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Hypermethylation of gene body CpG islands
predicts high dosage of functional oncogenes
in liver cancer
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Epigenetic modifications such as aberrant DNA methylation reshape the gene expression

repertoire in cancer. Here, we used a clinically relevant hepatocellular carcinoma (HCC)

mouse model (Alb-R26Met) to explore the impact of DNA methylation on transcriptional

switches associated with tumorigenesis. We identified a striking enrichment in genes

simultaneously hypermethylated in CpG islands (CGIs) and overexpressed. These hyper-

methylated CGIs are located either in the 5′-UTR or in the gene body region. Remarkably,

such CGI hypermethylation accompanied by gene upregulation also occurs in 56% of HCC

patients, which belong to the “HCC proliferative-progenitor” subclass. Most of the genes

upregulated and with hypermethylated CGIs in the Alb-R26Met HCC model undergo the same

change. Among reprogrammed genes, several are well-known oncogenes. For others not

previously linked to cancer, we demonstrate here their action together as an “oncogene

module”. Thus, hypermethylation of gene body CGIs is predictive of elevated oncogene levels

in cancer, offering a novel stratification strategy and perspectives to normalise cancer gene

dosages.
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Appropriate timing and dosage of gene expression in
healthy cells is ensured by complex processes integrating
genetic and epigenetic information. Alterations of these

mechanisms are frequent in cancer and underline functional
changes in genes acting as oncogenes or tumour suppressors1–3.
The use of high-throughput sequencing has contributed con-
siderably to our understanding on how epigenetic modifications
switch genomic regions from an inaccessible closed conformation
to an open state–and vice-versa–contributing to changes in the
transcriptome landscape4–6. DNA methylation is an essential
epigenetic mechanism influencing gene expression levels in cells
and alterations lead to dramatic changes in malignant cells. The
cancer landscape is generally characterised by a diffuse DNA
hypomethylation and by focal hypermethylation in CpG-rich
regions known as CpG islands (CGIs)1,7. CGI hypermethylation
at promoters represses transcription of genes acting as tumour
suppressors, a well-known mechanism operating in cancer8.
However, DNA methylation at intergenic regions and gene bodies
is gaining relevance for its impact on gene expression9,10. Aber-
rant DNA methylation of large clusters of transcriptional
enhancers, known as super-enhancers, leads to dramatic tran-
scriptional changes of gene sets in cancer11. A large fraction of
DNA methylation is also observed in gene body CGIs, with an
apparent intriguing positive correlation between methylation and
gene expression12,13. Such contradiction on DNA methylation
effects in promoter versus gene body CGIs remains poorly
understood.

The relevance of epigenetics in tumorigenesis has been further
emphasised through recent large-scale screen analyses focused on
cancer patients carrying either histone mutations or alterations in
genes regulating DNA methylation–histone modifications2.
Results from these studies highlighted how such mutations dra-
matically modify the epigenetic and gene expression landscapes.
For example, aberrant DNA methylation has been recently
reported in acute myeloid leukaemia patients with DNMT3A
mutations14. Abnormal recruitment of PRC2 complex and DNA
methylation occurs in paediatric glioblastoma with Histone H3
mutant variants15. Gene expression changes caused by histone
H3K36 mutation is associated with sarcomagenesis16. Never-
theless, the epigenetic reshape occurs also in the absence of
specific mutations in chromatin modulators17. It is the case of
classical oncogenes and tumour suppressors, which can trigger
profound chromatin alterations with consequences on gene
expression18,19. For example, an oncogenic splice variant of EGFR
leads to genome-wide activation of putative enhancers in glio-
blastoma20. Oncogenic EGFR leads to DNA methylation-
mediated transcriptional silencing of tumour suppressors in
lung cancer and glioblastoma21. Deregulated Ras signalling
reshapes the enhancer landscape leading to aberrant oncogene
expression22. PI3K/Akt pathway activation induces promoter-
associated gene activation in breast cancer23. Overall, such screen
approaches have also contributed to identify new genes, whose
functional relevance in cancer was previously unknown and/or
which deregulations can be used as cancer biomarkers for prog-
nosis/patient stratification.

We recently reported a cancer mouse model in which slight
increases in wild-type Met receptor tyrosine kinase (RTK) levels
in the liver are sufficient for spontaneous tumours in mice (Alb-
R26Met). These genetic studies conceptually illustrate how the
shift from physiological to pathological conditions results from
perturbations in subtle signalling dosage. Through gene expres-
sion analysis, the Alb-R26Met mice were shown to model a HCC
patient subgroup corresponding to the so-called “proliferative-
progenitor” subclass24, demonstrating the clinical relevance of
this genetic system. The uniqueness of this genetic system was
also illustrated by its usefulness to identify new synthetic lethal

interactions as potential therapies for HCC subgroups24. Here, we
employed the Alb-R26Met cancer model for integrative genome-
wide studies combining methylome and transcriptome outcomes
and compared them with those from HCC patients. Results show
an enrichment in genes overexpressed and with hypermethylated
CGI, with expression levels positively correlating with the CGI
distance to the ATG. Whereas most of the upregulated genes are
well-known oncogenes, the implication of others in cell tumori-
genic properties is demonstrated here through functional studies.
Enrichment of genes both overexpressed and with hypermethy-
lated CGIs characterises the “proliferative-progenitor” HCC
patient subset, which is modelled by the Alb-R26Met genetic
system. Collectively, these results show that an epigenetic
reprogramming process ensuring increased dosage of an “onco-
genic module” involving multiple genes operates in
tumorigenesis.

Results
Alb-R26Met tumours recapitulate DNA methylation changes of
HCC patient subgroups. We recently showed how the Alb-
R26Met genetic system is a unique tool to model: (a) the
tumorigenic program, (b) the “proliferative-progenitor” HCC
patient subgroup and (c) functionality of signalling alteration for
drug discovery24. For its use to study the contribution of epige-
netic modifications linked to cancer, we reasoned that it was first
necessary to determine whether the Alb-R26Met tumorigenesis
occurs in a stable genomic context or is associated with chro-
mosomal deletions/duplications. Comparative genomic hybridi-
sation analyses on DNA inputs from 16 Alb-R26Met tumours and
8 control livers excluded chromosomal instability (Supplementary
Fig. 1). These findings therefore reinforce the appropriateness of
the Alb-R26Met cancer model as a relevant genetic system to study
the epigenetic reprogramming associated with cancer, which we
addressed by bioinformatically integrating data from methylome
and transcriptome screens (Fig. 1a).

DNA methylation changes were scored by performing Methyl-
MiniSeq EpiQuest sequencing on 10 Alb-R26Met tumours
(previously histologically identified as HCC24) and 3 control
livers (Supplementary Fig. 2A). Mean methylation levels were
modestly, yet significantly, different across all measured CpGs (P-
value= 2.4E−03; Fig. 1b), being able to group tumours and
controls into two distinct clusters (Fig. 1c). A remarkable
predominance of global hypomethylation was observed in
tumours compared with livers (Fig. 1b, Supplementary Fig. 2B).
Accordingly, we observed an enrichment in hypomethylated
CpGs located outside CGIs (P-value= 3E−04; Fig. 1b, Supple-
mentary Fig. 2C). In contrast, a significant enrichment of
hypermethylation at CpGs located within CGIs characterised
Alb-R26Met tumours compared with control livers (P-value=
3.9E−03; Fig. 1b, d, Supplementary Fig. 2D). These traits of CpG
methylation changes, according to the CpG location with respect
to CGIs, are consistent with those largely reported in the
literature1. Focusing on differentially methylated CpGs located at
annotated CGIs, we identified 513 CGIs with a β-value
methylation difference of ±0.2 and a false discovery rate (FDR)
<0.05 (Fig. 1d, Supplementary Fig. 2D, Supplementary Data 1).
These CGIs were homogeneously distributed amongst all 19
autosomal and 1 sex chromosome mouse pairs (Supplementary
Fig. 2E). Among CGIs with differentially methylated CpGs, 82%
were hypermethylated in Alb-R26Met HCC compared to controls
(Fig. 1d).

To explore the relevance of these methylation changes in the
context of human HCC disease, we used genome-wide DNA
methylation data from a cohort of 41 HCC patients, for which
data are available for both: (a) methylation and expression; (b)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05550-5

2 NATURE COMMUNICATIONS |  (2018) 9:3164 | DOI: 10.1038/s41467-018-05550-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


0

20

40

60

80

100

a

h

cb

HCC 
subgroup 1

HCC 
subgroup 3

HCC 
subgroup 2

Controls

Methylome

Expression
levels

RNA-seq

Control
DNA

methylation

HCC patients
(TCGA & GSE56588)

Mouse model

HCCHealthy
liver

Modelling a
subgroup of
human
patients

d

Integrative analysis
(focused on CGI) 

CGI

18%

Hypo Hyper

82%
(n = 420)

1

CpGs in CGI
7

2

4

5

6

0
0–1 0.5

Mean methylation difference

1

3

C
G

Is
 d

iff
. m

et
hy

la
te

d 
(%

)
g

Methylome RNA-seq

f

5

10

15

0
0–1 10.5

Mean methylation difference

e

0

20

40

60

80

100

9%
(n = 9)

Hypo Hyper

91%
(n = 96)

C
G

Is
 d

iff
. m

et
hy

la
te

d 
(%

)

Controls
Alb-R26Met tumours

0

0.2

0.4

0.6

0.8

1

P = 0.0003

P = 0.0024

P = 0.0039

CpGs in
CGI

All CpGs CpGs
outside

CGI

Controls Alb-R26Met tumours

20

0
0 10.5

Mean methylation difference

80

0

20

40

60

80

100

6%
(n = 7)

Hypo Hyper

93%
(n = 103)

C
G

Is
 d

iff
. m

et
hy

la
te

d 
(%

)

A
lb

-R
26

M
et

 H
C

C
H

C
C

 p
at

ie
nt

s 
(G

S
E

56
58

8 )
 

H
C

C
 p

at
ie

nt
s 

(T
C

G
A

)

HCC 
subgroup 3

HCC 
subgroup 1

HCC subgroup 2

MET overexpression

Alb-R26Met

M
ea

n 
m

et
hy

la
tio

n 
le

ve
l

S
ig

ni
fic

an
ce

 (
–L

og
10

 F
D

R
)

50

40

30

20

10

50

40

30

20

10

–0.5

(n = 94)

513 CGIs
(1153 CpGs)

S
ig

ni
fic

an
ce

 (
–L

og
10

 F
D

R
)

S
ig

ni
fic

an
ce

 (
–L

og
10

 F
D

R
)

–0.5

105 CGIs
(241 CpGs)

60

40

–1 –0.5

111 CGIs
(269 CpGs)

Fig. 1 Methylome studies identify an enrichment of CGI hypermethylation in Alb-R26Met tumours, also present in a subset of HCC patients. a Schematic
representation of the overall strategy employed. DNA methylation and gene expression levels were analysed in Alb-R26Met tumours and control livers.
Outcomes were compared with HCC human database. b Mean methylation levels in controls and Alb-R26Met tumours, focusing on all CpGs, CpGs outside
CGIs and CpGs in CGIs. c Unrooted distance tree using the overall DNA methylation content subdivides Alb-R26Met tumours and controls in two distinct
clusters. d Volcano plot reporting methylation differences with significance (expressed as −Log10 FDR) for CpGs in CGIs in Alb-R26Met tumours versus
control (left). Significant differences (methylation difference > 0.2 and FDR < 0.05) are shown in red. Graph reporting the percentage (and numbers) of
hypomethylated versus hypermethylated CGIs (right). e Volcano plot reporting the mean methylation differences with significance (expressed as −Log10
FDR) in HCC patients from TCGA (left) for differentially methylated CGIs identified in Alb-R26Met tumours. Similar methylation levels in HCC patients and
controls are reported in black, whereas changes (>0.2) are reported in red. On the right, the graph reports the percentage (and numbers) of
hypomethylated versus hypermethylated CGIs. f Unrooted distance tree of the 41 TCGA HCC patients showing patient segregation in three distinct
subgroups, according to the 416 CGIs found differentially methylated in Alb-R26Met tumours. Red dots highlight patients in which MET is overexpressed
(log2FC > 1). Patients are reported in different colours according to the percentage of overlap (the scale in percentage is shown on the left). Note the
striking correlation between differentially methylated CGIs and MET overexpression in the HCC patient subgroup 3. g, h Volcano plot (g) and unrooted
distance tree (h) from studies using a second cohort of 224 HCC patients and 10 controls (GSE56588 dataset)
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tumour and adjacent liver as control (from The Cancer Genomic
Atlas; TCGA25). For comparisons between mouse and human
data, we first mapped the 513 identified mouse CGIs (mm9) to
the corresponding CGIs in human (hg19), using the UCSC
toolbox. 501 out of 513 CGIs were successfully matched between
the two genomes. For 416 CGIs, human methylome data were
available in TCGA dataset (Supplementary Fig. 3A; Supplemen-
tary Data 2). We extracted the methylation β-value for the CpGs
within these human CGIs and calculated the mean methylation
difference for each CpG and for each of the 41 HCC patients.
While the majority of these CpGs showed a methylation
difference below 0.2, a proportion of CGIs (24%) were
differentially methylated (FDR < 0.05) with a hypermethylation
enrichment score similar to the Alb-R26Met HCC (91%; Fig. 1e,
Supplementary Fig. 3B). As the analysed cohort includes patients
with widely diverse aetiologies and characteristics, we next
analysed the 416 CGIs in the individual patients. Intriguingly,
hierarchical clustering analysis segregated these HCC patients
into three distinct subgroups, with one subgroup composed of
seven patients reaching 43–56% overlap with the Alb-R26Met list
(subgroup-3; Fig. 1f, Supplementary Fig. 3C). The relevance of the
Alb-R26Met methylation changes in the context of human HCC
was further assessed in a second distinct cohort of 234 human
samples (224 HCC patients and 10 control individuals26). 27% of
CGIs differentially methylated in Alb-R26Met HCC are also
altered in human HCCs, again with an enrichment in
hypermethylation (93%; Fig. 1g, Supplementary Fig. 4A). More-
over, these methylation changes distinguished controls from HCC
patients, which further segregate into three subgroups. HCC
subgroup-3 reaches about 50% CGI overlap with the Alb-R26Met

list (Fig. 1h, Supplementary Fig. 4B).
Next, we asked whether there would be any correlation

between MET alterations with the three human HCC subgroups
identified by the Alb-R26Met methylome screening. Concerning
the HCC patient cohort from TCGA, we were able to perform
correlative studies as RNA-seq and mutation data are available. In
particular, we analysed MET mutations and MET expression
levels for each patient belonging to the 3 different HCC
subgroups. All HCC patients carry the wild-type form of MET,
which is in agreement with rare mutations of MET in HCC.
Concerning expression levels, MET is overexpressed in 86% (6/7)
of HCC patients belonging to subgroup-3 (which best overlaps
with CGI methylation changes in Alb-R26Met), in 32% (6/19) to
HCC subgroup-2, and only in 13% (2/15) to HCC subgroup-1
(Fig. 1f; patients with MET overexpression are highlighted with a
red dot; Supplementary Fig. 3C–F). For the HCC patient cohort
from GSE56588, expression data (array) are only available for
some patients and without information about mutations. There-
fore, correlative studies were not possible with this HCC cohort.
Together, these findings show that liver cancer modelled by the
Alb-R26Met genetic system is characterised by methylation
changes of specific CGIs, with a predominant hypermethylation
profile. A high proportion of these alterations are also found in
HCC patient subgroups. Furthermore, there is a striking
correlation between differentially methylated CGIs and MET
overexpression in the HCC patient subgroup modelled by the
Alb-R26Met genetic setting.

Enrichment in CGI hypermethylation is necessary for Alb-
R26Met tumorigenesis. The overall enrichment in CGI hyper-
methylation in the Alb-R26Met genetic system prompted us to
determine its relevance for cell tumorigenic properties. We
designed different demethylating experimental conditions using
low doses of Decitabine (0.3 µM; Fig. 2a), according to previously
reported protocols12. We used three different Alb-R26Met HCC

cell lines, established from individual Alb-R26Met tumours24.
Decitabine treatment does not affect cell viability of Alb-R26Met

HCC cells, as well as of MLP-29 cells, a mouse liver progenitor
cell line that is not tumorigenic as illustrated by its inability to
form colonies in anchorage-independent growth assays (Fig. 2b).
Instead, Decitabine treatment interferes with Alb-R26Met cell
tumorigenic properties, irrespective of the HCC cell line used, as
exemplified by: (a) reduced colony numbers when cells are grown
in an anchorage-independent manner (Fig. 2c); (b) reduced
number and size of foci when cells are grown in an anchorage-
dependent manner (Fig. 2d); (c) reduced tumour spheres when
cells are grown in self-renewal conditions (Fig. 2e). The effect of
global demethylation on cell tumorigenicity was further analysed
in vivo by performing xenografts in nude mice. The tumour
volume was significantly reduced in mice either injected with
Decitabine pre-treated Alb-R26Met HCC cells or when Decitabine
pulses were administered to mice injected with untreated Alb-
R26Met HCC cells (Fig. 2f–left). Decitabine doses used in vivo
were not toxic, as revealed by no significant changes on the mouse
weight during the treatment (Fig. 2f–right). Together, these
results indicate that the overall enrichment in CGI hypermethy-
lation is functionally relevant for tumorigenesis modelled by the
Alb-R26Met genetic system.

CGI hypermethylation correlates with gene upregulation in
Alb-R26Met HCC. Alterations in DNA methylation are known to
impact gene expression. We analysed the expression levels of the
431 genes with differentially methylated CGIs in Alb-R26Met

tumours using high-coverage RNA-seq data (4 Alb-R26Met

tumours and 4 control livers). Studies highlighted 93 genes dif-
ferentially expressed (log2FC > 1, FDR < 0.05; Supplementary
Data 3). According to the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) database, several cancer-related pathways were
significantly enriched, such as MAPK signalling, viral carcino-
genesis, pathways in cancer, TGF-β signalling, cell cycle, renal cell
carcinoma (Fig. 3a, Supplementary Fig. 5), strengthening the
significance of genes differentially methylated and expressed in
the Alb-R26Met cancer model. Remarkably, the top-ranked MAPK
pathway is coherent with its essential functionality for Alb-R26Met

tumorigenicity, as previously reported24. Among genes differen-
tially methylated and expressed, 36 genes showed the expected
inverse correlation between methylation and expression where 20
genes are hypomethylated and overexpressed, and 16 genes are
hypermethylation and downregulated (Fig. 3b, Supplementary
Data 3). Unexpectedly, 55 genes (59%) were found hyper-
methylated and overexpressed (Fig. 3b). Thus, tumorigenesis
modelled by the Alb-R26Met mice is characterised by a set of genes
with changes in CGI methylation accompanied by a reprogram-
ing of transcript levels.

The intriguing enrichment in hypermethylated and over-
expressed genes drove us to analyse the position of the
hypermethylated CGIs with respect to the ATG. Interestingly,
the CGI of overexpressed genes is either close to the ATG or in
the gene body region, in contrast to the CGI position of
downregulated genes exclusively located around the ATG
(Supplementary Fig. 6). Concerning the 55 genes hypermethy-
lated and overexpressed, they can be subdivided into two groups.
Group-I includes 31 genes, for which the CGIs are located
between −50% and 30% relative to the ATG (predominantly into
the 5′-UTR). Group-II includes 24 genes, whose CGIs are located
much further from the ATG (from 30% of the gene body relative
to the ATG to the transcription termination site), corresponding
to gene body regions (Fig. 3c, Supplementary Fig. S6). Next, we
analysed whether the CGI location influences gene expression.
Intriguingly, the extent of overexpression is significantly higher
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Fig. 2 Global CGI hypermethylation is functionally relevant for Alb-R26Met tumorigenesis. a Scheme reporting demethylating treatments (Decitabine;
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Fig. 3 Alb-R26Met tumours are characterised by an enrichment in genes overexpressed and with hypermethylated CGIs. a Histogram reporting the KEGG
pathway enrichment analysis for genes with changes in CGI methylation and expression in Alb-R26Met tumours, ordered according to the −Log10 P-value.
b Left: Methylation differences versus expression for all genes with CGIs hypermethylated (H+) or hypomethylated (H−) in Alb-R26Met tumours.
Expression values are relative to controls. Dots correspond to single differentially methylated CpG and the corresponding gene expression (genes which
expression is significantly below or above Log2FC ± 1 are indicated in red). Right: Graph reporting the percentage of downregulated (E−) and upregulated (E
+) genes among those with a hypomethylated (H−) or hypermethylated (H+) CGI. Note the enrichment of genes overexpressed and with hypermethylated
CGIs (indicated by an arrow), on which subsequent studies were focused. c For the 55 genes overexpressed and with hypermethylated CGI in Alb-R26Met

tumours, 3D density plot shows their distribution according to relative position to the ATG (as percentage), gene expression level (as Log2FC) and CGI
methylation (as β-value difference). Note that genes segregate into two groups, according to their relative position to the ATG. d Graph reporting the
individual expression level (as Log2FC; from RNA-seq data) of hypermethylated and overexpressed genes found in Alb-R26Met tumours compare to
controls. Note that the relative position of the hypermethylated CGI to the ATG well segregate the two groups (indicated with a red arrow). e Box plot
illustrating the global expression levels of genes in Group-I and Group-II. f Graph reporting individual expression levels (as Log2FC; by RT-qPCR) of genes
belonging to the two groups in Alb-R26Met tumours (n= 8) relative to control livers (n= 6). Red lines report the median Log2FC in expression. Note that
genes are distributed according to the location of the hypermethylated CGI relative to the ATG. g Box plot showing the global Log2FC in expression
(according to data in F) of genes in Group-I and Group-II. In e and g, the median is reported by a line and bars extend to the minimum/maximum values.
Significance is indicated on the top. *P < 0.05, **P < 0.01, ***P < 0.001
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for Group-II than Group-I (median log2FC= 2.15 ± versus
median log2FC= 3.38 ± 0.4; Fig. 3d, e). Importantly, the promo-
ter CGI methylation status of genes belonging to Group-II was
similar in Alb-R26Met tumours and control livers, thus excluding
that changes in promoter methylation could influence gene
expression levels (Supplementary Data 4). We corroborated these
results through RT-qPCR analysis of a subset of genes belonging
to both groups in Alb-R26Met tumours (n= 8) relative to control
livers (n= 6). Results showed consistent upregulation of all genes
(Fig. 3f), with significant higher expression levels for those within
Group-II (Fig. 3g). Together, these results highlight a set of
overexpressed genes with hypermethylated CGIs in Alb-R26Met

tumours and identify a correlation between the location of
hypermethylated CGIs and transcription status, where CGIs
located further from the ATG showing predominantly increased
transcription.

Next, we analysed whether Decitabine treatment would affect
in vivo the expression levels of genes found hypermethylated and
overexpressed in the Alb-R26Met tumours. Focusing on a set of
genes, we examined both their expression levels and the
methylation levels of their corresponding CGIs in dissected
tumours from Alb-R26Met mice either untreated or treated with
Decitabine. RT-qPCR results showed that Decitabine treatment
significantly decreases the expression levels of 7/8 analysed genes
(Fig. 4). Bisulfite sequencing studies revealed decreased methyla-
tion levels of most CpGs within the gene body CGIs (Fig. 4,
Supplementary Data 5). Thus, CGI hypermethylation of genes
belonging to Group-I and Group-II ensures their increased
expression levels in Alb-R26Met tumours as demethylating
treatment leads to a reduction of both CGI methylation content
and transcription.

A CGI hypermethylation and gene overexpression signature
defines a HCC patient subset. Next, we explored the relationship
between changes in CGI methylation and gene expression in the
above cohort of 41 HCC patients. Because of expected epigenomic
heterogeneity between human samples, we reasoned it relevant to
perform analyses in individual patients. We integrated tran-
scriptome and methylome data to extract the expression levels of
genes with differentially methylated CGIs (Fig. 5a), then classified
patients according to the highest percentage of genes: (a) over-
expressed with hypermethylated CpGs (H+E+); (b) overexpressed
with hypomethylated CpGs (H-E+); (c) underexpressed with
hypermethylated CpGs (H+E−); (d) underexpressed with hypo-
methylated CpGs (H−E−). Intriguingly, 23/41 patients (56%)
showed an enrichment of genes overexpressed and with hyper-
methylated CpGs (H+E+ patient-subset; Fig. 5a, Supplementary
Data 6), similar to the Alb-R26Met model (Fig. 3b). Analysis of
MET levels in HCC patients revealed that the mean MET levels in
the H+E+ subset is 0,77 ± 0,16 (9/23; 39% patients with MET
levels ≥ 1), whereas in the “NO H+E+” subset is 0,2 ± 0,24 (5/18;
27% patients with MET levels ≥ 1; Supplementary Data 6). Inter-
estingly, all 7 patients belonging to the HCC subgroup-3
(in Fig. 1f) are characterised by more than 37% of genes both
hypermethylated and overexpressed, and 5/7 patients belong to
the H+E+ subset (these 7 patients are highlighted with a
red square and red % in Fig. 5a). Next, we asked whether the
H+E+ patient subset could be also identified according to global
gene expression or methylation features. Unsupervised cluster
analysis of either global methylome or transcriptome data did not
lead to the same patient clustering (Supplementary Fig. 7), thus
strengthening the usefulness of combining methylation-expression
features to identify specific HCC patient subsets.

The remarkable correlation between data obtained in the Alb-
R26Met HCC model and analysed patient samples prompted us to

perform integrative studies using another HCC model, for which
methylation and expression data are available: the hepatitis-B
virus-X mice (HBxtg; GSE4805227). We first identified all CpGs
differentially methylated in HBxtg HCC model, then correlated
them with gene expression levels. We identified 115 genes both
differentially methylated and differentially expressed (a very
similar number to the 97 genes found in the Alb-R26Met genetic
setting). Nevertheless, we found a different distribution compared
to that of the Alb-R26Met HCC, with an enrichment in genes both
hypomethylated and downregulated (Supplementary Fig. 8).
Next, we performed correlative analyses with the 41 HCC
patients (reported in Fig. 5a): amongst the 18 “NO H+E+” subset,
8 patients (20%) share the same enrichment of hypomethylated
and downregulated genes modelled by the HBxtg mice. Unex-
pectedly, only 1/8 of these patients is reported positive for HBV.
Thus, an epigenetic rewiring of gene sets through hypomethyla-
tion and downregulation occurs in a fraction of HCC patients,
who do not appear to be characterised by the HBV-associated
risk. Collectively, these findings indicate a rather intriguing
specificity in how genes are epigenetically reprogrammed in HCC
patients: an enrichment in hypermethylated and upregulated
genes (for those corresponding to the Alb-R26Met model) versus
an enrichment in hypomethylated and downregulated genes (for
those corresponding to the HBxtg model).

For the several genes found overexpressed and with hyper-
methylated CGIs in the H+E+ patient subset, such as WT1,
DLK1, TP73, EEF1A2, IGF1R, DKK1, SPOCK1, ITPKA, HOXA3,
NOX4, FZD10, VASH2, GATA2, SOX8, their upregulation in
HCC samples is coherent with their reported function as
oncogenes in cancer. Concerning the H+E+ patient subset, based
on clinical data from TCGA, no association was found with a
specific risk factor, such as HBV/HCV infection, high-alcohol
intake or non-alcoholic fatty liver disease (NAFLD) (Supplemen-
tary Fig. 9). Instead, the H+E+ patient subset is distinguished by
specific HCC molecular markers28. In particular, analysis of
available RNA-seq data revealed a significant upregulation of
alpha-FETOPROTEIN (AFP; a HCC marker when expressed in
adult livers), JAG1, NOTCH3, NOTCH4, SOX9, VIM (progenitor
markers) and CD24 (a HCC prognosis marker; Fig. 5b).
Importantly, these markers are also upregulated in Alb-R26Met

HCC (Fig. 5c), as we recently reported24. Together, these results
show that an enrichment in genes characterised by “CGI
hypermethylation and overexpression” occurs in HCC patients
belonging to the so-called “proliferative-progenitor” subclass28.
Moreover, these HCC patients share common features with the
Alb-R26Met liver cancer model: the epigenetic H+E+ signature
and the “proliferative-progenitor” cell feature.

Overexpressed genes with hypermethylated CGIs in 5’-UTR or
gene body regions act as oncogenes. The intriguing overlap
between the Alb-R26Met model and the H+E+ patient subset
prompted us to explore the relevance in cancer of the 55 genes
found in Alb-R26Met tumours both overexpressed and with
hypermethylated CGIs either in the 5′-UTR or in the gene body
region. For this analysis, transcriptome data from HCC patients
were available for 51/55 genes (Supplementary Data 7).
Remarkably, most genes are overexpressed in a large proportion
of HCC patients (Fig. 6a, Supplementary Data 8), with a sig-
nificant higher number in the H+E+ patient subset compared
with the other (Fig. 6b). These genes include PRRX1 (28 patients
out of 41), CLDN7 (20), DBN1 (25), PCDH17 (30), PTK7 (21),
ADAMTSL5 (21), ARHGAP21 (30), NFKB2 (23), CDKN2B (30),
RELB (22), DUSP8 (24), SSBP4 (20), IRX3 (27), NEURL1B (19).
Differences in the expression of these 51 genes permitted segre-
gating the H+E+ patient subset from the other (Fig. 6c).
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Furthermore, for each HCC patient we analysed the methylation
levels of the CGIs corresponding to the 55 genes. We took into
account that the number of CGIs for each gene varies between
genes (Supplementary Data 7). 53/55 genes successfully lifted-
over from mouse to human, and both methylation and expression
data are available for 51 genes. These analyses revealed that 42/51
(82%) genes are both hypermethylated and overexpressed in at
least 1 patient, and that 40/41 (97,5%) patients have at least 1
gene both hypermethylated and overexpressed (Fig. 6d, e, Sup-
plementary Fig. 10, Supplementary Data 9). Additionally, there is
a significant higher number of genes both hypermethylated and

overexpressed in the H+E+ patient subset compared to the “NO
H+E+” subset (H+E+ versus “NO H+E+”: P-value < 0.001;
Supplementary Fig. 10).

Curiously, in the Alb-R26Met cancer model Cdkn2a, rather
considered as a tumour suppressor, is overexpressed and
hypermethylated in its gene body CGI, whereas no methylation
changes were observed in its promoter CGI (Supplementary Data
4). We examined whether this phenomenon would also occur in
HCC patients by analysing CDKN2A methylation and expression
in HCC patients from TCGA and GSE56588 cohorts (for which
methylation and expression data are available: 205/224 patients).
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Fig. 4 Decitabine treatment decreases the expression and the CGI methylation levels of genes hypermethylated and overexpressed in Alb-R26Met tumours.
Expression and CGI methylation levels of a set of genes found hypermethylated and overexpressed in the Alb-R26Met tumours were analysed in dissected
tumours from Alb-R26Met mice either untreated (red) or treated with Decitabine (green). For each indicated gene, graphs report the methylation levels of
CpGs within the CGI of interest (left) and the expression levels of genes (right) in tumours from Alb-R26Met mice either untreated (red) or treated with
Decitabine (green), compared to control livers (blue). Note that demethylating treatment significantly decreased transcription levels. Concerning the Scn8a
gene, the methylation levels of its gene body CGI was reduced in Decitabine treated tumours compared to untreated tumours. This was accompanied by a
trend in downregulation of its expression levels, although not significant. It is possible that for Scn8a, the demethylation extent caused by the dose of
Decitabine used is suboptimal to significantly influence its expression levels. Alternatively, a more complex mechanism could be involved in the regulation
of Scn8a expression. Significance is indicated on the top. Not significant (ns): P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001
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Mouse Cdkn2a has two CGIs: one in the promoter and another in
the gene body. Instead, human CDKN2A has 5 CGIs: one in the
promoter and four in the gene body. Data are available only for
the CGI in the promoter and for one of the four CGIs located in
gene body. Notably, in both cohorts we found an enrichment of
patients with an overexpression of CDKN2A (39/41 and 166/204,
in the respective cohorts), which is associated to a

hypermethylation of the gene body CGI (21/39 and 163/166, in
the respective cohorts). In contrast, not methylation changes have
been detected in the promoter CGI for both HCC cohorts
(Supplementary Fig. 11).

Analysing pathway enrichments in KEGG pathways of genes
overexpressed with hypermethylated CGIs, we identified a
significant enrichment of several cancer-related pathways, such
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Fig. 5 A HCC patient subset, which is characterised by an enrichment of genes overexpressed and with hypermethylated CGIs, belongs to the HCC
“proliferative-progenitor” subclass. a The 41 HCC patients are classified according to the highest percentage of genes over- versus underexpressed and
with hyper- versus hypomethylated CGIs. In orange (left), patients with an enrichment of genes overexpressed and with CGI hypermethylation (H+E+
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characterised by an enrichment in downregulated genes. Patients are organised according to an enrichment of genes with CGI hypomethylation (top) and
hypermethylation (bottom). Concerning the 7 patients of the HCC subgroup 3 identified in Fig. 1f (corresponding to the best overlap patients), 5 of them
belong to the H+E+ subset. Notably, all of these 7 patients are characterised by more than 37% of genes both hypermethylated and overexpressed
(highlighted in panel with a red square and a red percentage of genes overexpressed with hypermethylated CGI). The X-axis reports methylation
differences, whereas the Y-axis reports expression as Log2FC. b Transcript levels (from RNA-seq data) of the indicated genes in H+E+ patient subset (in
orange) versus the others (in green). Note significant high transcript levels of AFP, JAG1, NOTCH3, NOTCH4, SOX9, VIM and CD24 in the H+E+ patient
subset. c Transcript levels by RT-qPCR for the same genes shown in b analysed in Alb-R26Met tumours versus control livers, displaying the same profile of
gene upregulation as in the H+E+ patient subset. Data have been reported in ref.24. Significance is indicated on the top. *P < 0.05, ***P < 0.001
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as MAPK signalling, viral carcinogenesis, pathways in cancer, cell
cycle (Fig. 6f, Supplementary Fig. 12). Consistently, some of these
genes are well-known oncogenes, such as GRB10, MAP3K6, JUN
(which belong to MAPK pathway), NFKB2, RELB (which belong
to NFkB and MAPK pathways), MET, PTK7 (Supplementary

Data 10). The presence of poorly characterised genes among well-
established oncogenes prompted us to explore their functional
relevance in cell tumorigenic properties. Focusing on Scn8a,
Actn1, Srd5a, NFkB2 and Neurl1b, we used shRNA-mediated
targeting to lower their expression levels in Alb-R26Met HCC cells
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(Fig. 7a, Supplementary Fig. 13). Stable clones were used to assess
cell tumorigenic properties in vitro and in vivo. These genes were
selected because: (1) of their overexpression in HCC patients
(SCN8A in 41%, ACTN1 in 22%, SRD5A2 in 5%, NFkB2 in 56%,
NEURL1B in 46%); (2) of their action as oncogenes in cancer cells
(and particularly in HCC) has been less explored in previous
studies (with the exception of NFkB2 and SRD5A). Down-
regulation of either Scn8a, Actn1, Srd5a, NFkB2 or Neurl1b
interferes with the capability of cells to form: (a) colonies in
anchorage-independent assays (Fig. 7b); (b) foci in anchorage-
dependent assays, as revealed by a significant smaller foci size
even if numbers were similar (Fig. 7c); (c) tumour spheres when
cells were grown in self-renewal conditions (Fig. 7d); (d) tumours
in nude mice xenografts (Fig. 7e). Collectively, these data show
that most of the 55 genes identified in the Alb-R26Met cancer
model are also overexpressed and with hypermethylated CGIs in
a large proportion of HCC patients, with a set of them acting
together as an “oncogenic module”.

Discussion
The increasing knowledge on how epigenetic modifications such
as DNA methylation influence patterns of gene expression in
cancer holds great promises for understanding biological pro-
cesses, as well as for their use in prognosis, patient stratifications
and therapeutic intervention3,29. This is well exemplified by
reports showing correlations between changes in CGI methyla-
tion and a remarkable resetting of transcriptional networks in
cancer. In the present study, we employed a clinically relevant
cancer mouse model in which tumorigenesis is triggered by a
slight perturbation in signalling dosages rather than drastic
genetic modifications, to examine the DNA methylation land-
scape associated with tumorigenic acquisition. We reasoned that
such a genetic tool offers a unique way to model DNA methy-
lation changes occurring in human cancerogenesis in the absence
of drastic alterations of epigenetic modulators. Our genome-wide
strategy highlighted key correlations between site-specific DNA
methylation changes and transcriptional dosages of the corre-
sponding genes. The type of changes found for some genes belong
to the well-known mechanism of downregulation of tumour
suppressors through promoter DNA hypermethylation, which
was the case of Oat and Igfbp5 that can act as tumour suppressors
in certain cellular contexts. Quite unexpectedly, however, there is
an enrichment of genes both overexpressed and with hyper-
methylated CGIs. Several of them are well-known oncogenes,
such as Grb10, Map3k6, Jun, RelB, Met, Ptk7, as well as NF-KB2,
Srd5a2, which have been functionally validated in this study
together with others poorly investigated so far: Scn8a, Actn1,
Neurl1b. Results from our functional assays in Alb-R26Met HCC
cells demonstrate how downregulating each individual oncogene
reduces, but not abolishes, cell tumorigenic properties. These
results conceptually illustrate that, although each oncogene con-
tributes to the tumorigenic properties of cancer cells, they operate
in a cooperative manner as an “oncogenic module” for ensuring
robustness of the tumorigenic program.

Our integrative studies using human HCC databases demon-
strate that enrichment in genes both overexpressed and with
hypermethylated CGIs also characterises 56% of the HCC
patients, which we named as the “H+E+ patient subset”. For
several genes, upregulation in expression levels is coherent with
them being bona fide oncogenes. For example, it is the case of
WT1, DLK1, TP73, EEF1A2, IGF1R, DKK1, SPOCK1, ITPKA,
HOXA3, NOX4, FZD10, VASH2, GATA2, SOX8. Thus, our
genetic studies together with a revisited analysis of human cancer
databases reveal that raising dosages of oncogene sets char-
acterised by hypermethylated CGIs is a robust mechanism

operating in cancer. The existence of such events in human
pathology supports the clinical relevance of these findings.
Remarkably, the H+E+ patient subset belongs to the “HCC
proliferative-progenitor” subclass, thus attributing an additional
feature to this aggressive HCC subtype. For clinical imple-
mentation, integrative methylome and transcriptome analyses on
additional HCC cohorts will demonstrate the robustness of H+E+

patient subset classification. These findings also raise the question
as to whether the H+E+ patient subset could be most sensitive to
therapies based on demethylation agents30.

Our expression analyses revealed that H+E+ genes can be
segregated into two groups, according to their relative position to
the ATG, with overall significant higher expression levels
observed the further the CGI is located from the ATG (Group-II).
Whereas for Group-I the relative position of the hypermethylated
CGIs falls predominantly with the 5′-UTR, their location in
Group-II is in the gene body. The positive correlation between
gene body hypermethylation and expression is coherent with
previous studies based on in vitro modulation of the methylation
content in cancer cell lines12. Additionally, single-base resolution
DNA methylation profiling combined with transcriptome analy-
sis correlated changes in gene expression levels with the CpG
methylation content in gene body31–34. The significance of gene
body DNA methylation on transcriptional regulation is
strengthened by studies exploring correlations with chromatin
modifications. It has been reported that in the gene body: (a)
H3K4me3 association to alternative promoters depends on their
CpG methylation content, impacting alternative transcript pro-
ducts35; (b) H3K36me3 associates with methylated DNA in gene
body and permits transcription36; (c) CTCF binding is lost in
hypermethylated CGI, influencing splicing, in addition to the
well-known action of CTCF in maintenance of chromatin
architecture through generation of chromatin barriers37,38; (d)
H3K27me3 and H3K9me3, known as repressive histone marks,
are not associated with methylated DNA39. Future studies inte-
grating methylome, transcriptome and ChIP-seq with several
chromatin marks like those mentioned above will contribute to
uncover the underlying mechanisms of action of oncogene
upregulation through gene body methylation. Taking into
account the variety of chromatin factors found associated in gene
body, it is likely that different sets of genes are modulated by
different mechanisms of action.

For translating these findings into therapies, an intriguing
question is whether and to what extent the epigenetic repro-
gramming of a set of genes acting as an “oncogene module” still
leaves space for tumour vulnerability. Our functional studies
show that targeting each individual oncogene reduces, but not
abolishes, tumorigenicity, indicating that each oncogene provides
a net contribution to the whole tumorigenic properties of cancer
cells. Such context may be particularly relevant for tumours that
are not predominantly “addicted” to genetic mutation(s)40, such
as HCC. This likely explains the partial response of HCC patients
even with most promising drugs targeting one or at least a
restricted number of targets (e.g., Sorafenib). Such scenario
contrasts with exceptional cases of effectiveness, due to the
stringent addiction of cancer cells to a given oncogene, such as
BCR-ABL in chronic myeloid leukaemia, ERBB2 in breast cancer,
ERBB1 in non-small cell lung cancer, B-RAF in metastatic mel-
anoma. To identify vulnerability, an approach could be to extract
enriched pathways that are deregulated from the whole list of
epigenetically reprogramed genes. In the case of tumorigenesis
modelled by the Alb-R26Met mice, the MAPK signalling cascade is
on the top of the list of enriched pathways (with 11 genes dif-
ferentially methylated in tumour versus control livers). Through a
phosphokinome-based educated guess drug screen, we recently
reported that tumorigenesis modelled by the Alb-R26Met genetic
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Fig. 7 Downregulation of overexpressed genes with hypermethylated gene body CGI in Alb-R26Met HCC cells interferes with their tumorigenic properties
both in vitro and in vivo. a Western blots showing SCN8A, ACTN1, SRD5A2, NFkB2 and NEURL1B protein levels in stable clones established after
transfection of Alb-R26Met HCC14 cells with plasmids carrying a shRNA sequence targeting the corresponding gene. Protein levels were compared to
control cells (ctr). ACTIN was used as a loading control in all western blots. The asterisk indicates nonspecific bands detected using anti-SRD5A2
antibodies. b–e Biological assays to assess functional properties of Alb-R26Met HCC14 cells carrying a shRNA sequence targeting candidate genes. Effects
were compared to HCC14 cells either untransfected or transfected with a control shRNA (shCtrl). b Graph reporting the number of colonies formed in
anchorage-independent growth assays using 2 different shRNA targeting sequences for each candidate gene. Note a decrease in colony number formation
of cells with downregulated candidate genes compared with control cells. c Graphs reporting the number (left) and the size (right) of colonies formed in
anchorage-dependent growth assays. Whereas no significant changes in colony numbers were detected, note a significant decrease in colony size when
the candidate gene is downregulated. d Graph reporting number of spheres formed in tumour sphere assays. Note that downregulation of candidate genes
significantly reduces sphere number formation. e Graph reporting the tumour volume of mice injected either with Alb-R26Met HCC14 control cells or with
Alb-R26Met HCC14 cells carrying a shRNA sequence targeting candidate genes. Note that downregulation of candidate genes significantly interferes with
the in vivo tumorigenic properties of Alb-R26Met HCC14 cells. Significant differences between groups are indicated on the top. *P < 0.05, **P < 0.01, ***P <
0.001 (nd: no determined)
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system is vulnerable to Ras pathway targeting, provided that its
inhibition occurs concomitantly while destabilising the stress
support mitochondrial pathway24. It is therefore tempting to
speculate that a proportion of tumours, particularly those with
epigenetic reprogramming rather than those with drastic genomic
instability, still maintains vulnerability to synthetic lethal inter-
actions. Alternatively, the use of epigenetic modulating agents to
reprogram a set of genes in cancer cells, ideally used at minimal
doses to limit side effects3,29, could reinforce the action of pro-
mising targeted therapies that, when used alone, have been
unsatisfactory in clinical trials, as reported for chronic myeloid
leukaemia41. We show here that Decitabine treatment reduces the
methylation levels of gene body CGIs and the expression levels of
the corresponding genes. Such event correlates with reduced
tumorigenic properties of Alb-R26Met HCC cells. Nevertheless,
cells for 10 days in culture after 48 h with Decitabine recover their
tumorigenic properties (Supplementary Fig. 14), illustrating how
reduced tumorigenicity by transient demethylation treatment is
reversible, likely by resetting increased levels of oncogenes. This
would be coherent with previous studies showing the capability of
cancer cells to restore acquired epigenetic modifications12. Col-
lectively, these findings support the possibility of achieving
effective response in cancer combining epigenetic modulating
agents with targeted treatments.

In conclusion, by exploring epigenetic changes associated with
tumorigenesis in a clinically relevant mouse model, we discovered
that for oncogene sets, characterised by hypermethylated CGIs
either in their 5′-UTR or in the gene body, their expression levels
are raised in cancer. The use of a mouse model in which
tumorigenesis is not caused by drastic genetic manipulations
strengthens the advantage of disrupting multiple oncogenes
through an epigenetic reprogramming. Delineating the relation-
ship between aberrant DNA methylation and expression of
oncogenes/tumour suppressors will likely contribute to identify
biomarkers for patient stratifications, functional pathways oper-
ating in cancer and strategies for an epigenetic restoration of
deregulated genes in combination with molecular therapies.

Methods
Mice. Ethics Statement: All procedures involving the use of animals were per-
formed in accordance with the European Community Council Directive of 22
September 2010 on the protection of animals used for experimental purposes
(2010/63/UE). The experimental protocols were carried out in compliance with
institutional Ethical Committee guidelines for animal research (comité d’éthique
pour l’expérimentation animale—Comité d’éthique de Marseille; agreement
number D13-055-21 by the Direction départementale des services vétérinaires—
Préfecture des Bouches du Rhône).

Alb-R26Met mice: R26stopMet and Alb-R26Met mice have been described
previously42,43. Briefly, R26stopMet mice (international nomenclature Gt(ROSA)
26Sortm1(Actb-Met)Fmai) carrying a conditional mouse–human chimeric Met
transgene in the Rosa26 locus were crossed with Albumin-Cre mice (B6.Cg-Tg(Alb-
cre)21Mgn/J) obtained from the Jackson Laboratory. All mice were maintained on a
50% mixed 129/SV and C57BL6 background. Mice were genotyped via PCR
analysis of genomic DNA as reported in previous studies42,43. Mice were housed
under pathogen-free conditions.

Mice drug treatment: For in vivo demethylation experiments to asses
methylation levels of selected CGIs, as well as expression levels of the
corresponding genes, Alb-R26Met mice were treated with intraperitoneal injections
of 2.5 mg/kg of Decitabine, twice per week (for a total of three injections).

DNA/RNA-related experiments. Genomic DNA isolation: Genomic DNA from
Alb-R26Met tumours and control livers was prepared using the ZR Genomic DNA
Tissue Miniprep (Zymo Research Company), according to the manufacturer’s
instructions.

Total RNA extraction: Total RNA from frozen tissues and cultured cells was
isolated using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s
instructions. DNase (Qiagen) treatment was included to avoid possible genomic
DNA contamination. Regarding frozen samples, 20 mg of tissue were first
homogenised in the specific lysis buffer by 6300 r.p.m. 2 × 30 s using Precellys 24
(Bertin technologies), then the RNeasy Mini Kit (Qiagen) was used.

cDNA and quantitative RT-PCR analysis: cDNA was synthesised using a
Reverse Transcription Kit (Bio-Rad). PCR reactions were performed using 2X
SYBR Green qPCR SuperMix-UDG with Rox (ThermoFisher Scientific) and
specific primers (1 µM; qPCR primer sequences are listed in Supplementary Data
S11). Expression levels were quantified using the comparative Ct method (2−ΔΔCT

method) with the house-keeping gene Hprt as a control for internal normalisation,
and results are expressed as RQ= 2−ΔΔCT.

High-throughput sequencing. Comparative Genomic Hybridisation analysis:
Genomic DNA form dissected Alb-R26Met tumours (n= 16) and control livers
(n= 8) was analysed by the “Plateforme Biopuces et Sequencage IGBMC” (Illkirch,
France) using an Agilent Oligonucleotide Array-Based CGH for Genomic DNA
Analysis (CGH microarray 4 × 180 K).

Genome-wide DNA methylation analysis: Methyl-MiniSeq EpiQuest genome-
wide sequencing was perform using genomic DNA from dissected Alb-R26Met

tumours (n= 10) and control livers (n= 3) to analyse the DNA methylation profile
by the Zymo Research Corporation (Irvine, CA, USA).

Library construction. Libraries were prepared from 200–500 ng of genomic
DNA digested with 60 units of TaqαI and 30 units of MspI (NEB) sequentially,
then extracted with Zymo Research DNA Clean and Concentrator™-5 kit (Cat#:
D4003). Fragments were ligated to pre-annealed adapters containing 5′-methyl-
cytosine instead of cytosine according to Illumina’s specified guidelines (www.
illumina.com). Adaptor-ligated fragments of 150–250 bp and 250–350 bp in size
were recovered from a 2.5% NuSieve 1:1 agarose gel (Zymoclean™ Gel DNA
Recovery Kit, Zymo Research Cat#: D4001). The fragments were then bisulfite-
treated using the EZ DNA Methylation-Lightning™ Kit (Zymo Research, Cat#:
D5020). Preparative-scale PCR was performed and the resulting products were
purified (DNA Clean and Concentrator™–Zymo Research, Cat#D4005) for
sequencing on an Illumina HiSeq.

Alignments and data analysis. Sequence reads from bisulfite-treated EpiQuest
libraries were identified using standard Illumina base-calling software and then
analysed using a Zymo Research proprietary analysis pipeline, which is written in
Python and used Bismark (http://www.bioinformatics.babraham.ac.uk/projects/
bismark/) to perform the alignment. Index files were constructed using the
Bismark-genome-preparation command and the entire reference genome. The
non-directional parameter was applied while running Bismark. All other
parameters were set to default. Filled-in nucleotides were trimmed off when doing
methylation calling. The methylation level of each sampled cytosine was estimated
as the number of reads reporting a C, divided by the total number of reads
reporting a C or T (β-value).

Overall sequencing results (for 13 samples) are: (a) mean total read: 30 million
read pairs, (b) mean mapping efficiency: 40%, (c) mean unique CpGs: 4.1 millions,
(d) mean average CpG coverage: 16×, (e) mean bisulfite conversion rate: 98%. Data
accessibility: Methylome datasets generated from this study are deposited with the
Gene Expression Omnibus (accession GSE90093).

Identification of differentially methylated CpGs. A total of 1.085.757 unique
single CpG sites, present in all samples, were analysed. β-value ranged from 0 (not
methylated) to 1 (fully methylated). To identify differentially methylated CpGs, the
methylation difference per CpG was calculated as the mean β-value of tumours
minus the mean β-value of controls. Those with a methylation difference > 0.2 were
filtered to retain the ones with a FDR < 0.05 (Student’s two-sided T-test and
Benjamini–Hochberg False Discovery Rate for P-value correction). A CpG is
classified as “hypomethylated” when the methylation difference is <−0.2 and as
“hypermethylated” when the methylation difference is >0.2. A global analysis was
first carried out with all measured CpGs, then dividing the CpGs according to their
location within or outside a CGI (CpG Island bedfile downloaded from UCSC).
According to the Methyl-MiniSeq EpiQuest coverage, the CGI coverage by CpGs
was 87.5%. Studies were focused on CGI regions. The overlap with CGI and the
annotated gene was performed using the CGI track from the UCSC genome
browser, and Refseq gene annotations based on the NCBI37/mm9 mouse reference.
We discarded “ubiquitous CpGs” located in more than one annotated gene, and we
extended the gene/CGI annotation to the gene’s promoter region to −1.5 kb
upstream the TSS.

Targeted Bisulfite Sequencing: Genomic DNA from Alb-R26Met tumours
dissected from mice treated with Decitabine (2.5 mg/kg; twice per week, for a total
of three treatments; n= 4) and without treatment (n= 2) was used to asses CpG
methylation levels in selected regions within the candidate CGIs through bisulfite
sequencing by the Zymo Research Corporation (Irvine, CA, USA).

Assay Design, Sample Preparation and Multiplex Targeted Amplification. After
assessment of DNA concentration and quality, DNA samples were bisulfite
converted using the EZ DNA Methylation-LightningTM Kit (ref Cat#D5030)
according to the manufacturer’s instructions. Primers were designed with
Rosefinch, Zymo Research’s proprietary sodium bisulfite converted DNA-specific
primer design tool (primer sequences are listed in Supplementary Data 5).
Multiplex amplification of all samples using the specific primer pairs and the
Fluidigm Access ArrayTM System was performed according to the manufacturer’s
instructions. The resulting amplicons were pooled for harvesting and subsequent
barcoding according to the Fluidigm instrument’s guidelines. After barcoding,
samples were purified (ZR-96 DNA Clean and Concentrator™ –ZR, Cat#D4023),
then prepared for parallel sequencing using a MiSeq V2 300 bp Reagent Kit and
paired-end sequencing protocol, according to the manufacturer’s guidelines.
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Targeted Sequence Alignments and Data Analysis. Sequence reads were
identified using standard Illumina base-calling software and then analysed using a
Zymo Research proprietary analysis pipeline, which is written in Python. Sequence
reads were aligned back to the reference genome using Bismark (http://www.
bioinformatics.babraham.ac.uk/projects/bismark/), an aligner optimised for
bisulfite sequence data and methylation calling44. Paired-end alignment was used
as default thus requiring both read 1 and read 2 be aligned within a certain
distance, otherwise both read 1 and read 2 were discarded. Index files were
constructed using the bismark_genome_preparation command and the entire
reference genome. The non-directional parameter was applied while running
Bismark. All other parameters were set to default. The methylation level of each
sampled cytosine was estimated as the number of reads reporting a C, divided by
the total number of reads reporting a C or T.

Transcriptome analysis by RNA-seq: Total RNA from dissected Alb-R26Met

tumours (n= 4) and control livers (n= 4) was processed for transcriptome
analysis. RNA quality was controlled using the Agilent RNA 6000 Pico Kit and
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California) according
to the manufacturer’s recommendations. Total RNA (1 µg per sample) was used for
library preparation using the TruSeq RNA Sample Preparation Kit (Illumina) by
GATC Biotech (Mulhouse; NGSelect service). Sequencing was performed on a
HiSeq 2500 (Illumina; 2 × 50 bp paired end) and base calling performed using RTA
(Illumina). Quality control of raw reads was done using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were mapped to the
reference genome mm9 with STAR aligner45 using default parameters; differential
expression was calculated using the Cufflinks package46.

Cell culture-related experiments. Cell lines: Alb-R26Met HCC cell lines (HCC3,
HCC13 and HCC14) were established, characterised and cultured as previously
described24; cells were regularly tested by PCR-based assay to confirm their
maintenance in free Mycoplasma culture condition.

shRNA-mediated downregulation of candidate genes: The functional relevance
of candidate oncogenes was determined using shRNA targeting sequences (Sigma;
shRNA sequences are reported in Supplementary Data 12). In particular, plasmids
carrying the shRNA sequence were transfected in cells using Lipofectamine 2000
reagent, according to the manufacturer’ instructions (ThermoFisher Scientific).
After 1 week of puromycin selection, pools of resistant clones were used to verify
downregulation of gene expression levels (by RT-qPCR and western blots) and to
perform biological assays.

Cell drug treatment: For the demethylation experiments, cells were exposed to
0.3 µM of Decitabine (5-Aza-2’-deoxycytidine; Selleckchem) for 48 h. After
treatment, cells were used for cell viability, anchorage-dependent growth assay,
anchorage-independent growth assay, tumour sphere formation assay and
xenograft studies. For experiments shown in Supplementary Fig. 14, after 48 h of
Decitabine treatment, cells were cultured for 10 days with complete media before
performing the experiments.

Survival assay: Cells were seeded in a 150‐µl volume per well in 96 well plates
(10,000 cells/well) in 10% serum for 24 h, then Decitabine treatment was applied at
0.3 µM in the corresponding wells. After 48 h, cell viability was assessed in a Cell
Titer Glo Luminescent Assay (Promega) and luminescent signals were measured
with a luminometer microplate reader (Berthold). Data are expressed as means ±
SEM of three independent experiments performed in triplicate.

Anchorage-dependent growth assay (focus formation assay): To measure
anchorage-dependent growth, 300 cells were seeded in 10 ml complete media in a
10 cm dish. After 7 days, foci were stained with a 0.2% crystal violet solution
(2% methanol). The total number of foci and individual foci size were quantified
using ImageJ program. Data are expressed as means ± SEM of three independent
experiments performed in triplicate.

Anchorage-independent growth assay (soft agar assay): Assays were performed
as previously described47–49. Briefly, cells were cultured in 12-well plates containing
two layers of agar. Cells (6 × 103) were resuspended in 0.5% agar diluted in
complete medium and poured onto a 1% layer of agar (diluted in medium). Fresh
medium was added to the top layer every 3 days. After 2 weeks, colonies were
stained with MTT, pictures were taken using a dissecting microscope, and colonies
were counted using ImageJ software. Numbers are expressed as means ± SEM of
three independent experiments performed in triplicate.

Tumour sphere forming assay: Cells were cultured at a density of 2 × 104/
35 mm dishes in a stem cell-permissive media. In particular, cells were cultured for
one week in DMEM/F12 medium supplemented with 1% N-2 Supplement, 2%
B27, 50 mg/ml of Penicillin-Streptomycin, glutamine (Gibco), 0.01% Bovine Serum
Albumin (BSA), 5 mg/ml of insulin (Sigma) and growth factors including 10 ng/ml
of basic fibroblast growth factor (bFGF), 20 ng/ml of epidermal growth factor
(EGF) and 10 ng/ml of hepatocyte growth factor (HGF; Peprotech). After one
week, pictures of the whole dish were taken using a dissecting microscope, and
spheres were counted using ImageJ software. Numbers are expressed as means ±
SEM of three independent experiments performed in triplicate.

In vivo tumorigenesis assays (xenografts in nude mice): For in vivo
demethylation studies, xenografts were performed using Alb-R26Met HCC cells
either untreated or pre-treated for 48 h with Decitabine (0.3 µM). Cells (5 × 106)
were then resuspended in a 1:1 Matrigel:PBS solution (Corning BV) and inoculated
subcutaneously into the flank-leg region of nude mice (S/SOPF SWISS NU/NU;
Charles River). After 5 days of cell inoculation, mice were treated with

intraperitoneal injections of vehicle or Decitabine (2.5 mg/kg) twice per week for
3 weeks. Mice were then sacrificed and tumour volume was measured as length ×
width × height. For assessment of in vivo tumorigenic capacity of candidate genes,
xenografts were performed using Alb-R26Met HCC cells (1 × 106) either un-
transfected, transfected with shControl, or with a shRNA sequence targeting the
candidate gene. Tumour volume was followed every week. After 6 weeks mice were
sacrificed and tumour volume after dissection was determined as length × width ×
height.

Western blots: Protein extracts from HCC cells were prepared and western blot
analysis was performed as previously described43,48,49. For SCN8A detection,
protein lysates were run on a 5% SDS gel and transferred overnight at 300 mA in
the presence of 0.1% SDS. The acquisition of ECL signal was performed using the
MyECL imager system (ThermoFisher Scientific)(Supplementary Fig. 15).

Antibodies: Antibodies used were: anti-SCN8A (Abcam, #ab65166; 1:500), anti
ACTN-1 (Cell Signalling, #6487; 1:3000), anti-SRD5A2 (ThermoFisher Scientific,
#PA5-25465; 1:1000), anti-NFkB2 (Cell Signalling; #4882; 1:1500), anti-NEURL1B
(Abcam, #ab156988; 1:3000), anti-ACTIN (Sigma, A3853; 1:5000), anti-rabbit IgG-
peroxidase or anti-mouse IgG-peroxidase (Jackson; 1:4000).

Computational analyses. Unsupervised hierarchical clustering analysis: Clustering
statistics was determined by using the methylation values of all CGIs for each
sample. We applied the Principal Component Analysis and the Agglomerative
Distance Tree using the “linkage” function with unweighted average euclidean
distance for calculating the similarity matrix of samples and the “dendrogram”, as
well as “phylotree” function to plot the hierarchical and distant trees (both are from
Matlab Statistical Toolbox). For studies reported in Supplementary Fig. 7, clus-
tering analysis of both methylome and expression data was performed using the
function “hclust” on an Euclidean distance matrix of samples, which was computed
with the function “dist”. “hclust” then returned a tree-like structured object that
could be plotted as dendrogram by “plot” (R, version 3.3.1).

Identification of human CGIs corresponding to the mouse CGIs of interest: To
compare methylome outcomes identified in the Alb-R26Met genetic system with
those available for human studies, genomic coordinates were converted from mm9
to GRCh37/hg19 by using the “Lift-Over” tool available from UCSC (https://
genome-euro.ucsc.edu/cgi-bin/hgLiftOver). This allowed us to successfully map
501 out of 513 CGIs from mouse to human regions (Supplementary Data 2).
Among them, we only kept 501 unique human regions by discarding duplicate lift-
overs. We also discarded 14 human regions not overlapping with any human CGI.
We then check into TCGA patient datasets the presence of methylation data for
those CGIs. We focused the analysis on the patient having both tumour and
control samples (adjacent liver) methylation data, and we discarded the CGIs
having no entry into any of the TCGA patient dataset. Finally, the total CGIs used
for comparative analyses between mouse and human is 416.

Analysis of public available DNA methylome data: The human methylome data
is available through firebrowse (www.firebrowse.org) by the BROAD Institute and
is based upon data generated by the TCGA Research Network: http://
cancergenome.nih.gov/. The publicly available methylome data (Level 3 data) of
HCC patients from TCGA is generated with the platform Illumina Infinium
Human DNA Methylation 450 and contains beta values for 485778 CpGs. Patients
with both tumour and control samples were extracted and calculation of
methylation difference per CpG was applied (β-values of tumour–β-values of
control). Student’s T-test was used to compare between tumour and normal
samples, and the P-values were corrected with Benjamini–Hochberg False
Discovery Rate (FDR). As our methylome screen focused on CGIs, we revisited the
human data (from TCGA and from GSE56588) to generate a list of all CpGs within
CGIs with the corresponding methylation β-values. By applying the same
methylation difference and FDR thresholds used for Alb-R26Met methylome data,
we extracted a list of differentially methylated CpGs from the human HCC dataset.

Methylome overlap between Alb-R26Met outcomes and human data: A
methylation overlap between Alb-R26Met and human HCC was considered only
when a given CGI was differentially methylated in both species. To define the
methylation status of a given CGI, the CpG with an absolute maximum
methylation difference among all patient samples was chosen as a representative
probe (with P-value threshold and fold change cut-off defined above). This CpG
was analysed in all HCC patients. An overlap score (in percentage) was determined
by calculating the number of human CGIs differentially methylated versus the total
number of lifted-over CGIs subset.

Analysis of public available RNA-seq data: The human RNA-seq data from
TCGA was available through firebrowse. The data is generated with the platform
Illumina HiSeq 2000 Sequencing System and uses MapSplice50 to do the alignment
and RSEM51 to perform the quantitation. The scaled estimate from RSEM output
was used as this value could be multiplied by 106 to obtain a measure in terms of
transcripts per million (TPM), which is preferred over RPKM52 or FPKM53 as it is
independent of the mean transcript length and therefore more comparable across
samples51. The TPM is calculated for each gene and the calculation of Log2 Fold
Change (Log2(tumour sample)−Log2(control sample)) was applied to each patient
with available data from both tumour and control samples.

Calculation of the relative position to the ATG: For calculating the position of
CpGs, we used the longest transcript for each gene. The gene length was reported
with values ranging from −100% and +100% (transcription end site: TES), with
the ATG at position 0. The relative position for each CpG was then reported
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relative to its distance to the ATG. A positive relative position corresponds to a
genomic region located downstream the ATG, whereas a negative relative position
stands for a genomic region located upstream the ATG.

Analysis of public available data from a mouse HCC model carrying the viral
hepatitis B virus X expression: Using available methylome and expression data
based on a HCC model induced by the viral hepatitis B virus X (HBxtg;
GSE4805227), we performed the same analysis done for the Alb-R26Met model
(Fig. 3b). For each CpG, the methylation difference between HBxtg tumour and
control sample was calculated as the difference of the RPKM. For those CpGs
found differentially methylated, the expression of the corresponding gene was then
calculated as the difference of the RPKM sum within the TSS and TSE.

Pathway enrichment analysis: For these analyses (shown in Supplementary
Figs. 5, 9), identified genes were used as an input for KEGG pathway enrichment
analysis with the REST API tool (http://rest.kegg.jp). Pathways were further ranked
by −log10 P-value after applying the hypergeometric probability density function
(Matlab function “hygepdf” from Statistical Toolbox).

Statistical analysis: All data were analysed using GraphPad Prism software
(version 7.01) and Matlab Statistical Toolbox (version R2015b). Results are
expressed as the median (indicated by a line) or as the mean ± standard error of the
mean (SEM), according to sample distributions. Statistically significant differences
were estimated by applying unpaired Student t-tests to data showing normal
distributions, and Mann–Whitney tests in all other situations. Moreover, one-way-
ANOVA was used to determine differences between the means of independent
groups (in vivo xenograft experiments in Figs. 2h and 7d), and Fisher’s exact test
for categorical variables (risk factors in Supplementary Fig. 9). All statistical tests
were two-sided. Statistical significance was defined as not significant (ns): P > 0.05;
*P < 0.05; **P < 0.01; ***P < 0.001. Significance is indicated in figures

Data availability. Raw and processed data of bisulfite sequencing have been
deposited to the Gene Expression Omnibus (GEO) [GEO: GSE90093]. The authors
declare that all data supporting the findings of this study are available within the
article and its Supplementary Information files, or from the authors upon rea-
sonable request.
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