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When playing music in an ensemble, musicians need to precisely coordinate their actions with one another. As shown
in our previous studies on guitar duets, interbrain synchronization plays an essential role during such interactions.
In this study, we simultaneously recorded electroencephalograms from four guitarists during quartet playing, to
explore the extent and the functional significance of synchronized cortical activity across four brains. We found
that hyperbrain networks based on intra- and interbrain connectivity across four brains dwell on higher frequencies
for intrabrain communication and on lower frequencies for interbrain connections. The hyperbrain networks show
small-world topology, with a tendency to become more random at lower frequencies and more regular at higher
frequencies, such that local efficiency increases and global efficiency decreases with higher frequencies. We identified
two different types of information flow within the hyperbrain networks—intra- versus intermodular—which are
based on hyperbrain modules that include nodes from two, three, or even four brains. Furthermore, we found that
hyperbrain networks are unstable and change their structure over time, often as a function of musical context. Our
findings demonstrate complex hyperbrain network interactions in a guitar quartet and point to mechanisms that
support temporally coordinated joint action.
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Introduction

In daily life, people must often coordinate their act-
ions with those of others or modify their own actions
in response to the continuously changing actions of
a partner.1,2 Recent research indicates that synchro-
nized brain activity, especially interbrain synchro-
nization, accompanies coordinated behavior and
plays a crucial role in social interaction.1,3,4 Oscil-
latory couplings have also been observed for other
biological functions, such as respiration and car-
diac activity during choir singing.5 However, the
neural mechanisms that implement interpersonally
coordinated behavior and support social interac-
tion remain elusive,2,6,7 especially when interaction
involves a group of more than two people.

In several studies with guitarist duets,8–11 we
found that synchronization within and between

the brains is an inevitable feature of interpersonal
action coordination (IAC). Furthermore, these
synchronization patterns build up so-called hyper-
brain networks bringing together two (or even
more) brains. It has also been found that, within
this (hyperbrain) network, intrabrain connections
primarily involve higher frequencies (e.g., beta),
whereas interbrain connections primarily operate at
lower frequencies (e.g., delta and theta).9 As shown
in previous studies, synchronization patterns and
hyperbrain network properties depend on musical
situation and musical roles (e.g., leader versus
follower) of guitarists.9–11 Moreover, we identified
modules composed of nodes from two brains,
so-called hyperbrain modules.9,10 In accordance with
graph-theoretical approaches and definitions of
community structures or modules, the information
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flow within modules tends to be higher than the
flow between modules.12–14 Thus, nodes belonging
to hyperbrain modules and areas captured by
these nodes may point to brain regions that are
strongly interconnected and implement, therefore,
mechanisms of IAC (e.g., increase in interbrain
connectivity in situations with high demands on
musical coordination).9,10

The aim of the study was to describe hyperbrain
networks and synchronization patterns of guitarists
playing guitar in quartet. Synchronization patterns
were quantified using electroencephalography
(EEG) hyperscanning (simultaneous EEG record-
ing from multiple brains; four in this case) and
following time-frequency decomposition. EEG
connectivity matrices were determined using phase
synchronization algorithms at the surface electrode
level. Networks binding four brains together are
complex networks with corresponding intrinsic and
extrinsic dynamics that have never been described
before. There are studies with simultaneous record-
ing of four people, but they have not been focused
on the hyperbrain network as a whole.15,16 Very
recently, Dikker et al.17 investigated brain-to-brain
synchrony in the classroom and showed that
synchronous EEG activity across students predicts
student class engagement and social dynamics.
Chang et al.18 also reported body-sway synchrony
(recorded with motion capture) in string quartets,
with a greater influence of the leader on the others.
Critically, we focused on hyperbrain network prop-
erties and hyperbrain network architecture based on
community structures and their changes across fre-
quency and time. Our analyses were carried out on
musical segments indicating different situations of
interaction and communication between the quar-
tet members. The segments were chosen by a profes-
sional musician using video and audio recordings.
We expected that hyperbrain modules composed
of nodes or electrodes from two, three, or even four
brains that facilitate information flow within the
shared module are important mechanisms of IAC.
We also analyzed hyperbrain dynamics (i.e., tem-
poral changes in network properties and modular
organization). It was expected that synchronization
patterns and corresponding network architecture
gathered at fine-tuned time scales would provide
richer information than corresponding connectiv-
ity data gathered during the entire sequence period.
In particular, we expected that the number of mod-

ules and, correspondingly, the number of hub and
connector nodes would increase or decrease depen-
dent on musical situation (e.g., situations with high
demands on musical coordination might lead to a
decrease in the number of modules and correspond-
ing increase of intramodular flow with a strong
interbrain connectivity, while situations with more
differential roles across guitarists might increase the
number of modules and correspondingly strengthen
the intra- and intermodular connections).

Methods

Participants
A quartet of professional guitarists (Cuarteto
Apasionado, Berlin) participated in the study.
Participants’ mean age was 46.5 years (SD = 1.7).
All participants (females) were right-handed and
had been playing the guitar professionally for more
than 35 years (mean = 37.8 years, SD = 1.3). The
ethics committee of the Max Planck Institute for
Human Development approved the study, and
it was performed in accordance with the ethical
standards established in the 1964 Declaration
of Helsinki. All participants volunteered for this
experiment and gave their written informed
consent before their inclusion in the study.

EEG data acquisition and preprocessing
EEG measurement took place while the quartet
played two music pieces: Libertango (Astor Pia-
zolla) and Comme un Tango (Patrick Roux). These
musical pieces were chosen with regard to differ-
ent aspects of IAC, such as different phases of the
musical piece, periods of harmonic consonance as
judged by the expert musician changes of tempo,
and phases of different musical complexity. The gui-
tarists sat in a semicircle or formed a light bow. EEG
was simultaneously recorded using four electrode
caps with 28 Ag/AgCl EEG active electrodes each,
placed according to the international 10-10 system,
with the reference electrode at the right mastoid
and the ground electrode at the AFz position. Verti-
cal and horizontal electrooculograms were recorded
to control for eye blinks and eye movements. The
sampling rate was 5000 Hz. Recorded frequency
bands ranged from 0.01 to 1000 Hz. All amplifiers
(BrainAmps MR and BrainAmps ExG, Brain Prod-
ucts, Gilching, Germany) were connected to the
same computer through PCI interfaces and synchro-
nized using BrainVision recorder software. Through
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one microphone each, the sounds of the guitars were
recorded on four ExG channels, simultaneously with
the EEG recordings. In addition, video and sound
were recorded using a video camera connected to the
EEG computer through a FireWire socket and Video
Recorder software as a component of the BrainVi-
sion software (Brain Products), synchronized in this
way with EEG data acquisition. Data were rerefer-
enced offline to an average of the left and right mas-
toid separately for each participant. Eye movement
correction was accomplished by independent com-
ponent analysis.19 Thereafter, artifacts from head
and body movements were rejected by visual inspec-
tion. Spontaneous EEG activity was resampled at
1000 Hz and divided into 5-s epochs. Event markers
were set by a professional musician and correspond
to different musical situations. The list of the events
and their short description for both music pieces
is presented in Table S1 (online only). There were
10 and 14 segments in Libertango and Comme un
Tango, respectively, that were free of artifacts for all
four guitarists. To determine directed couplings we
used the adaptive integrative coupling index (aICI).
In contrast to our earlier studies,5,9,11 we used an
adaptive algorithm that allowed us to calculate this
coupling index depending on the angle of phase
differences determined in a given time window.20

Coupling (aICI) was determined for nine different
frequencies of interest (FOIs): 2.5, 5, 10, 15, 20, 25,
30, 40, and 60 Hz. This coupling measure was then
used to construct hyperbrain networks. To investi-
gate the network topology, four different network
characteristics (clustering coefficient (CC), charac-
teristic path length (CPL), local efficiency (Elocal),
and global efficiency (Eglobal)) and two small-world
(SW) coefficients (� and �) were determined (see
Supplementary Materials, online only, for details).

Results

Phase synchronization and brain connectivity
patterns
In Figure 1, we illustrate the time course of phase
synchronization patterns for each of the four gui-
tarists (A, B, C, and D) between the Fz electrode
and all other electrodes within and between the
brains at the FOI (2.5 Hz). Corresponding record-
ings of acoustic channels for each of the guitarists
are presented below the respective synchronization
pattern. Although the four guitarists showed differ-
ent synchronization patterns, the coupling (red for

positive and blue for negative phase difference; see
Supplementary Materials, online only, for details)
and decoupling (depicted in green) phases possess
specific rhythmicity, which is mostly related to the
notes played.

The brain maps for directed coupling (left
panels) across the entire time sequence of 5 s
and coupling strength distribution (right panels)
within and between the brains are presented in
Figure 1B and C, respectively. For better visualiza-
tion, the strongest within- and between-brain con-
nections are depicted.

Network metrics as a function of costs
In Figure 2A, we present various network metrics
(CC, CPL, Elocal, and Eglobal) and SW coefficients
(� and �) as functions of costs, defined as ratio of
the number of actual connections divided by the
maximum possible number of connections in the
network, among real, regular (lattice), and random
networks for an FOI of 2.5 Hz. CC and Elocal at
this FOI increase continuously with higher costs
in random and real networks but remain stable in
the range 7–50% of costs in regular networks after
a strong increase at the beginning. CPL decreases
in real and random networks and is absent in
regular networks because of infinite CPL in remote
neighbors; this is also the reason for absence of CPL
in real networks at the costs under 17% and in the
random networks at the costs under 9%. In contrast,
Eglobal (inverse shortest path length) is given in all
three networks at all costs and increases with higher
costs, correspondingly. Real networks possess much
higher global efficiency than regular networks but
lower global efficiency than random networks.
The SW coefficient � is absent at the costs under
9% (because of absence of CPL) and decreases
slightly with higher costs after a sharp increase at
the beginning. In nearly all cases (exception is 9%
of costs), this SW coefficient is always higher than
1, indicating that the hyperbrain quartet network is
a small-world network (SWN) at all costs, at least
until the 50% cost presented here. The other SW
coefficient � lies after the costs of 10% in the positive
range, indicating an SWN with more random char-
acteristics. Taking into account all the information
(as well as data from other frequencies not presented
here), we decided to further describe the network
characteristics at the cost level of 25%, which pro-
vides stable behavior of the investigated networks.
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Figure 1. Phase synchronization patterns at the FOI (2.5 Hz) and corresponding hyperbrain networks for four guitarists. (A)
Phase synchronization patterns for guitarists A, B, C, and D display connectivity between Fz and all other electrodes within and
between the brains (28 × 4 = 112 lines). Coding of the phase difference: negative range = blue; positive range = red; and out of
range (nonsynchronization) = green. Dotted yellow horizontal lines indicate the boundaries for the within- and between-brain
coupling (marked with w and b, respectively). Representations of audio tracks of each of the guitarists are presented below the
corresponding synchronization pattern. (B) Brain connectivity maps and topological distribution of strength within the brain. (C)
Brain connectivity maps and topological distribution of strength for between-brain connections. The connections represent the
aICI values above the threshold (within-brain connectivity: aICI > 0.50; between-brain connectivity: aICI > 0.45). The size of the
circle in the brain connectivity maps represents the strength of the nodes (electrodes), and color codes represent the corresponding
guitarist. In the strength distribution maps, high intensity of out-strength (accumulation of the big circles) is depicted by dark red
or brown.
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Figure 2. Hyperbrain network metrics as a function of wiring costs and frequency in the real, regular, and random networks. (A)
Hyperbrain network metrics as a function of costs (FOI = 2.5 Hz). (B) Hyperbrain network metrics as a function of frequency
(costs = 25%). (C) Network strengths as a function of frequency (costs = 25%) in four guitarists for intra- and interbrain
connections. Hyperbrain network properties averaged across all musical sequences are presented: clustering coefficient (CC),
characteristic path length (CPL), local efficiency (Elocal), global efficiency (Eglobal), and small-world coefficients (� and �). The CPL
of regular networks always equaled infinity and is, therefore, not presented in the diagram. This is also why some CPL values in real
and random networks as well as some small-world coefficients (� and �) are missing.
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Moreover, this cost level led to a stronger threshold
than that determined by the surrogate data proce-
dure. In other words, networks at this cost or sparsity
level included highly significant connections only.

Network metrics as a function of frequencies
Figure 2B displays hyperbrain network characteris-
tics as a function of frequency for 25% of costs. It can
be seen that CC and, correspondingly, Elocal increase
with higher frequency, indicating an increase of
segregation processes in the hyperbrain network.
CPL increases with higher frequency, and Eglobal

decreases correspondingly. Both indicate a decrease
of integration processes with higher oscillation fre-
quency in hyperbrain networks. The SW coefficient
� increases with higher frequency and is always
higher than 1, indicating that the investigated hyper-
brain network is an SWN at all frequencies, at least
at the chosen cost level. The second SW coefficient �
decreases continuously with higher frequency and
lies in the positive range at low frequencies (2.5–
15 Hz) and in the negative range at high frequencies
(20–60 Hz), indicating an SWN with more random
characteristics at low frequencies and with more
regular characteristics at high frequencies.

Intra- and interbrain strengths at different fre-
quency bins averaged across different musical
sequences are displayed in Figure 2C for the three
midline electrodes (Fz, Cz, and Pz), and for the four
guitarists separately. It can be seen that intra- and
interbrain strengths vary in different guitarists as a
function of frequency. Overall, intrabrain strengths
increase and interbrain strengths decrease with
higher frequency, as indicated by a significant cou-
pling (within versus between the brains) × fre-
quency interaction (see Table S3, online only, for
details).

Modularity and overlapping architecture
of hyperbrain networks
As shown in Figure S1A (online only) for networks
with oscillation frequency of 2.5 Hz, modularity
(M) decreases with higher costs in all the three net-
work types, whereby the M-values for real networks
always lie between the values for random and regular
networks. In line with this, the number of modules
also decreases and comprises about 4–5 modules
for all the three network types for costs between
12% and 30%. For networks with costs of inter-
est (25%), modularity increases with higher fre-
quency, and the number of modules only slightly

increases or remains mostly the same (Fig. S1B,
online only). As described in the Supplementary
Materials (online only), we compared the modu-
larity of each hyperbrain network to the modu-
larity distribution of random networks (N = 100)
(i.e., networks with the same number of nodes and
edges as the original network).21 The modularity
of all the networks was always significantly higher
than the modularity of its random counterpart (see
Table S2, online only, for detail). Figure S1C (online
only) displays the Z–P parameter space for differ-
ent frequencies across all play conditions. It can
be seen that low-frequency nodes are characterized
by a high participation coefficient (P), indicating
that these nodes are more likely connector nodes.
Changes of different universal roles correspond-
ing to different regions in the Z–P parameter space
across the frequencies are presented in Figure S1D
(online only). It can be seen that the number
of both provincial and especially connector hubs
(connector hubs exist practically only at 2.5 and
5 Hz) decreases with higher frequency. The number
of nonhub connectors decreases with higher fre-
quency, whereas the number of provincial nodes
correspondingly increases. This indicates that low
frequencies provide the communication within and
between different modules or communities.

As displayed in Figure S2 (online only), hyper-
brain networks at different frequencies show
different community structures. While hyperbrain
networks at frequencies above 15–20 Hz comprise,
with some exceptions, modules separating the
four brains, low-frequency networks, especially
in the delta (2.5 Hz), theta (5 Hz), and alpha
(10 Hz) frequency bands, build so-called hyper-
brain modules sharing electrodes from two, three,
or even four brains. Furthermore, these community
structures are different at the different frequencies,
leading to overlapping modularity structures when
different frequencies are taken into account.

Changes of network architecture across time
To investigate changes of network architecture
across time, we calculated phase coupling using a
moving time window of 500 ms width and a 50-ms
time delay. Overall, 91 time windows related to the
corresponding time points were collected by this
shifting procedure. We present here exemplarily
a sequence from Libertango and a sequence from
Comme un Tango. In the first sequence of Libertango,
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Figure 3. Temporal changes in intra- and interbrain strengths, brain connectivity and topology distribution maps, and Z–P
parameter space scatter plots at three different time points for the FOI 2.5 Hz (musical sequence 1 of Libertango). (A) Changes in
intra- and interbrain strength across time or different time windows. Changes in intrabrain strength across time were estimated
for the four guitarists separately. Changes in interbrain strength across time were estimated between each of the four guitarists and
all others and pairwise with regard to each guitarist separately. The four guitarists are presented by different colors: guitarist A,
blue; guitarist B, red; guitarist C, green; and guitarist D, yellow. In the case of pairwise presentation (second and third rows), the
color indicates to which of the guitarists the coupling is directed. (B) Brain connectivity and topology distribution maps of the four
guitarists with intra- and interbrain connections (left and right columns, respectively) for three different time windows: (5) the
period where only guitarist D is playing, (19) the period after the first drumming by guitarist A, and (48) the period between the
drumming of guitarist A, where the musical theme begins to be repeated. These time points or windows are indicated with dotted
vertical lines in (A). The size of the circle (electrode) represents the connectivity strength, and the color of the circle and links codes
the corresponding module affiliation. In the strength distribution maps, high intensity of out-strength (accumulation of the big
circles) is depicted by dark red or brown. (C) Z–P parameter space of the hyperbrain network for the three different time windows.
The color of the circle codes its module affiliation.
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guitarist D is playing, and guitarists A, B, and C are
starting to play. Moreover, guitarist A is drumming
on the desk of the guitar and setting the rhythm.
There are two periods in which guitarist A drums
two times followed by stroking over the strings.
Figure 3A displays temporal changes of strength
within and between the brains for each of the
quartet members (top row). In addition, between-
brain strengths are split pairwise and combined
for each guitarist displayed in the four separate
diagrams. It can be seen that (1) temporal changes
of strengths are oscillatory in nature and (2) the
pairwise dynamic is different in different guitarist
pairs, although the summary dynamic presented
in the top row (strength between the brains) is
quite similar in the four guitarists. In Figure 3B, we
show brain maps with within- and between-brain
connections and corresponding topological distri-
bution of within- and between-brain strengths at
three different time points or time windows for the
FOI of 2.5 Hz. For presentation, we have chosen
three different time windows: (5) the period where
only guitarist D is playing, (19) the period after the
first drumming of guitarist A, and (48) the period
between the drummings of the guitarist A, where
the musical theme starts to be repeated. Note that
color in the connectivity maps codes affinity to dif-
ferent modules determined by modularity analyses.
Figure 3C displays Z–P parameter space diagrams
at the three time points (5, 19, and 48) presented
in Figure 3B. Five different universal roles or ranges
are indicated in these diagrams: ultra-peripheral
nodes (cyan), provincial nonhubs (red), provincial
hubs (blue), nonhub connectors (green), and hub
connectors (magenta). The distribution of these
roles across the four guitarist’s brains is shown in
Figure S3 (online only) for Libertango and Comme
un Tango at the three time points or windows.

At time point 5, when only guitarist D is
playing, the connectivity is mostly strongest in this
guitarist, both within and between the brains. Mod-
ularity analysis partials out three modules, which
are all hyperbrain modules distributed across the
four brains. There are a relatively high number of
provincial hubs distributed across all guitarists and
a relatively small number of nonhub connectors that
are primarily located in guitarist D. At time point 19,
in the period after the first drumming by guitarist A,
as assessed by comparably high intra- and interbrain
connectivity, there are four hyperbrain modules

with five provincial hubs, one hub connector (gui-
tarist D; electrode F7), and a high number of nonhub
connectors (predominantly in guitarists B and D).
The presence of hyperbrain modules sharing nodes
across all four brains and a relatively high number of
nonhub connectors indicate that information flow
in the hyperbrain network is intra- and intermodu-
lar, and guitarist D plays a crucial role. At time point
48, when the first loop of the main melody theme is
over and the second loop is about to start, there is a
strong increase of intrabrain strength in the brain of
guitarist B, as well as a strong increase in the inter-
brain connectivity in all guitarists (Fig. 3A and B).
There are four hyperbrain modules, of which one
(yellow) consists of only five nodes, which are all
ultra-peripheral nodes and thus do not play essential
roles. The other three modules are distributed across
four brains and are strongly interconnected. The
number of nonhub connectors is strongly reduced,
but there are a relatively high number of provin-
cial hubs; this all indicates that information flow
in these modules is predominantly intramodular,
wherein guitarist C plays a crucial role.

The chosen sequence from Comme un Tango is
presented in Figure 4. In this sequence, guitarists A
and B are consonant and leading, while guitarists
C and D are accompanying. Importantly, guitarist
C plays bass and thus sets the rhythm. As evi-
dent from Figure 4A, there is a very strong cou-
pling from guitarist C to guitarist A (blue) in the
time period between 1 and 2.5 seconds (time points
20–50). During this period, guitarists A and B (as
well as guitarist D) play four notes and guitarist C
plays two notes. In Figure 4B, we show brain maps
with within- and between-brain connections and
corresponding topological distribution of within-
and between-brain strengths at three different time
points (28, 36, and 64). The distribution of uni-
versal roles across the four guitarists’ brains can be
seen in Figure S3 (online only). At time point 28, all
guitarists play a note and are strongly synchronized
with each other. The modularity structure consists
of five modules, and one of the modules (cyan)
consists of only three nodes, which are all ultra-
peripheral nodes and thus do not play essential roles.
As shown in Figure 4C and S3 (online only), there
are two hub connectors (Fp1 and F3 electrodes in
guitarist C) and a high number of nonhub con-
nectors, which support intermodular connectivity,
especially between the brains (compare intra- and
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Figure 4. Temporal changes in intra- and interbrain strengths, brain connectivity and topology distribution maps, and Z–P
parameter space scatter plots at three different time points for the FOI 2.5 Hz (musical sequence 3 of Comme un Tango). (A)
Changes in intra- and interbrain strength across time or different time windows. Changes in intrabrain strength across time were
estimated for the four guitarists separately. Changes in interbrain strength across time were estimated between each of the four
guitarists and all others and pairwise with regard to each guitarist separately. The four guitarists are presented by different colors:
guitarist A, blue; guitarist B, red; guitarist C, green; and guitarist D, yellow. In the case of pairwise presentation (second and third
rows), the color indicates to which of the guitarists the coupling is directed. (B) Brain connectivity and topology distribution maps
of the four guitarists with intra- and interbrain connections (left and right columns, respectively) for three different time windows:
(28) the period where all guitarists play a note and are strongly synchronized with each other, (36) the period where guitarists A
and B (as well as guitarist D) play the next note, and (64) the period where the consonant stream of the guitarists A and B starts
to decay but guitarists C and D continue with their playing (guitarist D even starts to play a note). These time points or windows
are indicated with dotted vertical lines in (A). The size of the circle (electrode) represents the connectivity strength, and the color
of the circle and links codes the corresponding module affiliation. In the strength distribution maps, high intensity of out-strength
(accumulation of the big circles) is depicted by dark red or brown. (C) Z–P parameter space of the hyperbrain network for the three
different time windows. The color of the circle codes its module affiliation.
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interbrain connectivity maps in Fig. 4B). At time
point 36, guitarists A and B (but also guitarist D)
play the next note, and all four guitarists became
strongly interconnected. Interestingly, the modular-
ity structure shows only three modules distributed
across the four brains. The number of nonhub con-
nectors is reduced, indicating that information flow
is predominantly intramodular (Fig. 4C). At time
point 64, the consonant streams of the guitarists A
and B start to decay, but guitarists C and D continue
with their playing (guitarist D even starts to play
a note). Interestingly, guitarists A and B showed
the highest out-strengths (Fig. 4A and B) during
this period. The modularity structure contains four
hyperbrain modules, with a high number of nonhub
connectors providing for high intermodular infor-
mation flow.

Overall, it can be seen that the network archi-
tecture is never stable: both coupling strengths and
community structures change their patterns depen-
dent on the musical situation. Coupling strength
oscillates and exhibits second-order oscillations,
which can also evolve synchronously. Most impor-
tantly, most of the community structures at all three
frequencies presented here (see similar presentation
of strength dynamics and network architecture for
theta and alpha frequency bins (i.e., 5 and 10 Hz)
in Figs. S4–S7, online only) are hyperbrain modules
sharing electrodes from different brains. The inspec-
tion of community structures at other frequencies
showed that, in contrast to previous analyses tak-
ing into account the whole segment, the hyperbrain
modules are also observable at higher frequencies,
indicating that high frequencies are also suitable
for interbrain communication, although to a lesser
extent than low frequencies.

Discussion

The primary objective of this study was to inves-
tigate the intra- and interbrain dynamics and
hyperbrain architecture in a quartet of guitarists
playing together. The main findings are that (1)
hyperbrain networks during playing guitar in
quartet are SWNs, at least for 10–50% of costs,
whereby local and global efficiency increase with
higher costs (lower threshold), indicating increasing
segregation and integration in these networks with
higher wiring costs; (2) SWN characteristics vary
as a function of oscillation frequency, indicating
networks with more random characteristics at low

frequencies and with more regular characteristics at
high frequencies; (3) in accordance with our earlier
findings,9 intrabrain coupling strengths increase
and interbrain coupling strengths decrease with
higher frequency; (4) the hyperbrain networks
consist of an overlapping modular organization
changing across frequency and time; (5) the dynam-
ics of connectivity strength and modular structures
are nonstationary and contingent on musical situa-
tion or other IAC requirements, whereby coupling
strength oscillates and exhibits second-order oscil-
lations; and (6) the most important characteristic
of the hyperbrain network organization is the
existence of so-called hyperbrain modules sharing
electrodes from two, three, or even four brains and
characterized by strong connections or information
flow within the modules and weak connections
or information flow between the modules; such
attuned modular organization of hyperbrain
networks reflects intra- and interbrain flexibility
and provides efficient information flow within and
between the brains. These modules are sufficiently
independent to guarantee functional specialization
and sufficiently connected to bind multiple pro-
cesses during IAC. This intramodular connectivity
is sometimes supplemented by intermodular
connections via connector nodes, which are charac-
terized by enhanced connectivity to other modules.
Intermodular connectivity can play a specific role
during IAC, providing communication between
different processes running in the interacting
brains.

We presented various network metrics (CC, CPL,
Elocal, and, Eglobal,) and SW characteristics (� and �)
as functions of costs among real, regular (lattice),
and random networks. Real networks possess much
higher global efficiency than regular networks but
lower global efficiency than random networks.
Thus, the hyperbrain networks of the guitarist quar-
tet show economically plausible features (i.e., high
local and global efficiency of parallel information
processing on the basis of low network connection
costs) at practically all frequencies investigated in
the study, in line with other biological and social
systems.22–24 SW coefficients (� and �) indicate
that the hyperbrain quartet network is an SWN at all
costs (at least until the 50% cost presented here) and
at all frequencies. The SW coefficient � decreases
continuously with higher frequency and lies in the
positive range at low frequencies (2.5–15 Hz) and
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the negative range at high frequencies (20–60 Hz),
indicating an SWN with more random charac-
teristics at low frequencies and with more regular
characteristics at high frequencies. These results are
consistent with our previous study on guitar
duets.9 Thus, it seems to be a general tendency of
hyperbrain networks to arise during IAC, at least
when playing guitar. SWNs combine high clustering
and short path length between nodes, are often
found in nervous systems,25 and permit high local
and global information processing efficiency within
and between systems. SWNs reflect two fundamen-
tal principles of brain function: segregation and
integration.26

We also investigated changes of network architec-
ture across time using a sliding time window. It has
been shown that the network architecture is never
stable: both coupling strengths and community
structures change their patterns over time, depen-
dent on the musical situation. For instance, in a situ-
ation where only guitarist D is playing, we observed
an increase in the within-brain strength of this
guitarist, together with an increase in the interbrain
strengths of this guitarist in either direction. In the
middle of the sequence, when the second loop of the
main melody theme takes place, the within-brain
coupling strongly increased in guitarist B, accompa-
nied by a strong increase of between-brain coupling
in all guitarists. Changes in within- and between-
brain connectivity or strength are accompanied by
corresponding changes in modular organization of
the quartet hyperbrain network and information
flow within and between the different modules
integrated in a common hyperbrain network. All of
these changes indicate that the hyperbrain network
consisting of four different brains is a dynamic
structure with nonstationary coupling dynamics
and network architecture, which are highly adaptive
to external situations requiring different network
states. Changes in the dynamic repertoire of network
states and the existence of temporally persistent
network edges and motifs found in several studies
on functional brain connectivity27–30 are consistent
with previous studies about “EEG microstates”31–34

and metastability of brain networks.35,36 Fur-
thermore, differences in connectivity patterns,
topological distribution of the strengths, and mod-
ular organization across the four brains suggest that
the brain of each guitarist plays a specific role in the
hyperbrain network rather than being driven by the

same shared sensory experience. Nevertheless, the
influence of the latter is certainly present as well. We
propose that dynamic changes of coupling strength
or so-called second-order oscillations may be
related to musical rhythm or other characteristics
of the music and that the individual brains develop
different synchronization patterns, that is, process
these characteristics of the music differently.

Limitations

The present experiment has limitations and leaves
ample room for questions to be addressed in future
research. First, we only investigated hyperbrain net-
work properties in one quartet. However, the main
patterns of hyperbrain connectivity and network
organization were replicated across different musi-
cal sequences in two different music pieces we inves-
tigated. Second, our analyses were limited to phase
synchronization within single frequencies. Cross-
frequency coupling analyses are likely to provide
further information about functionally relevant net-
work properties.20,37

Conclusions

Our results show that hyperbrain networks con-
structed on the basis of intra- and interbrain con-
nectivity across four brains offer a new approach
to investigate IAC, with more complex intertwined
network structures that cannot be investigated in
dual hyperbrain networks. We showed that these
networks differ across frequencies and time, as well
as across different musical sequences. To obtain
a more complete understanding of what is hap-
pening during IAC, it is indispensable to analyze
dynamic changes in synchronization and network
architecture. In doing so, the present study demon-
strates again that EEG hyperscanning followed by
the topographical analysis of oscillatory multibrain
networks is an important tool for delineating the
neural mechanisms of IAC.
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