that both reduced the number of
CG steps and the computational time. A potential further research direction might there-
fore be to derive an adequate preconditioning strategy for the particular problem structure
at hand in , that would increase the efficiency of the employed Krylov method. Of
course, if such preconditioner would be found, it would also be possible to give low-rank
matrix-valued Krylov methods [8, 20, 2] directly applied to the large-scale problem ({2.3)
another try.

The original regression problem proposed by Harris et al. [I5], problem ([L.I)), demands
that the solution W be nonnegative. So far, this constraint is not considered by the employed
algorithm. However, for the test problem and data we have tried, the computed matrix turns
out to be majority nonnegativeﬂ We find typically small negative entries that could be
safely neglected without sacrificing the accuracy. Although a mostly nonnegative solution is
not generally expected when solving the unconstrained problem , it appears that such
behavior is typical for nonnegative data matrices X and Y.

Working directly with nonnegative factors U > 0 and V' > 0 was originally proposed by
Harris et al. [I5], where they applied a projected gradient method to find such an approx-
imation for connectome of mouse visual areas. Such a formulation would be very useful,
since it would lead to a nonnegative W and would allow interpreting each factor as a com-
bination of neural pathways. This is analogous to how nonnegative matrix factorization
(NNMF) is interpretable as a clustering [9]. However, as we started to apply the projected

2 We found the flatmap solution in hours versus the days it took to find the low-rank visual matrix
presented in [15].

3 In the top view problem, comparing the nonnegative versus unconstrained solutions, ver-
sus , we see that &(Wr, Wnonneg) = 3.99e-04. Projecting Wy, onto the nonnegative orthant leads to
EWproj, Whonneg) = 3.67¢-04. In either case the oo-norm difference is 0.009.

18

gradient approach to much larger problems, slow convergence as a result of nonlocality and
ill-conditioning made such an algorithm ineffective.

Modifying Algorithm [I] to compute nonnegative low-rank factors U and V or ensuring
that the low-rank approximation UVT ~ W is nonnegative, which is a nonlinear constraint,
is a much harder goal to achieve. The bottleneck is again the Galerkin step. For instance,
even if one generated nonnegative factor matrices U and V', e.g. by nonnegative alternating
least squares, the orthogonalization phase for the Galerkin update, and the update itself,
would destroy the nonnegativity. However, new methods of NNMF, many of which incor-
porate regularizations similar to our Laplacian terms [7, [6], are an area of ongoing research.
These include other techniques developed with neuroscience in mind, such as neuron seg-
mentation and calcium deconvolution [27] as well as sequence identification [22]. We hope
to study nonnegative, low-rank methods in the future.

5 Data and code

We tested out algorithm on two datasets (top view and flatmap) generated from Allen Insti-
tute for Brain Science Mouse Connectivity Atlas data http://connectivity.brain-map.
org. These data were obtained with the Python SDK allensdk version 0.13.1 available
from http://alleninstitute.github.io/AllenSDK/. Our data pulling and processing
scripts are available from https://github.com/kharris/allen-voxel-network.

We used the allensdk to retrieve 10 pm injection and projection density volumetric
data for 126 wildtype experiments in cortex. These data were projected from 3-D to 2-D
using either the top view or flatmap paths and saved as 2-D arrays. Next, the projected
coordinates were split into left and right hemispheres. Since wildtype injections were always
delivered into the right hemisphere, this becomes our source space S whereas the union of
left and right are the target space T. We constructed 2-D finite difference 5-point Laplacian
matrices on these grids. Finally, the 2-D projected data were downsampled 4x along each
dimension to obtain 40 pm resolution. The injection and projection data were then stacked
into the matrices X and Y, respectively. The mask was set via €;; = 1ix,.<0.4}-

MATLAB code which implements our greedy low-rank algorithm is included in the
repository: https://gitlab.mpi-magdeburg.mpg.de/kuerschner/lowrank_connectome.
We also include the problem inputs X,Y, L,, L,,Q for our three example problems (test,
top view, and flatmap) as MATLAB files. Note that Q is stored as 1 — € in these files, as
this matches the convention of [15].

Acknowledgements

We would like to thank Lydia Ng, Nathan Gouwens, Stefan Mihalas, Nile Graddis and oth-
ers at the Allen Institute for the top view and flatmap paths and general help accessing the
data. Thank you to Braden Brinkman discussions of the continuous problem. Thank you to
Stefan Mihalas and Eric Shea-Brown for discussions of connectivity regression and the suit-
ability or not of low-rank formulations. KDH was supported by the Big Data for Genomics
and Neuroscience NIH training grant. SD is thankful to the Engineering and Physical Sci-
ences Research Council (UK) for their support through Fellowship EP/M019004/1, and
the kind hospitality of the Erwin Schrodinger International Institute for Mathematics and
Physics (ESI), where part of this research was developed under the frame of the Thematic
Programme Numerical Analysis of Complex PDE Models in the Sciences.

19

http://connectivity.brain-map.org
http://connectivity.brain-map.org
http://alleninstitute.github.io/AllenSDK/
https://github.com/kharris/allen-voxel-network
https://gitlab.mpi-magdeburg.mpg.de/kuerschner/lowrank_connectome

References

1]

2]

[10]

[11]

[12]

[13]

[14]

P. BENNER, Solving Large-Scale Control Problems, IEEE Control Syst. Mag., 14
(2004), pp. 44-59.

P. BENNER AND T. BREITEN, Low rank methods for a class of generalized Lyapunov
equations and related issues, Numer. Math., 124 (2013), pp. 441-470, https://doi.
org/10.1007/s00211-013-0521-0.

P. BENNER, R.-C. L1, AND N. TRUHAR, On the ADI Method for Sylvester Equations,
J. Comput. Appl. Math., 233 (2009), pp. 1035-1045.

P. BENNER AND J. SAAK, Numerical solution of large and sparse continuous time
algebraic matriz Riccati and Lyapunov equations: a state of the art survey, GAMM
Mitteilungen, 36 (2013), pp. 32-52, https://doi.org/10.1002/gamm.201310003.

M. Bora, H.-W. DonNG, AND L. W. SWANSON, From Gene Networks to Brain
Networks, Nature Neuroscience, 6 (2003), pp. 795-799, https://doi.org/10.1038/
nnl096.

D. Carl, X. HE, J. HAN, AND T. S. HUANG, Graph Regularized Nonnegative Matrix
Factorization for Data Representation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33 (2011), pp. 1548-1560, https://doi.org/10.1109/TPAMI.
2010.231.

A. CicHOcKI, R. ZDUNEK, A. H. PHAN, AND S.-1. AMARI, Nonnegative Matriz
and Tensor Factorizations: Applications to Ezxploratory Multi-Way Data Analysis and
Blind Source Separation, John Wiley & Sons, July 2009.

T. DAMM, Direct methods and ADI-preconditioned Krylov subspace methods for gen-
eralized Lyapunov equations, Numer. Lin. Alg. Appl., 15 (2008), pp. 853-871.

C. Ding, X. HE, AND H. SIMON, On the Equivalence of Nonnegative Matriz Factor-
ization and Spectral Clustering, in Proceedings of the 2005 SIAM International Con-
ference on Data Mining, Proceedings, Society for Industrial and Applied Mathematics,
Apr. 2005, pp. 606-610.

E. RincH, G. MELE, J. KARLSSON, E. JARLEBRING, Sylvester-based preconditioning
for the waveguide eigenvalue problem, Linear Algebra Appl., 542 (2018), pp. 441-463.

G. H. GoruB AND C. F. VAN LOAN, Matriz Computations, Johns Hopkins University
Press, Baltimore, fourth ed., 2013.

L. GRASEDYCK, FExistence of a low rank or H-matriz approximant to the solution of
a Sylvester equation, Numer. Lin. Alg. Appl., 11 (2004), pp. 371-389.

S. GRILLNER, N. Ir, C. KocH, W. KOrROSHETZ, H. OKANO, M. POLACHEK, M.-
M. Poo, AND T. J. SEINOWSKI, Worldwide Initiatives to Advance Brain Research,
Nature Neuroscience, (2016), https://doi.org/10.1038/nn.4371.

R. GAMANUT, H. KENNEDY, Z. TOorROCzZKAI, M. ERCSEY-RAvAsz, D. C. VAN
EsseN, K. KNOBLAUCH, AND A. BURKHALTER, The Mouse Cortical Connectome,
Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Con-
nectivity Profiles, Neuron, 97 (2018), pp. 698-715.e10, https://doi.org/10.1016/j.
neuron.2017.12.037.

20

https://doi.org/10.1007/s00211-013-0521-0
https://doi.org/10.1007/s00211-013-0521-0
https://doi.org/10.1002/gamm.201310003
https://doi.org/10.1038/nn1096
https://doi.org/10.1038/nn1096
https://doi.org/10.1109/TPAMI.2010.231
https://doi.org/10.1109/TPAMI.2010.231
https://doi.org/10.1038/nn.4371
https://doi.org/10.1016/j.neuron.2017.12.037
https://doi.org/10.1016/j.neuron.2017.12.037

[15]

[16]

[17]

[19]

[20]

[21]

K. D. HARRIS, S. MIHALAS, AND E. SHEA-BROWN, High Resolution Neural Connec-
tivity from Incomplete Tracing Data Using Nonnegative Spline Regression, in Neural
Information Processing Systems, 2016.

E. JARLEBRING, G. MELE, D. PALITTA, AND E. RINGH, Krylov methods for low-
rank commuting generalized Sylvester equations, Numer. Lin. Alg. Appl., (2018), https:
//doi.org/10.1002/nla.2176.

A. JENETT, G. M. RUBIN, T.-T. B. NGO, D. SHEPHERD, C. MURPHY, H. DIONNE,
B. D. PrEIFFER, A. CAVALLARO, D. HALL, J. JETER, N. IYER, D. FETTER, J. H.
HAuseNFLUCK, H. PENG, E. T. TRAUTMAN, R. R. SvirskAs, E. W. MYERS,
Z. R. Iwinski, Y. Aso, G. M. DEPASQUALE, A. Enos, P. HuLamwMm, S. C. B.
Lawm, H.-H. L1, T. R. LAVERTY, F. LoNG, L. Qu, S. D. MurPHY, K. ROKICKI,
T. SAFFORD, K. SHAW, J. H. StmpsoN, A. SOWELL, S. TAE, Y. Yu, anDp C. T.
ZUGATES, A GAL4-Driver Line Resource for Drosophila Neurobiology, Cell Reports, 2
(2012), pp. 991-1001, https://doi.org/10.1016/j.celrep.2012.09.011.

J. E. Knox, K. D. HARRIS, N. GraDDIS, J. D. WHITESELL, H. ZENG, J. A.
HARRIS, E. SHEA-BROWN, AND S. MIHALAS, High Resolution Data-Driven Model
of the Mouse Connectome, bioRxiv, (2018), p. 293019, https://doi.org/10.1101/
293019l

D. KRESSNER AND P. SIRKOVIC, Truncated low-rank methods for solving general linear
matriz equations, Numer. Lin. Alg. Appl., 22 (2015), pp. 564-583, https://doi.org/
10.1002/nla.1973.

D. KrRESSNER AND C. TOBLER, Krylov Subspace Methods for Linear Systems with
Tensor Product Structure, STAM J. Matrix Anal. Appl., 31 (2010), pp. 1688-1714.

E. S. LEIN, M. J. HAWRYLYCZ, N. Ao, M. AYRES, A. BENSINGER, A. BERNARD,
A. F. Bog, M. S. Bocuski, K. S. BRockwAy, E. J. BYRNES, L. CHEN, L. CHEN,
T.-M. CueEN, M. C. CHIN, J. CHONG, B. E. CROOK, A. CzAPLINSKA, C. N.
DaNG, S. DatTAa, N. R. DEE, A. L. DEsaki, T. Desta, E. Diep, T. A. DoL-
BEARE, M. J. DONELAN, H.-W. DoNG, J. G. DOUGHERTY, B. J. DUNCAN, A. J.
EBBERT, G. EICHELE, L. K. EsTIN, C. FABER, B. A. FACER, R. FIELDS, S. R.
FiscHER, T. P. Fuiss, C. FRENSLEY, S. N. GATEs, K. J. GLATTFELDER, K. R.
HaLvERsON, M. R. HART, J. G. HouMaNN, M. P. HoweLL, D. P. JEUNG, R. A.
JoHNsoN, P. T. KARR, R. KawaL, J. M. KiDNEY, R. H. KnAPIK, C. L. KUAN,
J. H. LAKE, A. R. LARAMEE, K. D. LARSEN, C. LAuU, T. A. LEMON, A. J. LIANG,
Y. Liu, L. T. LuoNG, J. MICHAELS, J. J. MORGAN, R. J. MORGAN, M. T.
MorTRUD, N. F. MosQUEDA, L. L. NG, R. Nag, G. J. Orra, C. C. OVERLY,
T. H. PAk, S. E. PARRY, S. D. PAaTHAK, O. C. PEARSON, R. B. PUCHALSKI,
Z. L. RiLEY, H. R. RoCckKETT, S. A. ROWLAND, J. J. RovyaLL, M. J. Ruiz, N. R.
SARNO, K. SCHAFFNIT, N. V. SHAPOVALOVA, T. Sivisay, C. R. SLAUGHTERBECK,
S. C. SmitH, K. A. SmitH, B. I. SmiTH, A. J. SopT, N. N. STEWART, K.-R.
STUMPF, S. M. SUNKIN, M. SUTRAM, A. TAM, C. D. TEEMER, C. THALLER, C. L.
TaoMPSON, L. R. VARNAM, A. VISEL, R. M. WHITLOCK, P. E. WOHNOUTKA,
C. K. WorLkEey, V. Y. Wong, M. Woobp, M. B. YavyrLaocLu, R. C. YOUNG,
B. L. YounagsTrROM, X. F. YuaN, B. ZHANG, T. A. ZWINGMAN, AND A. R.
JONES, Genome-Wide Atlas of Gene FExpression in the Adult Mouse Brain, Nature,
445 (2007), pp. 168176, https://doi.org/10.1038/nature05453.

21

https://doi.org/10.1002/nla.2176
https://doi.org/10.1002/nla.2176
https://doi.org/10.1016/j.celrep.2012.09.011
https://doi.org/10.1101/293019
https://doi.org/10.1101/293019
https://doi.org/10.1002/nla.1973
https://doi.org/10.1002/nla.1973
https://doi.org/10.1038/nature05453

22]

23]

[24]

[25]

E. L. Mackevicius, A. H. BAHLE, A. H. WiLLIaAMS, S. GU, N. I. DENISSENKO,
M. S. GOLDMAN, AND M. S. FEE, Unsupervised Discovery of Temporal Sequences
in High-Dimensional Datasets, with Applications to Neuroscience, bioRxiv, (2018),
p. 273128, https://doi.org/10.1101/273128.

P. MaJkA, CHAPLIN, TRISTAN A., YU, HsIN-HAO, TOLPYGO, ALEXANDER, MI-
TRA, PARTHA P., WoJicIK, DANIEL K., AND R0OSA, MARCELLO G.P., Towards a
Comprehensive Atlas of Cortical Connections in a Primate Brain: Mapping Tracer In-
jection Studies of the Common Marmoset into a Reference Digital Template, Journal of
Comparative Neurology, 524 (2016), pp. 2161-2181, https://doi.org/10.1002/cne.
24023.

P. P. MiTtrA, The Circuit Architecture of Whole Brains at the Mesoscopic Scale,
Neuron, 83 (2014), pp. 1273-1283, https://doi.org/10.1016/j.neuron.2014.08.
055.

S. W. On, J. A. HArRrIS, L. NG, B. WinsLow, N. CAIN, S. MIHALAS, Q. WANG,
C. Lau, L. KuaN, A. M. HENRY, M. T. MorTRUD, B. OUELLETTE, T. N.
NGUYEN, S. A. SORENSEN, C. R. SLAUGHTERBECK, W. WAKEMAN, Y. LI,
D. FEnNGg, A. Ho, E. NicHoLAs, K. E. HIRokawA, P. BouN, K. M. JOINES,
H. PEng, M. J. HAwWRyLYCZ, J. W. PHILLIPS, J. G. HOHMANN, P. WOHNOUTKA,
C. R. GERFEN, C. KocH, A. BERNARD, C. DANG, A. R. JONES, AND H. ZENG,
A Mesoscale Connectome of the Mouse Brain, Nature, 508 (2014), pp. 207-214,
https://doi.org/10.1038/naturel13186.

J. M. ORTEGA AND W. C. RHEINBOLDT, [terative solution of nonlinear equations in
several variables, STAM, 2000.

E. A. PNEVMATIKAKIS, D. SOUDRY, Y. GAao, T. A. MACHADO, J. MEREL,
D. Prau, T. REARDON, Y. Mu, C. LACEFIELD, W. YANG, M. AHRENS,
R. Bruno, T. M. JESSELL, D. S. PETERKA, R. YUSTE, AND L. PANINSKI, Simul-
taneous Denoising, Deconvolution, and Demizing of Calcium Imaging Data, Neuron,
89 (2016), pp. 285-299, https://doi.org/10.1016/j.neuron.2015.11.037.

C. E. POwWELL, D. SILVESTER, AND V. SIMONCINI, An Efficient Reduced Basis
Solver for Stochastic Galerkin Matriz Equations, SIAM J. Sci. Comput., 39 (2017),
pp. A141-A163, https://doi.org/10.1137/15M1032399.

S. D. SHANK, V. SIMONCINI, AND D. B. SzyLD, Efficient low-rank solution of gen-
eralized Lyapunov equations, Numer. Math., 134 (2015), pp. 327-342.

V. SIMONCINI, Computational methods for linear matriz equations, STAM Rev., 38
(2016), pp. 377441,

O. SPORNS, Networks of the Brain, The MIT Press, 1st ed., 2010.

D. C. VAN ESSEN, Cartography and Connectomes, Neuron, 80 (2013), pp. 775-790,
https://doi.org/10.1016/j.neuron.2013.10.027.

G. WAHBA, Spline Models for Observational Data, STAM, Sept. 1990.

R. J. F. YpMA AND E. T. BULLMORE, Statistical Analysis of Tract-Tracing Experi-
ments Demonstrates a Dense, Complex Cortical Network in the Mouse, PLOS Comput
Biol, 12 (2016), p. 1005104, https://doi.org/10.1371/journal.pcbi.1005104.

22

https://doi.org/10.1101/273128
https://doi.org/10.1002/cne.24023
https://doi.org/10.1002/cne.24023
https://doi.org/10.1016/j.neuron.2014.08.055
https://doi.org/10.1016/j.neuron.2014.08.055
https://doi.org/10.1038/nature13186
https://doi.org/10.1016/j.neuron.2015.11.037
https://doi.org/10.1137/15M1032399
https://doi.org/10.1016/j.neuron.2013.10.027
https://doi.org/10.1371/journal.pcbi.1005104

	1 Introduction
	1.1 Previous methods of mesoscale connectome regression
	1.2 Mathematical outline of the spatial connectome regression problem
	1.2.1 Continuum version explains the numerical difficulties of naive iterative methods
	1.2.2 Outline of the paper

	2 Greedy low-rank method
	2.1 Linear matrix equation for the unknown connectivity
	2.2 Numerical low-rank methods for linear matrix equations
	2.3 Description and application of the greedy low-rank solver

	3 Performance of the greedy low-rank solver on three problems
	3.1 Test problem: a toy brain
	3.2 Mouse cortex: top view connectivity
	3.3 Mouse cortex: flatmap connectivity

	4 Discussion
	5 Data and code

