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Compensate anti-trapping potential of the blue-detuned lattice with dipole trap

Extract FWHM

Conclusions

In a nutshell, we find the following intriguing results:

1. Realization of a lattice model with SPME and 
mapping out of the corresponding phase diagram
2. MBL present in a system with SPME, but only in a 
regime where all single-particle eigenstates are lo-
calized.
3. Single-particle extended states do not serve as an 
efficient bath for localized states on experimentally 
accessible timescales.

For the future:
4. Extend experimentally acessible timescales
5. Find better diagnostics for  the possible many-
body intermediate phase
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Existence of MBME open debate in theory:
- Phys. Rev. B 92, 064203 (2015): “MBME due to symmetry-
constrained dynamics and strong interactions”
- Phys. Rev. B 93, 014203 (2016): “Absence of MBME”
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- MBL in a model with SPME?
- Does an SPME survive finite interactions and does      
   a many-body mobility edge (MBME) exist?
- What are the timescales involved?
- What would the experimental signatures of                                     
   an MBME be? Which disgnostics are 
   required?

Conjectured Phase Diagram

Theoretical investigation
Relaxation between 100 and 500τ

Open questions

MBL phase

Imbalance decay 
(power-law?)

non-ergodic 
metal phase

thermal phase

MBL phase

finite plateau

Relaxation between 10 and 100τ

Time scales limited by inter-tube coupling and 
residual photon scattering.

Use numerics to explore longer lifetimes

By comparing the GAA model 
(SPME) and the AA model (no 
SPME), we can look for differ-
ences in the relaxation dynamics.

No accelerated relaxation from single-particle extended 
states on experimentally accessible timescales
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Experimental investigation

MB-
Int.?

MBME plausible, but 
no direct evidences

Difference in relaxation 
dynamics -> Do ex-
tended states contrib-
ute on this timescale?
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Energy bands split up in the presence of de-
tuning lattice. For different energies the IPR 
depends on the detuning lattice strength. 
This gives rise to a coexistence of localized 
and extended states in the intermediate 
regime

Vp = 4Er
p Vp = 6Er

p Vp = 8Er
p

Mobility edge present in 
shallow 1D lattice, but 
disappears in
tight-binding limit 
where Hamiltonian maps 
to Aubry-André 
Hamiltonian
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- Phase diagram clearly exhibits intermediate regime between 
  localized and extended states => Single-Particle Mobility Edge

- Good agreement between experiment and tube-averaged (solid 
  lines) exact diagonalization (ED) calculations

- Extraction of VI and VE via heuristic fit functions to the data points

- Vanishing mobility edge for large primary lattice depth (mapping to
  tight-binding Aubry-André Hamiltonian for Vp ≥ 8Er

p)

Density Imbalance I:
- sensitive to first localized 
  state emerging at disorder
  strength VI

- measured at 200 tunneling
  times due to finite imbalance
  lifetime

Expansion E:
- sensitive to first delocalized
  state emerging at disorder 
  strength VE
- measured at 3000 tunneling
  times due to extremely slow
  dynamics in the presence of
  disorder

If VI ≠ VE shows existence of a SPME

Physical observables
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Observables

Imbalance Detection I
● Stop dynamics by freezing 
    the system by ramping
    up long and short lattices,
    still with phase shift 

● Remove disorder, traverse 
    2nd-3rd band crossing 
    by non-adiabatically 
    compressing long lattice

● Remove short lattice
    and band map the long
    lattice

Double wells

Disordered Lattices

Long Lattice of Super lattice (1064 nm):

Short Lattice of Superlattice (532 nm)

Disorder Lattice (738 nm) - incommensurate to 532 nm

1D Tubes:

Expansion Measurement E
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Experimental realization

Expansion E = FWHM

The incommensurate lattice model

Ĥcon = − h̄2

2m

d2

dx2︸ ︷︷ ︸
Kinetic Energy

+
Vp

2
cos(2kpx)

︸ ︷︷ ︸
Primary Lattice

+
Vd

2
cos(2kdx+ φ)

︸ ︷︷ ︸
Detuning Lattice

This continuum Hamiltonian is valid in all paramter regimes. For a deep 
primary lattice the tight-binding approximation results in the Aubry-André-
Hamiltonian:

For shallow primary lattices, corrections have to be added to account for 
the appearance of a single-particle mobility edge:

ĤU = U
∑
j

n̂j,↑n̂j,↓

ĤGAA = ĤAA + Ĥ′

ĤAA = −J0
∑
j,σ

(ĉ†j+1,σ ĉj,σ + h.c.) + ∆
∑
j,σ

cos(2παj + φ)n̂j,σ

40K-40K Feshbach resonance

Tunable Interactions

atoms in mF = -9/2 and -7/2 states:
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Single-Particle Mobility Edge (SPME):
- Critical energy separating localized and delocalized energy eigenstates

- Absent in 1D and 2D Aubry-André model (quasi-random disorder)

- First observation of an exact SPME in 1D
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Strong detuning:
Localized states

Intermediate detuning: 
Coexistence of localized 
and extended states
Mobility Edge

Weak detuning:
Extended states
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