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Abstract

Older adults (OA) need to make many important and difficult
decisions. Often, there are too many options available to ex-
plore exhaustively, creating the ubiquitous tradeoff between
exploration and exploitation. How do OA make these com-
plex tradeoffs? We investigated age-related shifts in solving
exploration-exploitation tradeoffs depending on the complex-
ity of the choice environment. Participants played four and
eight option bandit problems with numbers of gambles and av-
erage rewards available on the screen. OA reliably performed
worse in a more complex choice environment and were also
more deviant from an optimality model (Thompson sampling),
which keeps track of uncertainty beyond just the mean or last
reward. OA seem to process important information in more
complex choice environments sub-optimally, suggesting lim-
ited representations of future rewards. This interpretation fits
to multiple contexts in the complex cognitive aging literature,
in particular to the context of challenges in the maintenance of
goal-directed learning.

Introduction

In today’s aging societies, more and more older adults (OA)
are making cognitively demanding decisions about work, fi-
nances, their health, etc. Many such decisions benefit from
thinking about future goals because the options available cre-
ate explore-exploit tradeoffs. How do OA usually respond
to these cognitive challenges in increasingly complex choice
environments?

Decision makers generally have access to a number of
learning mechanisms, habitual experience-based learning,
and goal-directed learning. Goal-directed learning depends
on some internal model, so that learning can be adapted flex-
ibly, for example like when managing a research project. Ha-
bitual learning has been related to a dorsolateral striatal to
sensorimotor cortex control loop while goal-directed learn-
ing has been related to a dorsomedial striatal to ventromedial
and lateral prefrontal cortex control loop (Daw & O’Doherty,
2014). Importantly, goal-directed learning is impaired in OA
and this impairment has been associated to lower activation
in prefrontal cortex areas (Eppinger & Bruckner, 2015; Ep-
pinger, Walter, Heekeren, & Li, 2013). OA rely relatively
more often on experience-based learning, which may arise
from white matter integrity changes in the ventromedial and
lateral prefrontal cortex (Chowdhury et al., 2013; Eppinger et
al., 2013; Samanez-Larkin & Knutson, 2015).

It is unclear how such changes in learning mechanisms in
OA depend on the relative complexity of a task. Such a de-
pendency would be likely, however, from the perspective of
ecological rationality (Mata et al., 2012), which focusses on
adaptation effects between the mind and the environment. For
example, when OA need to explore among many options in
order to choose between them later, OA rely on more mini-
mal exploration strategies than YA (Frey, Mata, & Hertwig,
2015). Here, we study such age-related performance changes
in explore-exploit tradeoffs with varying cognitive demands.
Analyzing effects of the complexity of choice environments
this way could help to better understand the effects of task
demands on age-related changes in learning mechanisms.

We used typical N-armed bandit problems to study changes
in learning mechanisms across choice environments. Partici-
pants made inferences about risky options by sampling infor-
mation from a four and eight option choice environment. Re-
wards were consequential, ensuring that participants needed
to trade-off exploration and exploitation. Participants had to
find options that give them the most money while having to
minimize sampling from low reward options. N-armed ban-
dit problems are well studied and afford detailed analysis of
information processing in terms of continuation and switch-
ing behavior. Theoretically, expectations of future reward
should rise with adequate, but not excessive, exploration.
Such “smart” exploration requires one to have a good repre-
sentation of the task and its structure, which typically weighs
already observed rewards by the degree to which an option
has been explored. This would thus involve an internal model
of the task contingency between average payoff and average
payoff uncertainty (see also Worthy, Cooper, Byrne, Gorlick,
& Maddox, 2014). Good performance in the task thus de-
pends on learning mechanisms that use adequate future re-
ward representations while performance anomalies will in-
volve inadequate future reward representations.

We hypothesized that OA achieve lower performance and
arrive slower at the higher reward options, depending on the
number of options. If OA focus more on reward in current
states, their rewards in future states should suffer. Such short-
term planning would more closely resemble experience-based
learning rather than goal-directed learning. OA not arriving
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Total regret of 6.2 points by a 30 year old male (id 5, gm 6)
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(a) A more effective strategy that seems to take into account
uncertainty.

Hidden probabilities

Total regret of 23.4 points by a 69 year old male (id 125, gm 6)
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(b) A less effective strategy that seems to depend almost only
on the outcome of the last trial.

Figure 1: Example eight-option choice profiles. Green indicates rewards and red indicates no rewards on a trial.

at the higher reward options at all would show a lack of an
explore-exploit trade-off. We assumed that problems with a
larger number of options are relatively more cognitively de-
manding because of a larger search space, which increases the
amount of necessary information processing and representa-
tion.

Next, we describe methods and results from six kinds of
data analyses: choice proportions statistics, choice propor-
tions over trials, regret over trials, comparisons to an opti-
mality model, comparisons to a fitted optimality model, and
one-step ahead predictions of a fitted optimality model. We
end with a discussion.

Methods

Participants 32 older adults (OA, Mg =70.5, 65-74, 38%
female) and 29 younger adults (YA, My = 24.3, 19-30,
45% female) participated in this study. All participants were
healthy, right-handed, native German speakers with normal
or corrected to normal vision, and without a history of psy-
chiatric or neurological disorders. There were no group dif-
ferences in gender proportion, educational level, and socio-
economic status. Compensation amounted to about 10 Euro
per hour, plus on average 2 Euro performance-dependent
bonus. Participants were recruited using advertisements.

Task The task of the participants was to maximize the sum
of rewards in a total of 16 alternating four and eight-armed
bandit problems. Rewards could be earned by selecting pic-
tures of casino-style gambling machines presented on a com-
puter screen using a keyboard or mouse. The gambling ma-
chines provided random rewards (1 or 0) with a hidden prob-
ability that was specific to each machine. The rewards were
displayed on the respective bandit after each play. Partici-
pants had 100 trials for every problem to explore the hidden
reward probabilities and to exploit those machines that give
rewards most often. Remaining trials were displayed on the
screen. Also, every bandit showed the number of plays so

far and the probability of a reward based on the observed re-
wards so far. This information is sufficient to make an opti-
mal choice at any point in time, reducing the role of working
memory. Of course, participants still need to figure out how
they want to trade off exploration and exploitation. 89% of
YA and 70% of OA (p = .14, test of equal proportions) indi-
cated in a post-task questionnaire that “the extra information
regarding the options” was helpful.

Procedure Participants were instructed 1) to maximize the
sum of rewards, 2) how the task looked and worked, 3) that
each trial is independently generated, and 4) that the best
gambling machine in every individual problem had p,,; = .6
(to help comparability across problems). All participants had
taken part in an unrelated fMRI study on risk-taking prefer-
ence several weeks beforehand. Ethics approval was granted
by the Institutional Review Board of the Max Planck Institute
for Human Development.

Design The experiment made use of a repeated within-
subject condition (four vs eight options), and a between-
subject condition (age group). We chose the other hidden
probabilities in steps of .075 below .6. Reliably finding the
better options thus required a significant part of exploration
out of the 100 available trials. See also Figure |I| for exam-
ple choice profiles and the unique hidden probabilities. All
participants saw the same randomly generated rewards for all
16 problems. This allowed comparison of the problem dif-
ficulty across participant groups as well as a reduction of an
unnecessary source for variance in performance while keep-
ing the probabilistic character of the task intact. Four dif-
ferent problem orders were generated and counterbalanced
across participants. Two different orders started with four
options and two different orders started with eight options.
Between problems, performance was displayed on the screen
and a keypress was required to continue with the next prob-
lem. Participants in both groups took about half an hour to
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Figure 2: Predictions from a mixed effects model with the
hidden reward probabilities of participant’s choices as depen-
dent variable and interaction effects between age, number of
options, trial, and gender.

finish the experiment. The minimum response time was set
to 200 milliseconds.

Results

We first investigated age-related differences in task perfor-
mance. Proportions of choices for each option revealed that
OA chose the option with the highest hidden probability
about 5% less often than YA did in both four and eight option
conditions (four option 95% HDI: .003 - .093; eight option
95% HDI: .018 - .096; Bayesian ANOVA with logit function
and broad prior), see Figure [ for the differences for all op-
tions. We also tested a linear mixed effects model with the
hidden probability of every chosen bandit as dependent vari-
able and with participant ID, problem ID, and bandit position
ID as random effects. We used Satterthwaite’s approxima-
tions of p-values (*** indicating p < .001). We found nega-
tive interaction effects for OA in eight options (B = -.021%**%*)
and for OA in eight options over trials (B = -.011%%*). To-
gether, these indicated a lower performance for OA in eight
options, as well as an increasingly lower performance over
trials. We also found a positive interaction effect for both YA
and OA in eight options over trials (B = .021*%%), as partic-
ipants could improve relatively more over time for eight op-
tions. There still was a main negative effect of eight options
(B =-.092***) and a main positive effect of trial number (B
= -.009%*%). No significant difference or decrease over trials
for OA remained, so the age effect is captured only by the
higher-level interactions. Furthermore, we also controlled for
gender effects, which indicated that male OA performed bet-
ter over trials (B = .010***) and that male OA performed
better with 8 options (B =.024*%*%*), and that males generally
performed better (B = .003**). For visualizing these high
level interactions, we generated predictions from this model
using the package merTools, see Figure [2] Note that the vi-
sualization does not show raw data and that the differences in
intercepts and slopes for the lines displayed should be inter-
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Figure 3: Predictions from a mixed effects model with

switching as dependent variable and three-way interaction ef-
fects between age, number of options, trial, reward, and the
hidden probabilities of participant’s choices.

preted in the light of all data included in the model. Besides
performance, we used a similar statistical analysis to test age
differences in switching probability over time. The resulting
logistic regression model included age, number of options,
trial number, the hidden probability, the reward for the partic-
ipant’s choices, and all three-way interactions. Together, the
estimated effects on switching indicated that OA switch less
often (*¥*), OA switch away less often after sampling from
an option with a relativey low hidden probability (¥**), espe-
cially in eight options over trials (**). Beta’s were not easily
comparable for this model. We again generated predictions
from this model to visualize these switching patterns, see Fig-
ure[3

Second, we examined development of age-differences in
choice proportions over trials, see Figures [6a and [6b] For
every trial, the solid lines represent the average number of
times that participants chose an option. The local instabilities
in the trajectories may result from individual differences and
variation across the several problems. On average, the third
best option stops overlapping with the second best option af-
ter about 25 trials for YA. For OA, the same separation ex-
ists between the second and third option after twice as many
trials, see the right panel of Figure [6al In the eight option
condition, YA separate between the better three options and
the worse five options after about 50 trials. OA do this after
about 75 trials. These 2-2 and 3-5 separations could reflect
the participants’ psychologically most salient explore-exploit
representations. Together, the choice trajectories show that
already from the beginning onwards, YA choose more often
from the better options.

Third, we analyzed another measure of performance to
compare performance across all of the options at once. We
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Figure 4: Boxplots of variation in average choice proportion
across participants for both choice environments.

choose to measure regret (a common measure in machine
learning) as it generalizes over the specific outcomes of the
random number generation process. Regret can be computed
as Rt = Y1 (popr — PB(i))» Where pop = .6 and pp; is the
hidden probability of a reward for the chosen bandit. It fol-
lows that randomly behaving agents get a total regret of 11.25
points for four options and 26.25 points for eight options.
Overall, the age effect on regret was large (p < .01, Cohen’s d
.707) for eight options (Mp4 = 19.87, SE = .79, My, = 16.84,
SE .75) and medium (p < .05, Cohen’s d .550) for four op-
tions (Mps =9.16, SE = .32, Mys = 8.17, SE .33). These age-
related differences varied slightly across the unique problems,
which only differed by random number generation, see Figure
[l We also investigated how regret differences emerged using
the shapes of the exploration-exploitation trade-offs over tri-
als within the choice profiles. We observed a slowing increase
in regret over time in general but increasing age-related dif-
ferences for both conditions, see Figure [7 Age-differences
became significant after trial 24 in eight options and 23 trials
in four options. It seems that exploration in OA happens less
effectively. Regret was significantly (p < .05, t.test) better
compared to a random agent (four options: YA after trial 17,
OA 32; eight options: YA after trial 15, OA 16).

Fourth, we wanted to know how participant performance
differed from optimality. We used Thompson sampling as an
optimality model (Thompson, 1933), but we observed that
differences in regret for similar algorithms are small in the
context of the present task. Thompson sampling uses an in-
verse cumulative distribution function (also known as per-
centage point function or quantile function) that is used to
choose the bandit with the highest certainty that the hidden
probability of a bandit is smaller or equal than some ran-
domly generated value. This way, the algorithm minimizes
uncertainty that there exists a better option by making sure
that the probability of choosing a certain bandit is propor-
tional to the probability of it being the best bandit. By taking
uncertainty into account, the algorithm affords a way of more
rapidly adapting its decision if not only the mean of a certain
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Figure 5: Variation in performance across the 16 different
problems in the task.

bandit gets overtaken by another mean, but the whole pos-
terior probability distribution. Conceptually, the algorithm
keeps track of beliefs about the hidden probabilities of the
bandits and then updates these beliefs each time after seeing
an outcome. The algorithm is initialized by setting a uniform
prior for all options. The algorithm then plays option x pro-
portional to the probability of it being the best. Finally, it
updates its priors using the newly collected information. See
also Table[I] Regret as computed from applying Thompson
sampling 29 times to the same games as participants played
was significantly worse compared to participants (four op-
tions: YA after trial 14, OA 11; eight options: YA after trial
16, OA 16). Expected regret was 6.5 points for four options
and 11.0 points for eight options, which is considerably bet-
ter than YA performed on average (170% larger than the gap
between YA and OA for four options and 193% for eight op-
tions). Interestingly, 5 out of 32 OA (16%) and 9 out of 29 YA
(31%) achieved a median regret score within 10% of Thomp-
son sampling for four options, while this was 1 (3%) and 4
(14%) for eight options. Some individuals were thus able to
achieve regret scores similar to Thompson sampling.

Table 1: Thompson sampling in r pseudocode, with n being
the number of bandits, x a randomly generated probability,
and gbeta for looking up quantiles from the Beta distribution.

Step Computation
Init wins = rep(0,n)

pulls = rep(0,n)
Choose  softmax(q,0)

q = max(gbeta(x, ., B))
Update  wins = wins + reward

pulls = pulls+1
o= 1+wins
B =1+ pulls — wins

Fifth, we wanted to know how well a fitted optimality
model predicted participant’s decisions. Thompson sampling
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Figure 6: Observed choice proportions and one-step ahead predictions for fitted Thompson sampling. The color of the lines
corresponds to the value of the hidden probabilities, where blue colors represent lower probabilities. Local polynomial regres-
sion was used as a moving window to smooth the trajectories (using a neighborhood of 40% of all points where neighboring

points are also being weighted by their distance tricubically)

was fitted to individual games by scaling predicted choices
using a softmax function with a fitted inverse temperature pa-
rameter 0, ranging from 0.003 to 30 (higher 6 values pro-
duced more randomness). OA deviated more from fitted
Thompson sampling than YA did (p < .05, Wilcoxon tests,
Cohen’s d = .57 for four options and Cohen’s d = .53 for
eight options). 6 was also significantly lower for YA than
for OA (p < .05, Wilcoxon test, Cohen’s d = .96 for four
and 2.68 for eight options), indicating more randomness and
worse matches to predictions of Thompson sampling in OA
than in YA. OA and YA both significantly decreased their me-
dian 0 for eight options compared to the four option condition
(p < .05, Wilcoxon tests), see Figure [§] 6 for OA signifi-
cantly varied more in both conditions than for YA (p < .01 for
both conditions, Wilcoxon tests) and average variation across
games was significantly lower in four options for YA, but for
OA this was similar in both conditions (p < .01 vs. p = 4,
Wilcoxon tests). In all, OA adults were more random and less
homogeneous, possibly indicating more strategy changes.
Finally, we compared the shapes of the mean observed
exploration-exploitation trade-off trajectories to shapes from
one-step-ahead predictions across all trials. These predictions
are plotted in Figures [6a] and [6b] using dashed lines. We used
the median 0 of every participant for both conditions as data
scaling parameter. The predictions from this fitted Thompson
sampling model resulted in accurately ordered trajectories for
both groups and for both conditions: The orderings of solid
and dashed lines were identical for all four graphs for most
trials, except in the first few trials. The latter may indicate
more rapid exploration in Thompson sampling and that both
YA and OA explore less rapidly, with OA taking the longest.

Discussion and Conclusions

We aimed to identify changes in the ways OA and YA make
goal-directed choices depending on the complexity of the

choice environment. We found a large age-related effect
on performance in a typical eight-armed bandit task and a
smaller effect in a four-armed bandit task. YA also devi-
ated less from optimality than OA did. Choice trajectories
showed that age effects were already observable in the early
exploration stage, suggesting that OA explore longer or less
efficiently. Theoretically, the early stages require fast explo-
ration using not only average rewards but also their associ-
ated uncertainty. This was illustrated here using Thompson
sampling, which is a kind of randomized probability match-
ing algorithm. Participants diversified their choices similar
to Thompson sampling, in line with previous work (Konstan-
tinidis, Ashby, & Gonzalez, 2015; Speekenbrink & Konstan-
tinidis, 2015). Furthermore, OA had higher and more variable
inverse temperature parameter estimates across choice envi-
ronments, indicating more randomness in OA. OA thus rely
on less effective learning strategies that consider important in-
formation less effectively, in particular in the more complex
environments.

Why would OA fail to represent important information like
uncertainty or a specific task model? The role of working
memory influences should be minimal as this is not strictly
necessary to perform well in the task. General “slowing”,
gender effects, and more cautious risk taking, all of which
could favor exploitation of short-term rewards, also mark
cognitive aging. We did indeed observe gender interactions,
age-differences in reaction times, and in standard neuropsy-
chological test results (working memory, fluid intelligence,
and risk-taking). However, as performance is mainly deter-
mined by a cognitively costly explore-exploit tradeoff and ad-
equate future reward representations, our findings specifically
point towards underreliance on goal-directed learning.

A logical next step is to assess if fits of simple learning
strategies can indeed better accommodate OA. Specifically,
the exploration phase seems to happen sub-optimally in OA
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creased quickly first and increased slower later on, but slower
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and in a more varied way. Favoring short-term rewards could
be a sign of a learning mechanism that sub-optimally repre-
sents future rewards. More varied or reduced processing of
important information such as uncertainty would be able to
account successfully for the observed age-related changes.
Furthermore, if the task indeed probes OA to rely less on
goal-directed learning, we may also expect differences in
connectivity to prefrontal regions (pending analyses). In
all, OA may be using less effective learning strategies the
more demanding the choice environment becomes. Identi-
fying such task-dependent differences is typically neglected
in neuro-computational models of decision-making. In the
context of cognitive aging, this may be useful for empower-
ing aging decision makers to navigate cognitively demanding
choice environments.
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