CHEMISTRY A European Journal

Supporting Information

Structure Determination, Conformational Flexibility, Internal Dynamics, and Chiral Analysis of Pulegone and Its Complex with Water

Anna Krin,^[a, b, c] Cristóbal Pérez,^{*[a, b, c]} Pablo Pinacho,^[f] María Mar Quesada-Moreno,^[d] Juan Jesús López-González,^[d] Juan Ramón Avilés-Moreno,^[e] Susana Blanco,^[f] Juan Carlos López,^[f] and Melanie Schnell^{*[a, b, c]}

chem_201704644_sm_miscellaneous_information.pdf

Supplementary information for:

Structure determination, conformational flexibility, internal dynamics, and chiral analysis of pulegone and its complex with water

Anna Krin^{a,b,c}, Cristóbal Pérez^{a,b,c}, Pablo Pinacho^f, María Mar Quesada-Moreno^d, Juan Jesús López-González^d, Juan Ramón Avilés-Moreno^e, Susana Blanco^f, Juan Carlos López^f and Melanie Schnell^{a,b,c}

^aMax-Planck Institut für Struktur und Dynamik der Materie, Hamburg, Germany. ^bDeutsches Elektronen-Synchrotron, Hamburg, Germany. ^cChristian-Albrechts-Universität zu Kiel, Germany.

^dDepartamento de Química Física y Analítica, Universidad de Jaén, Spain.

^eDepartamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain.

^fDepartamento de Química Física y Química Inorgánica, Universidad de Valladolid, Spain.

List of Figures

$\mathbf{S1}$	Nutation curves for the drive transitions of pulegone, Chair 1 for M3WM	
	cycles	3
S2	Coupling scheme for the $3_{13} \leftarrow 2_{02}$ rotational transition of Chair 1	8
$\mathbf{S3}$	Internal rotation of pulegone, Chair 2	14

List of Tables

$\mathbf{S1}$	Experimental and calculated molecular parameters for pulegone	4
S2	Experimentally determined rotational and quartic centrifugal distortion	
	constants of Chair 1 and its isotopologues	5
S3	Experimental coordinates (Å) for the ${}^{13}C$ - and ${}^{18}O$ -atoms of pulegone	
	Chair 1	6
$\mathbf{S4}$	The r_0, r_s and r_e structures for Chair 1	7
$\mathbf{S5}$	Measured rotational transitions and residuals for Chair 1	9
S6	Measured rotational transitions and residuals for Chair 2	15
$\mathbf{S7}$	Measured rotational transitions and residuals for the pulegone conformer	
	Chair 1 with water	17

Figure S1: Nutation curves for the drive transitions of the two M3WM cycles to determine the optimal pulse durations ($\pi/2$ conditions) by direct excitation with increasing pulse durations of (a) the c-type transition $5_{24} \leftarrow 5_{14}$ at 2620.09 MHz (cycle 1) and (b) the b-type transition $5_{05} \leftarrow 4_{14}$ at 5680.25 MHz (cycle 2). In both cases, maximum amplitudes for the drive signal are found for pulse durations around 50 ns.

Parameter	Experir	nental			$\mathrm{MP2}^{a}$	
	Chair 1	Chair 2	Chair 1	Chair 2	Twist-Boat 1	Twist-Boat 2
A /MHz	$1909.05435(71)^b$	1820.46706(90)	1885.42	1817.17	1974.04	1966.07
$\rm B \ / \ MHz$	739.06297(21)	816.91977(53)	734.76	822.31	764.90	746.45
C / MHz	578.14181(21)	635.95024(53)	584.11	640.85	606.24	588.09
$\Delta_J \ / { m kHz}$	$0. \ 0302(24)$	0.0318(35)				
Δ_{JK} /kHz	-0.273(10)	0.0597(67)				
$\Delta_K \ / { m kHz}$	1.079(48)	-0.136(30)				
K	-0.76	-0.69	-0.75	-0.69	-0.77	-0.77
$\mu_{ m a} \ / \ { m D}^c$			0.7	0.4	-0.1	0.5
$\mu_{\rm b}/{ m D}$			-2.7	-2.7	-2.8	-2.7
$\mu_{ m c} \ / \ { m D}$			-1.0	-1.1	0.9	0.8
$\Delta E / kJmol^{-1}$			0	2.7	11.3	12.2
σ^{-d} /kHz N $e^{-/kHz}$	7.53	$\frac{10.6}{38}$				

Table S1: Comparison of experimental and calculated molecular parameters (MP2/6-

 b Standard error in parenthesis in units of the last digit.

 c $D\approx 3.3356*10^{-30}C\cdot m$ d RMS deviation of the fit.

^e Number of fitted transitions.

Table S2:	Experiment	tally determ	ined rotationa	il and quarti	c centrifugal	distortion	con-
stants for	the normal	and the ^{13}C	substituted s	pecies of pu	legone, Chair	: 1.	

	normal	$^{13}{\rm C1}$	$^{13}\mathrm{C2}$	$^{13}\mathrm{C3}$
$\begin{array}{c} A(\mathrm{MHz})\\ B(\mathrm{MHz})\\ C(\mathrm{MHz})\\ \Delta_J \ /\mathrm{kHz}\\ \Delta_{JK} \ /\mathrm{kHz}\\ \Delta_{K} \ /\mathrm{kHz}\\ N_{\mathrm{lines}}\\ \sigma(\mathrm{kHz}) \end{array}$	$\begin{array}{c} 1909.05435(71)\\ 739.06297(21)\\ 578.14181(21)\\ 0.0302(24)\\ -0.273(10)\\ 1.079(48)\\ 97\\ 7.5\end{array}$	$1908.82932(75) \\733.63115(48) \\574.81129(34) \\[0.0302] \\[-0.273] \\[1.079] \\32 \\10.3$	$\begin{array}{c} 1894.60622(64) \\ 736.70257(32) \\ 575.35935(30) \\ [0.0302] \\ [-0.273] \\ [1.079] \\ 29 \\ 8.4 \end{array}$	$1891.8428(10) \\738.63051(34) \\576.85245(33) \\[0.0302] \\[-0.273] \\[1.079] \\24 \\10.1$
	$^{13}{\rm C4}$	$^{13}C5$	$^{13}\mathrm{C6}$	$^{13}C7$
$\begin{array}{l} A(\mathrm{MHz})\\ B(\mathrm{MHz})\\ C(\mathrm{MHz})\\ \Delta_J \ /\mathrm{kHz}\\ \Delta_{JK} \ /\mathrm{kHz}\\ \Delta_{K} \ /\mathrm{kHz}\\ N_{\mathrm{lines}}\\ \sigma(\mathrm{kHz}) \end{array}$	$1908.22352(64) \\738.48520(23) \\577.81614(22) \\[0.0302] \\[-0.273] \\[1.079] \\30 \\8.1$	$1900.38586(46) \\739.04968(25) \\577.41426(19) \\[0.0302] \\[-0.273] \\[1.079] \\27 \\5.8$	$1900.44453(54) \\736.77871(29) \\576.09403(29) \\[0.0302] \\[-0.273] \\[1.079] \\25 \\7.1$	$1907.22272(57) \\724.92918(31) \\569.59083(27) \\[0.0302] \\[-0.273] \\[1.079] \\26 \\7.5$
	$^{13}C8$	$^{13}C9$	$^{13}C10$	¹⁸ O1
$\begin{array}{l} A(\mathrm{MHz})\\ B(\mathrm{MHz})\\ C(\mathrm{MHz})\\ \Delta_J \ /\mathrm{kHz}\\ \Delta_{JK} \ /\mathrm{kHz}\\ \Delta_{K} \ /\mathrm{kHz}\\ N_{\mathrm{lines}}\\ \sigma(\mathrm{kHz}) \end{array}$	$\begin{array}{c} 1908.35143(60)\\ 734.62714(32)\\ 575.38085(27)\\ [0.0302]\\ [-0.273]\\ [1.079]\\ 29\\ 7.8\end{array}$	$1900.95685(57) \\730.04926(30) \\572.35728(22) \\[0.0302] \\[-0.273] \\[1.079] \\26 \\7.2$	$1891.52188(76) \\730.47932(41) \\571.30610(32) \\[0.0302] \\[-0.273] \\[1.079] \\21 \\8.2$	$1842.0286(32) \\737.5350(22) \\571.93637(74) \\[0.0302] \\[-0.273] \\[1.079] \\5 \\8.3$

	atom	a	b	с
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2,25040(67)	0.190(19)	0.199(19)
$T_s$	$C^{1}$	2.23040(07) 2.2484(27)	-0.129(12) 0.1122(52)	0.122(12) 0.1722(20)
7 () m	UI	2.2404(21) 2.230	-0.1152(52)	0.1752(39) 0.157
<i>1</i> e		2.239	-0.125	0.137
$r_{\circ}$		1.4820(10)	-1.4300(10)	-0.0948i
$r_0$	C2	1.1020(10) 1.4769(69)	-1.4300(52)	-0.057(10)
$r_{0}$	02	1.4705(00) 1 467	-1.429	-0.035
<i>'e</i>		1.101	1.120	0.000
$r_s$		0.1644i	-1.4081(11)	0.6582(23)
$r_0$	C3	0.142(11)	-1.4152(59)	0.640(11)
$r_e$		0.121	-1.398	0.701
$r_s$		-0.6764(22)	0.1914(79)	0.2813(54)
$r_0$	C4	-0.6976(66)	-0.243(10)	0.1923(94)
$r_e$		-0.725	-0.227	0.250
$r_s$		0.2166i	1.0731(14)	0.2444(62)
$r_0$	C5	0.024(11)	1.0692(90)	0.203(14)
$r_e$		0.000	1.083	0.226
$r_s$		1.4195(11)	1.0495(14)	-0.3277(46)
$r_0$	C6	1.4199(70)	1.0585(92)	-0.342(11)
$r_e$		1.400	1.048	-0.362
$r_s$		3.62451(42)	-0.1528(99)	-0.4872(31)
$r_0$	C7	3.6260(26)	-0.1286(85)	-0.4733(68)
$r_e$		3.604	-0.164	-0.528
$r_s$		-2.03111(74)	-0.2874(52)	-0.127(12)
$r_0$	C8	-2.0240(51)	-0.320(14)	-0.248(15)
$r_e$		-2.021	-0.304	-0.151
$r_s$	<i><i>C</i>₀</i>	-2.84277(53)	0.8805(17)	-0.6128(25)
$r_0$	C9	-2.8433(38)	0.887(11)	-0.603(15)
$r_e$		-2.808	0.877	-0.662
		0.00000(50)	1 55000(03)	0.104/10
$r_s$	010	-2.82829(53)	-1.57903(96)	-0.124(12)
$r_0$	C10	-2.8276(39)	-1.5875(70)	-0.071(21)
$r_e$		-2.825	-1.580	-0.139
<i>c</i> -		0 (77)	9.11940(70)	$0  e^{497} (04)$
$r_s$	01	-0.5598(27)	2.11240(72)	0.0437(24)
$r_0$	01	-0.503(10)	2.1152(29)	0.6313(92)
$r_e$		-0.492	2.124	0.645

Table S3:  $r_s$  structure, a, b and c coordinates of the isotopically substituted atoms for Chair 1 and their comparison with  $r_0$ , and  $r_e$  (MP2/6-311++G(d,p)) structures. All coordinates are in Å.

	$r_0$	$r_s$	Ab initio $r_e$
r(C1-C2) / Å	1.5434(81)	$1.515(10)^a$	1.53
r(C2-C3) / Å	1.505(12)	1.6217(13)	1.53
r(C3-C4) / Å	1.511(16)	1.4423(70)	1.51
r(C4-C5) / Å	1.497(15)	1.4345(71)	1.49
r(C5-C6) / Å	$[1.52]^{b}$	1.5306(30)	1.52
r(C6-C1) / Å	1.524(13)	1.511(10)	1.53
r(C7-C1) / Å	1.5219(55)	1.5031(52)	1.52
r(C4-C8) / Å	1.3999(91)	1.4181(44)	1.36
r(C8-C9) / Å	1.501(17)	1.5029(58)	1.51
r(C8-C10) / Å	1.511(16)	1.5178(46)	1.51
r(C5-O1) / Å	1.2736(97)	1.2462(28)	1.23
∡(C1-C2-C3) / °	[111.4]	114.78(30)	111.4
∠(C2-C3-C4) / °	[111.3]	109.50(18)	111.3
∠(C3-C4-C5) / °	[114.2]	121.95(19)	114.2
∡(C4-C5-C6) / °	[115.7]	115.67(24)	115.7
∡(C5-C6-C1) / °	[113.0]	114.26(37)	113.0
$\measuredangle$ (C6-C1-C2) / °	[109.5]	111.53(28)	109.5
$\measuredangle$ (C7-C1-C2) / °	[111.9]	114.70(79)	111.9
∠(C7-C1-C6) / °	[110.9]	113.22(80)	110.9
∡(C6-C5-O1) / °	123(1)	123.32(15)	121.5
∡(O1-C5-C4) / °	[122.8]	121.00(26)	122.8
∡(C5-C4-C8) / °	[120.5]	120.18(53)	120.5
∡(C3-C4-C8) / °	[125.3]	117.78(53)	125.3
∡(C4-C8-C9) / °	123.14(79)	123.80(45)	123.6
∡(C4-C8-C10) / °	120.89(91)	123.97(53)	123.7
∡(C9-C8-C10) / °	[112.8]	112.23(28)	112.8
∡(C3-C4-C8-C9) / °	-183(1)	-176.81(63)	-176.7
∡(C5-C4-C8-C10) / °	[180.8]	179.95(83)	180.8
$\measuredangle(\text{C1-C6-C5-O1}) / °$	136(2)	139.23(63)	134.5

Table S4: The  $r_0,\,r_s$  and  $r_e~({\rm MP2/6-311++G(d,p)})$  structures for Chair 1.

 $^a\,$  The distances and angles which involve C2, C3 and C5 atoms (in italics) have been calculated by setting the imaginary  $r_{s}$  coordinates to zero.

 b  Values kept fixed to ab initio predicted structure.



Figure S2: Coupling scheme for the  $3_{13} \leftarrow 2_{02}$  rotational transition of the Chair 1.  $\nu_{\rm R}$  refers to the unperturbed transition. Top 1 (V₃ = 1.961911(46) kJ/mol) splits this transition into A₁ and E₁ components, which are predicted to be 3.45 MHz apart. Top 2 (V₃ = 6.3617(12) kJ/mol) further splits each of those components, resulting in four components subsequently (0.006 MHz apart). They are labeled A₁A₂ (AA), A₁E₂ (AE), E₁A₂ (EA) and E₁E₂. Note that top-top interaction splits also the E₁E₂ component into a doublet labeled EE and EE*. In summary, the interaction between top 1 and top 2 splits all rotational transitions into five components labeled AA, AE, EA, EE and EE*, but AA and AE splittings could not be resolved with our instrument.

J'	$K'_a$	$K'_c$	$\leftarrow$	<i>J</i> ″	$K_a''$	$K_c''$		$\nu_{\rm obs} - \nu_{\rm calc} \ ({\rm MHz})$	$\nu_{\rm obs}({\rm GHz})$
6	0	6	$\leftarrow$	5	1	4	AA	0106	4.6380420
7	0	7	$\leftarrow$	6	1	5	AA	0134	5.0167800
							EA	.0092	5.0196240
							EE	.0039	5.0196240
							$EE^*$	0158	5.0196240
6	1	5	$\leftarrow$	5	2	3	AA	.0001	5.1182580
6	1	5	$\leftarrow$	5	2	4	AA	0003	5.6153480
							EA	.0033	5.6454730
							EE	.0031	5.6460130
							EE*	.0021	5.6449130
8	2	6	$\leftarrow$	7	3	5	AA	.0037	5.9438960
							EA	.0008	6.0909040
							EE	0023	6.0922710
							EE*	.0040	6.0895150
7	1	6	$\leftarrow$	6	2	4	AA	.0036	6.3764780
5	3	3	$\leftarrow$	4	3	2	AA	.0053	6.6301280
7	1	6	$\leftarrow$	6	2	5	AA	0016	7.3042490
							EA	.0012	7.3130830
							EE	0009	7.3134370
				_			EE*	0028	7.3126950
6	4	3	$\leftarrow$	5	4	2	AA	.0014	7.9553790
6	4	2	$\leftarrow$	5	4	1	AA	.0044	7.9570530
3	1	3	$\leftarrow$	2	0	2	AA	0003	4.7255370
							EA	0002	4.7220130
							EE	.0003	4.7219020
_							EE*	0008	4.7221120
5	2	4	$\leftarrow$	4	2	3	AA	0018	6.5516370
							EA	0063	6.5830080
							EE DD*	0057	6.5833050
_		2					EE*	0072	6.5826920
5	2	3	$\leftarrow$	4	2	2	AA	0046	6.8253750
							EA	0033	6.7919530
							EE DD*	0048	6.7916150
		2		2		_	EE*	0045	6.7922630
4	2	2	$\leftarrow$	3	2	1	AA	.0007	5.4036120
							EA	.0008	5.3613070
							EE	0008	5.3610950
	2	2		2	~	2	EE*	0005	5.3614990
4	2	3	$\leftarrow$	3	2	2	AA	0001	5.2567500
							EA	.0013	5.2974950
							EE	.0008	5.2976730
							$EE^*$	0019	5.2972960
4	1	4	$\leftarrow$	3	0	3	AA	0108	5.7535400
							$\mathbf{E}\mathbf{A}$	0044	5.7536120

Table S5: Measured rotational transitions  $(\nu_{obs})$  and the residuals  $(\nu_{obs} - \nu_{calc})$  for the pulegone conformer Chair 1, as obtained after the fit with the programm XIAM.

							$\mathbf{EE}$	.0207	5.7535400
							$EE^*$	0159	5.7536870
5	0	5	$\leftarrow$	4	1	4	AA	0080	5.6802390
							$\mathbf{EA}$	0062	5.6776120
							$\mathbf{EE}$	0114	5.6777000
							$EE^*$	.0023	5.6775120
5	1	5	$\leftarrow$	4	0	4	AA	0137	6.7566780
							$\mathbf{EA}$	0040	6.7583870
							$\mathbf{EE}$	0035	6.7583000
							$EE^*$	.0054	6.7584750
6	1	6	$\leftarrow$	5	0	5	AA	.0333	7.7649750
							$\mathbf{EA}$	.0022	7.7669500
							$\mathbf{EE}$	0002	7.7668700
							$EE^*$	0066	7.7670120
6	0	6	$\leftarrow$	5	1	5	AA	0111	7.0260360
							$\mathbf{EA}$	.0027	7.0232870
							$\mathbf{EE}$	0025	7.0233500
							$EE^*$	.0035	7.0232000
4	1	3	$\leftarrow$	3	1	2	AA	0468	5.5566720
							$\mathbf{EA}$	.0073	5.5514820
							$\mathbf{EE}$	.0312	5.5514820
							$EE^*$	.0040	5.5514820
3	2	2	$\leftarrow$	2	1	1	AA	.0278	7.4616120
							$\mathbf{EA}$	.0068	7.3347880
							$\mathbf{EE}$	0025	7.3336910
							$EE^*$	0060	7.3358290
2	1	2	$\leftarrow$	1	0	1	AA	0073	3.6434750
							$\mathbf{EA}$	.0094	3.6330070
							$\mathbf{EE}$	.0076	3.6328430
							$EE^*$	.0038	3.6331510
5	1	4	$\leftarrow$	4	1	3	AA	0047	6.9103500
6	0	6	$\leftarrow$	5	0	5	AA	0077	7.4708370
6	1	6	$\leftarrow$	5	1	5	AA	.0059	7.3201500
4	0	4	$\leftarrow$	3	1	3	AA	.0005	4.2869740
							$\mathbf{EA}$	0094	4.2861130
							$\mathbf{EE}$	0068	4.2862470
							$EE^*$	0070	4.2859730
3	0	3	$\leftarrow$	2	1	2	AA	.0138	2.8660640
							$\mathbf{EA}$	.0070	2.8711580
							$\mathbf{EE}$	0094	2.8713420
							$EE^*$	0021	2.8709430
4	1	4	$\leftarrow$	3	1	3	AA	.0045	4.9186250
5	1	5	$\leftarrow$	4	1	4	AA	.0324	6.1250770
4	1	3	$\leftarrow$	4	0	4	AA	.0016	2.2343330
4	1	3	$\leftarrow$	3	2	2	AA	.0080	2.2779480
							EA	0163	2.3933450
							$\mathbf{EE}$	0025	2.3943390
							$EE^*$	0096	2.3923690
1	1	1	$\leftarrow$	0	0	0	AA	0135	2.4871840
							EA	.0285	2.4584290

							$\mathbf{EE}$	0178	2.4580420
							$EE^*$	0181	2.4587110
$\overline{7}$	2	6	$\leftarrow$	6	3	4	AA	.0067	2.5908220
							$\mathbf{EA}$	0029	2.7609020
							$\mathbf{EE}$	0022	2.7622370
							$EE^*$	0027	2.7595900
2	0	2	$\leftarrow$	1	0	1	AA	0025	2.6189230
1	1	0	$\leftarrow$	0	0	0	AA	0048	2.6481130
							$\mathbf{EA}$	.0139	2.6766110
							$\mathbf{EE}$	0016	2.6769070
							$EE^*$	.0075	2.6762820 .
2	1	1	$\leftarrow$	1	1	0	AA	.0014	2.7953320
5	1	4	$\leftarrow$	5	0	5	AA	0091	2.8327830
4	2	3	$\leftarrow$	4	1	3	AA	0111	2.9787990
							$\mathbf{EA}$	0014	2.9041310
							$\mathbf{EE}$	0118	2.9033190
							EE*	.0017	2.9049210
5	2	3	$\leftarrow$	5	1	4	AA	0045	3.1171800
	_				_	_	ΕA	0061	3.1559720
							EE	.0008	3.1563430
							EE*	- 0025	3 1555970
6	2	4	$\leftarrow$	6	1	5	AA	- 0039	3 1464120
Ŭ	-	-		Ũ	-	Ŭ	EA	0040	3 1739020
							EE	0050	3 1739970
							EE*	- 0013	3 1737830
4	2	2	←	4	1	3	AA	0034	3 2021630
1	2	-	`	1	1	0	EA	- 0099	3 2680790
							EE	0014	3 2688010
							EE*	- 0035	3 2673610
4	0	4	∠	3	1	2		- 0063	3 3223810
7	2	5	` ∠	7	1	6		- 0144	3.3260740
•	2	0	`	'	T	0	ΕA	0046	3 3/87230
							EE	- 0081	3 3486500
3	2	1	∠	3	1	2		0001	3 3552720
0	2	T	`	0	T		EA	- 0133	3 4582440
							EE	- 0076	3 4591470
							EE*	0010	3 4573350
3	1	3		2	1	2		0000	3 7000820
5	1	- J - A	,	4	1 9	2		.0010	3 7081060
0	T	4	<b>\</b>	4	2	4	ΕΔ	.0003	3 6350880
							EA FF	.0098	3 6352750
							EE*	0020	3.6366660
2	0	2	,	9	0	9		0020	3.0300000
5 5	1	3 4	$\leftarrow$	2 1	0 0	2		.0050	2 0215500
9	T	4	$\leftarrow$	4	Z	Э		.0000	2.9313300
							EA FF	.0004	3.9999430
							СС ГГ*	0000	4.0007480
F	0	F	,	4	1	9		.0000	3.9991140 4.0775540
0 0	บ ถ	9 7	$\leftarrow$	4	1	ა ი		0080	4.0770040
9	2 1	( 6	$\leftarrow$	9	1	ð 7		0101	4.2333300
(	T	0	$\leftarrow$	1	U	(	AA	.0021	4.5060990

4	0	4	$\leftarrow$	3	0	3	AA	.0003	5.1219040
6	2	5	$\leftarrow$	6	1	6	AA	0116	5.5219210
							EA	.0010	5.5016740
							$\mathbf{EE}$	0001	5.5013900
							$EE^*$	.0019	5.5019000
3	1	2	$\leftarrow$	2	0	2	AA	.0005	5.6901240
							EA	.0045	5.7002040
5	3	3	$\leftarrow$	5	2	3	AA	.0061	5.8832890
							$\mathbf{E}\mathbf{A}$	.0116	5.6361620
							$\mathbf{EE}$	0043	5.6342290
							$EE^*$	0002	5.6380330
11	2	9	$\leftarrow$	11	1	10	AA	.0036	5.9067320
2	2	1	$\leftarrow$	1	1	0	AA	.0024	6.3052990
5	0	5	$\leftarrow$	4	0	4	AA	0021	6.3118920
							$\mathbf{E}\mathbf{A}$	0068	6.3110750
							$\mathbf{EE}$	.0008	6.3110750
							$EE^*$	0008	6.3110750
6	2	4	$\leftarrow$	6	1	6	AA	0028	6.4497060
							EA	0064	6.4720170
							$\mathbf{EE}$	0100	6.4721600
							$EE^*$	0072	6.4717940
2	2	1	$\leftarrow$	1	1	1	AA	.0051	6.4662220
6	3	3	$\leftarrow$	6	2	5	AA	.0075	6.5870710
							EA	0136	6.7853400
							EE	0059	6.7870050
							$EE^*$	.0069	6.7836590
7	3	5	$\leftarrow$	7	2	6	AA	0040	6.7070660
							EA	.0056	6.5759720
							$\mathbf{EE}$	0014	6.5747280
							$EE^*$	0103	6.5771400
7	3	4	$\leftarrow$	$\overline{7}$	2	6	AA	.0038	6.8914280
							EA	0049	7.0408600
							$\mathbf{EE}$	.0092	7.0422830
							$EE^*$	.0188	7.0394230
4	1	3	$\leftarrow$	3	0	3	AA	0072	7.3562280
3	2	1	$\leftarrow$	2	1	1	AA	0006	7.5380720
							EA	.0229	7.6349480
							EE	.0152	7.6357540
							$EE^*$	0086	7.6340700
6	2	5	$\leftarrow$	5	2	4	AA	0040	7.8339840
							EA	.0018	7.8490190
							EE	.0050	7.8492270
							$EE^*$	.0050	7.8487970
6	2	5	$\leftarrow$	6	1	5	AA	0087	2.2186310
							$\mathbf{E}\mathbf{A}$	0025	2.2035450
							EE	0041	2.2032080
							$EE^*$	.0008	2.2038820
3	0	3	$\leftarrow$	2	1	1	AA	0010	2.3832880
2	1	2	$\leftarrow$	1	1	1	AA	.0001	2.4734900
							$EE^*$	0036	2.4898120

6	2	4	$\leftarrow$	6	1	5	$AA \\ EA$	0039 0030	3.1464120 3.1739010
							EA FF	.0030	3.1739010 3.1730050
							EE*	.0030	3.1737860
7	2	4	,	7	9	6		.0017	5.1757000 6 2014200
	ა ი	4	$\leftarrow$	1	2 1	07		.0048	0.8914290
1	Z	0	$\leftarrow$	1	1	(		.0051	0.1189030
							EA EE	.0057	0.1050600 C 1048000
							EE DD*	0012	6.1048900 c.1051c70
0	0	1		0	4	1	EE.	.0076	6.1051670
3	2	1	$\leftarrow$	2	1	1	AA	0006	7.5380720
							EA	.0009	7.6349260
							EE	.0182	7.6357570
							EE*	0036	7.6340750
4	3	1	$\leftarrow$	4	2	2	AA	.0049	6.0850650
							$\mathbf{EA}$	0153	6.2264580
							$\mathbf{EE}$	0076	6.2271850
							$EE^*$	0075	6.2257090
5	3	3	$\leftarrow$	5	2	4	AA	.0018	6.3803750
							$\mathbf{EA}$	0008	6.2090480
							$\mathbf{EE}$	0022	6.2080090
							$EE^*$	.0013	6.2100480
8	3	5	$\leftarrow$	8	2	6	AA	.0008	5.0693090
							$\mathbf{EA}$	0006	5.1522820
							$\mathbf{EE}$	.0081	5.1532380
							$EE^*$	.0101	5.1513310
4	3	2	$\leftarrow$	4	2	3	AA	.0097	6.3018990
							$\mathbf{EA}$	.0007	6.1531650
							$\mathbf{EE}$	0013	6.1524270
							$EE^*$	.0041	6.1538670
3	3	1	$\leftarrow$	3	2	1	AA	.0030	6.1849700
3	3	1	$\leftarrow$	3	2	2	AA	.0036	6.2614590
							$\mathbf{EA}$	0008	6.1513810
							$\mathbf{EE}$	.0033	6.1508350
							$EE^*$	.0013	6.1518950
6	3	4	$\leftarrow$	6	2	5	AA	0116	6.5110350
							$\mathbf{EA}$	.0029	6.3467640
							$\mathbf{EE}$	0045	6.3455280
							EE*	0154	6.3479290
4	3	2	$\leftarrow$	4	2	2	ĀĀ	.0053	6.0785450
7	$\frac{1}{2}$	6	←	6	3	3	AA	.0086	2.5148070
•	-	Ŭ		~	2	0			
								RMS	$9.085 \mathrm{~kHz}$



Figure S3: Parts of the broadband rotational spectrum (1.5 million acquisitions and using neon as carrier gas) of the pulegone, Chair 2. The four sections are zoom-ins of individual rotational transitions to illustrate the multiplet structure due to internal dynamics. In all parts, the upper traces (black) are the experimentally obtained spectrum. The lower (red) traces are stick spectra based on simulations using the fitted molecular constants for Chair 2 and employing the program XIAM. The labeling of the rotational transition follows the  $J_{K_aK_c}$  scheme.

J'	$K'_a$	$K_c'$	$\leftarrow$	<i>J</i> ″	$K_a''$	$K_c''$		$\nu_{\rm obs} - \nu_{\rm calc} \ ({\rm MHz})$	$\nu_{\rm obs}({\rm GHz})$
	~	~						0000	0.4400540
5	0	5	$\leftarrow$	4	1	4	AA	0036	6.4423540
							AE	.0020	6.4373490
							EE DD*	.0063	6.4372370
-	-	-			0		EE*	0026	6.4374490
$\mathbf{b}$	1	5	$\leftarrow$	4	0	4	AA	.0100	7.1816710
							AE DD	.0013	7.1857990
							EE DD*	0003	7.1858990
	-			0	0		EE*	.0004	7.1856930
4	1	4	$\leftarrow$	3	0	3	AA	0010	6.0570500
							AE	0021	6.0587500
							EE	0001	6.0588370
				2	_		EE*	0001	6.0586620
4	0	4	$\leftarrow$	3	1	3	AA	0081	4.9585120
							AE	0008	4.9558870
							EE	0054	4.9557620
2		_		2	_	_	EE*	.0018	4.9560000
3	2	1	$\leftarrow$	2	1	1	AA	.0050	7.4787750
3	2	2	$\leftarrow$	2	1	1	AA	0187	7.3692370
							AE	.0083	7.2550500
							EE	0044	7.2557750
							EE*	0040	7.2542750
6	4	2	$\leftarrow$	6	3	3	AA	.0015	7.4732930
3	2	1	$\leftarrow$	2	1	1	AA	.0000	7.4787700
5	4	1	$\leftarrow$	5	3	2	AA	0051	7.5654440
5	4	2	$\leftarrow$	5	3	3	AA	0109	7.6118690
7	4	4	$\leftarrow$	7	3	5	AA	.0071	7.6173530
6	0	6	$\leftarrow$	5	1	5	AA	.0095	7.8660220
							AE	0033	7.8578320
							$\mathbf{EE}$	0005	7.8576750
							$EE^*$	.0023	7.8579850
6	4	3	$\leftarrow$	6	3	3	$\mathbf{A}\mathbf{A}$	.0172	7.4683420
2	2	0	$\leftarrow$	1	1	1	$\mathbf{A}\mathbf{A}$	.0090	6.3006750
9	2	8	$\leftarrow$	8	3	6	AA	0069	6.2494180
6	3	4	$\leftarrow$	6	2	5	AA	0109	5.8303260
3	3	0	$\leftarrow$	3	2	1	AA	.0047	5.3755960
5	3	2	$\leftarrow$	5	2	3	AA	.0066	5.0130850
3	1	3	$\leftarrow$	2	0	2	AA	.0047	4.9188800
5	2	4	$\leftarrow$	5	1	5	AA	.0034	4.7068180
3	0	3	$\leftarrow$	2	1	2	AA	0065	3.4265040
3	1	3	$\leftarrow$	2	1	2	AA	0048	4.0739530
8	<b>3</b>	6	$\leftarrow$	$\overline{7}$	4	3	AA	.0042	4.0870020
11	5	6	$\leftarrow$	10	6	5	AA	0026	4.4085380
10	4	7	$\leftarrow$	9	5	5	AA	.0010	5.0637860
4	3	1	$\leftarrow$	4	2	2	AA	.0036	5.2378960

Table S6: Measured rotational transitions  $(\nu_{obs})$  and the residuals  $(\nu_{obs} - \nu_{calc})$  for the pulegone conformer Chair 2, as obtained after the fit with the programm XIAM.

3	3	1	$\leftarrow$	3	2	2	AA	0065	5.4833600
9	4	5	$\leftarrow$	9	3	6	AA	0035	6.6932890
8	5	4	$\leftarrow$	9	2	$\overline{7}$	AA	0029	7.1452000
15	5	10	$\leftarrow$	15	4	11	AA	.0004	7.2464410
4	4	1	$\leftarrow$	4	3	2	AA	0021	7.6225570
11	2	10	$\leftarrow$	10	3	8	AA	.0009	7.8613150
								$\operatorname{RMS}$	$6.936 \mathrm{~kHz}$

J'	$K'_{a}$	$K'_c$	$\leftarrow$	<i>J</i> ″	$K_{a}^{\prime\prime}$	$K_c''$		$\nu_{\rm obs} - \nu_{\rm calc} \ ({\rm MHz})$	$\nu_{\rm obs}({\rm GHz})$
	u	L			u	L			000( )
2	0	2	$\leftarrow$	1	0	1	А	0085	2.0562620
3	0	<b>3</b>	$\leftarrow$	2	0	2	Α	0032	3.0616000
							$\mathbf{E}$	.0054	3.0589130
<b>3</b>	1	2	$\leftarrow$	2	1	1	А	0009	3.2397000
							Е	.0092	3.2375130
4	0	4	$\leftarrow$	3	1	3	А	0037	3.5232620
							Е	.0270	3.5167190
4	1	4	$\leftarrow$	3	1	3	Α	0037	3.9175000
							Е	0118	3.9182080
4	0	4	$\leftarrow$	3	0	3	Α	.0082	4.0425000
							Е	0099	4.0399700
4	2	3	$\leftarrow$	3	2	2	А	0002	4.1239120
4	3	1	$\leftarrow$	3	3	0	А	.0097	4.1516250
4	2	2	$\leftarrow$	3	2	1	Α	0010	4.2126000
4	1	3	$\leftarrow$	3	1	2	Α	.0086	4.3073500
							$\mathbf{E}$	0054	4.3042730
2	2	1	$\leftarrow$	1	1	0	А	0044	4.3370750
4	1	4	$\leftarrow$	3	0	3	А	.0072	4.4367370
2	2	0	$\leftarrow$	1	1	1	А	0059	4.4447000
5	0	5	$\leftarrow$	4	1	4	А	0102	4.6039750
5	1	5	$\leftarrow$	4	1	4	А	0055	4.8828120
							Е	0018	4.8844570
5	0	5	$\leftarrow$	4	0	4	А	.0019	4.9982250
							Ε	0043	4.9952300
5	2	4	$\leftarrow$	4	2	3	А	.0063	5.1432500
5	3	2	$\leftarrow$	4	3	1	А	.0064	5.2021120
3	2	2	$\leftarrow$	2	1	1	А	.0051	5.2715870
5	1	5	$\leftarrow$	4	0	4	А	.0066	5.2770620
							$\mathbf{E}$	0046	5.2859820
5	2	<b>3</b>	$\leftarrow$	4	2	2	А	0020	5.3088000
5	1	4	$\leftarrow$	4	1	3	А	.0018	5.3627870
							$\mathbf{E}$	0062	5.3581800
5	4	1	$\leftarrow$	5	3	2	А	0017	5.3784000
3	2	1	$\leftarrow$	2	1	2	А	.0072	5.6126000
6	1	6	$\leftarrow$	5	1	5	А	.0071	5.8412500
							Ε	.0062	5.8454060
6	0	6	$\leftarrow$	5	0	5	А	.0058	5.9348370
							Ε	0046	5.9296700
7	1	6	$\leftarrow$	6	2	5	Α	.0076	6.0338500
							Ε	0392	6.0288450
6	1	6	$\leftarrow$	5	0	5	Α	.0118	6.1200870
6	2	5	$\leftarrow$	5	2	4	А	.0065	6.1550080
4	2	<b>3</b>	$\leftarrow$	3	1	2	$\mathbf{E}$	0062	6.1557870

Table S7: Measured rotational transitions  $(\nu_{obs})$  and the residuals  $(\nu_{obs} - \nu_{calc})$  for the pulegone conformer Chair 1 with one water molecule, as obtained after the fit with the programm XIAM.

6	4	3	$\leftarrow$	5	4	2	А	.0008	6.2281370
6	4	2	$\leftarrow$	5	4	1	Α	0070	6.2291120
6	3	4	$\leftarrow$	5	3	3	А	.0032	6.2339500
6	3	3	$\leftarrow$	5	3	2	А	.0065	6.2638870
4	2	2	$\leftarrow$	3	1	2	А	0028	6.2906250
6	1	5	$\leftarrow$	5	1	4	А	0027	6.4010620
							А	0046	6.3955550
6	2	4	$\leftarrow$	5	2	3	$\mathbf{E}$	0007	6.4159750
7	1	$\overline{7}$	$\leftarrow$	6	1	6	А	0229	6.7933250
							А	.0118	6.8018900
7	0	$\overline{7}$	$\leftarrow$	6	0	6	Е	0019	6.8616120
							А	0011	6.8521500
4	2	2	$\leftarrow$	3	1	3	Е	0039	6.8798000
3	3	0	$\leftarrow$	2	2	0	А	.0040	6.9629370
7	1	$\overline{7}$	$\leftarrow$	6	0	6	А	0069	6.9785850
5	2	4	$\leftarrow$	4	1	3	А	.0045	6.9917000
$\overline{7}$	2	6	$\leftarrow$	6	2	5	А	.0054	7.1580120
$\overline{7}$	4	4	$\leftarrow$	6	4	<b>3</b>	А	0011	7.2747250
$\overline{7}$	3	5	$\leftarrow$	6	3	4	А	0091	7.2765460
7	4	3	$\leftarrow$	6	4	2	А	0029	7.2779620
8	1	7	$\leftarrow$	7	2	6	А	.0020	7.2809120
							А	.0208	7.2702230
5	2	3	$\leftarrow$	4	1	3	Е	.0115	7.2921000
$\overline{7}$	3	4	$\leftarrow$	6	3	3	А	0007	7.3412250
$\overline{7}$	1	6	$\leftarrow$	6	1	5	Α	0005	7.4166890
							Α	0062	7.4113610
$\overline{7}$	2	5	$\leftarrow$	6	2	4	$\mathbf{E}$	.0036	7.5227250
8	0	8	$\leftarrow$	$\overline{7}$	1	$\overline{7}$	Α	.0019	7.6691000
8	1	8	$\leftarrow$	$\overline{7}$	1	$\overline{7}$	Α	0176	7.7401200
							Α	.0244	7.7533370
6	2	5	$\leftarrow$	5	1	4	$\mathbf{E}$	.0002	7.7839120
8	0	8	$\leftarrow$	$\overline{7}$	0	$\overline{7}$	Α	0012	7.7860750
							Α	.0062	7.7718680
8	1	8	$\leftarrow$	$\overline{7}$	0	$\overline{7}$	Ε	0037	7.8571120
7	0	7	$\leftarrow$	6	1	6	А	.0051	6.6763750
7	1	7	$\leftarrow$	6	0	6	А	0049	6.9785870
							Ε	0056	7.0083500
5	1	5	$\leftarrow$	4	0	4	А	.0066	5.2770620
							Е	0116	5.2859750
3	2	2	$\leftarrow$	2	1	1	А	0069	5.2715750
							Е	0042	5.2200000
								RMS	9.829 kHz