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Abstract

The effect of the plasma elongation on the energetic-particle-induced geodesic acoustic

mode (EGAM) dynamics is studied with numerical simulations performed with the gy-

rokinetic codes GENE and ORB5 and assessed with analytical models. The former code

has been recently extended to support non-Maxwellian distribution functions and for the

first time global results are shown here and benchmarked against the code ORB5. Tak-

ing advantage of these recent developments in GENE, which allow a joint investigation

with ORB5, linear electrostatic simulations with adiabatic electrons have been performed.

The impact of the elongation on the EGAM dynamics and excitation mechanism is in-

vestigated through the study of the energy exchange terms between the particle and the

mode for different plasma geometry. Finally, the results are applied to the study of an AS-

DEX Upgrade discharge with strongly elongated plasma employing realistic density and

temperature profiles.
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I. INTRODUCTION

The interaction between energetic particles (EP) and plasma turbulence is a cen-

tral issue for present-day and future magnetic confinement devices, like Tokamaks. In

such machines, the substantial plasma temperature, required for thermonuclear re-

actions to occur, is often produced by energetic ions. In nowadays experiments, they

are commonly generated through auxiliary heating systems, such as neutral beam

injection (NBI) and ion cyclotron resonance heating (ICRH), and for the case of reac-

tors like ITER, from fusion reactions. In several experimental discharges at AUG[1],

JET[2, 3] and Alcator C-Mod[4, 5], a significant stabilisation of the background tur-

bulence and a corresponding steepening of the thermal profiles were observed in the

presence of energetic ions. Numerical gyrokinetic simulations, performed on a single

magnetic surface, have helped to develop some understanding of these findings, es-

pecially through the observation of a strong suppression of ion-scale instabilities like

ion-temperature-gradient modes (ITG)[1, 6], mainly attributed to nonlinear electro-

magnetic effects [1, 6]. Recently, however, it has been shown that substantial fast

ion turbulence stabilisation might be achieved, in particular regimes, even due to

electrostatic effects [7]. These numerical observations, corroborated by experimental

evidences [8] have increased the interest in electrostatic fast ion physics. However,

on the other side, EP may also be deleterious for plasma stability [9–13]. Besides

Alfvén type instabilities, they can excite and drive global electrostatic field oscilla-

tions, commonly called geodesic acoustic modes (GAM) [14, 15]. These modes are

zonal flows (ZF) [16, 17] with finite frequency oscillations and are usually damped by

collisionless Landau damping in the plasma core or by collisions at the edge of the

device [18]. On the other hand, zero frequency zonal flows (ZFZF) [19] are damped

by collisional damping only. However, energetic particles might overcome the ther-

mal damping and drive geodesic acoustic modes as stated above, which are called,
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in this case, energetic particle-induced GAM (EGAM) [20–25]. The parallel velocity

anisotropies arising from the highly non-thermalised fast ion distribution function

may indeed lead to an energy transfer from the energetic ions to the EGAM via

inverse Landau damping and to a growth of this mode. The presence of energetic-

particle-induced geodesic acoustic modes, excited through external NBI and ICRH

heating, has also been observed experimentally in different plasma devices and in

different plasma conditions at DIII-D [26], LHD [27] ASDEX Upgrade [28] and JET

[11]. Furthermore, Ref. [29] contains some first evidence for EGAM excitation by

energetic electrons in experiments at HL-2A. The different fast ion effects on plasma

turbulence are strongly nonlinearly connected. Indeed, the macroscopic ion-scale

structures, generated by ITG turbulence and the radial ZF oscillations, generated

via Reynold stress are nonlinearly coupled. Furthermore, ITG turbulence mainly sat-

urates via ZFs and any modification of the latter may therefore have a strong impact

on transport levels and hence on energy confinement. Hereafter, EGAMs could be

another interesting player in this context. Although significant improvement in the

theoretical understanding of the EGAM linear and nonlinear dynamics has already

been achieved recently [30–32], several aspects still need to be addressed in order

to be able to understand the whole complex turbulence/ZF nonlinear interaction.

The aim of the present work is to analyse the impact of realistic magnetic config-

urations on the linear electrostatic EGAM physics. More specifically, the effect of

the elongation on the EGAM linear dynamics is studied with the gyrokinetic codes

GENE [33] and ORB5 [34, 35]. The former has been recently extended to support

arbitrary non-Maxwellian fast ion backgrounds and in the contribution at hand, re-

sults obtained studying the whole radial domain (global simulations) are presented

for the first time. In Sec. II, a brief description of the gyrokinetic codes GENE and

ORB5 and of the distribution functions employed in this work is provided. In the

framework of verification of the newly implemented terms, the GENE results are
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benchmarked with the gyrokinetic code ORB5 both in circular and realistic geome-

tries, respectively in Sec. III and Sec. IV. A theoretical and numerical interpretation

of the results obtained in different realistic plasma configurations is presented in

Sec. V and Sec. VI with the help of simplified analytical theory. In the last section of

this paper, namely Sec. VII, the study of a realistic ASDEX Upgrade experimental

scenario with a strongly elongated plasma is investigated employing realistic density

and temperature profiles.

II. DESCRIPTION OF THE GYROKINETIC CODES GENE AND ORB5

A. The GENE code

The Gyrokinetic Electromagnetic Numerical Experiment (GENE) solves numer-

ically the Vlasov-Maxwell system of equations for each time step on the five di-

mensional grid (~R, vq, µ), where ~R represents the gyrocenter position, vq the velocity

component parallel to the magnetic field and µ = msv
2
⊥/(2B0) the magnetic moment.

Here ms denotes the mass of species s, v⊥ the velocity component perpendicular to

the magnetic field and B0 the background magnetic field. GENE can either be op-

erated in a flux tube simulation domain (employing a local approximation) [33], in

a radially global torus geometry [36], or as a flux-surface code [37]. Furthermore,

full electromagnetic effects, a realistic collision operator and experimental geometries

can be included. The gyrokinetic representation of each species is done employing

the so-called δf approach. The distribution function is split into a background com-

ponent and in a small fluctuating part, i.e. Fs = F0,s + f1,s. F0,s is usually assumed

to be a local Maxwellian distribution with ∂F0/∂t = 0, defined - in normalised units
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- as follows

F0,s =
n̂s(

πT̂s

)3/2 e− v2
q +µB0

T̂s . (1)

Here, the velocities are normalised to the thermal velocity of each species (s) vs,th =√
2Ts(x0)/ms - in units of cs =

√
Te(x0)/mi and the following abbreviations have

been introduced for density and temperature profiles n̂s = ns(x)/ne(x0) and T̂s =

Ts(x)/Te(x0) with respect to the reference position x0. In GENE the reference values

are the main ion mass mi, electron temperature Te and a reference magnetic field Bref ,

see Ref. 36 for more details. Furthermore, recently, GENE has been extended in or-

der to run and support arbitrary background distributions [38], which may be either

analytical or numerical [39]. These new capabilities allow to highly increase the real-

ism in the modelling tools of the non-thermalised energetic ion population. In Ref. 39

both the analytical framework and numerical results were shown employing the ex-

tended version of the code on a single magnetic surface, i.e. flux-tube simulations.

In the contribution at hand, results obtained studying the whole radial domain are

presented for the first time and benchmarked with the gyrokinetic global code ORB5

[34, 35]. We limit our investigation to the Geodesic Acoustic Modes (GAM) physics

in electrostatic plasmas. GAMs are axisymmetric modes (n = 0) with poloidally

symmetric potential (m = 0) and asymmetric density (m = 1) perturbations, which

are usually suppressed through Landau damping mechanisms. However, in the pres-

ence of energetic ions, unstable (growing) modes can be excited by velocity space

gradients in the non-thermalised fast ion distribution. In Sec. III,IV,VII, analogously

as in Ref. 23, 30, and 31, the fast ion background is assumed to be a (symmetric

double) bump-on-tail distribution defined - in normalised units - as follows

FEP =
n̂EP(

πT̂EP

)3/2 e− v2
q +µB0

T̂EP e
−

v̄2
q

T̂EP cosh

(
2vqv̄q

T̂EP

)
. (2)
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Similar to Refs. 23, 30, and 31 the slow time dependence of the energetic particle

background is considered irrelevant on the EGAM linear time scales both in ORB5

and GENE.

B. The ORB5 code

ORB5 is a Lagrangian electromagnetic particle-in-cell (PIC) gyrokinetic code,

which operates on the full global radial domain. It solves numerically the Vlasov-

Maxwell equations in a five dimensional space (~R, pq, µ), where ~R denotes the gy-

rocenter position, pq = msvq + (qs/c)Ãq the canonical parallel momentum and µ =

msv
2
⊥/(2B0) the magnetic moment of the species s. Here, qs represents the s-species

charge, c the speed of light and Ãq the gyroaveraged parallel component of the vector

potential. Similarly to GENE, ORB5 splits the distribution function in a background

component and in a fluctuating part. However, ORB5 discretises the distribution

functions with particles, so called markers, and weights. The system evolves in

time by pushing the particle markers along the trajectories derived from the gyroki-

netic model and the fields are evaluated by solving the gyrokinetic field equations,

properly projecting the marker weights on a spatial grid. ORB5 has the possibil-

ity to initialise the fast ion background distribution function both as an equivalent

Maxwellian background, as defined in Eq. (1) and with a double symmetric bump-

on-tail distribution, as defined in Eq. (2). Furthermore, the velocities of each species

are normalised to the thermal velocity of the main ion (i) defined as vi,th =
√
Ti/mi.

With the aforementioned normalisation, a factor of
√

2 of difference compared to the

GENE normalisation appears for the cases of TEP = Ti and a factor of
√

2TEP/Ti

for realistic fast ion temperatures. Further details on the ORB5 basic equations and

on the code implementation can be found in Ref. 34 and 35.
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III. NUMERICAL RESULTS WITH CIRCULAR GEOMETRY

Linear electrostatic benchmarks between GENE and ORB5 are performed study-

ing the EGAM growth rates and frequencies for different fast particle concentrations

and different magnetic circular geometries. This first numerical analysis allows one

to verify the newly extended global version of the gyrokinetic code GENE, which

includes non-Maxwellian distribution functions for the energetic ion population as

described in the previous section. Electrons are considered adiabatic and at t = 0 a

density perturbation of the form n1(ρpol, t0) ∼ sin(πρpol) is initialised and Dirichlet

boundary conditions are applied. Here, ρpol =
√

Ψp/Ψp,edge represents the radial

coordinate with values in [0, 1] and Ψp the poloidal flux. The growth rates and fre-

quencies are obtained through a logarithmic fit of the time evolution of φ1 at the

radial position ρpol = 0.5. The EGAMs can be excited only through an energy trans-

fer from the fast particle population and the mode. In order for this mechanism

to occur an inverse Landau damping is required, i.e. a non-Maxwellian distribution

function must be used for modelling the fast particle population. To this aim, both

GENE and ORB5 consider the bump-on-tail distribution function defined in Eq. (2)

while a local Maxwellian is maintained for the main (thermal) ion species.

A. Simulation results

All the numerical simulations presented in this section have been performed with

analytical circular magnetic equilibria [40] and in a collisionless plasma. The inverse

aspect ratio ε(= a/R0) is fixed to 0.3125, with R0 = 1m and a = 0.3125m. The

magnetic field on axis is equal to B0 = 1.9T. Furthermore, flat temperature and

density profiles have been considered throughout all the rest of this section with the

radial coordinate which goes from 0 < ρpol < 1. The EP and bulk ion temperatures
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FIG. 1: EGAM frequencies and growth rates for q = 3 and ρ∗ = 1/64; ρ∗ = 1/128.

(Te = Ti = TEP ) are fixed by the choice of ρ∗ = ρs/a, with ρs =
√
Te/mi/Ωi

and Ωi = qB0/mc. In the following two different values of ρ∗ have been used,

i.e. ρ∗ = 1/64 and ρ∗ = 1/128. The fast ion temperature and the values of ρ∗ have

been chosen to reduce the computation effort of the numerical simulations. The

reference density, on the other hand, is a free parameter in collisionless electrostatic

simulations as none of the physics inputs is constrained by this value and the chosen

linear observables do not depend on the density either. Furthermore, the value of

v̄q, which determines the magnitude of the shift in vq, has been fixed to 2.83 in

units of ion thermal velocity (= 4 in ORB5 units). In Fig. (1) EGAM growth rates

and frequencies obtained for different energetic ion concentrations at ρpol = 0.5 are

compared between GENE and ORB5 for a flat q-profile = 3, i.e. shear = 0 and for

ρ∗ = 1/64 and ρ∗ = 1/128. The theoretical values of the EGAM frequencies and

growth rates have been taken from Ref. 31. The differences between the GENE and

ORB5 results are as the order of 7% for ρ∗ = 1/64, which reduce to ∼ 5% for ρ∗,

i.e. ρ∗ = 1/128. The agreement between the codes improves even further if the value

of the flat q-profile is reduced to 2, as it is shown in Fig. (2) for the EGAM growth

rates and frequencies. For this specific geometry, i.e. q = 2, and for the fast ion
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FIG. 2: EGAM frequencies and growth rates for q = 2 and ρ∗ = 1/64.

concentration of nEP/ne = 0.2, a comparison of the radial structure of the perturbed

electrostatic potential obtained with GENE and ORB5 is shown in Fig. (3) for t = 0

and t = 268.1 in units of cs/R0. The time t = 268.1cs/R0 corresponds to a maximum

of the electrostatic potential. This time has been chosen after an initial transient

phase, and therefore gives a characteristic indication of the radial structure of the

well-formed mode. A good agreement between the codes is observed. In particular,

a slight reduction of the radial wave number for the formed mode, with respect to

the value of the initialized field, is found, and a slight reduction of the radial position

of the peak. The latter corresponds to a lack of radial symmetry caused by the

dependence of the aspect ratio on the radius.

IV. NUMERICAL RESULTS IN ELONGATED GEOMETRY

In the following section, the newly extended version of the gyrokinetic code GENE

is employed for a joint investigation with ORB5 of the effect of the elongation on

the EGAM dynamics. An initial denisty perturbation is excited at t = 0 and its

evolution in time with linear collisionless electrostatic simulations with flat profiles

is observed. The growth rates and frequencies are obtained through a logarithmic
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FIG. 3: Comparison of the radial structure of the electrostatic potential φ1 between

GENE (continuous line) and ORB5 (dotted line) for the case nEP/ne = 0.2, q = 2

and ρ∗ = 1/64.

fit of the time evolution of φ1 at the radial position ρpol = 0.5. The choice of using a

reduced setup, neglecting radial profiles and magnetic fluctuations, is motivated by

the need of decreasing the physical complexity of the system.

A. Simulation setup and results

All the numerical simulations presented in this section have been performed with

numerical CHEASE equilibria [41]. The physical parameters are the same as the

ones in the previous section and the value of ρ∗ is fixed to ρ∗ = ρs/a = 1/128. The

q-profile is almost constant at the value of q = 2 in the whole range of the radial

profile which goes from 0 < ρpol < 1 and the elongation is varied from κ = 1 (circular

flux surfaces - see Fig. (4) a) -) to κ = 1.75 (elongated plasma - see Fig. (4) b) -).

At t = 0 the same sinusoidal density perturbation defined in the previous section

is initialised and allowed to evolve in time enforcing Dirichlet boundary conditions.
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FIG. 5: EGAM frequencies and growth rates for different values of the elongation

and for nEP/ne = 0.15 at ρ∗ = 1/128 for q = 2.

In Fig. (5)-(6), linear EGAM growth rates and frequencies are shown for different

values of the elongation and for different energetic ion concentrations. The latter

is defined as the energetic particle density divided by the electron density. From

Fig. (6) it is possible to observe the excellent agreement between the codes GENE
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from GENE (blue line) and ORB5 (red line) for nEP/ne = 0.23 at ρ∗ = 1/128 for q

= 2: a) κ = 1.00 and b) κ = 1.75

and ORB5 for the fast ion concentrations of nEP/ne = 0.23. This agreement is also

confirmed by the study of the time trace of the perturbed potential φ1 for different

values of the plasma elongation, as can be seen in Fig. (7). Furthermore, we observe

a pronounced dependence of the EGAM growth rate - which decreases, i.e. is less
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destabilised - with the elongation and only weak changes in the mode frequency.

V. REDUCED GYROKINETIC MODEL FOR THE FAST ION ENERGY

TRANSFER TERMS

The theoretical framework used for the physical interpretation of the numerical

results of the effect of the plasma elongation on the EGAM dynamics is here pre-

sented, following the analysis of Ref. 42 and 43. The perturbed part of the linear

electrostatic Vlasov equation in GENE normalised units can be written, without

doing any assumption of the background distribution function and neglecting the

trapped fast ion term, as follows

(3)

∂f1,s
∂t

= − C
JB0

vqvth

[
∂f1,s
∂θ
− qs

2T0,svq
∂θφ̄1

∂F0,s

∂vq

]
− T0,s

qs

(µB0 + 2v2q )

B0

Kx
∂f1,s
∂x

+
1

2vq

(µB0 + 2v2q )

B0

Kx
∂φ̄1

∂x
.

Here, we have defined the following geometrical coefficients Kx = −((B0 ×∇B0) ·

x̂)/B2
0 , C2 = B0 ·B0 and J −1 = B0 ·∇θ/C in the field aligned coordinate system with

x radial direction, θ field aligned direction and z binormal direction. Furthermore, φ̄1

denotes the gyroaveraged potential. The reference values used for normalizing Eq. 3

are the elementary electron charge e, the main ion mass mi, electron temperature Te,

a reference magnetic field Bref and a macroscopic length Lref , see Ref. 36 for more

details. The frequencies have been normalised to cs/R0. It is possible to perform

the following Fourier and Laplace transformation with respect to kx, θ and t for the

perturbed quantities

(4)f1,s (x, θ, t) =
∑
m

(2π)−1
∫
dkxdωf1,s (kx, ω) ei(mθ−ωt+kxxs),

13



where, xs = δs cos θ, δs =
εvth,s
vq

(v2q +B0µ/2) and ε = a/R0. Positive values of the real

frequency identify a mode propagating in the ion direction. Employing the Jacobi-

Anger expansion, respectively, eikxδs cos θ =
∑

l i
lJl (kxδs) e

ilθ and Eq. (4), Eq. (3) can

be re-written as follows

f1,m,s =
∑
l,l′

− qs
2T0,svq

∂F0,s

∂vq
i(l

′−l)Jl′ (kxδs) Jl (kxδs)
[ωds + (l +m)ωt]

[ω − ωt (l +m) + ωds]
φ1,m+l−l′ ,

(5)

where, ωds = T0,s

qB0
(µB0 + 2v2q )Kxkx is the toroidal drift frequency and ωt = C

qB0J vqvth

is the transit frequency. Furthermore, the orthogonality relation yields l+m = l
′
+m

′
.

For an s − α magnetic equilibrium, the transit frequency can be rewritten as ωt =

vqvth
q

, where q represents the safety factor. Since kx,min = 2πρ∗ � 1, it is possible to

neglect the toroidal drift frequency ωds with respect to the transit frequency ωt and

re-write Eq. (5) as

(6)f1,m,s =
∑
l,l′

− qs
2T0,svq

∂F0,s

∂vq
i(l

′−l)Jl′ (kxδs) Jl (kxδs)
(l +m)ωt

[ω − ωt (l +m)]
φ1,m+l−l′ .

Up to the first order in m′ it is possible to write

(7)f1,m =1,s = −qsJ
2
0 (kxδs)

2T0,svq

∂F0,s

∂vq

ωtφ1,m′=1

ω − ωt
− iqsJ1 (kxδs) J0 (kxδs)

2T0,svq

∂F0,s

∂vq

ωtφ1,m′=0

ω − ωt
.

The higher order resonance terms are here neglected. The GAM dispersion relation

can be obtained from Eq. (6) by solving the Poisson equation. For the case of s− α

geometry, adiabatic electrons and equivalent Maxwellian distributed particles the

dispersion relation of Ref. 42 is obtained. If a fraction of fast ions, modelled with the

bump-on-tail distribution of Eq. (2) is considered, the dispersion relation of Ref. 24

and 31 is instead derived from Eq. (6). The reduced Vlasov equation derived in

Eq. (7) can be used to investigate the contribution of each particle species (s) to

the overall energy exchange between the particles and the mode through the energy
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conservation property of the Vlasov-Poisson equations [44, 45]. This analysis allows

one to study and separate any fast-ion drive mechanisms from the thermal damping

of the bulk plasma and will be used in the next section to identify the resonance

position for each value of the plasma elongation. Thereafter, the energy exchange

between the particles and the mode can be written as

∂Es
∂t

= Re
{∫

πB0

(
v2q + µB0

) ∂f1,s
∂t

d3xdvqdµ

}
, (8)

where f1,s denotes the perturbed distribution function of the species s. From Eq. (8)

it is possible to study the contribution of each term of the Vlasov equation to the

energy exchange and hence to the mode excitation. Positives (negatives) values of

∂Es
∂t

indicate that the plasma species considered is giving (taking) energy to (from) the

electrostatic field component with a consequent growth (damping) of the mode. As it

is shown in Ref. 44, Eq. (8) can be written as the sum of curvature and parallel term

contributions. In Fig. (8) the contribution of each of these terms to the total energy

derivative is displayed (a) for the thermal and (b) for the energetic ions at nEP/ne =

0.15; q = 2; ρ∗ = 1/128;κ = 1.00. Apparently, the main contributions stem from the

curvature, which is consistent with fast ions exciting a geodesic acoustic mode and

the parallel advection terms, which although overall smaller, can become significant

at the minimum of the curvature term – these two different contributions oscillate,

indeed, with opposite phase relation. This picture does not depend on the elongation

and it is qualitative the same between thermal and fast ions. Furthermore, we

observe that the fast particles, modelled with the bump-on-tail distribution defined

in Section II, act as a positive drive to the EGAM with a positive contribution to the

particles/mode power exchange. The thermal ions, on the contrary, globally damp

the fast ion driven mode, even if locally they can still provide energy [31]. The overall

contribution (drive-damping) to the EGAM mode determines the total mode growth

rate.
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FIG. 8: Study of the different contributions of the thermal and fast ions to the

total energy transfer.

VI. THEORETICAL MODEL

The effect of the plasma elongation on the resonance positions for both thermal

and energetic ions are studied in this section with gyrokinetic simulations and the

results compared to analytical predictions. For the small orbit drift width limit, the

dominant resonance mechanism is predicted to occur between the GAM linear mode

frequency and the bulk-ion parallel motion, described by the transit frequency ωt

[46]. The latter, averaged over the poloidal angle, is defined in GENE normalised

units as follow [46]

ωt =
vqvth,i
q

[
1 +

ε2

2
− ε2 (κ2 + 1)

4q2

]
. (9)

Here κ represents the value of the plasma elongation. In Fig. (9) a qualitatively good

agreement (inside error bars) between GENE/ORB5 and the theoretical predictions

of Ref. 46 is shown for the GAM damping rate and frequency for different values of

the elongation. The relatively large error bars of Fig. (9)(a) are a consequence of

the significantly smaller GAM damping rate, which makes the corresponding analysis

more challenging. The geometry and the plasma parameters are the same of the ones
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(blue line)/ORB5 (red line) GAM damping rate a) and frequency b) for different

values of the elongation for the case q = 2 and ρ∗ = 1/128.

employed in the previous section, i.e. ρ∗ = 1/128 and q = 2. The mild dependence

of the GAM damping rate with the elongation can be explained studying the vq

structure of the energy exchange term. Inserting Eq. (6) in Eq. (8) yields the following

simplified expression for the energy exchange power between the particles and the

mode, i.e. the energy taken (negative) or given (positive) from/to the mode

(10)

∂Es
∂t

= Re
{
−
∫
iωπB0

(
v2q + µB0

)
f1,m=1d

3xdvqdµ

}
= Re

{∫
iωπB0

(
v2q + µB0

) [qsJ2
0 (kxδs)

2T0,svq

∂F0,s

∂vq

ωtφ1,m′=1

ω − ωt

+
iqsJ1 (kxδs) J0 (kxδs)

2T0,svq

∂F0,s

∂vq

ωtφ1,m′=0

ω − ωt

]
d3xdvqdµ

}
.

This relation is consistent with the ones obtained in Ref. 23 and demonstrates that

the energy transfer between the GAM/EGAM and the plasma species is proportional

to the vq derivative of the background distribution function, i.e. ∂F0

∂vq
. If the plasma

contains only thermal ions, i.e. can be described by a Maxwellian background, the
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FIG. 10: Case without fast ions: a) Slice at µ = 0 of εvq for different values of vq.

The symbols in the figure identify the value of εvq at the different resonance

positions identified with Eq. (9) for each value of the elongation. b) Time evolution

of the system energy exchange for κ = 1.00 and κ = 1.75.

exchange power density between the wave and the ions is always negative and the

mode is always naturally damped. The magnitude of the damping depends on the

value of ∂F0

∂vq
at the parallel transit motion resonance position. Larger values (in mag-

nitude) of ∂F0

∂vq
correspond to larger energy exchange rates and in the case of negative

vq derivatives to stronger damping. A µ = 0 and ρpol = 0.5 slice of the vq dependent

energy exchange term εvq = vqωt
∂F0

∂vq
is shown in Fig. (10)a for different values of vq.

The symbols in the figure mark the different resonance positions as defined by Eq. (9)

for each elongation value. Note that for the case of energetic ions the thermal velocity

in Eq. (9) refers to the energetic ion species. With increasing elongation, the resonant

parallel velocity moves to smaller values, i.e. for the case of Maxwellian backgrounds

to more negative values of εvq and thus to stronger damping. These findings are con-

sistent with the elongation dependence of the total energy exchange, see Fig. (10)b.

However, if non-thermalised fast ions – here modelled with the bump-on-tail distri-
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positions associated to different elongation values, see Eq. (9).

bution defined in Eq. (2) – are considered, the velocity derivative of the background

distribution function assumes positive values. A net energy transfer therefore occurs

from the fast ions to the mode, which, if the drive overcome the thermal damping,

might now be driven by the energetic particles (EGAM) with positive values of γ.

Furthermore, the EGAM growth rate is weakened with increased elongation which

resembles the stronger damping in the GAM case above. This change in the γ depen-

dence with the elongation is again consistent with the corresponding change in the

shape of the velocity space structure of εvq for a bump-on-tail distribution compared

to a Maxwellian background. Indeed, when the resonant transit velocity decreases

with the elongation, εvq also decreases accordingly with a consequent weakening of

the wave-fast ion energy transfer. As before, this elongation dependence can also

be observed in total energy exchange, see Fig. (12)a-b. Further analysis can be

performed studying the velocity space structure of ∂E/∂t, i.e. the energy exchange,

for both different elongations, here κ = 1.00 and κ = 1.75, and energetic particle

densities, nEP/ne = 0.23 and nEP/ne = 0.15. In Fig. (13-14) a slice at µ = 0 and
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FIG. 12: Time evolution of the total energy exchange for κ = 1.00 and κ = 1.75 for

a) nf/ne = 0.23 and b) nf/ne = 0.15.

ρpol = 0.5 of ∂E/∂t is shown at a time step which corresponds to a maximum of the

energy transfer. A phase space structure connected to the parallel transit resonance

can be observed in Fig. (13-14) for both thermal and fast ions. The peak positions,

i.e. the maxima of the energy exchange, occur at vq values predicted by Ref. 46 (black

crosses in Fig. (13)). The full velocity space integrals of the ∂E/∂t structures shown

in Fig. (13-14) correspond to the values of Fig. (12). The results of Fig. (13-14)

have been obtained performing an average over four consecutive maxima of the total

energy exchange.

VII. AUG EXPERIMENT BASED STUDIES

In the following section a realistic ASDEX Upgrade experimental scenario with a

strongly elongated plasma is investigated with linear electrostatic simulations study-

ing the n = 0 (EGAM) dynamics. This case refers to the AUG shot #31213 at

0.841s [47], which contains significant fast ion effects and fast-ion driven modes. The

major and minor radii are R0 = 1.62m and a = 0.482m. The magnetic field on axis is
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FIG. 13: Parallel velocity structure of ∂E/∂t for thermal (left) and fast (right)

deuterium at µ = 0 for κ = 1.00 (blue line) and κ = 1.75 (red line) at fixed fast ion

density nf/ne = 0.23. The black crosses represent the different resonance positions

for each value of the elongation, see Eq. (9).

B0 = 2.2T and the safety factor has a reversed shear, with qmin(ρpol = 0.5) = 2.3. The

plasma is composed by deuterium, electrons and is heated with Pinjected = 2.5MW

of deuterium-NBI. The tokamak magnetic geometry is provided with an experimen-

tal CHEASE equilibrium and is shown in Fig. (15) with the corresponding safety

factor profile. The equilibrium is reconstructed from the experimental discharge via

CLISTE and post-processed with CHEASE for interfacing to the gyrokinetic codes.

A. Flat density and temperature profiles

A first simplified setup removing any effects of the ion/electron temperature ratio,

i.e with Ti = Te = 1.603keV, corresponding to ρ∗ = ρs/a = 1/183.3 and considering

flat temperature and density profiles is considered in the following. The latter values

have been taken from the full main-ion radial temperature profile at ρpol = 0.5.
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and κ = 1.00 (blue line), κ = 1.75 (red line). The black crosses represent the

different resonance positions identified with Eq. (9) for each value of the elongation.
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FIG. 15: a) Intensity of the equilibrium magnetic field on the flux-coordinate grid

b) safety factor profile in the AUG discharge.

This first simplified analysis allows a reduction of the physical complexity of the

system, removing any phase-mixing effects while keeping the effect of realistic plasma

elongation. The electron density at this position is similarly determined to ne =

1.265 · 1019m−3. As before, fast ions are modelled with a bump-on-tail distribution
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FIG. 16: Linear EGAM growth rates a) and frequencies b) are shown for different

fast ions density concentration for the realistic CHEASE and a circular equilibrium

for flat density and temperature profiles.

(Eq. (2)) – here with v̄q = 2.83 (= 4 in ORB5 units) in units of the thermal velocity

and fast ion temperature set to the main ion one, i.e. TEP = Ti. The considered radial

simulation domain covers 0.15 < ρpol < 0.85. For simplicity, electrons are considered

adiabatic and an initial density perturbation of the form n1(ρpol, t0) ∼ sin(πρpol) is

initialised with Dirichlet boundary conditions. In Fig. (16) the linear EGAM growth

rates and frequencies obtained for the realistic CHEASE equilibria with GENE and

ORB5 are shown and compared to the ones of a simplified circular geometry for

different fast ions density concentrations. The safety factor profile of the circular

geometry case is kept the same as the experimental one, see Fig. (15)b. The values

of the growth rates and frequencies have been calculated at the radial position ρpol =

0.25, i.e. where the radial profile of the electrostatic potential is found to peak, as

shown in Fig. (17). For the nominal fast ion density nEP = 0.2ne at ρpol = 0.5, both

codes agree well on the the values of the EGAM frequency and growth rate which are

found to be ω = 1.267cs/R0 = 33.315kHz and γ = 0.103cs/R0 for the realistic AUG

equilibrium. Fig. (16) furthermore demonstrates a pronounced effect of the magnetic
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FIG. 17: Radial structure of the electrostatic potential at different simulation times

for the case of flat density and temperature profiles in the AUG discharge.

geometry on the linear EGAM growth rates and frequencies. The plasma elongation

(κ) weakens the EGAM growth rates and slightly reduces the mode frequency. A

change in the EGAM fast ion density threshold can be observed as well. Consistently

with the results shown in the previous sections, the plasma elongation affects also

the thermal damping, which unlike of the fast ion drive, strengthens with κ and

can became dominant for the cases of weak EGAM drive. The combined effect of

the elongation on the thermal damping and fast ion drive is found to significantly

affect the fast ion density threshold. However, it is worth specifying that close to

the EGAM density threshold the effect of the kinetic electron damping might be not

negligible anymore and should be taken into account [48]. Furthermore, the results

shown in the previous sections were obtained in the case of strongly driven EGAMs.

Close to the mode marginal stability the interaction between thermal damping and

fast-ion drive might change significantly and affect the linear results.
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B. Realistic density and temperature profiles

In the last section of this paper, the full realistic temperature and density profiles,

shown in Fig. (18), are employed in the gyrokinetic analysis for each species. The

fast ion population is modelled with the bump-on-tail distribution defined in Eq. (2),

with a realistic temperature of TEP = 30keV. The latter choice also fixes v̄q, i.e. the

value of the shift of the bump-on-tail distribution function, which for the parameters

employed in this section, is equal to v̄q = 1.41 (∼ 2 in ORB5 units). The equivalent

Maxwellian temperature imposes a constraint over the second order moment of the

bump-on-tail distribution function to keep the same energy content. Furthermore,

electrons are considered adiabatic and electrostatic simulations are performed with

GENE with the radial domain covering 0.1 < ρpol < 0.9. The logarithmic time trace

of the perturbed electrostatic potential at ρpol = 0.5 is shown in Fig. (19)a. By means

of linear regression, the corresponding EGAM growth rate and frequency are deter-

mined to γ = 0.0465cs/R0, ω = 2.013cs/R0 = 44.69kHz. Compared to values in the

previous section, the EGAM growth rate for these realistic AUG based parameters
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appears to be relatively small. This finding is consistent with the analytic energy

exchange formula, Eq. (10), which predicts a reciprocity between the mode/ion en-

ergy exchange term and the fast ion temperature. In the analysis at hand, the NBI

fast Deuterium temperature has been fixed to a realistic value of TEP = 30keV ,

which is calculated from the NBI injected energy while thermal NBI Deuterium had

been considered in the simplified setup in the previous section. The aforementioned

increase in the fast ion temperature produces a net reduction of the energy exchange

term between fast ions and the mode with a consequent reduction of the EGAM

growth rate. Furthermore, we also observe a significant increase in the EGAM mode

frequency. It is also possible to compare the experimentally measured frequency of

the n = 0 modes at t = 0.841s and ρpol = 0.5 with the values obtained by GENE

with realistic density and temperature profiles. Despite the simplified setup here

considered - adiabatic electrons, no nonlinear coupling and electrostatic simulations

-, Fig. (19)b displays a surprisingly good agreement between the measurement of the

EGAM frequency in the first linear phase and the simulation value. At later times,

the EGAM mode enters a nonlinear chirping phase, which cannot be described with

linear simulations. The particularly good agreement with the experimental frequency

is achieved only by reasonably approximating modelling the fast ion temperature.

For the case of TEP = Te, shown in the previous section, an underprediction of the

mode frequency is observed. Moreover, a comparison with an ad-hoc circular equilib-

rium with a radial safety factor profile as in the realistic MHD equiblibrium reveals

that the latter (with significant elongation) is also a crucial ingredient for achieving

a good EGAM frequency agreement. The growth rate obtained with the circular

equilibrium is found to increase of more than 50% up to γ = 0.0763cs/R0. The mode

frequency, on the other hand, has a weaker dependence on the plasma elongation and

it is found to increase by a factor of ∼ 15% up to ω = 2.327cs/R0. In dimensional

units, the mode frequency reads as ω = 51.66kHz, which is still qualitatively close
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FIG. 19: a) Time trace of the perturbed electrostatic potential in logarithmic scale

with the corresponding values of the EGAM growth rate and frequency for realistic

density and temperature profiles; b) experimental time evolution of the frequency

spectra of the AUG discharge #31213. The white cross refers to the EGAM

frequency obtained from GENE simulations.

to the experimental measurements. However, a quantitative agreement is achieved

only by considering a more sophisticated model for the magnetic equilibrium which

includes - amongst others - elongation effects. This finding is well in line with the

dedicated analysis mentioned in Sec. V- VI. Furthermore, the radial structure of the

electrostatic potential is also analysed at different simulation times, corresponding

to maxima of φ1. As can be seen in Fig. (20), the mode is already localised around

the maximum fast ion density at ρpol = 0.5 at an early stage of the simulation. For

different radial positions, the fast ion density decreases and the drive, which is al-

ready significantly weak at ρpol = 0.5 barely overcomes the thermal damping and the

mode is strongly weakened. However, for a more realistic comparison with the ex-

perimental measurements of the EGAM radial structure [28] - measured at ρpol ∼ 0.3

-, a more accurate description of the fast ion background distribution function and

of the nonlinear physics needs to be considered.
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FIG. 20: Radial structure of the electrostatic potential at different simulation times

for the case of realistic density and temperature profiles of the AUG discharge.

VIII. CONCLUSIONS

In the present paper, for the first time results obtained with the global version of

the gyrokinetic code GENE which supports non-Maxwellian backgrounds are shown

and benchmarked against the code ORB5. In particular, the effect of the plasma

elongation on the EGAM dynamics is studied with both numerical simulations and

reduced analytical models. To facilitate the comparison between theory and simula-

tions, adiabatic electrons and electrostatic fluctuations are considered. Furthermore,

a symmetric double bump distribution function is chosen for modelling the ener-

getic ion population, while Maxwellian bulk ions are considered. It is found that the

plasma elongation significantly weakens the EGAM growth rates, barely modifying

the respective mode frequency. In particular, it introduces small order corrections on

the parallel transit resonance position which affect the energy exchange between the

fast ions and the mode, i.e. it modifies the phase space position in which the inverse

Landau damping occurs. In particular, the resonant transit velocity decreases with

the elongation, which, for the choice of parameters here considered, moves through
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region in phase space where the shape of the fast ion distribution is less favourable

to exchange energy with the mode, with a consequent reduction of the linear growth

rate. Finally, these finding have been applied to a real ASDEX Upgrade discharge

with strongly elongated geometry. For this analysis realistic density and temperature

profiles have been considered. Despite the approximations taken in our simulations

regarding the EP distribution function and the adiabatic model for the electrons, a

good agreement of the linear frequency obtained with numerical simulations and the

onset of the EGAM frequency chirping cycle is found. Moreover, a significant ef-

fect of the plasma elongation on the EGAM instability threshold has been observed.

The extension of the present numerical investigation to the nonlinear phase will be

addressed in a dedicated publication.
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E. Poli, and A. Di Siena, Phys. Plasmas 24, 122117 (2017).

33

http://dx.doi.org/10.1017/S0022377815000574
http://dx.doi.org/ 10.1016/j.jcp.2011.05.034
http://dx.doi.org/ 10.1103/PhysRevLett.113.155001
http://dx.doi.org/ 10.1088/1742-6596/775/1/012003
http://dx.doi.org/10.1063/1.5020122
http://dx.doi.org/10.1063/1.3096710
http://dx.doi.org/10.1016/0010-4655(96)00046-X
http://dx.doi.org/doi:10.1017/S002237780700668X
http://dx.doi.org/10.1017/S0022377806004958
http://dx.doi.org/10.1063/1.3632077
http://dx.doi.org/ 10.1063/1.4922754
http://dx.doi.org/ 10.1063/1.4922754
http://dx.doi.org/doi:10.1063/1.2955766
http://dx.doi.org/10.1063/1.5003784

	Effect of elongation on energetic particle-induced geodesic acoustic mode
	Abstract
	Introduction
	Description of the gyrokinetic codes GENE and ORB5
	The GENE code
	The ORB5 code

	Numerical results with circular geometry
	Simulation results

	Numerical results in elongated geometry
	Simulation setup and results

	Reduced gyrokinetic model for the fast ion energy transfer terms
	Theoretical model
	AUG Experiment based studies
	Flat density and temperature profiles
	Realistic density and temperature profiles

	Conclusions
	Acknowledgement
	References


